aboutsummaryrefslogtreecommitdiff
path: root/nx-X11/extras/ttf2pt1/pt1.c
diff options
context:
space:
mode:
authorReinhard Tartler <siretart@tauware.de>2011-10-10 17:43:39 +0200
committerReinhard Tartler <siretart@tauware.de>2011-10-10 17:43:39 +0200
commitf4092abdf94af6a99aff944d6264bc1284e8bdd4 (patch)
tree2ac1c9cc16ceb93edb2c4382c088dac5aeafdf0f /nx-X11/extras/ttf2pt1/pt1.c
parenta840692edc9c6d19cd7c057f68e39c7d95eb767d (diff)
downloadnx-libs-f4092abdf94af6a99aff944d6264bc1284e8bdd4.tar.gz
nx-libs-f4092abdf94af6a99aff944d6264bc1284e8bdd4.tar.bz2
nx-libs-f4092abdf94af6a99aff944d6264bc1284e8bdd4.zip
Imported nx-X11-3.1.0-1.tar.gznx-X11/3.1.0-1
Summary: Imported nx-X11-3.1.0-1.tar.gz Keywords: Imported nx-X11-3.1.0-1.tar.gz into Git repository
Diffstat (limited to 'nx-X11/extras/ttf2pt1/pt1.c')
-rw-r--r--nx-X11/extras/ttf2pt1/pt1.c7374
1 files changed, 7374 insertions, 0 deletions
diff --git a/nx-X11/extras/ttf2pt1/pt1.c b/nx-X11/extras/ttf2pt1/pt1.c
new file mode 100644
index 000000000..b1c46d57a
--- /dev/null
+++ b/nx-X11/extras/ttf2pt1/pt1.c
@@ -0,0 +1,7374 @@
+/*
+ * see COPYRIGHT
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <time.h>
+#include <ctype.h>
+#include <math.h>
+
+#ifndef WINDOWS
+# include <netinet/in.h>
+# include <unistd.h>
+#else
+# include "windows.h"
+#endif
+
+#include "ttf.h"
+#include "pt1.h"
+#include "global.h"
+
+/* big and small values for comparisons */
+#define FBIGVAL (1e20)
+#define FEPS (100000./FBIGVAL)
+
+/* names of the axes */
+#define X 0
+#define Y 1
+
+/* the GENTRY extension structure used in fforceconcise() */
+
+struct gex_con {
+ double d[2 /*X, Y*/]; /* sizes of curve */
+ double sin2; /* squared sinus of the angle to the next gentry */
+ double len2; /* squared distance between the endpoints */
+
+/* number of reference dots taken from each curve */
+#define NREFDOTS 3
+
+ double dots[NREFDOTS][2]; /* reference dots */
+
+ int flags; /* flags for gentry and tits joint to the next gentry */
+/* a vertical or horizontal line may be in 2 quadrants at once */
+#define GEXF_QUL 0x00000001 /* in up-left quadrant */
+#define GEXF_QUR 0x00000002 /* in up-right quadrant */
+#define GEXF_QDR 0x00000004 /* in down-right quadrant */
+#define GEXF_QDL 0x00000008 /* in down-left quadrant */
+#define GEXF_QMASK 0x0000000F /* quadrant mask */
+
+/* if a line is nearly vertical or horizontal, we remember that idealized quartant too */
+#define GEXF_QTO_IDEAL(f) (((f)&0xF)<<4)
+#define GEXF_QFROM_IDEAL(f) (((f)&0xF0)>>4)
+#define GEXF_IDQ_L 0x00000090 /* left */
+#define GEXF_IDQ_R 0x00000060 /* right */
+#define GEXF_IDQ_U 0x00000030 /* up */
+#define GEXF_IDQ_D 0x000000C0 /* down */
+
+/* possibly can be joined with conditions:
+ * (in order of increasing preference, the numeric order is important)
+ */
+#define GEXF_JLINE 0x00000100 /* into one line */
+#define GEXF_JIGN 0x00000200 /* if one entry's tangent angle is ignored */
+#define GEXF_JID 0x00000400 /* if one entry is idealized to hor/vert */
+#define GEXF_JFLAT 0x00000800 /* if one entry is flattened */
+#define GEXF_JGOOD 0x00001000 /* perfectly, no additional maodifications */
+
+#define GEXF_JMASK 0x00001F00 /* the mask of all above */
+#define GEXF_JCVMASK 0x00001E00 /* the mask of all above except JLINE */
+
+/* which entry needs to be modified for conditional joining */
+#define GEXF_JIGN1 0x00002000
+#define GEXF_JIGN2 0x00004000
+#define GEXF_JIGNDIR(dir) (GEXF_JIGN1<<(dir))
+#define GEXF_JID1 0x00008000
+#define GEXF_JID2 0x00010000
+#define GEXF_JIDDIR(dir) (GEXF_JID1<<(dir))
+#define GEXF_JFLAT1 0x00020000
+#define GEXF_JFLAT2 0x00040000
+#define GEXF_JFLATDIR(dir) (GEXF_JFLAT1<<(dir))
+
+#define GEXF_VERT 0x00100000 /* is nearly vertical */
+#define GEXF_HOR 0x00200000 /* is nearly horizontal */
+#define GEXF_FLAT 0x00400000 /* is nearly flat */
+
+#define GEXF_VDOTS 0x01000000 /* the dots are valid */
+
+ signed char isd[2 /*X,Y*/]; /* signs of the sizes */
+};
+typedef struct gex_con GEX_CON;
+
+/* convenience macros */
+#define X_CON(ge) ((GEX_CON *)((ge)->ext))
+#define X_CON_D(ge) (X_CON(ge)->d)
+#define X_CON_DX(ge) (X_CON(ge)->d[0])
+#define X_CON_DY(ge) (X_CON(ge)->d[1])
+#define X_CON_ISD(ge) (X_CON(ge)->isd)
+#define X_CON_ISDX(ge) (X_CON(ge)->isd[0])
+#define X_CON_ISDY(ge) (X_CON(ge)->isd[1])
+#define X_CON_SIN2(ge) (X_CON(ge)->sin2)
+#define X_CON_LEN2(ge) (X_CON(ge)->len2)
+#define X_CON_F(ge) (X_CON(ge)->flags)
+
+/* performance statistics about guessing the concise curves */
+static int ggoodcv=0, ggoodcvdots=0, gbadcv=0, gbadcvdots=0;
+
+int stdhw, stdvw; /* dominant stems widths */
+int stemsnaph[12], stemsnapv[12]; /* most typical stem width */
+
+int bluevalues[14];
+int nblues;
+int otherblues[10];
+int notherb;
+int bbox[4]; /* the FontBBox array */
+double italic_angle;
+
+GLYPH *glyph_list;
+int encoding[ENCTABSZ]; /* inverse of glyph[].char_no */
+int kerning_pairs = 0;
+
+/* prototypes */
+static void fixcvdir( GENTRY * ge, int dir);
+static void fixcvends( GENTRY * ge);
+static int fgetcvdir( GENTRY * ge);
+static int igetcvdir( GENTRY * ge);
+static int fiszigzag( GENTRY *ge);
+static int iiszigzag( GENTRY *ge);
+static GENTRY * freethisge( GENTRY *ge);
+static void addgeafter( GENTRY *oge, GENTRY *nge );
+static GENTRY * newgentry( int flags);
+static void debugstems( char *name, STEM * hstems, int nhs, STEM * vstems, int nvs);
+static int addbluestems( STEM *s, int n);
+static void sortstems( STEM * s, int n);
+static int stemoverlap( STEM * s1, STEM * s2);
+static int steminblue( STEM *s);
+static void markbluestems( STEM *s, int nold);
+static int joinmainstems( STEM * s, int nold, int useblues);
+static void joinsubstems( STEM * s, short *pairs, int nold, int useblues);
+static void fixendpath( GENTRY *ge);
+static void fdelsmall( GLYPH *g, double minlen);
+static void alloc_gex_con( GENTRY *ge);
+static double fjointsin2( GENTRY *ge1, GENTRY *ge2);
+#if 0
+static double fcvarea( GENTRY *ge);
+#endif
+static double fcvval( GENTRY *ge, int axis, double t);
+static void fsampledots( GENTRY *ge, double dots[][2], int ndots);
+static void fnormalizege( GENTRY *ge);
+static void fanalyzege( GENTRY *ge);
+static void fanalyzejoint( GENTRY *ge);
+static void fconcisecontour( GLYPH *g, GENTRY *ge);
+static double fclosegap( GENTRY *from, GENTRY *to, int axis,
+ double gap, double *ret);
+
+int
+isign(
+ int x
+)
+{
+ if (x > 0)
+ return 1;
+ else if (x < 0)
+ return -1;
+ else
+ return 0;
+}
+
+int
+fsign(
+ double x
+)
+{
+ if (x > 0.0)
+ return 1;
+ else if (x < 0.0)
+ return -1;
+ else
+ return 0;
+}
+
+static GENTRY *
+newgentry(
+ int flags
+)
+{
+ GENTRY *ge;
+
+ ge = calloc(1, sizeof(GENTRY));
+
+ if (ge == 0) {
+ fprintf(stderr, "***** Memory allocation error *****\n");
+ exit(255);
+ }
+ ge->stemid = -1;
+ ge->flags = flags;
+ /* the rest is set to 0 by calloc() */
+ return ge;
+}
+
+/*
+ * Routines to print out Postscript functions with optimization
+ */
+
+void
+rmoveto(
+ int dx,
+ int dy
+)
+{
+ if (optimize && dx == 0)
+ fprintf(pfa_file, "%d vmoveto\n", dy);
+ else if (optimize && dy == 0)
+ fprintf(pfa_file, "%d hmoveto\n", dx);
+ else
+ fprintf(pfa_file, "%d %d rmoveto\n", dx, dy);
+}
+
+void
+rlineto(
+ int dx,
+ int dy
+)
+{
+ if (optimize && dx == 0 && dy == 0) /* for special pathologic
+ * case */
+ return;
+ else if (optimize && dx == 0)
+ fprintf(pfa_file, "%d vlineto\n", dy);
+ else if (optimize && dy == 0)
+ fprintf(pfa_file, "%d hlineto\n", dx);
+ else
+ fprintf(pfa_file, "%d %d rlineto\n", dx, dy);
+}
+
+void
+rrcurveto(
+ int dx1,
+ int dy1,
+ int dx2,
+ int dy2,
+ int dx3,
+ int dy3
+)
+{
+ /* first two ifs are for crazy cases that occur surprisingly often */
+ if (optimize && dx1 == 0 && dx2 == 0 && dx3 == 0)
+ rlineto(0, dy1 + dy2 + dy3);
+ else if (optimize && dy1 == 0 && dy2 == 0 && dy3 == 0)
+ rlineto(dx1 + dx2 + dx3, 0);
+ else if (optimize && dy1 == 0 && dx3 == 0)
+ fprintf(pfa_file, "%d %d %d %d hvcurveto\n",
+ dx1, dx2, dy2, dy3);
+ else if (optimize && dx1 == 0 && dy3 == 0)
+ fprintf(pfa_file, "%d %d %d %d vhcurveto\n",
+ dy1, dx2, dy2, dx3);
+ else
+ fprintf(pfa_file, "%d %d %d %d %d %d rrcurveto\n",
+ dx1, dy1, dx2, dy2, dx3, dy3);
+}
+
+void
+closepath(void)
+{
+ fprintf(pfa_file, "closepath\n");
+}
+
+/*
+ * Many of the path processing routines exist (or will exist) in
+ * both floating-point and integer version. Fimally most of the
+ * processing will go in floating point and the integer processing
+ * will become legacy.
+ * The names of floating routines start with f, names of integer
+ * routines start with i, and those old routines existing in one
+ * version only have no such prefix at all.
+ */
+
+/*
+** Routine that checks integrity of the path, for debugging
+*/
+
+void
+assertpath(
+ GENTRY * from,
+ char *file,
+ int line,
+ char *name
+)
+{
+ GENTRY *first, *pe, *ge;
+ int isfloat;
+
+ if(from==0)
+ return;
+ isfloat = (from->flags & GEF_FLOAT);
+ pe = from->prev;
+ for (ge = from; ge != 0; pe = ge, ge = ge->next) {
+ if( (ge->flags & GEF_FLOAT) ^ isfloat ) {
+ fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+ fprintf(stderr, "float flag changes from %s to %s at 0x%p (type %c, prev type %c)\n",
+ (isfloat ? "TRUE" : "FALSE"), (isfloat ? "FALSE" : "TRUE"), ge, ge->type, pe->type);
+ abort();
+ }
+ if (pe != ge->prev) {
+ fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+ fprintf(stderr, "unidirectional chain 0x%x -next-> 0x%x -prev-> 0x%x \n",
+ pe, ge, ge->prev);
+ abort();
+ }
+
+ switch(ge->type) {
+ case GE_MOVE:
+ break;
+ case GE_PATH:
+ if (ge->prev == 0) {
+ fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+ fprintf(stderr, "empty path at 0x%x \n", ge);
+ abort();
+ }
+ break;
+ case GE_LINE:
+ case GE_CURVE:
+ if(ge->frwd->bkwd != ge) {
+ fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+ fprintf(stderr, "unidirectional chain 0x%x -frwd-> 0x%x -bkwd-> 0x%x \n",
+ ge, ge->frwd, ge->frwd->bkwd);
+ abort();
+ }
+ if(ge->prev->type == GE_MOVE) {
+ first = ge;
+ if(ge->bkwd->next->type != GE_PATH) {
+ fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+ fprintf(stderr, "broken first backlink 0x%x -bkwd-> 0x%x -next-> 0x%x \n",
+ ge, ge->bkwd, ge->bkwd->next);
+ abort();
+ }
+ }
+ if(ge->next->type == GE_PATH) {
+ if(ge->frwd != first) {
+ fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+ fprintf(stderr, "broken loop 0x%x -...-> 0x%x -frwd-> 0x%x \n",
+ first, ge, ge->frwd);
+ abort();
+ }
+ }
+ break;
+ }
+
+ }
+}
+
+void
+assertisfloat(
+ GLYPH *g,
+ char *msg
+)
+{
+ if( !(g->flags & GF_FLOAT) ) {
+ fprintf(stderr, "**! Glyph %s is not float: %s\n", g->name, msg);
+ abort();
+ }
+ if(g->lastentry) {
+ if( !(g->lastentry->flags & GEF_FLOAT) ) {
+ fprintf(stderr, "**! Glyphs %s last entry is int: %s\n", g->name, msg);
+ abort();
+ }
+ }
+}
+
+void
+assertisint(
+ GLYPH *g,
+ char *msg
+)
+{
+ if( (g->flags & GF_FLOAT) ) {
+ fprintf(stderr, "**! Glyph %s is not int: %s\n", g->name, msg);
+ abort();
+ }
+ if(g->lastentry) {
+ if( (g->lastentry->flags & GEF_FLOAT) ) {
+ fprintf(stderr, "**! Glyphs %s last entry is float: %s\n", g->name, msg);
+ abort();
+ }
+ }
+}
+
+
+/*
+ * Routines to save the generated data about glyph
+ */
+
+void
+fg_rmoveto(
+ GLYPH * g,
+ double x,
+ double y)
+{
+ GENTRY *oge;
+
+ if (ISDBG(BUILDG))
+ fprintf(stderr, "%s: f rmoveto(%g, %g)\n", g->name, x, y);
+
+ assertisfloat(g, "adding float MOVE");
+
+ if ((oge = g->lastentry) != 0) {
+ if (oge->type == GE_MOVE) { /* just eat up the first move */
+ oge->fx3 = x;
+ oge->fy3 = y;
+ } else if (oge->type == GE_LINE || oge->type == GE_CURVE) {
+ fprintf(stderr, "Glyph %s: MOVE in middle of path\n", g->name);
+ } else {
+ GENTRY *nge;
+
+ nge = newgentry(GEF_FLOAT);
+ nge->type = GE_MOVE;
+ nge->fx3 = x;
+ nge->fy3 = y;
+
+ oge->next = nge;
+ nge->prev = oge;
+ g->lastentry = nge;
+ }
+ } else {
+ GENTRY *nge;
+
+ nge = newgentry(GEF_FLOAT);
+ nge->type = GE_MOVE;
+ nge->fx3 = x;
+ nge->fy3 = y;
+ nge->bkwd = (GENTRY*)&g->entries;
+ g->entries = g->lastentry = nge;
+ }
+
+ if (0 && ISDBG(BUILDG))
+ dumppaths(g, NULL, NULL);
+}
+
+void
+ig_rmoveto(
+ GLYPH * g,
+ int x,
+ int y)
+{
+ GENTRY *oge;
+
+ if (ISDBG(BUILDG))
+ fprintf(stderr, "%s: i rmoveto(%d, %d)\n", g->name, x, y);
+
+ assertisint(g, "adding int MOVE");
+
+ if ((oge = g->lastentry) != 0) {
+ if (oge->type == GE_MOVE) { /* just eat up the first move */
+ oge->ix3 = x;
+ oge->iy3 = y;
+ } else if (oge->type == GE_LINE || oge->type == GE_CURVE) {
+ fprintf(stderr, "Glyph %s: MOVE in middle of path, ignored\n", g->name);
+ } else {
+ GENTRY *nge;
+
+ nge = newgentry(0);
+ nge->type = GE_MOVE;
+ nge->ix3 = x;
+ nge->iy3 = y;
+
+ oge->next = nge;
+ nge->prev = oge;
+ g->lastentry = nge;
+ }
+ } else {
+ GENTRY *nge;
+
+ nge = newgentry(0);
+ nge->type = GE_MOVE;
+ nge->ix3 = x;
+ nge->iy3 = y;
+ nge->bkwd = (GENTRY*)&g->entries;
+ g->entries = g->lastentry = nge;
+ }
+
+}
+
+void
+fg_rlineto(
+ GLYPH * g,
+ double x,
+ double y)
+{
+ GENTRY *oge, *nge;
+
+ if (ISDBG(BUILDG))
+ fprintf(stderr, "%s: f rlineto(%g, %g)\n", g->name, x, y);
+
+ assertisfloat(g, "adding float LINE");
+
+ nge = newgentry(GEF_FLOAT);
+ nge->type = GE_LINE;
+ nge->fx3 = x;
+ nge->fy3 = y;
+
+ if ((oge = g->lastentry) != 0) {
+ if (x == oge->fx3 && y == oge->fy3) { /* empty line */
+ /* ignore it or we will get in troubles later */
+ free(nge);
+ return;
+ }
+ if (g->path == 0) {
+ g->path = nge;
+ nge->bkwd = nge->frwd = nge;
+ } else {
+ oge->frwd = nge;
+ nge->bkwd = oge;
+ g->path->bkwd = nge;
+ nge->frwd = g->path;
+ }
+
+ oge->next = nge;
+ nge->prev = oge;
+ g->lastentry = nge;
+ } else {
+ WARNING_1 fprintf(stderr, "Glyph %s: LINE outside of path\n", g->name);
+ free(nge);
+ }
+
+ if (0 && ISDBG(BUILDG))
+ dumppaths(g, NULL, NULL);
+}
+
+void
+ig_rlineto(
+ GLYPH * g,
+ int x,
+ int y)
+{
+ GENTRY *oge, *nge;
+
+ if (ISDBG(BUILDG))
+ fprintf(stderr, "%s: i rlineto(%d, %d)\n", g->name, x, y);
+
+ assertisint(g, "adding int LINE");
+
+ nge = newgentry(0);
+ nge->type = GE_LINE;
+ nge->ix3 = x;
+ nge->iy3 = y;
+
+ if ((oge = g->lastentry) != 0) {
+ if (x == oge->ix3 && y == oge->iy3) { /* empty line */
+ /* ignore it or we will get in troubles later */
+ free(nge);
+ return;
+ }
+ if (g->path == 0) {
+ g->path = nge;
+ nge->bkwd = nge->frwd = nge;
+ } else {
+ oge->frwd = nge;
+ nge->bkwd = oge;
+ g->path->bkwd = nge;
+ nge->frwd = g->path;
+ }
+
+ oge->next = nge;
+ nge->prev = oge;
+ g->lastentry = nge;
+ } else {
+ WARNING_1 fprintf(stderr, "Glyph %s: LINE outside of path\n", g->name);
+ free(nge);
+ }
+
+}
+
+void
+fg_rrcurveto(
+ GLYPH * g,
+ double x1,
+ double y1,
+ double x2,
+ double y2,
+ double x3,
+ double y3)
+{
+ GENTRY *oge, *nge;
+
+ oge = g->lastentry;
+
+ if (ISDBG(BUILDG))
+ fprintf(stderr, "%s: f rrcurveto(%g, %g, %g, %g, %g, %g)\n"
+ ,g->name, x1, y1, x2, y2, x3, y3);
+
+ assertisfloat(g, "adding float CURVE");
+
+ if (oge && oge->fx3 == x1 && x1 == x2 && x2 == x3) /* check if it's
+ * actually a line */
+ fg_rlineto(g, x1, y3);
+ else if (oge && oge->fy3 == y1 && y1 == y2 && y2 == y3)
+ fg_rlineto(g, x3, y1);
+ else {
+ nge = newgentry(GEF_FLOAT);
+ nge->type = GE_CURVE;
+ nge->fx1 = x1;
+ nge->fy1 = y1;
+ nge->fx2 = x2;
+ nge->fy2 = y2;
+ nge->fx3 = x3;
+ nge->fy3 = y3;
+
+ if (oge != 0) {
+ if (x3 == oge->fx3 && y3 == oge->fy3) {
+ free(nge); /* consider this curve empty */
+ /* ignore it or we will get in troubles later */
+ return;
+ }
+ if (g->path == 0) {
+ g->path = nge;
+ nge->bkwd = nge->frwd = nge;
+ } else {
+ oge->frwd = nge;
+ nge->bkwd = oge;
+ g->path->bkwd = nge;
+ nge->frwd = g->path;
+ }
+
+ oge->next = nge;
+ nge->prev = oge;
+ g->lastentry = nge;
+ } else {
+ WARNING_1 fprintf(stderr, "Glyph %s: CURVE outside of path\n", g->name);
+ free(nge);
+ }
+ }
+
+ if (0 && ISDBG(BUILDG))
+ dumppaths(g, NULL, NULL);
+}
+
+void
+ig_rrcurveto(
+ GLYPH * g,
+ int x1,
+ int y1,
+ int x2,
+ int y2,
+ int x3,
+ int y3)
+{
+ GENTRY *oge, *nge;
+
+ oge = g->lastentry;
+
+ if (ISDBG(BUILDG))
+ fprintf(stderr, "%s: i rrcurveto(%d, %d, %d, %d, %d, %d)\n"
+ ,g->name, x1, y1, x2, y2, x3, y3);
+
+ assertisint(g, "adding int CURVE");
+
+ if (oge && oge->ix3 == x1 && x1 == x2 && x2 == x3) /* check if it's
+ * actually a line */
+ ig_rlineto(g, x1, y3);
+ else if (oge && oge->iy3 == y1 && y1 == y2 && y2 == y3)
+ ig_rlineto(g, x3, y1);
+ else {
+ nge = newgentry(0);
+ nge->type = GE_CURVE;
+ nge->ix1 = x1;
+ nge->iy1 = y1;
+ nge->ix2 = x2;
+ nge->iy2 = y2;
+ nge->ix3 = x3;
+ nge->iy3 = y3;
+
+ if (oge != 0) {
+ if (x3 == oge->ix3 && y3 == oge->iy3) {
+ free(nge); /* consider this curve empty */
+ /* ignore it or we will get in troubles later */
+ return;
+ }
+ if (g->path == 0) {
+ g->path = nge;
+ nge->bkwd = nge->frwd = nge;
+ } else {
+ oge->frwd = nge;
+ nge->bkwd = oge;
+ g->path->bkwd = nge;
+ nge->frwd = g->path;
+ }
+
+ oge->next = nge;
+ nge->prev = oge;
+ g->lastentry = nge;
+ } else {
+ WARNING_1 fprintf(stderr, "Glyph %s: CURVE outside of path\n", g->name);
+ free(nge);
+ }
+ }
+}
+
+void
+g_closepath(
+ GLYPH * g
+)
+{
+ GENTRY *oge, *nge;
+
+ if (ISDBG(BUILDG))
+ fprintf(stderr, "%s: closepath\n", g->name);
+
+ oge = g->lastentry;
+
+ if (g->path == 0) {
+ WARNING_1 fprintf(stderr, "Warning: **** closepath on empty path in glyph \"%s\" ****\n",
+ g->name);
+ if (oge == 0) {
+ WARNING_1 fprintf(stderr, "No previois entry\n");
+ } else {
+ WARNING_1 fprintf(stderr, "Previous entry type: %c\n", oge->type);
+ if (oge->type == GE_MOVE) {
+ g->lastentry = oge->prev;
+ if (oge->prev == 0)
+ g->entries = 0;
+ else
+ g->lastentry->next = 0;
+ free(oge);
+ }
+ }
+ return;
+ }
+
+ nge = newgentry(oge->flags & GEF_FLOAT); /* keep the same type */
+ nge->type = GE_PATH;
+
+ g->path = 0;
+
+ oge->next = nge;
+ nge->prev = oge;
+ g->lastentry = nge;
+
+ if (0 && ISDBG(BUILDG))
+ dumppaths(g, NULL, NULL);
+}
+
+/*
+ * * SB * Routines to smooth and fix the glyphs
+ */
+
+/*
+** we don't want to see the curves with coinciding middle and
+** outer points
+*/
+
+static void
+fixcvends(
+ GENTRY * ge
+)
+{
+ int dx, dy;
+ int x0, y0, x1, y1, x2, y2, x3, y3;
+
+ if (ge->type != GE_CURVE)
+ return;
+
+ if(ge->flags & GEF_FLOAT) {
+ fprintf(stderr, "**! fixcvends(0x%x) on floating entry, ABORT\n", ge);
+ abort(); /* dump core */
+ }
+
+ x0 = ge->prev->ix3;
+ y0 = ge->prev->iy3;
+ x1 = ge->ix1;
+ y1 = ge->iy1;
+ x2 = ge->ix2;
+ y2 = ge->iy2;
+ x3 = ge->ix3;
+ y3 = ge->iy3;
+
+
+ /* look at the start of the curve */
+ if (x1 == x0 && y1 == y0) {
+ dx = x2 - x1;
+ dy = y2 - y1;
+
+ if ((dx == 0 && dy == 0)
+ || (x2 == x3 && y2 == y3)) {
+ /* Oops, we actually have a straight line */
+ /*
+ * if it's small, we hope that it will get optimized
+ * later
+ */
+ if (abs(x3 - x0) <= 2 || abs(y3 - y0) <= 2) {
+ ge->ix1 = x3;
+ ge->iy1 = y3;
+ ge->ix2 = x0;
+ ge->iy2 = y0;
+ } else {/* just make it a line */
+ ge->type = GE_LINE;
+ }
+ } else {
+ if (abs(dx) < 4 && abs(dy) < 4) { /* consider it very
+ * small */
+ ge->ix1 = x2;
+ ge->iy1 = y2;
+ } else if (abs(dx) < 8 && abs(dy) < 8) { /* consider it small */
+ ge->ix1 += dx / 2;
+ ge->iy1 += dy / 2;
+ } else {
+ ge->ix1 += dx / 4;
+ ge->iy1 += dy / 4;
+ }
+ /* make sure that it's still on the same side */
+ if (abs(x3 - x0) * abs(dy) < abs(y3 - y0) * abs(dx)) {
+ if (abs(x3 - x0) * abs(ge->iy1 - y0) > abs(y3 - y0) * abs(ge->ix1 - x0))
+ ge->ix1 += isign(dx);
+ } else {
+ if (abs(x3 - x0) * abs(ge->iy1 - y0) < abs(y3 - y0) * abs(ge->ix1 - x0))
+ ge->iy1 += isign(dy);
+ }
+
+ ge->ix2 += (x3 - x2) / 8;
+ ge->iy2 += (y3 - y2) / 8;
+ /* make sure that it's still on the same side */
+ if (abs(x3 - x0) * abs(y3 - y2) < abs(y3 - y0) * abs(x3 - x2)) {
+ if (abs(x3 - x0) * abs(y3 - ge->iy2) > abs(y3 - y0) * abs(x3 - ge->ix2))
+ ge->iy1 -= isign(y3 - y2);
+ } else {
+ if (abs(x3 - x0) * abs(y3 - ge->iy2) < abs(y3 - y0) * abs(x3 - ge->ix2))
+ ge->ix1 -= isign(x3 - x2);
+ }
+
+ }
+ } else if (x2 == x3 && y2 == y3) {
+ dx = x1 - x2;
+ dy = y1 - y2;
+
+ if (dx == 0 && dy == 0) {
+ /* Oops, we actually have a straight line */
+ /*
+ * if it's small, we hope that it will get optimized
+ * later
+ */
+ if (abs(x3 - x0) <= 2 || abs(y3 - y0) <= 2) {
+ ge->ix1 = x3;
+ ge->iy1 = y3;
+ ge->ix2 = x0;
+ ge->iy2 = y0;
+ } else {/* just make it a line */
+ ge->type = GE_LINE;
+ }
+ } else {
+ if (abs(dx) < 4 && abs(dy) < 4) { /* consider it very
+ * small */
+ ge->ix2 = x1;
+ ge->iy2 = y1;
+ } else if (abs(dx) < 8 && abs(dy) < 8) { /* consider it small */
+ ge->ix2 += dx / 2;
+ ge->iy2 += dy / 2;
+ } else {
+ ge->ix2 += dx / 4;
+ ge->iy2 += dy / 4;
+ }
+ /* make sure that it's still on the same side */
+ if (abs(x3 - x0) * abs(dy) < abs(y3 - y0) * abs(dx)) {
+ if (abs(x3 - x0) * abs(ge->iy2 - y3) > abs(y3 - y0) * abs(ge->ix2 - x3))
+ ge->ix2 += isign(dx);
+ } else {
+ if (abs(x3 - x0) * abs(ge->iy2 - y3) < abs(y3 - y0) * abs(ge->ix2 - x3))
+ ge->iy2 += isign(dy);
+ }
+
+ ge->ix1 += (x0 - x1) / 8;
+ ge->iy1 += (y0 - y1) / 8;
+ /* make sure that it's still on the same side */
+ if (abs(x3 - x0) * abs(y0 - y1) < abs(y3 - y0) * abs(x0 - x1)) {
+ if (abs(x3 - x0) * abs(y0 - ge->iy1) > abs(y3 - y0) * abs(x0 - ge->ix1))
+ ge->iy1 -= isign(y0 - y1);
+ } else {
+ if (abs(x3 - x0) * abs(y0 - ge->iy1) < abs(y3 - y0) * abs(x0 - ge->ix1))
+ ge->ix1 -= isign(x0 - x1);
+ }
+
+ }
+ }
+}
+
+/*
+** After transformations we want to make sure that the resulting
+** curve is going in the same quadrant as the original one,
+** because rounding errors introduced during transformations
+** may make the result completeley wrong.
+**
+** `dir' argument describes the direction of the original curve,
+** it is the superposition of two values for the front and
+** rear ends of curve:
+**
+** >EQUAL - goes over the line connecting the ends
+** =EQUAL - coincides with the line connecting the ends
+** <EQUAL - goes under the line connecting the ends
+**
+** See CVDIR_* for exact definitions.
+*/
+
+static void
+fixcvdir(
+ GENTRY * ge,
+ int dir
+)
+{
+ int a, b, c, d;
+ double kk, kk1, kk2;
+ int changed;
+ int fdir, rdir;
+
+ if(ge->flags & GEF_FLOAT) {
+ fprintf(stderr, "**! fixcvdir(0x%x) on floating entry, ABORT\n", ge);
+ abort(); /* dump core */
+ }
+
+ fdir = (dir & CVDIR_FRONT) - CVDIR_FEQUAL;
+ if ((dir & CVDIR_REAR) == CVDIR_RSAME)
+ rdir = fdir; /* we need only isign, exact value doesn't matter */
+ else
+ rdir = (dir & CVDIR_REAR) - CVDIR_REQUAL;
+
+ fixcvends(ge);
+
+ c = isign(ge->ix3 - ge->prev->ix3); /* note the direction of
+ * curve */
+ d = isign(ge->iy3 - ge->prev->iy3);
+
+ a = ge->iy3 - ge->prev->iy3;
+ b = ge->ix3 - ge->prev->ix3;
+ kk = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+ a = ge->iy1 - ge->prev->iy3;
+ b = ge->ix1 - ge->prev->ix3;
+ kk1 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+ a = ge->iy3 - ge->iy2;
+ b = ge->ix3 - ge->ix2;
+ kk2 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+
+ changed = 1;
+ while (changed) {
+ if (ISDBG(FIXCVDIR)) {
+ /* for debugging */
+ fprintf(stderr, "fixcvdir %d %d (%d %d %d %d %d %d) %f %f %f\n",
+ fdir, rdir,
+ ge->ix1 - ge->prev->ix3,
+ ge->iy1 - ge->prev->iy3,
+ ge->ix2 - ge->ix1,
+ ge->iy2 - ge->iy1,
+ ge->ix3 - ge->ix2,
+ ge->iy3 - ge->iy2,
+ kk1, kk, kk2);
+ }
+ changed = 0;
+
+ if (fdir > 0) {
+ if (kk1 > kk) { /* the front end has problems */
+ if (c * (ge->ix1 - ge->prev->ix3) > 0) {
+ ge->ix1 -= c;
+ changed = 1;
+ } if (d * (ge->iy2 - ge->iy1) > 0) {
+ ge->iy1 += d;
+ changed = 1;
+ }
+ /* recalculate the coefficients */
+ a = ge->iy3 - ge->prev->iy3;
+ b = ge->ix3 - ge->prev->ix3;
+ kk = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+ a = ge->iy1 - ge->prev->iy3;
+ b = ge->ix1 - ge->prev->ix3;
+ kk1 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+ }
+ } else if (fdir < 0) {
+ if (kk1 < kk) { /* the front end has problems */
+ if (c * (ge->ix2 - ge->ix1) > 0) {
+ ge->ix1 += c;
+ changed = 1;
+ } if (d * (ge->iy1 - ge->prev->iy3) > 0) {
+ ge->iy1 -= d;
+ changed = 1;
+ }
+ /* recalculate the coefficients */
+ a = ge->iy1 - ge->prev->iy3;
+ b = ge->ix1 - ge->prev->ix3;
+ kk1 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+ a = ge->iy3 - ge->prev->iy3;
+ b = ge->ix3 - ge->prev->ix3;
+ kk = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+ }
+ }
+ if (rdir > 0) {
+ if (kk2 < kk) { /* the rear end has problems */
+ if (c * (ge->ix2 - ge->ix1) > 0) {
+ ge->ix2 -= c;
+ changed = 1;
+ } if (d * (ge->iy3 - ge->iy2) > 0) {
+ ge->iy2 += d;
+ changed = 1;
+ }
+ /* recalculate the coefficients */
+ a = ge->iy3 - ge->prev->iy3;
+ b = ge->ix3 - ge->prev->ix3;
+ kk = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+ a = ge->iy3 - ge->iy2;
+ b = ge->ix3 - ge->ix2;
+ kk2 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+ }
+ } else if (rdir < 0) {
+ if (kk2 > kk) { /* the rear end has problems */
+ if (c * (ge->ix3 - ge->ix2) > 0) {
+ ge->ix2 += c;
+ changed = 1;
+ } if (d * (ge->iy2 - ge->iy1) > 0) {
+ ge->iy2 -= d;
+ changed = 1;
+ }
+ /* recalculate the coefficients */
+ a = ge->iy3 - ge->prev->iy3;
+ b = ge->ix3 - ge->prev->ix3;
+ kk = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+ a = ge->iy3 - ge->iy2;
+ b = ge->ix3 - ge->ix2;
+ kk2 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+ }
+ }
+ }
+ fixcvends(ge);
+}
+
+/* Get the directions of ends of curve for further usage */
+
+/* expects that the previous element is also float */
+
+static int
+fgetcvdir(
+ GENTRY * ge
+)
+{
+ double a, b;
+ double k, k1, k2;
+ int dir = 0;
+
+ if( !(ge->flags & GEF_FLOAT) ) {
+ fprintf(stderr, "**! fgetcvdir(0x%x) on int entry, ABORT\n", ge);
+ abort(); /* dump core */
+ }
+
+ a = fabs(ge->fy3 - ge->prev->fy3);
+ b = fabs(ge->fx3 - ge->prev->fx3);
+ k = a < FEPS ? (b < FEPS ? 1. : 100000.) : ( b / a);
+
+ a = fabs(ge->fy1 - ge->prev->fy3);
+ b = fabs(ge->fx1 - ge->prev->fx3);
+ if(a < FEPS) {
+ if(b < FEPS) {
+ a = fabs(ge->fy2 - ge->prev->fy3);
+ b = fabs(ge->fx2 - ge->prev->fx3);
+ k1 = a < FEPS ? (b < FEPS ? k : 100000.) : ( b / a);
+ } else
+ k1 = FBIGVAL;
+ } else
+ k1 = b / a;
+
+ a = fabs(ge->fy3 - ge->fy2);
+ b = fabs(ge->fx3 - ge->fx2);
+ if(a < FEPS) {
+ if(b < FEPS) {
+ a = fabs(ge->fy3 - ge->fy1);
+ b = fabs(ge->fx3 - ge->fx1);
+ k2 = a < FEPS ? (b < FEPS ? k : 100000.) : ( b / a);
+ } else
+ k2 = FBIGVAL;
+ } else
+ k2 = b / a;
+
+ if(fabs(k1-k) < 0.0001)
+ dir |= CVDIR_FEQUAL;
+ else if (k1 < k)
+ dir |= CVDIR_FUP;
+ else
+ dir |= CVDIR_FDOWN;
+
+ if(fabs(k2-k) < 0.0001)
+ dir |= CVDIR_REQUAL;
+ else if (k2 > k)
+ dir |= CVDIR_RUP;
+ else
+ dir |= CVDIR_RDOWN;
+
+ return dir;
+}
+
+
+/* expects that the previous element is also int */
+
+static int
+igetcvdir(
+ GENTRY * ge
+)
+{
+ int a, b;
+ double k, k1, k2;
+ int dir = 0;
+
+ if(ge->flags & GEF_FLOAT) {
+ fprintf(stderr, "**! igetcvdir(0x%x) on floating entry, ABORT\n", ge);
+ abort(); /* dump core */
+ }
+
+ a = ge->iy3 - ge->prev->iy3;
+ b = ge->ix3 - ge->prev->ix3;
+ k = (a == 0) ? (b == 0 ? 1. : 100000.) : fabs((double) b / (double) a);
+
+ a = ge->iy1 - ge->prev->iy3;
+ b = ge->ix1 - ge->prev->ix3;
+ if(a == 0) {
+ if(b == 0) {
+ a = ge->iy2 - ge->prev->iy3;
+ b = ge->ix2 - ge->prev->ix3;
+ k1 = (a == 0) ? (b == 0 ? k : 100000.) : fabs((double) b / (double) a);
+ } else
+ k1 = FBIGVAL;
+ } else
+ k1 = fabs((double) b / (double) a);
+
+ a = ge->iy3 - ge->iy2;
+ b = ge->ix3 - ge->ix2;
+ if(a == 0) {
+ if(b == 0) {
+ a = ge->iy3 - ge->iy1;
+ b = ge->ix3 - ge->ix1;
+ k2 = (a == 0) ? (b == 0 ? k : 100000.) : fabs((double) b / (double) a);
+ } else
+ k2 = FBIGVAL;
+ } else
+ k2 = fabs((double) b / (double) a);
+
+ if(fabs(k1-k) < 0.0001)
+ dir |= CVDIR_FEQUAL;
+ else if (k1 < k)
+ dir |= CVDIR_FUP;
+ else
+ dir |= CVDIR_FDOWN;
+
+ if(fabs(k2-k) < 0.0001)
+ dir |= CVDIR_REQUAL;
+ else if (k2 > k)
+ dir |= CVDIR_RUP;
+ else
+ dir |= CVDIR_RDOWN;
+
+ return dir;
+}
+
+#if 0
+/* a function just to test the work of fixcvdir() */
+static void
+testfixcvdir(
+ GLYPH * g
+)
+{
+ GENTRY *ge;
+ int dir;
+
+ for (ge = g->entries; ge != 0; ge = ge->next) {
+ if (ge->type == GE_CURVE) {
+ dir = igetcvdir(ge);
+ fixcvdir(ge, dir);
+ }
+ }
+}
+#endif
+
+static int
+iround(
+ double val
+)
+{
+ return (int) (val > 0 ? val + 0.5 : val - 0.5);
+}
+
+/* for debugging - dump the glyph
+ * mark with a star the entries from start to end inclusive
+ * (start == NULL means don't mark any, end == NULL means to the last)
+ */
+
+void
+dumppaths(
+ GLYPH *g,
+ GENTRY *start,
+ GENTRY *end
+)
+{
+ GENTRY *ge;
+ int i;
+ char mark=' ';
+
+ fprintf(stderr, "Glyph %s:\n", g->name);
+
+ /* now do the conversion */
+ for(ge = g->entries; ge != 0; ge = ge->next) {
+ if(ge == start)
+ mark = '*';
+ fprintf(stderr, " %c %8x", mark, ge);
+ switch(ge->type) {
+ case GE_MOVE:
+ case GE_LINE:
+ if(ge->flags & GEF_FLOAT)
+ fprintf(stderr," %c float (%g, %g)\n", ge->type, ge->fx3, ge->fy3);
+ else
+ fprintf(stderr," %c int (%d, %d)\n", ge->type, ge->ix3, ge->iy3);
+ break;
+ case GE_CURVE:
+ if(ge->flags & GEF_FLOAT) {
+ fprintf(stderr," C float ");
+ for(i=0; i<3; i++)
+ fprintf(stderr,"(%g, %g) ", ge->fxn[i], ge->fyn[i]);
+ fprintf(stderr,"\n");
+ } else {
+ fprintf(stderr," C int ");
+ for(i=0; i<3; i++)
+ fprintf(stderr,"(%d, %d) ", ge->ixn[i], ge->iyn[i]);
+ fprintf(stderr,"\n");
+ }
+ break;
+ default:
+ fprintf(stderr, " %c\n", ge->type);
+ break;
+ }
+ if(ge == end)
+ mark = ' ';
+ }
+}
+
+/*
+ * Routine that converts all entries in the path from float to int
+ */
+
+void
+pathtoint(
+ GLYPH *g
+)
+{
+ GENTRY *ge;
+ int x[3], y[3];
+ int i;
+
+
+ if(ISDBG(TOINT))
+ fprintf(stderr, "TOINT: glyph %s\n", g->name);
+ assertisfloat(g, "converting path to int\n");
+
+ fdelsmall(g, 1.0); /* get rid of sub-pixel contours */
+ assertpath(g->entries, __FILE__, __LINE__, g->name);
+
+ /* 1st pass, collect the directions of the curves: have
+ * to do that in advance, while everyting is float
+ */
+ for(ge = g->entries; ge != 0; ge = ge->next) {
+ if( !(ge->flags & GEF_FLOAT) ) {
+ fprintf(stderr, "**! glyphs %s has int entry, found in conversion to int\n",
+ g->name);
+ exit(1);
+ }
+ if(ge->type == GE_CURVE) {
+ ge->dir = fgetcvdir(ge);
+ }
+ }
+
+ /* now do the conversion */
+ for(ge = g->entries; ge != 0; ge = ge->next) {
+ switch(ge->type) {
+ case GE_MOVE:
+ case GE_LINE:
+ if(ISDBG(TOINT))
+ fprintf(stderr," %c float x=%g y=%g\n", ge->type, ge->fx3, ge->fy3);
+ x[0] = iround(ge->fx3);
+ y[0] = iround(ge->fy3);
+ for(i=0; i<3; i++) { /* put some valid values everywhere, for convenience */
+ ge->ixn[i] = x[0];
+ ge->iyn[i] = y[0];
+ }
+ if(ISDBG(TOINT))
+ fprintf(stderr," int x=%d y=%d\n", ge->ix3, ge->iy3);
+ break;
+ case GE_CURVE:
+ if(ISDBG(TOINT))
+ fprintf(stderr," %c float ", ge->type);
+
+ for(i=0; i<3; i++) {
+ if(ISDBG(TOINT))
+ fprintf(stderr,"(%g, %g) ", ge->fxn[i], ge->fyn[i]);
+ x[i] = iround(ge->fxn[i]);
+ y[i] = iround(ge->fyn[i]);
+ }
+
+ if(ISDBG(TOINT))
+ fprintf(stderr,"\n int ");
+
+ for(i=0; i<3; i++) {
+ ge->ixn[i] = x[i];
+ ge->iyn[i] = y[i];
+ if(ISDBG(TOINT))
+ fprintf(stderr,"(%d, %d) ", ge->ixn[i], ge->iyn[i]);
+ }
+ ge->flags &= ~GEF_FLOAT; /* for fixcvdir */
+ fixcvdir(ge, ge->dir);
+
+ if(ISDBG(TOINT)) {
+ fprintf(stderr,"\n fixed ");
+ for(i=0; i<3; i++)
+ fprintf(stderr,"(%d, %d) ", ge->ixn[i], ge->iyn[i]);
+ fprintf(stderr,"\n");
+ }
+
+ break;
+ }
+ ge->flags &= ~GEF_FLOAT;
+ }
+ g->flags &= ~GF_FLOAT;
+}
+
+
+/* check whether we can fix up the curve to change its size by (dx,dy) */
+/* 0 means NO, 1 means YES */
+
+/* for float: if scaling would be under 10% */
+
+int
+fcheckcv(
+ GENTRY * ge,
+ double dx,
+ double dy
+)
+{
+ if( !(ge->flags & GEF_FLOAT) ) {
+ fprintf(stderr, "**! fcheckcv(0x%x) on int entry, ABORT\n", ge);
+ abort(); /* dump core */
+ }
+
+ if (ge->type != GE_CURVE)
+ return 0;
+
+ if( fabs(ge->fx3 - ge->prev->fx3) < fabs(dx) * 10 )
+ return 0;
+
+ if( fabs(ge->fy3 - ge->prev->fy3) < fabs(dy) * 10 )
+ return 0;
+
+ return 1;
+}
+
+/* for int: if won't create new zigzags at the ends */
+
+int
+icheckcv(
+ GENTRY * ge,
+ int dx,
+ int dy
+)
+{
+ int xdep, ydep;
+
+ if(ge->flags & GEF_FLOAT) {
+ fprintf(stderr, "**! icheckcv(0x%x) on floating entry, ABORT\n", ge);
+ abort(); /* dump core */
+ }
+
+ if (ge->type != GE_CURVE)
+ return 0;
+
+ xdep = ge->ix3 - ge->prev->ix3;
+ ydep = ge->iy3 - ge->prev->iy3;
+
+ if (ge->type == GE_CURVE
+ && (xdep * (xdep + dx)) > 0
+ && (ydep * (ydep + dy)) > 0) {
+ return 1;
+ } else
+ return 0;
+}
+
+/* float connect the ends of open contours */
+
+void
+fclosepaths(
+ GLYPH * g
+)
+{
+ GENTRY *ge, *fge, *xge, *nge;
+ int i;
+
+ assertisfloat(g, "fclosepaths float\n");
+
+ for (xge = g->entries; xge != 0; xge = xge->next) {
+ if( xge->type != GE_PATH )
+ continue;
+
+ ge = xge->prev;
+ if(ge == 0 || (ge->type != GE_LINE && ge->type!= GE_CURVE)) {
+ fprintf(stderr, "**! Glyph %s got empty path\n",
+ g->name);
+ exit(1);
+ }
+
+ fge = ge->frwd;
+ if (fge->prev == 0 || fge->prev->type != GE_MOVE) {
+ fprintf(stderr, "**! Glyph %s got strange beginning of path\n",
+ g->name);
+ exit(1);
+ }
+ fge = fge->prev;
+ if (fge->fx3 != ge->fx3 || fge->fy3 != ge->fy3) {
+ /* we have to fix this open path */
+
+ WARNING_4 fprintf(stderr, "Glyph %s got path open by dx=%g dy=%g\n",
+ g->name, fge->fx3 - ge->fx3, fge->fy3 - ge->fy3);
+
+
+ /* add a new line */
+ nge = newgentry(GEF_FLOAT);
+ (*nge) = (*ge);
+ nge->fx3 = fge->fx3;
+ nge->fy3 = fge->fy3;
+ nge->type = GE_LINE;
+
+ addgeafter(ge, nge);
+
+ if (fabs(ge->fx3 - fge->fx3) <= 2 && fabs(ge->fy3 - fge->fy3) <= 2) {
+ /*
+ * small change, try to get rid of the new entry
+ */
+
+ double df[2];
+
+ for(i=0; i<2; i++) {
+ df[i] = ge->fpoints[i][2] - fge->fpoints[i][2];
+ df[i] = fclosegap(nge, nge, i, df[i], NULL);
+ }
+
+ if(df[0] == 0. && df[1] == 0.) {
+ /* closed gap successfully, remove the added entry */
+ freethisge(nge);
+ }
+ }
+ }
+ }
+}
+
+void
+smoothjoints(
+ GLYPH * g
+)
+{
+ GENTRY *ge, *ne;
+ int dx1, dy1, dx2, dy2, k;
+ int dir;
+
+ return; /* this stuff seems to create problems */
+
+ assertisint(g, "smoothjoints int");
+
+ if (g->entries == 0) /* nothing to do */
+ return;
+
+ for (ge = g->entries->next; ge != 0; ge = ge->next) {
+ ne = ge->frwd;
+
+ /*
+ * although there should be no one-line path * and any path
+ * must end with CLOSEPATH, * nobody can say for sure
+ */
+
+ if (ge == ne || ne == 0)
+ continue;
+
+ /* now handle various joints */
+
+ if (ge->type == GE_LINE && ne->type == GE_LINE) {
+ dx1 = ge->ix3 - ge->prev->ix3;
+ dy1 = ge->iy3 - ge->prev->iy3;
+ dx2 = ne->ix3 - ge->ix3;
+ dy2 = ne->iy3 - ge->iy3;
+
+ /* check whether they have the same direction */
+ /* and the same slope */
+ /* then we can join them into one line */
+
+ if (dx1 * dx2 >= 0 && dy1 * dy2 >= 0 && dx1 * dy2 == dy1 * dx2) {
+ /* extend the previous line */
+ ge->ix3 = ne->ix3;
+ ge->iy3 = ne->iy3;
+
+ /* and get rid of the next line */
+ freethisge(ne);
+ }
+ } else if (ge->type == GE_LINE && ne->type == GE_CURVE) {
+ fixcvends(ne);
+
+ dx1 = ge->ix3 - ge->prev->ix3;
+ dy1 = ge->iy3 - ge->prev->iy3;
+ dx2 = ne->ix1 - ge->ix3;
+ dy2 = ne->iy1 - ge->iy3;
+
+ /* if the line is nearly horizontal and we can fix it */
+ if (dx1 != 0 && 5 * abs(dy1) / abs(dx1) == 0
+ && icheckcv(ne, 0, -dy1)
+ && abs(dy1) <= 4) {
+ dir = igetcvdir(ne);
+ ge->iy3 -= dy1;
+ ne->iy1 -= dy1;
+ fixcvdir(ne, dir);
+ if (ge->next != ne)
+ ne->prev->iy3 -= dy1;
+ dy1 = 0;
+ } else if (dy1 != 0 && 5 * abs(dx1) / abs(dy1) == 0
+ && icheckcv(ne, -dx1, 0)
+ && abs(dx1) <= 4) {
+ /* the same but vertical */
+ dir = igetcvdir(ne);
+ ge->ix3 -= dx1;
+ ne->ix1 -= dx1;
+ fixcvdir(ne, dir);
+ if (ge->next != ne)
+ ne->prev->ix3 -= dx1;
+ dx1 = 0;
+ }
+ /*
+ * if line is horizontal and curve begins nearly
+ * horizontally
+ */
+ if (dy1 == 0 && dx2 != 0 && 5 * abs(dy2) / abs(dx2) == 0) {
+ dir = igetcvdir(ne);
+ ne->iy1 -= dy2;
+ fixcvdir(ne, dir);
+ dy2 = 0;
+ } else if (dx1 == 0 && dy2 != 0 && 5 * abs(dx2) / abs(dy2) == 0) {
+ /* the same but vertical */
+ dir = igetcvdir(ne);
+ ne->ix1 -= dx2;
+ fixcvdir(ne, dir);
+ dx2 = 0;
+ }
+ } else if (ge->type == GE_CURVE && ne->type == GE_LINE) {
+ fixcvends(ge);
+
+ dx1 = ge->ix3 - ge->ix2;
+ dy1 = ge->iy3 - ge->iy2;
+ dx2 = ne->ix3 - ge->ix3;
+ dy2 = ne->iy3 - ge->iy3;
+
+ /* if the line is nearly horizontal and we can fix it */
+ if (dx2 != 0 && 5 * abs(dy2) / abs(dx2) == 0
+ && icheckcv(ge, 0, dy2)
+ && abs(dy2) <= 4) {
+ dir = igetcvdir(ge);
+ ge->iy3 += dy2;
+ ge->iy2 += dy2;
+ fixcvdir(ge, dir);
+ if (ge->next != ne)
+ ne->prev->iy3 += dy2;
+ dy2 = 0;
+ } else if (dy2 != 0 && 5 * abs(dx2) / abs(dy2) == 0
+ && icheckcv(ge, dx2, 0)
+ && abs(dx2) <= 4) {
+ /* the same but vertical */
+ dir = igetcvdir(ge);
+ ge->ix3 += dx2;
+ ge->ix2 += dx2;
+ fixcvdir(ge, dir);
+ if (ge->next != ne)
+ ne->prev->ix3 += dx2;
+ dx2 = 0;
+ }
+ /*
+ * if line is horizontal and curve ends nearly
+ * horizontally
+ */
+ if (dy2 == 0 && dx1 != 0 && 5 * abs(dy1) / abs(dx1) == 0) {
+ dir = igetcvdir(ge);
+ ge->iy2 += dy1;
+ fixcvdir(ge, dir);
+ dy1 = 0;
+ } else if (dx2 == 0 && dy1 != 0 && 5 * abs(dx1) / abs(dy1) == 0) {
+ /* the same but vertical */
+ dir = igetcvdir(ge);
+ ge->ix2 += dx1;
+ fixcvdir(ge, dir);
+ dx1 = 0;
+ }
+ } else if (ge->type == GE_CURVE && ne->type == GE_CURVE) {
+ fixcvends(ge);
+ fixcvends(ne);
+
+ dx1 = ge->ix3 - ge->ix2;
+ dy1 = ge->iy3 - ge->iy2;
+ dx2 = ne->ix1 - ge->ix3;
+ dy2 = ne->iy1 - ge->iy3;
+
+ /*
+ * check if we have a rather smooth joint at extremal
+ * point
+ */
+ /* left or right extremal point */
+ if (abs(dx1) <= 4 && abs(dx2) <= 4
+ && dy1 != 0 && 5 * abs(dx1) / abs(dy1) == 0
+ && dy2 != 0 && 5 * abs(dx2) / abs(dy2) == 0
+ && ((ge->iy3 < ge->prev->iy3 && ne->iy3 < ge->iy3)
+ || (ge->iy3 > ge->prev->iy3 && ne->iy3 > ge->iy3))
+ && (ge->ix3 - ge->prev->ix3) * (ne->ix3 - ge->ix3) < 0
+ ) {
+ dir = igetcvdir(ge);
+ ge->ix2 += dx1;
+ dx1 = 0;
+ fixcvdir(ge, dir);
+ dir = igetcvdir(ne);
+ ne->ix1 -= dx2;
+ dx2 = 0;
+ fixcvdir(ne, dir);
+ }
+ /* top or down extremal point */
+ else if (abs(dy1) <= 4 && abs(dy2) <= 4
+ && dx1 != 0 && 5 * abs(dy1) / abs(dx1) == 0
+ && dx2 != 0 && 5 * abs(dy2) / abs(dx2) == 0
+ && ((ge->ix3 < ge->prev->ix3 && ne->ix3 < ge->ix3)
+ || (ge->ix3 > ge->prev->ix3 && ne->ix3 > ge->ix3))
+ && (ge->iy3 - ge->prev->iy3) * (ne->iy3 - ge->iy3) < 0
+ ) {
+ dir = igetcvdir(ge);
+ ge->iy2 += dy1;
+ dy1 = 0;
+ fixcvdir(ge, dir);
+ dir = igetcvdir(ne);
+ ne->iy1 -= dy2;
+ dy2 = 0;
+ fixcvdir(ne, dir);
+ }
+ /* or may be we just have a smooth junction */
+ else if (dx1 * dx2 >= 0 && dy1 * dy2 >= 0
+ && 10 * abs(k = abs(dx1 * dy2) - abs(dy1 * dx2)) < (abs(dx1 * dy2) + abs(dy1 * dx2))) {
+ int tries[6][4];
+ int results[6];
+ int i, b;
+
+ /* build array of changes we are going to try */
+ /* uninitalized entries are 0 */
+ if (k > 0) {
+ static int t1[6][4] = {
+ {0, 0, 0, 0},
+ {-1, 0, 1, 0},
+ {-1, 0, 0, 1},
+ {0, -1, 1, 0},
+ {0, -1, 0, 1},
+ {-1, -1, 1, 1}};
+ memcpy(tries, t1, sizeof tries);
+ } else {
+ static int t1[6][4] = {
+ {0, 0, 0, 0},
+ {1, 0, -1, 0},
+ {1, 0, 0, -1},
+ {0, 1, -1, 0},
+ {0, 1, 0, -1},
+ {1, 1, -1, -1}};
+ memcpy(tries, t1, sizeof tries);
+ }
+
+ /* now try the changes */
+ results[0] = abs(k);
+ for (i = 1; i < 6; i++) {
+ results[i] = abs((abs(dx1) + tries[i][0]) * (abs(dy2) + tries[i][1]) -
+ (abs(dy1) + tries[i][2]) * (abs(dx2) + tries[i][3]));
+ }
+
+ /* and find the best try */
+ k = abs(k);
+ b = 0;
+ for (i = 1; i < 6; i++)
+ if (results[i] < k) {
+ k = results[i];
+ b = i;
+ }
+ /* and finally apply it */
+ if (dx1 < 0)
+ tries[b][0] = -tries[b][0];
+ if (dy2 < 0)
+ tries[b][1] = -tries[b][1];
+ if (dy1 < 0)
+ tries[b][2] = -tries[b][2];
+ if (dx2 < 0)
+ tries[b][3] = -tries[b][3];
+
+ dir = igetcvdir(ge);
+ ge->ix2 -= tries[b][0];
+ ge->iy2 -= tries[b][2];
+ fixcvdir(ge, dir);
+ dir = igetcvdir(ne);
+ ne->ix1 += tries[b][3];
+ ne->iy1 += tries[b][1];
+ fixcvdir(ne, dir);
+ }
+ }
+ }
+}
+
+/* debugging: print out stems of a glyph */
+static void
+debugstems(
+ char *name,
+ STEM * hstems,
+ int nhs,
+ STEM * vstems,
+ int nvs
+)
+{
+ int i;
+
+ fprintf(pfa_file, "%% %s\n", name);
+ fprintf(pfa_file, "%% %d horizontal stems:\n", nhs);
+ for (i = 0; i < nhs; i++)
+ fprintf(pfa_file, "%% %3d %d (%d...%d) %c %c%c%c%c\n", i, hstems[i].value,
+ hstems[i].from, hstems[i].to,
+ ((hstems[i].flags & ST_UP) ? 'U' : 'D'),
+ ((hstems[i].flags & ST_END) ? 'E' : '-'),
+ ((hstems[i].flags & ST_FLAT) ? 'F' : '-'),
+ ((hstems[i].flags & ST_ZONE) ? 'Z' : ' '),
+ ((hstems[i].flags & ST_TOPZONE) ? 'T' : ' '));
+ fprintf(pfa_file, "%% %d vertical stems:\n", nvs);
+ for (i = 0; i < nvs; i++)
+ fprintf(pfa_file, "%% %3d %d (%d...%d) %c %c%c\n", i, vstems[i].value,
+ vstems[i].from, vstems[i].to,
+ ((vstems[i].flags & ST_UP) ? 'U' : 'D'),
+ ((vstems[i].flags & ST_END) ? 'E' : '-'),
+ ((vstems[i].flags & ST_FLAT) ? 'F' : '-'));
+}
+
+/* add pseudo-stems for the limits of the Blue zones to the stem array */
+static int
+addbluestems(
+ STEM *s,
+ int n
+)
+{
+ int i;
+
+ for(i=0; i<nblues && i<2; i+=2) { /* baseline */
+ s[n].value=bluevalues[i];
+ s[n].flags=ST_UP|ST_ZONE;
+ /* don't overlap with anything */
+ s[n].origin=s[n].from=s[n].to= -10000+i;
+ n++;
+ s[n].value=bluevalues[i+1];
+ s[n].flags=ST_ZONE;
+ /* don't overlap with anything */
+ s[n].origin=s[n].from=s[n].to= -10000+i+1;
+ n++;
+ }
+ for(i=2; i<nblues; i+=2) { /* top zones */
+ s[n].value=bluevalues[i];
+ s[n].flags=ST_UP|ST_ZONE|ST_TOPZONE;
+ /* don't overlap with anything */
+ s[n].origin=s[n].from=s[n].to= -10000+i;
+ n++;
+ s[n].value=bluevalues[i+1];
+ s[n].flags=ST_ZONE|ST_TOPZONE;
+ /* don't overlap with anything */
+ s[n].origin=s[n].from=s[n].to= -10000+i+1;
+ n++;
+ }
+ for(i=0; i<notherb; i+=2) { /* bottom zones */
+ s[n].value=otherblues[i];
+ s[n].flags=ST_UP|ST_ZONE;
+ /* don't overlap with anything */
+ s[n].origin=s[n].from=s[n].to= -10000+i+nblues;
+ n++;
+ s[n].value=otherblues[i+1];
+ s[n].flags=ST_ZONE;
+ /* don't overlap with anything */
+ s[n].origin=s[n].from=s[n].to= -10000+i+1+nblues;
+ n++;
+ }
+ return n;
+}
+
+/* sort stems in array */
+static void
+sortstems(
+ STEM * s,
+ int n
+)
+{
+ int i, j;
+ STEM x;
+
+
+ /* a simple sorting */
+ /* hm, the ordering criteria are not quite simple :-)
+ * if the values are tied
+ * ST_UP always goes under not ST_UP
+ * ST_ZONE goes on the most outer side
+ * ST_END goes towards inner side after ST_ZONE
+ * ST_FLAT goes on the inner side
+ */
+
+ for (i = 0; i < n; i++)
+ for (j = i + 1; j < n; j++) {
+ if(s[i].value < s[j].value)
+ continue;
+ if(s[i].value == s[j].value) {
+ if( (s[i].flags & ST_UP) < (s[j].flags & ST_UP) )
+ continue;
+ if( (s[i].flags & ST_UP) == (s[j].flags & ST_UP) ) {
+ if( s[i].flags & ST_UP ) {
+ if(
+ ((s[i].flags & (ST_ZONE|ST_FLAT|ST_END)) ^ ST_FLAT)
+ >
+ ((s[j].flags & (ST_ZONE|ST_FLAT|ST_END)) ^ ST_FLAT)
+ )
+ continue;
+ } else {
+ if(
+ ((s[i].flags & (ST_ZONE|ST_FLAT|ST_END)) ^ ST_FLAT)
+ <
+ ((s[j].flags & (ST_ZONE|ST_FLAT|ST_END)) ^ ST_FLAT)
+ )
+ continue;
+ }
+ }
+ }
+ x = s[j];
+ s[j] = s[i];
+ s[i] = x;
+ }
+}
+
+/* check whether two stem borders overlap */
+
+static int
+stemoverlap(
+ STEM * s1,
+ STEM * s2
+)
+{
+ int result;
+
+ if ((s1->from <= s2->from && s1->to >= s2->from)
+ || (s2->from <= s1->from && s2->to >= s1->from))
+ result = 1;
+ else
+ result = 0;
+
+ if (ISDBG(STEMOVERLAP))
+ fprintf(pfa_file, "%% overlap %d(%d..%d)x%d(%d..%d)=%d\n",
+ s1->value, s1->from, s1->to, s2->value, s2->from, s2->to, result);
+ return result;
+}
+
+/*
+ * check if the stem [border] is in an appropriate blue zone
+ * (currently not used)
+ */
+
+static int
+steminblue(
+ STEM *s
+)
+{
+ int i, val;
+
+ val=s->value;
+ if(s->flags & ST_UP) {
+ /* painted size up, look at lower zones */
+ if(nblues>=2 && val>=bluevalues[0] && val<=bluevalues[1] )
+ return 1;
+ for(i=0; i<notherb; i++) {
+ if( val>=otherblues[i] && val<=otherblues[i+1] )
+ return 1;
+ }
+ } else {
+ /* painted side down, look at upper zones */
+ for(i=2; i<nblues; i++) {
+ if( val>=bluevalues[i] && val<=bluevalues[i+1] )
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/* mark the outermost stem [borders] in the blue zones */
+
+static void
+markbluestems(
+ STEM *s,
+ int nold
+)
+{
+ int i, j, a, b, c;
+ /*
+ * traverse the list of Blue Values, mark the lowest upper
+ * stem in each bottom zone and the topmost lower stem in
+ * each top zone with ST_BLUE
+ */
+
+ /* top zones */
+ for(i=2; i<nblues; i+=2) {
+ a=bluevalues[i]; b=bluevalues[i+1];
+ if(ISDBG(BLUESTEMS))
+ fprintf(pfa_file, "%% looking at blue zone %d...%d\n", a, b);
+ for(j=nold-1; j>=0; j--) {
+ if( s[j].flags & (ST_ZONE|ST_UP|ST_END) )
+ continue;
+ c=s[j].value;
+ if(c<a) /* too low */
+ break;
+ if(c<=b) { /* found the topmost stem border */
+ /* mark all the stems with the same value */
+ if(ISDBG(BLUESTEMS))
+ fprintf(pfa_file, "%% found D BLUE at %d\n", s[j].value);
+ /* include ST_END values */
+ while( s[j+1].value==c && (s[j+1].flags & ST_ZONE)==0 )
+ j++;
+ s[j].flags |= ST_BLUE;
+ for(j--; j>=0 && s[j].value==c
+ && (s[j].flags & (ST_UP|ST_ZONE))==0 ; j--)
+ s[j].flags |= ST_BLUE;
+ break;
+ }
+ }
+ }
+ /* baseline */
+ if(nblues>=2) {
+ a=bluevalues[0]; b=bluevalues[1];
+ for(j=0; j<nold; j++) {
+ if( (s[j].flags & (ST_ZONE|ST_UP|ST_END))!=ST_UP )
+ continue;
+ c=s[j].value;
+ if(c>b) /* too high */
+ break;
+ if(c>=a) { /* found the lowest stem border */
+ /* mark all the stems with the same value */
+ if(ISDBG(BLUESTEMS))
+ fprintf(pfa_file, "%% found U BLUE at %d\n", s[j].value);
+ /* include ST_END values */
+ while( s[j-1].value==c && (s[j-1].flags & ST_ZONE)==0 )
+ j--;
+ s[j].flags |= ST_BLUE;
+ for(j++; j<nold && s[j].value==c
+ && (s[j].flags & (ST_UP|ST_ZONE))==ST_UP ; j++)
+ s[j].flags |= ST_BLUE;
+ break;
+ }
+ }
+ }
+ /* bottom zones: the logic is the same as for baseline */
+ for(i=0; i<notherb; i+=2) {
+ a=otherblues[i]; b=otherblues[i+1];
+ for(j=0; j<nold; j++) {
+ if( (s[j].flags & (ST_UP|ST_ZONE|ST_END))!=ST_UP )
+ continue;
+ c=s[j].value;
+ if(c>b) /* too high */
+ break;
+ if(c>=a) { /* found the lowest stem border */
+ /* mark all the stems with the same value */
+ if(ISDBG(BLUESTEMS))
+ fprintf(pfa_file, "%% found U BLUE at %d\n", s[j].value);
+ /* include ST_END values */
+ while( s[j-1].value==c && (s[j-1].flags & ST_ZONE)==0 )
+ j--;
+ s[j].flags |= ST_BLUE;
+ for(j++; j<nold && s[j].value==c
+ && (s[j].flags & (ST_UP|ST_ZONE))==ST_UP ; j++)
+ s[j].flags |= ST_BLUE;
+ break;
+ }
+ }
+ }
+}
+
+/* Eliminate invalid stems, join equivalent lines and remove nested stems
+ * to build the main (non-substituted) set of stems.
+ * XXX add consideration of the italic angle
+ */
+static int
+joinmainstems(
+ STEM * s,
+ int nold,
+ int useblues /* do we use the blue values ? */
+)
+{
+#define MAX_STACK 1000
+ STEM stack[MAX_STACK];
+ int nstack = 0;
+ int sbottom = 0;
+ int nnew;
+ int i, j, k;
+ int a, b, c, w1, w2, w3;
+ int fw, fd;
+ /*
+ * priority of the last found stem:
+ * 0 - nothing found yet
+ * 1 - has ST_END in it (one or more)
+ * 2 - has no ST_END and no ST_FLAT, can override only one stem
+ * with priority 1
+ * 3 - has no ST_END and at least one ST_FLAT, can override one
+ * stem with priority 2 or any number of stems with priority 1
+ * 4 (handled separately) - has ST_BLUE, can override anything
+ */
+ int readystem = 0;
+ int pri;
+ int nlps = 0; /* number of non-committed
+ * lowest-priority stems */
+
+
+ for (i = 0, nnew = 0; i < nold; i++) {
+ if (s[i].flags & (ST_UP|ST_ZONE)) {
+ if(s[i].flags & ST_BLUE) {
+ /* we just HAVE to use this value */
+ if (readystem)
+ nnew += 2;
+ readystem=0;
+
+ /* remember the list of Blue zone stems with the same value */
+ for(a=i, i++; i<nold && s[a].value==s[i].value
+ && (s[i].flags & ST_BLUE); i++)
+ {}
+ b=i; /* our range is a <= i < b */
+ c= -1; /* index of our best guess up to now */
+ pri=0;
+ /* try to find a match, don't cross blue zones */
+ for(; i<nold && (s[i].flags & ST_BLUE)==0; i++) {
+ if(s[i].flags & ST_UP) {
+ if(s[i].flags & ST_TOPZONE)
+ break;
+ else
+ continue;
+ }
+ for(j=a; j<b; j++) {
+ if(!stemoverlap(&s[j], &s[i]) )
+ continue;
+ /* consider priorities */
+ if( ( (s[j].flags|s[i].flags) & (ST_FLAT|ST_END) )==ST_FLAT ) {
+ c=i;
+ goto bluematch;
+ }
+ if( ((s[j].flags|s[i].flags) & ST_END)==0 ) {
+ if(pri < 2) {
+ c=i; pri=2;
+ }
+ } else {
+ if(pri == 0) {
+ c=i; pri=1;
+ }
+ }
+ }
+ }
+ bluematch:
+ /* clean up the stack */
+ nstack=sbottom=0;
+ readystem=0;
+ /* add this stem */
+ s[nnew++]=s[a];
+ if(c<0) { /* make one-dot-wide stem */
+ if(nnew>=b) { /* have no free space */
+ for(j=nold; j>=b; j--) /* make free space */
+ s[j]=s[j-1];
+ b++;
+ nold++;
+ }
+ s[nnew]=s[a];
+ s[nnew].flags &= ~(ST_UP|ST_BLUE);
+ nnew++;
+ i=b-1;
+ } else {
+ s[nnew++]=s[c];
+ i=c; /* skip up to this point */
+ }
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% +stem %d...%d U BLUE\n",
+ s[nnew-2].value, s[nnew-1].value);
+ } else {
+ if (nstack >= MAX_STACK) {
+ WARNING_1 fprintf(stderr, "Warning: **** converter's stem stack overflow ****\n");
+ nstack = 0;
+ }
+ stack[nstack++] = s[i];
+ }
+ } else if(s[i].flags & ST_BLUE) {
+ /* again, we just HAVE to use this value */
+ if (readystem)
+ nnew += 2;
+ readystem=0;
+
+ /* remember the list of Blue zone stems with the same value */
+ for(a=i, i++; i<nold && s[a].value==s[i].value
+ && (s[i].flags & ST_BLUE); i++)
+ {}
+ b=i; /* our range is a <= i < b */
+ c= -1; /* index of our best guess up to now */
+ pri=0;
+ /* try to find a match */
+ for (i = nstack - 1; i >= 0; i--) {
+ if( (stack[i].flags & ST_UP)==0 ) {
+ if( (stack[i].flags & (ST_ZONE|ST_TOPZONE))==ST_ZONE )
+ break;
+ else
+ continue;
+ }
+ for(j=a; j<b; j++) {
+ if(!stemoverlap(&s[j], &stack[i]) )
+ continue;
+ /* consider priorities */
+ if( ( (s[j].flags|stack[i].flags) & (ST_FLAT|ST_END) )==ST_FLAT ) {
+ c=i;
+ goto bluedownmatch;
+ }
+ if( ((s[j].flags|stack[i].flags) & ST_END)==0 ) {
+ if(pri < 2) {
+ c=i; pri=2;
+ }
+ } else {
+ if(pri == 0) {
+ c=i; pri=1;
+ }
+ }
+ }
+ }
+ bluedownmatch:
+ /* if found no match make a one-dot-wide stem */
+ if(c<0) {
+ c=0;
+ stack[0]=s[b-1];
+ stack[0].flags |= ST_UP;
+ stack[0].flags &= ~ST_BLUE;
+ }
+ /* remove all the stems conflicting with this one */
+ readystem=0;
+ for(j=nnew-2; j>=0; j-=2) {
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% ?stem %d...%d -- %d\n",
+ s[j].value, s[j+1].value, stack[c].value);
+ if(s[j+1].value < stack[c].value) /* no conflict */
+ break;
+ if(s[j].flags & ST_BLUE) {
+ /* oops, we don't want to spoil other blue zones */
+ stack[c].value=s[j+1].value+1;
+ break;
+ }
+ if( (s[j].flags|s[j+1].flags) & ST_END ) {
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% -stem %d...%d p=1\n",
+ s[j].value, s[j+1].value);
+ continue; /* pri==1, silently discard it */
+ }
+ /* we want to discard no nore than 2 stems of pri>=2 */
+ if( ++readystem > 2 ) {
+ /* change our stem to not conflict */
+ stack[c].value=s[j+1].value+1;
+ break;
+ } else {
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% -stem %d...%d p>=2\n",
+ s[j].value, s[j+1].value);
+ continue;
+ }
+ }
+ nnew=j+2;
+ /* add this stem */
+ if(nnew>=b-1) { /* have no free space */
+ for(j=nold; j>=b-1; j--) /* make free space */
+ s[j]=s[j-1];
+ b++;
+ nold++;
+ }
+ s[nnew++]=stack[c];
+ s[nnew++]=s[b-1];
+ /* clean up the stack */
+ nstack=sbottom=0;
+ readystem=0;
+ /* set the next position to search */
+ i=b-1;
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% +stem %d...%d D BLUE\n",
+ s[nnew-2].value, s[nnew-1].value);
+ } else if (nstack > 0) {
+
+ /*
+ * check whether our stem overlaps with anything in
+ * stack
+ */
+ for (j = nstack - 1; j >= sbottom; j--) {
+ if (s[i].value <= stack[j].value)
+ break;
+ if (stack[j].flags & ST_ZONE)
+ continue;
+
+ if ((s[i].flags & ST_END)
+ || (stack[j].flags & ST_END))
+ pri = 1;
+ else if ((s[i].flags & ST_FLAT)
+ || (stack[j].flags & ST_FLAT))
+ pri = 3;
+ else
+ pri = 2;
+
+ if ((pri < readystem && s[nnew + 1].value >= stack[j].value)
+ || !stemoverlap(&stack[j], &s[i]))
+ continue;
+
+ if (readystem > 1 && s[nnew + 1].value < stack[j].value) {
+ nnew += 2;
+ readystem = 0;
+ nlps = 0;
+ }
+ /*
+ * width of the previous stem (if it's
+ * present)
+ */
+ w1 = s[nnew + 1].value - s[nnew].value;
+
+ /* width of this stem */
+ w2 = s[i].value - stack[j].value;
+
+ if (readystem == 0) {
+ /* nothing yet, just add a new stem */
+ s[nnew] = stack[j];
+ s[nnew + 1] = s[i];
+ readystem = pri;
+ if (pri == 1)
+ nlps = 1;
+ else if (pri == 2)
+ sbottom = j;
+ else {
+ sbottom = j + 1;
+ while (sbottom < nstack
+ && stack[sbottom].value <= stack[j].value)
+ sbottom++;
+ }
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% +stem %d...%d p=%d n=%d\n",
+ stack[j].value, s[i].value, pri, nlps);
+ } else if (pri == 1) {
+ if (stack[j].value > s[nnew + 1].value) {
+ /*
+ * doesn't overlap with the
+ * previous one
+ */
+ nnew += 2;
+ nlps++;
+ s[nnew] = stack[j];
+ s[nnew + 1] = s[i];
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% +stem %d...%d p=%d n=%d\n",
+ stack[j].value, s[i].value, pri, nlps);
+ } else if (w2 < w1) {
+ /* is narrower */
+ s[nnew] = stack[j];
+ s[nnew + 1] = s[i];
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% /stem %d...%d p=%d n=%d %d->%d\n",
+ stack[j].value, s[i].value, pri, nlps, w1, w2);
+ }
+ } else if (pri == 2) {
+ if (readystem == 2) {
+ /* choose the narrower stem */
+ if (w1 > w2) {
+ s[nnew] = stack[j];
+ s[nnew + 1] = s[i];
+ sbottom = j;
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% /stem %d...%d p=%d n=%d\n",
+ stack[j].value, s[i].value, pri, nlps);
+ }
+ /* else readystem==1 */
+ } else if (stack[j].value > s[nnew + 1].value) {
+ /*
+ * value doesn't overlap with
+ * the previous one
+ */
+ nnew += 2;
+ nlps = 0;
+ s[nnew] = stack[j];
+ s[nnew + 1] = s[i];
+ sbottom = j;
+ readystem = pri;
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% +stem %d...%d p=%d n=%d\n",
+ stack[j].value, s[i].value, pri, nlps);
+ } else if (nlps == 1
+ || stack[j].value > s[nnew - 1].value) {
+ /*
+ * we can replace the top
+ * stem
+ */
+ nlps = 0;
+ s[nnew] = stack[j];
+ s[nnew + 1] = s[i];
+ readystem = pri;
+ sbottom = j;
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% /stem %d...%d p=%d n=%d\n",
+ stack[j].value, s[i].value, pri, nlps);
+ }
+ } else if (readystem == 3) { /* that means also
+ * pri==3 */
+ /* choose the narrower stem */
+ if (w1 > w2) {
+ s[nnew] = stack[j];
+ s[nnew + 1] = s[i];
+ sbottom = j + 1;
+ while (sbottom < nstack
+ && stack[sbottom].value <= stack[j].value)
+ sbottom++;
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% /stem %d...%d p=%d n=%d\n",
+ stack[j].value, s[i].value, pri, nlps);
+ }
+ } else if (pri == 3) {
+ /*
+ * we can replace as many stems as
+ * neccessary
+ */
+ nnew += 2;
+ while (nnew > 0 && s[nnew - 1].value >= stack[j].value) {
+ nnew -= 2;
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% -stem %d..%d\n",
+ s[nnew].value, s[nnew + 1].value);
+ }
+ nlps = 0;
+ s[nnew] = stack[j];
+ s[nnew + 1] = s[i];
+ readystem = pri;
+ sbottom = j + 1;
+ while (sbottom < nstack
+ && stack[sbottom].value <= stack[j].value)
+ sbottom++;
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% +stem %d...%d p=%d n=%d\n",
+ stack[j].value, s[i].value, pri, nlps);
+ }
+ }
+ }
+ }
+ if (readystem)
+ nnew += 2;
+
+ /* change the 1-pixel-wide stems to 20-pixel-wide stems if possible
+ * the constant 20 is recommended in the Type1 manual
+ */
+ if(useblues) {
+ for(i=0; i<nnew; i+=2) {
+ if(s[i].value != s[i+1].value)
+ continue;
+ if( ((s[i].flags ^ s[i+1].flags) & ST_BLUE)==0 )
+ continue;
+ if( s[i].flags & ST_BLUE ) {
+ if(nnew>i+2 && s[i+2].value<s[i].value+22)
+ s[i+1].value=s[i+2].value-2; /* compensate for fuzziness */
+ else
+ s[i+1].value+=20;
+ } else {
+ if(i>0 && s[i-1].value>s[i].value-22)
+ s[i].value=s[i-1].value+2; /* compensate for fuzziness */
+ else
+ s[i].value-=20;
+ }
+ }
+ }
+ /* make sure that no stem it stretched between
+ * a top zone and a bottom zone
+ */
+ if(useblues) {
+ for(i=0; i<nnew; i+=2) {
+ a=10000; /* lowest border of top zone crosing the stem */
+ b= -10000; /* highest border of bottom zone crossing the stem */
+
+ for(j=2; j<nblues; j++) {
+ c=bluevalues[j];
+ if( c>=s[i].value && c<=s[i+1].value && c<a )
+ a=c;
+ }
+ if(nblues>=2) {
+ c=bluevalues[1];
+ if( c>=s[i].value && c<=s[i+1].value && c>b )
+ b=c;
+ }
+ for(j=1; j<notherb; j++) {
+ c=otherblues[j];
+ if( c>=s[i].value && c<=s[i+1].value && c>b )
+ b=c;
+ }
+ if( a!=10000 && b!= -10000 ) { /* it is stretched */
+ /* split the stem into 2 ghost stems */
+ for(j=nnew+1; j>i+1; j--) /* make free space */
+ s[j]=s[j-2];
+ nnew+=2;
+
+ if(s[i].value+22 >= a)
+ s[i+1].value=a-2; /* leave space for fuzziness */
+ else
+ s[i+1].value=s[i].value+20;
+
+ if(s[i+3].value-22 <= b)
+ s[i+2].value=b+2; /* leave space for fuzziness */
+ else
+ s[i+2].value=s[i+3].value-20;
+
+ i+=2;
+ }
+ }
+ }
+ /* look for triple stems */
+ for (i = 0; i < nnew; i += 2) {
+ if (nnew - i >= 6) {
+ a = s[i].value + s[i + 1].value;
+ b = s[i + 2].value + s[i + 3].value;
+ c = s[i + 4].value + s[i + 5].value;
+
+ w1 = s[i + 1].value - s[i].value;
+ w2 = s[i + 3].value - s[i + 2].value;
+ w3 = s[i + 5].value - s[i + 4].value;
+
+ fw = w3 - w1; /* fuzz in width */
+ fd = ((c - b) - (b - a)); /* fuzz in distance
+ * (doubled) */
+
+ /* we are able to handle some fuzz */
+ /*
+ * it doesn't hurt if the declared stem is a bit
+ * narrower than actual unless it's an edge in
+ * a blue zone
+ */
+ if (abs(abs(fd) - abs(fw)) * 5 < w2
+ && abs(fw) * 20 < (w1 + w3)) { /* width dirrerence <10% */
+
+ if(useblues) { /* check that we don't disturb any blue stems */
+ j=c; k=a;
+ if (fw > 0) {
+ if (fd > 0) {
+ if( s[i+5].flags & ST_BLUE )
+ continue;
+ j -= fw;
+ } else {
+ if( s[i+4].flags & ST_BLUE )
+ continue;
+ j += fw;
+ }
+ } else if(fw < 0) {
+ if (fd > 0) {
+ if( s[i+1].flags & ST_BLUE )
+ continue;
+ k -= fw;
+ } else {
+ if( s[i].flags & ST_BLUE )
+ continue;
+ k += fw;
+ }
+ }
+ pri = ((j - b) - (b - k));
+
+ if (pri > 0) {
+ if( s[i+2].flags & ST_BLUE )
+ continue;
+ } else if(pri < 0) {
+ if( s[i+3].flags & ST_BLUE )
+ continue;
+ }
+ }
+
+ /*
+ * first fix up the width of 1st and 3rd
+ * stems
+ */
+ if (fw > 0) {
+ if (fd > 0) {
+ s[i + 5].value -= fw;
+ c -= fw;
+ } else {
+ s[i + 4].value += fw;
+ c += fw;
+ }
+ } else {
+ if (fd > 0) {
+ s[i + 1].value -= fw;
+ a -= fw;
+ } else {
+ s[i].value += fw;
+ a += fw;
+ }
+ }
+ fd = ((c - b) - (b - a));
+
+ if (fd > 0) {
+ s[i + 2].value += abs(fd) / 2;
+ } else {
+ s[i + 3].value -= abs(fd) / 2;
+ }
+
+ s[i].flags |= ST_3;
+ i += 4;
+ }
+ }
+ }
+
+ return (nnew & ~1); /* number of lines must be always even */
+}
+
+/*
+ * these macros and function allow to set the base stem,
+ * check that it's not empty and subtract another stem
+ * from the base stem (possibly dividing it into multiple parts)
+ */
+
+/* pairs for pieces of the base stem */
+static short xbstem[MAX_STEMS*2];
+/* index of the last point */
+static int xblast= -1;
+
+#define setbasestem(from, to) \
+ (xbstem[0]=from, xbstem[1]=to, xblast=1)
+#define isbaseempty() (xblast<=0)
+
+/* returns 1 if was overlapping, 0 otherwise */
+static int
+subfrombase(
+ int from,
+ int to
+)
+{
+ int a, b;
+ int i, j;
+
+ if(isbaseempty())
+ return 0;
+
+ /* handle the simple case simply */
+ if(from > xbstem[xblast] || to < xbstem[0])
+ return 0;
+
+ /* the binary search may be more efficient */
+ /* but for now the linear search is OK */
+ for(b=1; from > xbstem[b]; b+=2) {} /* result: from <= xbstem[b] */
+ for(a=xblast-1; to < xbstem[a]; a-=2) {} /* result: to >= xbstem[a] */
+
+ /* now the interesting examples are:
+ * (it was hard for me to understand, so I looked at the examples)
+ * 1
+ * a|-----| |-----|b |-----| |-----|
+ * f|-----|t
+ * 2
+ * a|-----|b |-----| |-----| |-----|
+ * f|--|t
+ * 3
+ * a|-----|b |-----| |-----| |-----|
+ * f|-----|t
+ * 4
+ * |-----|b a|-----| |-----| |-----|
+ * f|------------|t
+ * 5
+ * |-----| |-----|b |-----| a|-----|
+ * f|-----------------------------|t
+ * 6
+ * |-----|b |-----| |-----| a|-----|
+ * f|--------------------------------------------------|t
+ * 7
+ * |-----|b |-----| a|-----| |-----|
+ * f|--------------------------|t
+ */
+
+ if(a < b-1) /* hits a gap - example 1 */
+ return 0;
+
+ /* now the subtraction itself */
+
+ if(a==b-1 && from > xbstem[a] && to < xbstem[b]) {
+ /* overlaps with only one subrange and splits it - example 2 */
+ j=xblast; i=(xblast+=2);
+ while(j>=b)
+ xbstem[i--]=xbstem[j--];
+ xbstem[b]=from-1;
+ xbstem[b+1]=to+1;
+ return 1;
+ /* becomes
+ * 2a
+ * a|b || |-----| |-----| |-----|
+ * f|--|t
+ */
+ }
+
+ if(xbstem[b-1] < from) {
+ /* cuts the back of this subrange - examples 3, 4, 7 */
+ xbstem[b] = from-1;
+ b+=2;
+ /* becomes
+ * 3a
+ * a|----| |-----|b |-----| |-----|
+ * f|-----|t
+ * 4a
+ * |---| a|-----|b |-----| |-----|
+ * f|------------|t
+ * 7a
+ * |---| |-----|b a|-----| |-----|
+ * f|--------------------------|t
+ */
+ }
+
+ if(xbstem[a+1] > to) {
+ /* cuts the front of this subrange - examples 4a, 5, 7a */
+ xbstem[a] = to+1;
+ a-=2;
+ /* becomes
+ * 4b
+ * a|---| |---|b |-----| |-----|
+ * f|------------|t
+ * 5b
+ * |-----| |-----|b a|-----| ||
+ * f|-----------------------------|t
+ * 7b
+ * |---| a|-----|b || |-----|
+ * f|--------------------------|t
+ */
+ }
+
+ if(a < b-1) /* now after modification it hits a gap - examples 3a, 4b */
+ return 1; /* because we have removed something */
+
+ /* now remove the subranges completely covered by the new stem */
+ /* examples 5b, 6, 7b */
+ i=b-1; j=a+2;
+ /* positioned as:
+ * 5b i j
+ * |-----| |-----|b a|-----| ||
+ * f|-----------------------------|t
+ * 6 i xblast j
+ * |-----|b |-----| |-----| a|-----|
+ * f|--------------------------------------------------|t
+ * 7b i j
+ * |---| a|-----|b || |-----|
+ * f|--------------------------|t
+ */
+ while(j <= xblast)
+ xbstem[i++]=xbstem[j++];
+ xblast=i-1;
+ return 1;
+}
+
+/* for debugging */
+static void
+printbasestem(void)
+{
+ int i;
+
+ printf("( ");
+ for(i=0; i<xblast; i+=2)
+ printf("%d-%d ", xbstem[i], xbstem[i+1]);
+ printf(") %d\n", xblast);
+}
+
+/*
+ * Join the stem borders to build the sets of substituted stems
+ * XXX add consideration of the italic angle
+ */
+static void
+joinsubstems(
+ STEM * s,
+ short *pairs,
+ int nold,
+ int useblues /* do we use the blue values ? */
+)
+{
+ int i, j, x;
+ static unsigned char mx[MAX_STEMS][MAX_STEMS];
+
+ /* we do the substituted groups of stems first
+ * and it looks like it's going to be REALLY SLOW
+ * AND PAINFUL but let's bother about it later
+ */
+
+ /* for the substituted stems we don't bother about [hv]stem3 -
+ * anyway the X11R6 rasterizer does not bother about hstem3
+ * at all and is able to handle only one global vstem3
+ * per glyph
+ */
+
+ /* clean the used part of matrix */
+ for(i=0; i<nold; i++)
+ for(j=0; j<nold; j++)
+ mx[i][j]=0;
+
+ /* build the matrix of stem pairs */
+ for(i=0; i<nold; i++) {
+ if( s[i].flags & ST_ZONE )
+ continue;
+ if(s[i].flags & ST_BLUE)
+ mx[i][i]=1; /* allow to pair with itself if no better pair */
+ if(s[i].flags & ST_UP) { /* the down-stems are already matched */
+ setbasestem(s[i].from, s[i].to);
+ for(j=i+1; j<nold; j++) {
+ if(s[i].value==s[j].value
+ || s[j].flags & ST_ZONE ) {
+ continue;
+ }
+ x=subfrombase(s[j].from, s[j].to);
+
+ if(s[j].flags & ST_UP) /* match only up+down pairs */
+ continue;
+
+ mx[i][j]=mx[j][i]=x;
+
+ if(isbaseempty()) /* nothing else to do */
+ break;
+ }
+ }
+ }
+
+ if(ISDBG(SUBSTEMS)) {
+ fprintf(pfa_file, "%% ");
+ for(j=0; j<nold; j++)
+ putc( j%10==0 ? '0'+(j/10)%10 : ' ', pfa_file);
+ fprintf(pfa_file, "\n%% ");
+ for(j=0; j<nold; j++)
+ putc('0'+j%10, pfa_file);
+ putc('\n', pfa_file);
+ for(i=0; i<nold; i++) {
+ fprintf(pfa_file, "%% %3d ",i);
+ for(j=0; j<nold; j++)
+ putc( mx[i][j] ? 'X' : '.', pfa_file);
+ putc('\n', pfa_file);
+ }
+ }
+
+ /* now use the matrix to find the best pair for each stem */
+ for(i=0; i<nold; i++) {
+ int pri, lastpri, v, f;
+
+ x= -1; /* best pair: none */
+ lastpri=0;
+
+ v=s[i].value;
+ f=s[i].flags;
+
+ if(f & ST_ZONE) {
+ pairs[i]= -1;
+ continue;
+ }
+
+ if(f & ST_UP) {
+ for(j=i+1; j<nold; j++) {
+ if(mx[i][j]==0)
+ continue;
+
+ if( (f | s[j].flags) & ST_END )
+ pri=1;
+ else if( (f | s[j].flags) & ST_FLAT )
+ pri=3;
+ else
+ pri=2;
+
+ if(lastpri==0
+ || ( pri > lastpri
+ && ( lastpri==1 || s[j].value-v<20 || (s[x].value-v)*2 >= s[j].value-v ) ) ) {
+ lastpri=pri;
+ x=j;
+ }
+ }
+ } else {
+ for(j=i-1; j>=0; j--) {
+ if(mx[i][j]==0)
+ continue;
+
+ if( (f | s[j].flags) & ST_END )
+ pri=1;
+ else if( (f | s[j].flags) & ST_FLAT )
+ pri=3;
+ else
+ pri=2;
+
+ if(lastpri==0
+ || ( pri > lastpri
+ && ( lastpri==1 || v-s[j].value<20 || (v-s[x].value)*2 >= v-s[j].value ) ) ) {
+ lastpri=pri;
+ x=j;
+ }
+ }
+ }
+ if(x== -1 && mx[i][i])
+ pairs[i]=i; /* a special case */
+ else
+ pairs[i]=x;
+ }
+
+ if(ISDBG(SUBSTEMS)) {
+ for(i=0; i<nold; i++) {
+ j=pairs[i];
+ if(j>0)
+ fprintf(pfa_file, "%% %d...%d (%d x %d)\n", s[i].value, s[j].value, i, j);
+ }
+ }
+}
+
+/*
+ * Make all the stems originating at the same value get the
+ * same width. Without this the rasterizer may move the dots
+ * randomly up or down by one pixel, and that looks bad.
+ * The prioritisation is the same as in findstemat().
+ */
+static void
+uniformstems(
+ STEM * s,
+ short *pairs,
+ int ns
+)
+{
+ int i, j, from, to, val, dir;
+ int pri, prevpri[2], wd, prevwd[2], prevbest[2];
+
+ for(from=0; from<ns; from=to) {
+ prevpri[0] = prevpri[1] = 0;
+ prevwd[0] = prevwd[1] = 0;
+ prevbest[0] = prevbest[1] = -1;
+ val = s[from].value;
+
+ for(to = from; to<ns && s[to].value == val; to++) {
+ dir = ((s[to].flags & ST_UP)!=0);
+
+ i=pairs[to]; /* the other side of this stem */
+ if(i<0 || i==to)
+ continue; /* oops, no other side */
+ wd=abs(s[i].value-val);
+ if(wd == 0)
+ continue;
+ pri=1;
+ if( (s[to].flags | s[i].flags) & ST_END )
+ pri=0;
+ if( prevbest[dir] == -1 || pri > prevpri[dir] || wd<prevwd[dir] ) {
+ prevbest[dir]=i;
+ prevpri[dir]=pri;
+ prevwd[dir]=wd;
+ }
+ }
+
+ for(i=from; i<to; i++) {
+ dir = ((s[i].flags & ST_UP)!=0);
+ if(prevbest[dir] >= 0) {
+ if(ISDBG(SUBSTEMS)) {
+ fprintf(stderr, "at %d (%s %d) pair %d->%d(%d)\n", i,
+ (dir ? "UP":"DOWN"), s[i].value, pairs[i], prevbest[dir],
+ s[prevbest[dir]].value);
+ }
+ pairs[i] = prevbest[dir];
+ }
+ }
+ }
+}
+
+/*
+ * Find the best stem in the array at the specified (value, origin),
+ * related to the entry ge.
+ * Returns its index in the array sp, -1 means "none".
+ * prevbest is the result for the other end of the line, we must
+ * find something better than it or leave it as it is.
+ */
+static int
+findstemat(
+ int value,
+ int origin,
+ GENTRY *ge,
+ STEM *sp,
+ short *pairs,
+ int ns,
+ int prevbest /* -1 means "none" */
+)
+{
+ int i, min, max;
+ int v, si;
+ int pri, prevpri; /* priority, 0 = has ST_END, 1 = no ST_END */
+ int wd, prevwd; /* stem width */
+
+ si= -1; /* nothing yet */
+
+ /* stems are ordered by value, binary search */
+ min=0; max=ns; /* min <= i < max */
+ while( min < max ) {
+ i=(min+max)/2;
+ v=sp[i].value;
+ if(v<value)
+ min=i+1;
+ else if(v>value)
+ max=i;
+ else {
+ si=i; /* temporary value */
+ break;
+ }
+ }
+
+ if( si < 0 ) /* found nothing this time */
+ return prevbest;
+
+ /* find the priority of the prevbest */
+ /* we expect that prevbest has a pair */
+ if(prevbest>=0) {
+ i=pairs[prevbest];
+ prevpri=1;
+ if( (sp[prevbest].flags | sp[i].flags) & ST_END )
+ prevpri=0;
+ prevwd=abs(sp[i].value-value);
+ }
+
+ /* stems are not ordered by origin, so now do the linear search */
+
+ while( si>0 && sp[si-1].value==value ) /* find the first one */
+ si--;
+
+ for(; si<ns && sp[si].value==value; si++) {
+ if(sp[si].origin != origin)
+ continue;
+ if(sp[si].ge != ge) {
+ if(ISDBG(SUBSTEMS)) {
+ fprintf(stderr,
+ "dbg: possible self-intersection at v=%d o=%d exp_ge=0x%x ge=0x%x\n",
+ value, origin, ge, sp[si].ge);
+ }
+ continue;
+ }
+ i=pairs[si]; /* the other side of this stem */
+ if(i<0)
+ continue; /* oops, no other side */
+ pri=1;
+ if( (sp[si].flags | sp[i].flags) & ST_END )
+ pri=0;
+ wd=abs(sp[i].value-value);
+ if( prevbest == -1 || pri >prevpri
+ || (pri==prevpri && prevwd==0) || (wd!=0 && wd<prevwd) ) {
+ prevbest=si;
+ prevpri=pri;
+ prevwd=wd;
+ continue;
+ }
+ }
+
+ return prevbest;
+}
+
+/* add the substems for one glyph entry
+ * (called from groupsubstems())
+ * returns 0 if all OK, 1 if too many groups
+ */
+
+static int gssentry_lastgrp=0; /* reset to 0 for each new glyph */
+
+static int
+gssentry( /* crazy number of parameters */
+ GENTRY *ge,
+ STEM *hs, /* horizontal stems, sorted by value */
+ short *hpairs,
+ int nhs,
+ STEM *vs, /* vertical stems, sorted by value */
+ short *vpairs,
+ int nvs,
+ STEMBOUNDS *s,
+ short *egp,
+ int *nextvsi,
+ int *nexthsi /* -2 means "check by yourself" */
+) {
+ enum {
+ SI_VP, /* vertical primary */
+ SI_HP, /* horizontal primary */
+ SI_SIZE /* size of the array */
+ };
+ int si[SI_SIZE]; /* indexes of relevant stems */
+
+ /* the bounds of the existing relevant stems */
+ STEMBOUNDS r[ sizeof(si) / sizeof(si[0]) * 2 ];
+ char rexpand; /* by how much we need to expand the group */
+ int nr; /* and the number of them */
+
+ /* yet more temporary storage */
+ short lb, hb, isvert;
+ int conflict, grp;
+ int i, j, x, y;
+
+
+ /* for each line or curve we try to find a horizontal and
+ * a vertical stem corresponding to its first point
+ * (corresponding to the last point of the previous
+ * glyph entry), because the directions of the lines
+ * will be eventually reversed and it will then become the last
+ * point. And the T1 rasterizer applies the hints to
+ * the last point.
+ *
+ */
+
+ /* start with the common part, the first point */
+ x=ge->prev->ix3;
+ y=ge->prev->iy3;
+
+ if(*nextvsi == -2)
+ si[SI_VP]=findstemat(x, y, ge, vs, vpairs, nvs, -1);
+ else {
+ si[SI_VP]= *nextvsi; *nextvsi= -2;
+ }
+ if(*nexthsi == -2)
+ si[SI_HP]=findstemat(y, x, ge, hs, hpairs, nhs, -1);
+ else {
+ si[SI_HP]= *nexthsi; *nexthsi= -2;
+ }
+
+ /*
+ * For the horizontal lines we make sure that both
+ * ends of the line have the same horizontal stem,
+ * and the same thing for vertical lines and stems.
+ * In both cases we enforce the stem for the next entry.
+ * Otherwise unpleasant effects may arise.
+ */
+
+ if(ge->type==GE_LINE) {
+ if(ge->ix3==x) { /* vertical line */
+ *nextvsi=si[SI_VP]=findstemat(x, ge->iy3, ge->frwd, vs, vpairs, nvs, si[SI_VP]);
+ } else if(ge->iy3==y) { /* horizontal line */
+ *nexthsi=si[SI_HP]=findstemat(y, ge->ix3, ge->frwd, hs, hpairs, nhs, si[SI_HP]);
+ }
+ }
+
+ if(si[SI_VP]+si[SI_HP] == -2) /* no stems, leave it alone */
+ return 0;
+
+ /* build the array of relevant bounds */
+ nr=0;
+ for(i=0; i< sizeof(si) / sizeof(si[0]); i++) {
+ STEM *sp;
+ short *pairs;
+ int step;
+ int f;
+ int nzones, firstzone, binzone, einzone;
+ int btype, etype;
+
+ if(si[i] < 0)
+ continue;
+
+ if(i<SI_HP) {
+ r[nr].isvert=1; sp=vs; pairs=vpairs;
+ } else {
+ r[nr].isvert=0; sp=hs; pairs=hpairs;
+ }
+
+ r[nr].low=sp[ si[i] ].value;
+ r[nr].high=sp[ pairs[ si[i] ] ].value;
+
+ if(r[nr].low > r[nr].high) {
+ j=r[nr].low; r[nr].low=r[nr].high; r[nr].high=j;
+ step= -1;
+ } else {
+ step=1;
+ }
+
+ /* handle the interaction with Blue Zones */
+
+ if(i>=SI_HP) { /* only for horizontal stems */
+ if(si[i]==pairs[si[i]]) {
+ /* special case, the outermost stem in the
+ * Blue Zone without a pair, simulate it to 20-pixel
+ */
+ if(sp[ si[i] ].flags & ST_UP) {
+ r[nr].high+=20;
+ for(j=si[i]+1; j<nhs; j++)
+ if( (sp[j].flags & (ST_ZONE|ST_TOPZONE))
+ == (ST_ZONE|ST_TOPZONE) ) {
+ if(r[nr].high > sp[j].value-2)
+ r[nr].high=sp[j].value-2;
+ break;
+ }
+ } else {
+ r[nr].low-=20;
+ for(j=si[i]-1; j>=0; j--)
+ if( (sp[j].flags & (ST_ZONE|ST_TOPZONE))
+ == (ST_ZONE) ) {
+ if(r[nr].low < sp[j].value+2)
+ r[nr].low=sp[j].value+2;
+ break;
+ }
+ }
+ }
+
+ /* check that the stem borders don't end up in
+ * different Blue Zones */
+ f=sp[ si[i] ].flags;
+ nzones=0; einzone=binzone=0;
+ for(j=si[i]; j!=pairs[ si[i] ]; j+=step) {
+ if( (sp[j].flags & ST_ZONE)==0 )
+ continue;
+ /* if see a zone border going in the same direction */
+ if( ((f ^ sp[j].flags) & ST_UP)==0 ) {
+ if( ++nzones == 1 ) {
+ firstzone=sp[j].value; /* remember the first one */
+ etype=sp[j].flags & ST_TOPZONE;
+ }
+ einzone=1;
+
+ } else { /* the opposite direction */
+ if(nzones==0) { /* beginning is in a blue zone */
+ binzone=1;
+ btype=sp[j].flags & ST_TOPZONE;
+ }
+ einzone=0;
+ }
+ }
+
+ /* beginning and end are in Blue Zones of different types */
+ if( binzone && einzone && (btype ^ etype)!=0 ) {
+ if( sp[si[i]].flags & ST_UP ) {
+ if(firstzone > r[nr].low+22)
+ r[nr].high=r[nr].low+20;
+ else
+ r[nr].high=firstzone-2;
+ } else {
+ if(firstzone < r[nr].high-22)
+ r[nr].low=r[nr].high-20;
+ else
+ r[nr].low=firstzone+2;
+ }
+ }
+ }
+
+ if(ISDBG(SUBSTEMS))
+ fprintf(pfa_file, "%% at(%d,%d)[%d,%d] %d..%d %c (%d x %d)\n", x, y, i, nr,
+ r[nr].low, r[nr].high, r[nr].isvert ? 'v' : 'h',
+ si[i], pairs[si[i]]);
+
+ nr++;
+ }
+
+ /* now try to find a group */
+ conflict=0; /* no conflicts found yet */
+ for(j=0; j<nr; j++)
+ r[j].already=0;
+
+ /* check if it fits into the last group */
+ grp = gssentry_lastgrp;
+ i = (grp==0)? 0 : egp[grp-1];
+ for(; i<egp[grp]; i++) {
+ lb=s[i].low; hb=s[i].high; isvert=s[i].isvert;
+ for(j=0; j<nr; j++)
+ if( r[j].isvert==isvert /* intersects */
+ && r[j].low <= hb && r[j].high >= lb ) {
+ if( r[j].low == lb && r[j].high == hb ) /* coincides */
+ r[j].already=1;
+ else
+ conflict=1;
+ }
+
+ if(conflict)
+ break;
+ }
+
+ if(conflict) { /* nope, check all the groups */
+ for(j=0; j<nr; j++)
+ r[j].already=0;
+
+ for(i=0, grp=0; i<egp[NSTEMGRP-1]; i++) {
+ if(i == egp[grp]) { /* checked all stems in a group */
+ if(conflict) {
+ grp++; conflict=0; /* check the next group */
+ for(j=0; j<nr; j++)
+ r[j].already=0;
+ } else
+ break; /* insert into this group */
+ }
+
+ lb=s[i].low; hb=s[i].high; isvert=s[i].isvert;
+ for(j=0; j<nr; j++)
+ if( r[j].isvert==isvert /* intersects */
+ && r[j].low <= hb && r[j].high >= lb ) {
+ if( r[j].low == lb && r[j].high == hb ) /* coincides */
+ r[j].already=1;
+ else
+ conflict=1;
+ }
+
+ if(conflict)
+ i=egp[grp]-1; /* fast forward to the next group */
+ }
+ }
+
+ /* do we have any empty group ? */
+ if(conflict && grp < NSTEMGRP-1) {
+ grp++; conflict=0;
+ for(j=0; j<nr; j++)
+ r[j].already=0;
+ }
+
+ if(conflict) { /* oops, can't find any group to fit */
+ return 1;
+ }
+
+ /* OK, add stems to this group */
+
+ rexpand = nr;
+ for(j=0; j<nr; j++)
+ rexpand -= r[j].already;
+
+ if(rexpand > 0) {
+ for(i=egp[NSTEMGRP-1]-1; i>=egp[grp]; i--)
+ s[i+rexpand]=s[i];
+ for(i=0; i<nr; i++)
+ if(!r[i].already)
+ s[egp[grp]++]=r[i];
+ for(i=grp+1; i<NSTEMGRP; i++)
+ egp[i]+=rexpand;
+ }
+
+ ge->stemid = gssentry_lastgrp = grp;
+ return 0;
+}
+
+/*
+ * Create the groups of substituted stems from the list.
+ * Each group will be represented by a subroutine in the Subs
+ * array.
+ */
+
+static void
+groupsubstems(
+ GLYPH *g,
+ STEM *hs, /* horizontal stems, sorted by value */
+ short *hpairs,
+ int nhs,
+ STEM *vs, /* vertical stems, sorted by value */
+ short *vpairs,
+ int nvs
+)
+{
+ GENTRY *ge;
+ int i, j;
+
+ /* temporary storage */
+ STEMBOUNDS s[MAX_STEMS*2];
+ /* indexes in there, pointing past the end each stem group */
+ short egp[NSTEMGRP];
+
+ int nextvsi, nexthsi; /* -2 means "check by yourself" */
+
+ for(i=0; i<NSTEMGRP; i++)
+ egp[i]=0;
+
+ nextvsi=nexthsi= -2; /* processed no horiz/vert line */
+
+ gssentry_lastgrp = 0; /* reset the last group for new glyph */
+
+ for (ge = g->entries; ge != 0; ge = ge->next) {
+ if(ge->type!=GE_LINE && ge->type!=GE_CURVE) {
+ nextvsi=nexthsi= -2; /* next path is independent */
+ continue;
+ }
+
+ if( gssentry(ge, hs, hpairs, nhs, vs, vpairs, nvs, s, egp, &nextvsi, &nexthsi) ) {
+ WARNING_2 fprintf(stderr, "*** glyph %s requires over %d hint subroutines, ignored them\n",
+ g->name, NSTEMGRP);
+ /* it's better to have no substituted hints at all than have only part */
+ for (ge = g->entries; ge != 0; ge = ge->next)
+ ge->stemid= -1;
+ g->nsg=0; /* just to be safe, already is 0 by initialization */
+ return;
+ }
+
+ /*
+ * handle the last vert/horiz line of the path specially,
+ * correct the hint for the first entry of the path
+ */
+ if(ge->frwd != ge->next && (nextvsi != -2 || nexthsi != -2) ) {
+ if( gssentry(ge->frwd, hs, hpairs, nhs, vs, vpairs, nvs, s, egp, &nextvsi, &nexthsi) ) {
+ WARNING_2 fprintf(stderr, "*** glyph %s requires over %d hint subroutines, ignored them\n",
+ g->name, NSTEMGRP);
+ /* it's better to have no substituted hints at all than have only part */
+ for (ge = g->entries; ge != 0; ge = ge->next)
+ ge->stemid= -1;
+ g->nsg=0; /* just to be safe, already is 0 by initialization */
+ return;
+ }
+ }
+
+ }
+
+ /* find the index of the first empty group - same as the number of groups */
+ if(egp[0]>0) {
+ for(i=1; i<NSTEMGRP && egp[i]!=egp[i-1]; i++)
+ {}
+ g->nsg=i;
+ } else
+ g->nsg=0;
+
+ if(ISDBG(SUBSTEMS)) {
+ fprintf(pfa_file, "%% %d substem groups (%d %d %d)\n", g->nsg,
+ g->nsg>1 ? egp[g->nsg-2] : -1,
+ g->nsg>0 ? egp[g->nsg-1] : -1,
+ g->nsg<NSTEMGRP ? egp[g->nsg] : -1 );
+ j=0;
+ for(i=0; i<g->nsg; i++) {
+ fprintf(pfa_file, "%% grp %3d: ", i);
+ for(; j<egp[i]; j++) {
+ fprintf(pfa_file, " %4d...%-4d %c ", s[j].low, s[j].high,
+ s[j].isvert ? 'v' : 'h');
+ }
+ fprintf(pfa_file, "\n");
+ }
+ }
+
+ if(g->nsg==1) { /* it would be the same as the main stems */
+ /* so erase it */
+ for (ge = g->entries; ge != 0; ge = ge->next)
+ ge->stemid= -1;
+ g->nsg=0;
+ }
+
+ if(g->nsg>0) {
+ if( (g->nsbs=malloc(g->nsg * sizeof (egp[0]))) == 0 ) {
+ fprintf(stderr, "**** not enough memory for substituted hints ****\n");
+ exit(255);
+ }
+ memmove(g->nsbs, egp, g->nsg * sizeof(short));
+ if( (g->sbstems=malloc(egp[g->nsg-1] * sizeof (s[0]))) == 0 ) {
+ fprintf(stderr, "**** not enough memory for substituted hints ****\n");
+ exit(255);
+ }
+ memmove(g->sbstems, s, egp[g->nsg-1] * sizeof(s[0]));
+ }
+}
+
+void
+buildstems(
+ GLYPH * g
+)
+{
+ STEM hs[MAX_STEMS], vs[MAX_STEMS]; /* temporary working
+ * storage */
+ short hs_pairs[MAX_STEMS], vs_pairs[MAX_STEMS]; /* best pairs for these stems */
+ STEM *sp;
+ GENTRY *ge, *nge, *pge;
+ int nx, ny;
+ int ovalue;
+ int totals, grp, lastgrp;
+
+ assertisint(g, "buildstems int");
+
+ g->nhs = g->nvs = 0;
+ memset(hs, 0, sizeof hs);
+ memset(vs, 0, sizeof vs);
+
+ /* first search the whole character for possible stem points */
+
+ for (ge = g->entries; ge != 0; ge = ge->next) {
+ if (ge->type == GE_CURVE) {
+
+ /*
+ * SURPRISE!
+ * We consider the stems bound by the
+ * H/V ends of the curves as flat ones.
+ *
+ * But we don't include the point on the
+ * other end into the range.
+ */
+
+ /* first check the beginning of curve */
+ /* if it is horizontal, add a hstem */
+ if (ge->iy1 == ge->prev->iy3) {
+ hs[g->nhs].value = ge->iy1;
+
+ if (ge->ix1 < ge->prev->ix3)
+ hs[g->nhs].flags = ST_FLAT | ST_UP;
+ else
+ hs[g->nhs].flags = ST_FLAT;
+
+ hs[g->nhs].origin = ge->prev->ix3;
+ hs[g->nhs].ge = ge;
+
+ if (ge->ix1 < ge->prev->ix3) {
+ hs[g->nhs].from = ge->ix1+1;
+ hs[g->nhs].to = ge->prev->ix3;
+ if(hs[g->nhs].from > hs[g->nhs].to)
+ hs[g->nhs].from--;
+ } else {
+ hs[g->nhs].from = ge->prev->ix3;
+ hs[g->nhs].to = ge->ix1-1;
+ if(hs[g->nhs].from > hs[g->nhs].to)
+ hs[g->nhs].to++;
+ }
+ if (ge->ix1 != ge->prev->ix3)
+ g->nhs++;
+ }
+ /* if it is vertical, add a vstem */
+ else if (ge->ix1 == ge->prev->ix3) {
+ vs[g->nvs].value = ge->ix1;
+
+ if (ge->iy1 > ge->prev->iy3)
+ vs[g->nvs].flags = ST_FLAT | ST_UP;
+ else
+ vs[g->nvs].flags = ST_FLAT;
+
+ vs[g->nvs].origin = ge->prev->iy3;
+ vs[g->nvs].ge = ge;
+
+ if (ge->iy1 < ge->prev->iy3) {
+ vs[g->nvs].from = ge->iy1+1;
+ vs[g->nvs].to = ge->prev->iy3;
+ if(vs[g->nvs].from > vs[g->nvs].to)
+ vs[g->nvs].from--;
+ } else {
+ vs[g->nvs].from = ge->prev->iy3;
+ vs[g->nvs].to = ge->iy1-1;
+ if(vs[g->nvs].from > vs[g->nvs].to)
+ vs[g->nvs].to++;
+ }
+
+ if (ge->iy1 != ge->prev->iy3)
+ g->nvs++;
+ }
+ /* then check the end of curve */
+ /* if it is horizontal, add a hstem */
+ if (ge->iy3 == ge->iy2) {
+ hs[g->nhs].value = ge->iy3;
+
+ if (ge->ix3 < ge->ix2)
+ hs[g->nhs].flags = ST_FLAT | ST_UP;
+ else
+ hs[g->nhs].flags = ST_FLAT;
+
+ hs[g->nhs].origin = ge->ix3;
+ hs[g->nhs].ge = ge->frwd;
+
+ if (ge->ix3 < ge->ix2) {
+ hs[g->nhs].from = ge->ix3;
+ hs[g->nhs].to = ge->ix2-1;
+ if( hs[g->nhs].from > hs[g->nhs].to )
+ hs[g->nhs].to++;
+ } else {
+ hs[g->nhs].from = ge->ix2+1;
+ hs[g->nhs].to = ge->ix3;
+ if( hs[g->nhs].from > hs[g->nhs].to )
+ hs[g->nhs].from--;
+ }
+
+ if (ge->ix3 != ge->ix2)
+ g->nhs++;
+ }
+ /* if it is vertical, add a vstem */
+ else if (ge->ix3 == ge->ix2) {
+ vs[g->nvs].value = ge->ix3;
+
+ if (ge->iy3 > ge->iy2)
+ vs[g->nvs].flags = ST_FLAT | ST_UP;
+ else
+ vs[g->nvs].flags = ST_FLAT;
+
+ vs[g->nvs].origin = ge->iy3;
+ vs[g->nvs].ge = ge->frwd;
+
+ if (ge->iy3 < ge->iy2) {
+ vs[g->nvs].from = ge->iy3;
+ vs[g->nvs].to = ge->iy2-1;
+ if( vs[g->nvs].from > vs[g->nvs].to )
+ vs[g->nvs].to++;
+ } else {
+ vs[g->nvs].from = ge->iy2+1;
+ vs[g->nvs].to = ge->iy3;
+ if( vs[g->nvs].from > vs[g->nvs].to )
+ vs[g->nvs].from--;
+ }
+
+ if (ge->iy3 != ge->iy2)
+ g->nvs++;
+ } else {
+
+ /*
+ * check the end of curve for a not smooth
+ * local extremum
+ */
+ nge = ge->frwd;
+
+ if (nge == 0)
+ continue;
+ else if (nge->type == GE_LINE) {
+ nx = nge->ix3;
+ ny = nge->iy3;
+ } else if (nge->type == GE_CURVE) {
+ nx = nge->ix1;
+ ny = nge->iy1;
+ } else
+ continue;
+
+ /* check for vertical extremums */
+ if ((ge->iy3 > ge->iy2 && ge->iy3 > ny)
+ || (ge->iy3 < ge->iy2 && ge->iy3 < ny)) {
+ hs[g->nhs].value = ge->iy3;
+ hs[g->nhs].from
+ = hs[g->nhs].to
+ = hs[g->nhs].origin = ge->ix3;
+ hs[g->nhs].ge = ge->frwd;
+
+ if (ge->ix3 < ge->ix2
+ || nx < ge->ix3)
+ hs[g->nhs].flags = ST_UP;
+ else
+ hs[g->nhs].flags = 0;
+
+ if (ge->ix3 != ge->ix2 || nx != ge->ix3)
+ g->nhs++;
+ }
+ /*
+ * the same point may be both horizontal and
+ * vertical extremum
+ */
+ /* check for horizontal extremums */
+ if ((ge->ix3 > ge->ix2 && ge->ix3 > nx)
+ || (ge->ix3 < ge->ix2 && ge->ix3 < nx)) {
+ vs[g->nvs].value = ge->ix3;
+ vs[g->nvs].from
+ = vs[g->nvs].to
+ = vs[g->nvs].origin = ge->iy3;
+ vs[g->nvs].ge = ge->frwd;
+
+ if (ge->iy3 > ge->iy2
+ || ny > ge->iy3)
+ vs[g->nvs].flags = ST_UP;
+ else
+ vs[g->nvs].flags = 0;
+
+ if (ge->iy3 != ge->iy2 || ny != ge->iy3)
+ g->nvs++;
+ }
+ }
+
+ } else if (ge->type == GE_LINE) {
+ nge = ge->frwd;
+
+ /* if it is horizontal, add a hstem */
+ /* and the ends as vstems if they brace the line */
+ if (ge->iy3 == ge->prev->iy3
+ && ge->ix3 != ge->prev->ix3) {
+ hs[g->nhs].value = ge->iy3;
+ if (ge->ix3 < ge->prev->ix3) {
+ hs[g->nhs].flags = ST_FLAT | ST_UP;
+ hs[g->nhs].from = ge->ix3;
+ hs[g->nhs].to = ge->prev->ix3;
+ } else {
+ hs[g->nhs].flags = ST_FLAT;
+ hs[g->nhs].from = ge->prev->ix3;
+ hs[g->nhs].to = ge->ix3;
+ }
+ hs[g->nhs].origin = ge->ix3;
+ hs[g->nhs].ge = ge->frwd;
+
+ pge = ge->bkwd;
+
+ /* add beginning as vstem */
+ vs[g->nvs].value = pge->ix3;
+ vs[g->nvs].origin
+ = vs[g->nvs].from
+ = vs[g->nvs].to = pge->iy3;
+ vs[g->nvs].ge = ge;
+
+ if(pge->type==GE_CURVE)
+ ovalue=pge->iy2;
+ else
+ ovalue=pge->prev->iy3;
+
+ if (pge->iy3 > ovalue)
+ vs[g->nvs].flags = ST_UP | ST_END;
+ else if (pge->iy3 < ovalue)
+ vs[g->nvs].flags = ST_END;
+ else
+ vs[g->nvs].flags = 0;
+
+ if( vs[g->nvs].flags != 0 )
+ g->nvs++;
+
+ /* add end as vstem */
+ vs[g->nvs].value = ge->ix3;
+ vs[g->nvs].origin
+ = vs[g->nvs].from
+ = vs[g->nvs].to = ge->iy3;
+ vs[g->nvs].ge = ge->frwd;
+
+ if(nge->type==GE_CURVE)
+ ovalue=nge->iy1;
+ else
+ ovalue=nge->iy3;
+
+ if (ovalue > ge->iy3)
+ vs[g->nvs].flags = ST_UP | ST_END;
+ else if (ovalue < ge->iy3)
+ vs[g->nvs].flags = ST_END;
+ else
+ vs[g->nvs].flags = 0;
+
+ if( vs[g->nvs].flags != 0 )
+ g->nvs++;
+
+ g->nhs++;
+ }
+ /* if it is vertical, add a vstem */
+ /* and the ends as hstems if they brace the line */
+ else if (ge->ix3 == ge->prev->ix3
+ && ge->iy3 != ge->prev->iy3) {
+ vs[g->nvs].value = ge->ix3;
+ if (ge->iy3 > ge->prev->iy3) {
+ vs[g->nvs].flags = ST_FLAT | ST_UP;
+ vs[g->nvs].from = ge->prev->iy3;
+ vs[g->nvs].to = ge->iy3;
+ } else {
+ vs[g->nvs].flags = ST_FLAT;
+ vs[g->nvs].from = ge->iy3;
+ vs[g->nvs].to = ge->prev->iy3;
+ }
+ vs[g->nvs].origin = ge->iy3;
+ vs[g->nvs].ge = ge->frwd;
+
+ pge = ge->bkwd;
+
+ /* add beginning as hstem */
+ hs[g->nhs].value = pge->iy3;
+ hs[g->nhs].origin
+ = hs[g->nhs].from
+ = hs[g->nhs].to = pge->ix3;
+ hs[g->nhs].ge = ge;
+
+ if(pge->type==GE_CURVE)
+ ovalue=pge->ix2;
+ else
+ ovalue=pge->prev->ix3;
+
+ if (pge->ix3 < ovalue)
+ hs[g->nhs].flags = ST_UP | ST_END;
+ else if (pge->ix3 > ovalue)
+ hs[g->nhs].flags = ST_END;
+ else
+ hs[g->nhs].flags = 0;
+
+ if( hs[g->nhs].flags != 0 )
+ g->nhs++;
+
+ /* add end as hstem */
+ hs[g->nhs].value = ge->iy3;
+ hs[g->nhs].origin
+ = hs[g->nhs].from
+ = hs[g->nhs].to = ge->ix3;
+ hs[g->nhs].ge = ge->frwd;
+
+ if(nge->type==GE_CURVE)
+ ovalue=nge->ix1;
+ else
+ ovalue=nge->ix3;
+
+ if (ovalue < ge->ix3)
+ hs[g->nhs].flags = ST_UP | ST_END;
+ else if (ovalue > ge->ix3)
+ hs[g->nhs].flags = ST_END;
+ else
+ hs[g->nhs].flags = 0;
+
+ if( hs[g->nhs].flags != 0 )
+ g->nhs++;
+
+ g->nvs++;
+ }
+ /*
+ * check the end of line for a not smooth local
+ * extremum
+ */
+ nge = ge->frwd;
+
+ if (nge == 0)
+ continue;
+ else if (nge->type == GE_LINE) {
+ nx = nge->ix3;
+ ny = nge->iy3;
+ } else if (nge->type == GE_CURVE) {
+ nx = nge->ix1;
+ ny = nge->iy1;
+ } else
+ continue;
+
+ /* check for vertical extremums */
+ if ((ge->iy3 > ge->prev->iy3 && ge->iy3 > ny)
+ || (ge->iy3 < ge->prev->iy3 && ge->iy3 < ny)) {
+ hs[g->nhs].value = ge->iy3;
+ hs[g->nhs].from
+ = hs[g->nhs].to
+ = hs[g->nhs].origin = ge->ix3;
+ hs[g->nhs].ge = ge->frwd;
+
+ if (ge->ix3 < ge->prev->ix3
+ || nx < ge->ix3)
+ hs[g->nhs].flags = ST_UP;
+ else
+ hs[g->nhs].flags = 0;
+
+ if (ge->ix3 != ge->prev->ix3 || nx != ge->ix3)
+ g->nhs++;
+ }
+ /*
+ * the same point may be both horizontal and vertical
+ * extremum
+ */
+ /* check for horizontal extremums */
+ if ((ge->ix3 > ge->prev->ix3 && ge->ix3 > nx)
+ || (ge->ix3 < ge->prev->ix3 && ge->ix3 < nx)) {
+ vs[g->nvs].value = ge->ix3;
+ vs[g->nvs].from
+ = vs[g->nvs].to
+ = vs[g->nvs].origin = ge->iy3;
+ vs[g->nvs].ge = ge->frwd;
+
+ if (ge->iy3 > ge->prev->iy3
+ || ny > ge->iy3)
+ vs[g->nvs].flags = ST_UP;
+ else
+ vs[g->nvs].flags = 0;
+
+ if (ge->iy3 != ge->prev->iy3 || ny != ge->iy3)
+ g->nvs++;
+ }
+ }
+ }
+
+ g->nhs=addbluestems(hs, g->nhs);
+ sortstems(hs, g->nhs);
+ sortstems(vs, g->nvs);
+
+ if (ISDBG(STEMS))
+ debugstems(g->name, hs, g->nhs, vs, g->nvs);
+
+ /* find the stems interacting with the Blue Zones */
+ markbluestems(hs, g->nhs);
+
+ if(subhints) {
+ if (ISDBG(SUBSTEMS))
+ fprintf(pfa_file, "%% %s: joining subst horizontal stems\n", g->name);
+ joinsubstems(hs, hs_pairs, g->nhs, 1);
+ uniformstems(hs, hs_pairs, g->nhs);
+
+ if (ISDBG(SUBSTEMS))
+ fprintf(pfa_file, "%% %s: joining subst vertical stems\n", g->name);
+ joinsubstems(vs, vs_pairs, g->nvs, 0);
+
+ groupsubstems(g, hs, hs_pairs, g->nhs, vs, vs_pairs, g->nvs);
+ }
+
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% %s: joining main horizontal stems\n", g->name);
+ g->nhs = joinmainstems(hs, g->nhs, 1);
+ if (ISDBG(MAINSTEMS))
+ fprintf(pfa_file, "%% %s: joining main vertical stems\n", g->name);
+ g->nvs = joinmainstems(vs, g->nvs, 0);
+
+ if (ISDBG(MAINSTEMS))
+ debugstems(g->name, hs, g->nhs, vs, g->nvs);
+
+ if(g->nhs > 0) {
+ if ((sp = malloc(sizeof(STEM) * g->nhs)) == 0) {
+ fprintf(stderr, "**** not enough memory for hints ****\n");
+ exit(255);
+ }
+ g->hstems = sp;
+ memcpy(sp, hs, sizeof(STEM) * g->nhs);
+ } else
+ g->hstems = 0;
+
+ if(g->nvs > 0) {
+ if ((sp = malloc(sizeof(STEM) * g->nvs)) == 0) {
+ fprintf(stderr, "**** not enough memory for hints ****\n");
+ exit(255);
+ }
+ g->vstems = sp;
+ memcpy(sp, vs, sizeof(STEM) * g->nvs);
+ } else
+ g->vstems = 0;
+
+ /* now check that the stems won't overflow the interpreter's stem stack:
+ * some interpreters (like X11) push the stems on each change into
+ * stack and pop them only after the whole glyphs is completed.
+ */
+
+ totals = (g->nhs+g->nvs) / 2; /* we count whole stems, not halves */
+ lastgrp = -1;
+
+ for (ge = g->entries; ge != 0; ge = ge->next) {
+ grp=ge->stemid;
+ if(grp >= 0 && grp != lastgrp) {
+ if(grp==0)
+ totals += g->nsbs[0];
+ else
+ totals += g->nsbs[grp] - g->nsbs[grp-1];
+
+ lastgrp = grp;
+ }
+ }
+
+ /* be on the safe side, check for >= , not > */
+ if(totals >= max_stemdepth) { /* oops, too deep */
+ WARNING_2 {
+ fprintf(stderr, "Warning: glyph %s needs hint stack depth %d\n", g->name, totals);
+ fprintf(stderr, " (limit %d): removed the substituted hints from it\n", max_stemdepth);
+ }
+ if(g->nsg > 0) {
+ for (ge = g->entries; ge != 0; ge = ge->next)
+ ge->stemid = -1;
+ free(g->sbstems); g->sbstems = 0;
+ free(g->nsbs); g->nsbs = 0;
+ g->nsg = 0;
+ }
+ }
+
+ /* now check if there are too many main stems */
+ totals = (g->nhs+g->nvs) / 2; /* we count whole stems, not halves */
+ if(totals >= max_stemdepth) {
+ /* even worse, too much of non-substituted stems */
+ WARNING_2 {
+ fprintf(stderr, "Warning: glyph %s has %d main hints\n", g->name, totals);
+ fprintf(stderr, " (limit %d): removed the hints from it\n", max_stemdepth);
+ }
+ if(g->vstems) {
+ free(g->vstems); g->vstems = 0; g->nvs = 0;
+ }
+ if(g->hstems) {
+ free(g->hstems); g->hstems = 0; g->nhs = 0;
+ }
+ }
+}
+
+/* convert weird curves that are close to lines into lines.
+*/
+
+void
+fstraighten(
+ GLYPH * g
+)
+{
+ GENTRY *ge, *pge, *nge, *ige;
+ double df;
+ int dir;
+ double iln, oln;
+ int svdir, i, o;
+
+ for (ige = g->entries; ige != 0; ige = ige->next) {
+ if (ige->type != GE_CURVE)
+ continue;
+
+ ge = ige;
+ pge = ge->bkwd;
+ nge = ge->frwd;
+
+ df = 0.;
+
+ /* look for vertical then horizontal */
+ for(i=0; i<2; i++) {
+ o = !i; /* other axis */
+
+ iln = fabs(ge->fpoints[i][2] - pge->fpoints[i][2]);
+ oln = fabs(ge->fpoints[o][2] - pge->fpoints[o][2]);
+ /*
+ * if current curve is almost a vertical line, and it
+ * doesn't begin or end horizontally (and the prev/next
+ * line doesn't join smoothly ?)
+ */
+ if( oln < 1.
+ || ge->fpoints[o][2] == ge->fpoints[o][1]
+ || ge->fpoints[o][0] == pge->fpoints[o][2]
+ || iln > 2.
+ || (iln > 1. && iln/oln > 0.1) )
+ continue;
+
+
+ if(ISDBG(STRAIGHTEN))
+ fprintf(stderr,"** straighten almost %s\n", (i? "horizontal":"vertical"));
+
+ df = ge->fpoints[i][2] - pge->fpoints[i][2];
+ dir = fsign(ge->fpoints[o][2] - pge->fpoints[o][2]);
+ ge->type = GE_LINE;
+
+ /*
+ * suck in all the sequence of such almost lines
+ * going in the same direction but not deviating
+ * too far from vertical
+ */
+ iln = fabs(nge->fpoints[i][2] - ge->fpoints[i][2]);
+ oln = nge->fpoints[o][2] - ge->fpoints[o][2];
+
+ while (fabs(df) <= 5 && nge->type == GE_CURVE
+ && dir == fsign(oln) /* that also gives oln != 0 */
+ && iln <= 2.
+ && ( iln <= 1. || iln/fabs(oln) <= 0.1 ) ) {
+ ge->fx3 = nge->fx3;
+ ge->fy3 = nge->fy3;
+
+ if(ISDBG(STRAIGHTEN))
+ fprintf(stderr,"** straighten collapsing %s\n", (i? "horizontal":"vertical"));
+ freethisge(nge);
+ fixendpath(ge);
+ pge = ge->bkwd;
+ nge = ge->frwd;
+
+ df = ge->fpoints[i][2] - pge->fpoints[i][2];
+
+ iln = fabs(nge->fpoints[i][2] - ge->fpoints[i][2]);
+ oln = nge->fpoints[o][2] - ge->fpoints[o][2];
+ }
+
+ /* now check what do we have as previous/next line */
+
+ if(ge != pge) {
+ if( pge->type == GE_LINE && pge->fpoints[i][2] == pge->prev->fpoints[i][2]
+ && fabs(pge->fpoints[o][2] != pge->prev->fpoints[o][2]) ) {
+ if(ISDBG(STRAIGHTEN)) fprintf(stderr,"** straighten join with previous 0x%x 0x%x\n", pge, ge);
+ /* join the previous line with current */
+ pge->fx3 = ge->fx3;
+ pge->fy3 = ge->fy3;
+
+ ige = freethisge(ge)->prev; /* keep the iterator valid */
+ ge = pge;
+ fixendpath(ge);
+ pge = ge->bkwd;
+ }
+ }
+
+ if(ge != nge) {
+ if (nge->type == GE_LINE && nge->fpoints[i][2] == ge->fpoints[i][2]
+ && fabs(nge->fpoints[o][2] != ge->fpoints[o][2]) ) {
+ if(ISDBG(STRAIGHTEN)) fprintf(stderr,"** straighten join with next 0x%x 0x%x\n", ge, nge);
+ /* join the next line with current */
+ ge->fx3 = nge->fx3;
+ ge->fy3 = nge->fy3;
+
+ freethisge(nge);
+ fixendpath(ge);
+ pge = ge->bkwd;
+ nge = ge->frwd;
+
+ }
+ }
+
+ if(ge != pge) {
+ /* try to align the lines if neccessary */
+ if(df != 0.)
+ fclosegap(ge, ge, i, df, NULL);
+ } else {
+ /* contour consists of only one line, get rid of it */
+ ige = freethisge(ge); /* keep the iterator valid */
+ if(ige == 0) /* this was the last contour */
+ return;
+ ige = ige->prev;
+ }
+
+ break; /* don't bother looking at the other axis */
+ }
+ }
+}
+
+/* solve a square equation,
+ * returns the number of solutions found, the solutions
+ * are stored in res which should point to array of two doubles.
+ * min and max limit the area for solutions
+ */
+
+static int
+fsqequation(
+ double a,
+ double b,
+ double c,
+ double *res,
+ double min,
+ double max
+)
+{
+ double D;
+ int n;
+
+ if(ISDBG(SQEQ)) fprintf(stderr, "sqeq(%g,%g,%g) [%g;%g]\n", a, b, c, min, max);
+
+ if(fabs(a) < 0.000001) { /* if a linear equation */
+ n=0;
+ if(fabs(b) < 0.000001) /* not an equation at all */
+ return 0;
+ res[0] = -c/b;
+ if(ISDBG(SQEQ)) fprintf(stderr, "sqeq: linear t=%g\n", res[0]);
+ if(res[0] >= min && res[0] <= max)
+ n++;
+ return n;
+ }
+
+ D = b*b - 4.0*a*c;
+ if(ISDBG(SQEQ)) fprintf(stderr, "sqeq: D=%g\n", D);
+ if(D<0)
+ return 0;
+
+ D = sqrt(D);
+
+ n=0;
+ res[0] = (-b+D) / (2*a);
+ if(ISDBG(SQEQ)) fprintf(stderr, "sqeq: t1=%g\n", res[0]);
+ if(res[0] >= min && res[0] <= max)
+ n++;
+
+ res[n] = (-b-D) / (2*a);
+ if(ISDBG(SQEQ)) fprintf(stderr, "sqeq: t2=%g\n", res[n]);
+ if(res[n] >= min && res[n] <= max)
+ n++;
+
+ /* return 2nd solution only if it's different enough */
+ if(n==2 && fabs(res[0]-res[1])<0.000001)
+ n=1;
+
+ return n;
+}
+
+/* check that the curves don't cross quadrant boundary */
+/* (float) */
+
+/*
+ Here we make sure that the curve does not continue past
+ horizontal or vertical extremums. The horizontal points are
+ explained, vertical points are by analogy.
+
+ The horizontal points are where the derivative
+ dy/dx is equal to 0. But the Bezier curves are defined by
+ parametric formulas
+ x=fx(t)
+ y=fy(t)
+ so finding this derivative is complicated.
+ Also even if we find some point (x,y) splitting at this point
+ is far not obvious. Fortunately we can use dy/dt = 0 instead,
+ this gets to a rather simple square equation and splitting
+ at a known value of t is simple.
+
+ The formulas are:
+
+ y = A*(1-t)^3 + 3*B*(1-t)^2*t + 3*C*(1-t)*t^2 + D*t^3
+ y = (-A+3*B-3*C+D)*t^3 + (3*A-6*B+3*C)*t^2 + (-3*A+3*B)*t + A
+ dy/dt = 3*(-A+3*B-3*C+D)*t^2 + 2*(3*A-6*B+3*C)*t + (-3*A+3*B)
+ */
+
+void
+ffixquadrants(
+ GLYPH *g
+)
+{
+ GENTRY *ge, *nge;
+ int i, j, np, oldnp;
+ double sp[5]; /* split points, last one empty */
+ char dir[5]; /* for debugging, direction by which split happened */
+ double a, b, *pts; /* points of a curve */
+
+ for (ge = g->entries; ge != 0; ge = ge->next) {
+ if (ge->type != GE_CURVE)
+ continue;
+
+ doagain:
+ np = 0; /* no split points yet */
+ if(ISDBG(QUAD)) {
+ fprintf(stderr, "%s: trying 0x%x (%g %g) (%g %g) (%g %g) (%g %g)\n ", g->name,
+ ge, ge->prev->fx3, ge->prev->fy3, ge->fx1, ge->fy1, ge->fx2, ge->fy2,
+ ge->fx3, ge->fy3);
+ }
+ for(i=0; i<2; i++) { /* first for x then for y */
+ /* find the cooridnates of control points */
+ a = ge->prev->fpoints[i][2];
+ pts = &ge->fpoints[i][0];
+
+ oldnp = np;
+ np += fsqequation(
+ 3.0*(-a + 3.0*pts[0] - 3.0*pts[1] + pts[2]),
+ 6.0*(a - 2.0*pts[0] + pts[1]),
+ 3.0*(-a + pts[0]),
+ &sp[np],
+ 0.0, 1.0); /* XXX range is [0;1] */
+
+ if(np == oldnp)
+ continue;
+
+ if(ISDBG(QUAD))
+ fprintf(stderr, "%s: 0x%x: %d pts(%c): ",
+ g->name, ge, np-oldnp, i? 'y':'x');
+
+ /* remove points that are too close to the ends
+ * because hor/vert ends are permitted, also
+ * if the split point is VERY close to the ends
+ * but not exactly then just flatten it and check again.
+ */
+ for(j = oldnp; j<np; j++) {
+ dir[j] = i;
+ if(ISDBG(QUAD))
+ fprintf(stderr, "%g ", sp[j]);
+ if(sp[j] < 0.03) { /* front end of curve */
+ if(ge->fpoints[i][0] != ge->prev->fpoints[i][2]) {
+ ge->fpoints[i][0] = ge->prev->fpoints[i][2];
+ if(ISDBG(QUAD)) fprintf(stderr, "flattened at front\n");
+ goto doagain;
+ }
+ if( ge->fpoints[i][1] != ge->fpoints[i][0]
+ && fsign(ge->fpoints[i][2] - ge->fpoints[i][1])
+ != fsign(ge->fpoints[i][1] - ge->fpoints[i][0]) ) {
+ ge->fpoints[i][1] = ge->fpoints[i][0];
+ if(ISDBG(QUAD)) fprintf(stderr, "flattened zigzag at front\n");
+ goto doagain;
+ }
+ sp[j] = sp[j+1]; np--; j--;
+ if(ISDBG(QUAD)) fprintf(stderr, "(front flat) ");
+ } else if(sp[j] > 0.97) { /* rear end of curve */
+ if(ge->fpoints[i][1] != ge->fpoints[i][2]) {
+ ge->fpoints[i][1] = ge->fpoints[i][2];
+ if(ISDBG(QUAD)) fprintf(stderr, "flattened at rear\n");
+ goto doagain;
+ }
+ if( ge->fpoints[i][0] != ge->fpoints[i][1]
+ && fsign(ge->prev->fpoints[i][2] - ge->fpoints[i][0])
+ != fsign(ge->fpoints[i][0] - ge->fpoints[i][1]) ) {
+ ge->fpoints[i][0] = ge->fpoints[i][1];
+ if(ISDBG(QUAD)) fprintf(stderr, "flattened zigzag at rear\n");
+ goto doagain;
+ }
+ sp[j] = sp[j+1]; np--; j--;
+ if(ISDBG(QUAD)) fprintf(stderr, "(rear flat) ");
+ }
+ }
+ if(ISDBG(QUAD)) fprintf(stderr, "\n");
+ }
+
+ if(np==0) /* no split points, leave it alone */
+ continue;
+
+ if(ISDBG(QUAD)) {
+ fprintf(stderr, "%s: splitting 0x%x (%g %g) (%g %g) (%g %g) (%g %g) at %d points\n ", g->name,
+ ge, ge->prev->fx3, ge->prev->fy3, ge->fx1, ge->fy1, ge->fx2, ge->fy2,
+ ge->fx3, ge->fy3, np);
+ for(i=0; i<np; i++)
+ fprintf(stderr, "%g(%c) ", sp[i], dir[i] ? 'y':'x');
+ fprintf(stderr, "\n");
+ }
+
+ /* sort the points ascending */
+ for(i=0; i<np; i++)
+ for(j=i+1; j<np; j++)
+ if(sp[i] > sp[j]) {
+ a = sp[i]; sp[i] = sp[j]; sp[j] = a;
+ }
+
+ /* now finally do the split on each point */
+ for(j=0; j<np; j++) {
+ double k1, k2, c;
+
+ k1 = sp[j];
+ k2 = 1 - k1;
+
+ if(ISDBG(QUAD)) fprintf(stderr, " 0x%x %g/%g\n", ge, k1, k2);
+
+ nge = newgentry(GEF_FLOAT);
+ (*nge) = (*ge);
+
+#define SPLIT(pt1, pt2) ( (pt1) + k1*((pt2)-(pt1)) ) /* order is important! */
+ for(i=0; i<2; i++) { /* for x and y */
+ a = ge->fpoints[i][0]; /* get the middle points */
+ b = ge->fpoints[i][1];
+
+ /* calculate new internal points */
+ c = SPLIT(a, b);
+
+ ge->fpoints[i][0] = SPLIT(ge->prev->fpoints[i][2], a);
+ ge->fpoints[i][1] = SPLIT(ge->fpoints[i][0], c);
+
+ nge->fpoints[i][1] = SPLIT(b, nge->fpoints[i][2]);
+ nge->fpoints[i][0] = SPLIT(c, nge->fpoints[i][1]);
+
+ ge->fpoints[i][2] = SPLIT(ge->fpoints[i][1],
+ + nge->fpoints[i][0]);
+ }
+#undef SPLIT
+
+ addgeafter(ge, nge);
+
+ /* go to the next part, adjust remaining points */
+ ge = nge;
+ for(i=j+1; i<np; i++)
+ sp[i] = (sp[i]-k1) / k2;
+ }
+ }
+
+}
+
+/* check if a curve is a zigzag */
+
+static int
+iiszigzag(
+ GENTRY *ge
+)
+{
+ double k, k1, k2;
+ int a, b;
+
+ if (ge->type != GE_CURVE)
+ return 0;
+
+ a = ge->iy2 - ge->iy1;
+ b = ge->ix2 - ge->ix1;
+ if(a == 0) {
+ if(b == 0) {
+ return 0;
+ } else
+ k = FBIGVAL;
+ } else
+ k = fabs((double) b / (double) a);
+
+ a = ge->iy1 - ge->prev->iy3;
+ b = ge->ix1 - ge->prev->ix3;
+ if(a == 0) {
+ if(b == 0) {
+ return 0;
+ } else
+ k1 = FBIGVAL;
+ } else
+ k1 = fabs((double) b / (double) a);
+
+ a = ge->iy3 - ge->iy2;
+ b = ge->ix3 - ge->ix2;
+ if(a == 0) {
+ if(b == 0) {
+ return 0;
+ } else
+ k2 = FBIGVAL;
+ } else
+ k2 = fabs((double) b / (double) a);
+
+ /* if the curve is not a zigzag */
+ if ((k1+0.0001 >= k && k2 <= k+0.0001) || (k1 <= k+0.0001 && k2+0.0001 >= k))
+ return 0;
+ else
+ return 1;
+}
+
+/* check if a curve is a zigzag - floating */
+
+static int
+fiszigzag(
+ GENTRY *ge
+)
+{
+ double k, k1, k2;
+ double a, b;
+
+ if (ge->type != GE_CURVE)
+ return 0;
+
+ a = fabs(ge->fy2 - ge->fy1);
+ b = fabs(ge->fx2 - ge->fx1);
+ if(a < FEPS) {
+ if(b < FEPS) {
+ return 0;
+ } else
+ k = FBIGVAL;
+ } else
+ k = b / a;
+
+ a = fabs(ge->fy1 - ge->prev->fy3);
+ b = fabs(ge->fx1 - ge->prev->fx3);
+ if(a < FEPS) {
+ if(b < FEPS) {
+ return 0;
+ } else
+ k1 = FBIGVAL;
+ } else
+ k1 = b / a;
+
+ a = fabs(ge->fy3 - ge->fy2);
+ b = fabs(ge->fx3 - ge->fx2);
+ if(a < FEPS) {
+ if(b < FEPS) {
+ return 0;
+ } else
+ k2 = FBIGVAL;
+ } else
+ k2 = b / a;
+
+ /* if the curve is not a zigzag */
+ if ((k1+0.0001 >= k && k2 <= k+0.0001) || (k1 <= k+0.0001 && k2+0.0001 >= k))
+ return 0;
+ else
+ return 1;
+}
+
+/* split the zigzag-like curves into two parts */
+
+void
+fsplitzigzags(
+ GLYPH * g
+)
+{
+ GENTRY *ge, *nge;
+ double a, b, c, d;
+
+ assertisfloat(g, "splitting zigzags");
+ for (ge = g->entries; ge != 0; ge = ge->next) {
+ if (ge->type != GE_CURVE)
+ continue;
+
+ /* if the curve is not a zigzag */
+ if ( !fiszigzag(ge) ) {
+ continue;
+ }
+
+ if(ISDBG(FCONCISE)) {
+ double maxsc1, maxsc2;
+ fprintf(stderr, "split a zigzag ");
+ fnormalizege(ge);
+ if( fcrossraysge(ge, ge, &maxsc1, &maxsc2, NULL) ) {
+ fprintf(stderr, "sc1=%g sc2=%g\n", maxsc1, maxsc2);
+ } else {
+ fprintf(stderr, "(rays don't cross)\n");
+ }
+ }
+ /* split the curve by t=0.5 */
+ nge = newgentry(GEF_FLOAT);
+ (*nge) = (*ge);
+ nge->type = GE_CURVE;
+
+ a = ge->prev->fx3;
+ b = ge->fx1;
+ c = ge->fx2;
+ d = ge->fx3;
+ nge->fx3 = d;
+ nge->fx2 = (c + d) / 2.;
+ nge->fx1 = (b + 2. * c + d) / 4.;
+ ge->fx3 = (a + b * 3. + c * 3. + d) / 8.;
+ ge->fx2 = (a + 2. * b + c) / 4.;
+ ge->fx1 = (a + b) / 2.;
+
+ a = ge->prev->fy3;
+ b = ge->fy1;
+ c = ge->fy2;
+ d = ge->fy3;
+ nge->fy3 = d;
+ nge->fy2 = (c + d) / 2.;
+ nge->fy1 = (b + 2. * c + d) / 4.;
+ ge->fy3 = (a + b * 3. + c * 3. + d) / 8.;
+ ge->fy2 = (a + 2. * b + c) / 4.;
+ ge->fy1 = (a + b) / 2.;
+
+ addgeafter(ge, nge);
+
+ if(ISDBG(FCONCISE)) {
+ dumppaths(g, ge, nge);
+ }
+ }
+}
+
+/* free this GENTRY, returns what was ge->next
+ * (ge must be of type GE_LINE or GE_CURVE)
+ * works on both float and int entries
+ */
+
+static GENTRY *
+freethisge(
+ GENTRY *ge
+)
+{
+ GENTRY *xge;
+
+ if (ge->bkwd != ge->prev) {
+ /* at beginning of the contour */
+
+ xge = ge->bkwd;
+ if(xge == ge) { /* was the only line in contour */
+ /* remove the contour completely */
+ /* prev is GE_MOVE, next is GE_PATH, remove them all */
+
+ /* may be the first contour, then ->bkwd points to ge->entries */
+ if(ge->prev->prev == 0)
+ *(GENTRY **)(ge->prev->bkwd) = ge->next->next;
+ else
+ ge->prev->prev->next = ge->next->next;
+
+ if(ge->next->next) {
+ ge->next->next->prev = ge->prev->prev;
+ ge->next->next->bkwd = ge->prev->bkwd;
+ }
+
+ xge = ge->next->next;
+ free(ge->prev); free(ge->next); free(ge);
+ return xge;
+ }
+
+ /* move the start point of the contour */
+ if(ge->flags & GEF_FLOAT) {
+ ge->prev->fx3 = xge->fx3;
+ ge->prev->fy3 = xge->fy3;
+ } else {
+ ge->prev->ix3 = xge->ix3;
+ ge->prev->iy3 = xge->iy3;
+ }
+ } else if(ge->frwd != ge->next) {
+ /* at end of the contour */
+
+ xge = ge->frwd->prev;
+ /* move the start point of the contour */
+ if(ge->flags & GEF_FLOAT) {
+ xge->fx3 = ge->bkwd->fx3;
+ xge->fy3 = ge->bkwd->fy3;
+ } else {
+ xge->ix3 = ge->bkwd->ix3;
+ xge->iy3 = ge->bkwd->iy3;
+ }
+ }
+
+ ge->prev->next = ge->next;
+ ge->next->prev = ge->prev;
+ ge->bkwd->frwd = ge->frwd;
+ ge->frwd->bkwd = ge->bkwd;
+
+ xge = ge->next;
+ free(ge);
+ return xge;
+}
+
+/* inserts a new gentry (LINE or CURVE) after another (MOVE
+ * or LINE or CURVE)
+ * corrects the first GE_MOVE if neccessary
+ */
+
+static void
+addgeafter(
+ GENTRY *oge, /* after this */
+ GENTRY *nge /* insert this */
+)
+{
+ if(oge->type == GE_MOVE) {
+ /* insert before next */
+ if(oge->next->type == GE_PATH) {
+ /* first and only GENTRY in path */
+ nge->frwd = nge->bkwd = nge;
+ } else {
+ nge->frwd = oge->next;
+ nge->bkwd = oge->next->bkwd;
+ oge->next->bkwd->frwd = nge;
+ oge->next->bkwd = nge;
+ }
+ } else {
+ nge->frwd = oge->frwd;
+ nge->bkwd = oge;
+ oge->frwd->bkwd = nge;
+ oge->frwd = nge;
+ }
+
+ nge->next = oge->next;
+ nge->prev = oge;
+ oge->next->prev = nge;
+ oge->next = nge;
+
+ if(nge->frwd->prev->type == GE_MOVE) {
+ /* fix up the GE_MOVE entry */
+ if(nge->flags & GEF_FLOAT) {
+ nge->frwd->prev->fx3 = nge->fx3;
+ nge->frwd->prev->fy3 = nge->fy3;
+ } else {
+ nge->frwd->prev->ix3 = nge->ix3;
+ nge->frwd->prev->iy3 = nge->iy3;
+ }
+ }
+}
+
+/*
+ * Check if this GENTRY happens to be at the end of path
+ * and fix the first MOVETO accordingly
+ * handles both int and float
+ */
+
+static void
+fixendpath(
+ GENTRY *ge
+)
+{
+ GENTRY *mge;
+
+ mge = ge->frwd->prev;
+ if(mge->type == GE_MOVE) {
+ if(ge->flags & GEF_FLOAT) {
+ mge->fx3 = ge->fx3;
+ mge->fy3 = ge->fy3;
+ } else {
+ mge->ix3 = ge->ix3;
+ mge->iy3 = ge->iy3;
+ }
+ }
+}
+
+/*
+ * This function adjusts the rest of path (the part from...to is NOT changed)
+ * to cover the specified gap by the specified axis (0 - X, 1 - Y).
+ * Gap is counted in direction (end_of_to - beginning_of_from).
+ * Returns by how much the gap was not closed (0.0 if it was fully closed).
+ * Ret contains by how much the first and last points of [from...to]
+ * were moved to bring them in consistence to the rest of the path.
+ * If ret==NULL then this info is not returned.
+ */
+
+static double
+fclosegap(
+ GENTRY *from,
+ GENTRY *to,
+ int axis,
+ double gap,
+ double *ret
+)
+{
+#define TIMESLARGER 10. /* how many times larger must be a curve to not change too much */
+ double rm[2];
+ double oldpos[2];
+ double times, limit, df, dx;
+ int j, k;
+ GENTRY *xge, *pge, *nge, *bge[2];
+
+ /* remember the old points to calculate ret */
+ oldpos[0] = from->prev->fpoints[axis][2];
+ oldpos[1] = to->fpoints[axis][2];
+
+ rm[0] = rm[1] = gap / 2. ;
+
+ bge[0] = from; /* this is convenient for iterations */
+ bge[1] = to;
+
+ /* first try to modify large curves but if have none then settle for small */
+ for(times = (TIMESLARGER-1); times > 0.1; times /= 2. ) {
+
+ if(rm[0]+rm[1] == 0.)
+ break;
+
+ /* iterate in both directions, backwards then forwards */
+ for(j = 0; j<2; j++) {
+
+ if(rm[j] == 0.) /* if this direction is exhausted */
+ continue;
+
+ limit = fabs(rm[j]) * (1.+times);
+
+ for(xge = bge[j]->cntr[j]; xge != bge[!j]; xge = xge->cntr[j]) {
+ dx = xge->fpoints[axis][2] - xge->prev->fpoints[axis][2];
+ df = fabs(dx) - limit;
+ if( df <= FEPS ) /* curve is too small to change */
+ continue;
+
+ if( df >= fabs(rm[j]) )
+ df = rm[j];
+ else
+ df *= fsign(rm[j]); /* we may cover this part of rm */
+
+ rm[j] -= df;
+ limit = fabs(rm[j]) * (1.+times);
+
+ if(xge->type == GE_CURVE) { /* correct internal points */
+ double scale = ((dx+df) / dx) - 1.;
+ double base;
+
+ if(j)
+ base = xge->fpoints[axis][2];
+ else
+ base = xge->prev->fpoints[axis][2];
+
+ for(k = 0; k<2; k++)
+ xge->fpoints[axis][k] += scale *
+ (xge->fpoints[axis][k] - base);
+ }
+
+ /* move all the intermediate lines */
+ if(j) {
+ df = -df; /* absolute direction */
+ pge = bge[1]->bkwd;
+ nge = xge->bkwd;
+ } else {
+ xge->fpoints[axis][2] += df;
+ pge = bge[0];
+ nge = xge->frwd;
+ }
+ while(nge != pge) {
+ if(nge->type == GE_CURVE) {
+ nge->fpoints[axis][0] +=df;
+ nge->fpoints[axis][1] +=df;
+ }
+ nge->fpoints[axis][2] += df;
+ if(nge->next != nge->frwd) { /* last entry of contour */
+ nge->frwd->prev->fpoints[axis][2] += df;
+ }
+ nge = nge->cntr[!j];
+ }
+
+ if(rm[j] == 0.)
+ break;
+ }
+ }
+ }
+
+ /* find the difference */
+ oldpos[0] -= from->prev->fpoints[axis][2];
+ oldpos[1] -= to->fpoints[axis][2];
+
+ if(ret) {
+ ret[0] = oldpos[0] - from->prev->fpoints[axis][2];
+ ret[1] = oldpos[1] - to->fpoints[axis][2];
+ }
+
+#if 0
+ if( rm[0]+rm[1] != gap - oldpos[1] + oldpos[0]) {
+ fprintf(stderr, "** gap=%g rm[0]=%g rm[1]=%g o[0]=%g o[1]=%g rg=%g og=%g\n",
+ gap, rm[0], rm[1], oldpos[0], oldpos[1], rm[0]+rm[1],
+ gap - oldpos[1] + oldpos[0]);
+ }
+#endif
+
+ return rm[0]+rm[1];
+#undef TIMESLARGER
+}
+
+/* remove the lines or curves smaller or equal to the size limit */
+
+static void
+fdelsmall(
+ GLYPH *g,
+ double minlen
+)
+{
+ GENTRY *ge, *nge, *pge, *xge, *next;
+ int i, k;
+ double dx, dy, d2, d2m;
+ double minlen2;
+#define TIMESLARGER 10. /* how much larger must be a curve to not change too much */
+
+ minlen2 = minlen*minlen;
+
+ for (ge = g->entries; ge != 0; ge = next) {
+ next = ge->next;
+
+ if (ge->type != GE_CURVE && ge->type != GE_LINE)
+ continue;
+
+ d2m = 0;
+ for(i= (ge->type==GE_CURVE? 0: 2); i<3; i++) {
+ dx = ge->fxn[i] - ge->prev->fx3;
+ dy = ge->fyn[i] - ge->prev->fy3;
+ d2 = dx*dx + dy*dy;
+ if(d2m < d2)
+ d2m = d2;
+ }
+
+ if( d2m > minlen2 ) { /* line is not too small */
+ /* XXX add more normalization here */
+ continue;
+ }
+
+ /* if the line is too small */
+
+ /* check forwards if we have a whole sequence of them */
+ nge = ge;
+ for(xge = ge->frwd; xge != ge; xge = xge->frwd) {
+ d2m = 0;
+ for(i= (xge->type==GE_CURVE? 0: 2); i<3; i++) {
+ dx = xge->fxn[i] - xge->prev->fx3;
+ dy = xge->fyn[i] - xge->prev->fy3;
+ d2 = dx*dx + dy*dy;
+ if(d2m < d2)
+ d2m = d2;
+ }
+ if( d2m > minlen2 ) /* line is not too small */
+ break;
+ nge = xge;
+ if(next == nge) /* move the next step past this sequence */
+ next = next->next;
+ }
+
+ /* check backwards if we have a whole sequence of them */
+ pge = ge;
+ for(xge = ge->bkwd; xge != ge; xge = xge->bkwd) {
+ d2m = 0;
+ for(i= (xge->type==GE_CURVE? 0: 2); i<3; i++) {
+ dx = xge->fxn[i] - xge->prev->fx3;
+ dy = xge->fyn[i] - xge->prev->fy3;
+ d2 = dx*dx + dy*dy;
+ if(d2m < d2)
+ d2m = d2;
+ }
+ if( d2m > minlen2 ) /* line is not too small */
+ break;
+ pge = xge;
+ }
+
+ /* now we have a sequence of small fragments in pge...nge (inclusive) */
+
+ if(ISDBG(FCONCISE)) {
+ fprintf(stderr, "glyph %s has very small fragments(%x..%x..%x)\n",
+ g->name, pge, ge, nge);
+ dumppaths(g, pge, nge);
+ }
+
+ /* reduce whole sequence to one part and remember the middle point */
+ if(pge != nge) {
+ while(1) {
+ xge = pge->frwd;
+ if(xge == nge) {
+ pge->fx1 = pge->fx2 = pge->fx3;
+ pge->fx3 = nge->fx3;
+ pge->fy1 = pge->fy2 = pge->fy3;
+ pge->fy3 = nge->fy3;
+ pge->type = GE_CURVE;
+ freethisge(nge);
+ break;
+ }
+ if(xge == nge->bkwd) {
+ pge->fx1 = pge->fx2 = (pge->fx3+xge->fx3)/2.;
+ pge->fx3 = nge->fx3;
+ pge->fy1 = pge->fy2 = (pge->fy3+xge->fy3)/2.;
+ pge->fy3 = nge->fy3;
+ pge->type = GE_CURVE;
+ freethisge(nge);
+ freethisge(xge);
+ break;
+ }
+ freethisge(pge); pge = xge;
+ xge = nge->bkwd; freethisge(nge); nge = xge;
+ }
+ }
+ ge = pge;
+
+ /* check if the whole sequence is small */
+ dx = ge->fx3 - ge->prev->fx3;
+ dy = ge->fy3 - ge->prev->fy3;
+ d2 = dx*dx + dy*dy;
+
+ if( d2 > minlen2 ) { /* no, it is not */
+ double b, d;
+
+ WARNING_3 fprintf(stderr, "glyph %s had a sequence of fragments < %g points each, reduced to one curve\n",
+ g->name, minlen);
+
+ /* check that we did not create a monstrosity spanning quadrants */
+ if(fsign(ge->fx1 - ge->prev->fx1) * fsign(ge->fx3 - ge->fx1) < 0
+ || fsign(ge->fy1 - ge->prev->fy1) * fsign(ge->fy3 - ge->fy1) < 0 ) {
+ /* yes, we did; are both parts of this thing big enough ? */
+ dx = ge->fx1 - ge->prev->fx3;
+ dy = ge->fy1 - ge->prev->fy3;
+ d2 = dx*dx + dy*dy;
+
+ dx = ge->fx3 - ge->fx1;
+ dy = ge->fy3 - ge->fy1;
+ d2m = dx*dx + dy*dy;
+
+ if(d2 > minlen2 && d2m > minlen2) { /* make two straights */
+ nge = newgentry(GEF_FLOAT);
+ *nge = *ge;
+
+ for(i=0; i<2; i++) {
+ ge->fpoints[i][2] = ge->fpoints[i][0];
+ b = nge->fpoints[i][0];
+ d = nge->fpoints[i][2] - b;
+ nge->fpoints[i][0] = b + 0.1*d;
+ nge->fpoints[i][1] = b + 0.9*d;
+ }
+ }
+ for(i=0; i<2; i++) { /* make one straight or first of two straights */
+ b = ge->prev->fpoints[i][2];
+ d = ge->fpoints[i][2] - b;
+ ge->fpoints[i][0] = b + 0.1*d;
+ ge->fpoints[i][1] = b + 0.9*d;
+ }
+ }
+ continue;
+ }
+
+ if(ge->frwd == ge) { /* points to itself, just remove the path completely */
+ WARNING_3 fprintf(stderr, "glyph %s had a path made of fragments < %g points each, removed\n",
+ g->name, minlen);
+
+ next = freethisge(ge);
+ continue;
+ }
+
+ /* now close the gap by x and y */
+ for(i=0; i<2; i++) {
+ double gap;
+
+ gap = ge->fpoints[i][2] - ge->prev->fpoints[i][2];
+ if( fclosegap(ge, ge, i, gap, NULL) != 0.0 ) {
+ double scale, base;
+
+ /* not good, as the last resort just scale the next line */
+ gap = ge->fpoints[i][2] - ge->prev->fpoints[i][2];
+
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, " last resort on %c: closing next by %g\n",
+ (i==0 ? 'x' : 'y'), gap);
+
+ nge = ge->frwd;
+ base = nge->fpoints[i][2];
+ dx = ge->fpoints[i][2] - base;
+ if(fabs(dx) < FEPS)
+ continue;
+
+ scale = ((dx-gap) / dx);
+
+ if(nge->type == GE_CURVE)
+ for(k = 0; k<2; k++)
+ nge->fpoints[i][k] = base +
+ scale * (nge->fpoints[i][k] - base);
+
+ ge->fpoints[i][2] -= gap;
+ }
+ }
+
+ /* OK, the gap is closed - remove this useless GENTRY */
+ freethisge(ge);
+ }
+#undef TIMESLARGER
+}
+
+/* find the point where two rays continuing vectors cross
+ * returns 1 if they cross, 0 if they don't
+ * If they cross optionally (if the pointers are not NULL) returns
+ * the maximal scales for both vectors and also optionally the point
+ * where the rays cross (twice).
+ * Expects that the curves are normalized.
+ *
+ * For convenience there are 2 front-end functions taking
+ * arguments in different formats
+ */
+
+struct ray {
+ double x1, y1, x2, y2;
+ int isvert;
+ double k, b; /* lines are represented as y = k*x + b */
+ double *maxp;
+};
+static struct ray ray[3];
+
+/* the back-end doing the actual work
+ * the rays are defined in the static array ray[]
+ */
+
+static int
+fcrossraysxx(
+ double crossdot[2][2]
+)
+{
+ double x, y, max;
+ int i;
+
+ for(i=0; i<2; i++) {
+ if(ray[i].x1 == ray[i].x2)
+ ray[i].isvert = 1;
+ else {
+ ray[i].isvert = 0;
+ ray[i].k = (ray[i].y2 - ray[i].y1) / (ray[i].x2 - ray[i].x1);
+ ray[i].b = ray[i].y2 - ray[i].k * ray[i].x2;
+ }
+ }
+
+ if(ray[0].isvert && ray[1].isvert) {
+ if(ISDBG(FCONCISE)) fprintf(stderr, "crossrays: both vertical\n");
+ return 0; /* both vertical, don't cross */
+ }
+
+ if(ray[1].isvert) {
+ ray[2] = ray[0]; /* exchange them */
+ ray[0] = ray[1];
+ ray[1] = ray[2];
+ }
+
+ if(ray[0].isvert) {
+ x = ray[0].x1;
+ } else {
+ if( fabs(ray[0].k - ray[1].k) < FEPS) {
+ if(ISDBG(FCONCISE)) fprintf(stderr, "crossrays: parallel lines, k = %g, %g\n",
+ ray[0].k, ray[1].k);
+ return 0; /* parallel lines */
+ }
+ x = (ray[1].b - ray[0].b) / (ray[0].k - ray[1].k) ;
+ }
+ y = ray[1].k * x + ray[1].b;
+
+ for(i=0; i<2; i++) {
+ if(ray[i].isvert)
+ max = (y - ray[i].y1) / (ray[i].y2 - ray[i].y1);
+ else
+ max = (x - ray[i].x1) / (ray[i].x2 - ray[i].x1);
+ /* check if wrong sides of rays cross */
+ if( max < 0 ) {
+ if(ISDBG(FCONCISE)) fprintf(stderr, "crossrays: %c scale=%g @(%g,%g) (%g,%g)<-(%g,%g)\n",
+ (i?'Y':'X'), max, x, y, ray[i].x2, ray[i].y2, ray[i].x1, ray[i].y1);
+ return 0;
+ }
+ if(ray[i].maxp)
+ *ray[i].maxp = max;
+ }
+ if(crossdot != 0) {
+ crossdot[0][0] = crossdot[1][0] = x;
+ crossdot[0][1] = crossdot[1][1] = y;
+ }
+ return 1;
+}
+
+/* the front-end getting the arguments from 4 dots defining
+ * a curve in the same format as for fapproxcurve():
+ * rays are defined as beginning and end of the curve,
+ * the crossdot is inserted as the two middle dots of the curve
+ */
+
+int
+fcrossrayscv(
+ double curve[4][2 /*X,Y*/],
+ double *max1,
+ double *max2
+)
+{
+ ray[0].x1 = curve[0][X];
+ ray[0].y1 = curve[0][Y];
+ ray[0].x2 = curve[1][X];
+ ray[0].y2 = curve[1][Y];
+ ray[0].maxp = max1;
+
+ ray[1].x1 = curve[2][X];
+ ray[1].y1 = curve[2][Y];
+ ray[1].x2 = curve[3][X];
+ ray[1].y2 = curve[3][Y];
+ ray[1].maxp = max2;
+
+ return fcrossraysxx(&curve[1]);
+}
+
+/* the front-end getting the arguments from gentries:
+ * rays are defined as beginning of curve1 and end of curve 2
+ */
+
+int
+fcrossraysge(
+ GENTRY *ge1,
+ GENTRY *ge2,
+ double *max1,
+ double *max2,
+ double crossdot[2][2]
+)
+{
+ ray[0].x1 = ge1->prev->fx3;
+ ray[0].y1 = ge1->prev->fy3;
+ ray[0].x2 = ge1->fpoints[X][ge1->ftg];
+ ray[0].y2 = ge1->fpoints[Y][ge1->ftg];
+ ray[0].maxp = max1;
+
+ ray[1].x1 = ge2->fx3;
+ ray[1].y1 = ge2->fy3;
+ if(ge2->rtg < 0) {
+ ray[1].x2 = ge2->prev->fx3;
+ ray[1].y2 = ge2->prev->fy3;
+ } else {
+ ray[1].x2 = ge2->fpoints[X][ge2->rtg];
+ ray[1].y2 = ge2->fpoints[Y][ge2->rtg];
+ }
+ ray[1].maxp = max2;
+
+ return fcrossraysxx(crossdot);
+}
+
+/* debugging printout functions */
+
+#if defined(DEBUG_DOTSEG) || defined(DEBUG_DOTCURVE) || defined(DEBUG_APPROXCV)
+
+/* for debugging */
+static
+printdot(
+ double dot[2]
+)
+{
+ fprintf(stderr, "(%g,%g)", dot[0], dot[1]);
+}
+
+static
+printseg(
+ double seg[2][2]
+)
+{
+ putc('[', stderr);
+ printdot(seg[0]);
+ putc(' ', stderr);
+ printdot(seg[1]);
+ putc(']', stderr);
+}
+
+#endif /* DEBUG_* */
+
+/*
+ * Find squared distance from a dot to a line segment
+ */
+
+double
+fdotsegdist2(
+ double seg[2][2 /*X,Y*/],
+ double dot[2 /*X,Y*/]
+)
+{
+#define x1 seg[0][X]
+#define y1 seg[0][Y]
+#define x2 seg[1][X]
+#define y2 seg[1][Y]
+#define xdot dot[X]
+#define ydot dot[Y]
+
+ double dx, dy; /* segment dimensions */
+ double kline, bline; /* segment line formula is y=k*x+b */
+ double kperp, bperp; /* perpendicular from the dot to the line */
+ double xcross, ycross; /* where the perpendicular crosses the segment */
+
+/* handle the situation where the nearest point of the segment is its end */
+#define HANDLE_LIMITS(less12, lesscr1, lesscr2) \
+ if( less12 ) { \
+ if( lesscr1 ) { \
+ xcross = x1; \
+ ycross = y1; \
+ } else if( !(lesscr2) ) { \
+ xcross = x2; \
+ ycross = y2; \
+ } \
+ } else { \
+ if( !(lesscr1) ) { \
+ xcross = x1; \
+ ycross = y1; \
+ } else if( lesscr2 ) { \
+ xcross = x2; \
+ ycross = y2; \
+ } \
+ } \
+ /* end of macro */
+
+
+ dx = x2 - x1;
+ dy = y2 - y1;
+
+ if(fabs(dx) < FEPS) {
+ /* special case - vertical line */
+#ifdef DEBUG_DOTSEG
+ printf("vertical line!\n");
+#endif
+ xcross = x1;
+ ycross = ydot;
+ HANDLE_LIMITS( y1 < y2, ycross < y1, ycross < y2);
+ } else if(fabs(dy) < FEPS) {
+ /* special case - horizontal line */
+#ifdef DEBUG_DOTSEG
+ printf("horizontal line!\n");
+#endif
+ xcross = xdot;
+ ycross = y1;
+ HANDLE_LIMITS( x1 < x2, xcross < x1, xcross < x2)
+ } else {
+ kline = dy/dx;
+ bline = y1 - x1*kline;
+ kperp = -1./kline;
+ bperp = ydot - xdot*kperp;
+
+ xcross = (bline-bperp) / (kperp-kline);
+ ycross = kline*xcross + bline;
+
+ HANDLE_LIMITS( x1 < x2, xcross < x1, xcross < x2)
+ }
+#ifdef DEBUG_DOTSEG
+ printf("crossover at (%g,%g)\n", xcross, ycross);
+#endif
+
+ dx = xdot-xcross;
+ dy = ydot-ycross;
+ return dx*dx+dy*dy;
+#undef x1
+#undef y1
+#undef x2
+#undef y2
+#undef xdot
+#undef ydot
+#undef HANDLE_LIMITS
+}
+
+/* find the weighted quadratic average for the distance of a set
+ * of dots from the curve; also fills out the individual distances
+ * for each dot; if maxp!=NULL then returns the maximal squared
+ * distance in there
+ */
+
+double
+fdotcurvdist2(
+ double curve[4][2 /*X,Y*/ ],
+ struct dot_dist *dots,
+ int ndots, /* number of entries in dots */
+ double *maxp
+)
+{
+ /* a curve is approximated by this many straight segments */
+#define NAPSECT 16
+ /* a curve is divided into this many sections with equal weight each */
+#define NWSECT 4
+ /* table of coefficients for finding the dots on the curve */
+ /* tt[0] is left unused */
+ static double tt[NAPSECT][4];
+ static int havett = 0; /* flag: tt is initialized */
+ /* dots on the curve */
+ double cvd[NAPSECT+1][2 /*X,Y*/];
+ /* sums by sections */
+ double sum[NWSECT];
+ /* counts by sections */
+ double count[NWSECT];
+ int d, i, j;
+ int id1, id2;
+ double dist1, dist2, dist3, dx, dy, x, y;
+ double max = 0.;
+
+ if(!havett) {
+ double t, nt, t2, nt2, step;
+
+ havett++;
+ step = 1. / NAPSECT;
+ t = 0;
+ for(i=1; i<NAPSECT; i++) {
+ t += step;
+ nt = 1 - t;
+ t2 = t*t;
+ nt2 = nt*nt;
+ tt[i][0] = nt2*nt; /* (1-t)^3 */
+ tt[i][1] = 3*nt2*t; /* 3*(1-t)^2*t */
+ tt[i][2] = 3*nt*t2; /* 3*(1-t)*t^2 */
+ tt[i][3] = t2*t; /* t^3 */
+ }
+ }
+
+ for(i=0; i<NWSECT; i++) {
+ sum[i] = 0.;
+ count[i] = 0;
+ }
+
+ /* split the curve into segments */
+ for(d=0; d<2; d++) { /* X and Y */
+ cvd[0][d] = curve[0][d]; /* endpoints */
+ cvd[NAPSECT][d] = curve[3][d];
+ for(i=1; i<NAPSECT; i++) {
+ cvd[i][d] = curve[0][d] * tt[i][0]
+ + curve[1][d] * tt[i][1]
+ + curve[2][d] * tt[i][2]
+ + curve[3][d] * tt[i][3];
+ }
+ }
+
+ for(d=0; d<ndots; d++) {
+#ifdef DEBUG_DOTCURVE
+ printf("dot %d ", d); printdot(dots[d].p); printf(":\n");
+
+ /* for debugging */
+ for(i=0; i< NAPSECT; i++) {
+ dist1 = fdotsegdist2(&cvd[i], dots[d].p);
+ printf(" seg %d ",i); printseg(&cvd[i]); printf(" dist=%g\n", sqrt(dist1));
+ }
+#endif
+
+ x = dots[d].p[X];
+ y = dots[d].p[Y];
+
+ /* find the nearest dot on the curve
+ * there may be up to 2 local minimums - so we start from the
+ * ends of curve and go to the center
+ */
+
+ id1 = 0;
+ dx = x - cvd[0][X];
+ dy = y - cvd[0][Y];
+ dist1 = dx*dx + dy*dy;
+#ifdef DEBUG_DOTCURVE
+ printf(" dot 0 "); printdot(cvd[id1]); printf(" dist=%g\n", sqrt(dist1));
+#endif
+ for(i = 1; i<=NAPSECT; i++) {
+ dx = x - cvd[i][X];
+ dy = y - cvd[i][Y];
+ dist3 = dx*dx + dy*dy;
+#ifdef DEBUG_DOTCURVE
+ printf(" dot %d ",i); printdot(cvd[i]); printf(" dist=%g\n", sqrt(dist3));
+#endif
+ if(dist3 < dist1) {
+ dist1 = dist3;
+ id1 = i;
+ } else
+ break;
+ }
+
+ if(id1 < NAPSECT-1) {
+ id2 = NAPSECT;
+ dx = x - cvd[NAPSECT][X];
+ dy = y - cvd[NAPSECT][Y];
+ dist2 = dx*dx + dy*dy;
+#ifdef DEBUG_DOTCURVE
+ printf(" +dot %d ", id2); printdot(cvd[id2]); printf(" dist=%g\n", sqrt(dist2));
+#endif
+ for(i = NAPSECT-1; i>id1+1; i--) {
+ dx = x - cvd[i][X];
+ dy = y - cvd[i][Y];
+ dist3 = dx*dx + dy*dy;
+#ifdef DEBUG_DOTCURVE
+ printf(" dot %d ",i); printdot(cvd[i]); printf(" dist=%g\n", sqrt(dist3));
+#endif
+ if(dist3 < dist2) {
+ dist2 = dist3;
+ id2 = i;
+ } else
+ break;
+ }
+
+ /* now find which of the local minimums is smaller */
+ if(dist2 < dist1) {
+ id1 = id2;
+ }
+ }
+
+ /* the nearest segment must include the nearest dot */
+ if(id1==0) {
+ dots[d].seg = 0;
+ dots[d].dist2 = fdotsegdist2(&cvd[0], dots[d].p);
+ } else if(id1==NAPSECT) {
+ dots[d].seg = NAPSECT-1;
+ dots[d].dist2 = fdotsegdist2(&cvd[NAPSECT-1], dots[d].p);
+ } else {
+ dist1 = fdotsegdist2(&cvd[id1], dots[d].p);
+ dist2 = fdotsegdist2(&cvd[id1-1], dots[d].p);
+ if(dist2 < dist1) {
+ dots[d].seg = id1-1;
+ dots[d].dist2 = dist2;
+ } else {
+ dots[d].seg = id1;
+ dots[d].dist2 = dist1;
+ }
+ }
+
+ i = dots[d].seg % NWSECT;
+ sum[i] += dots[d].dist2;
+ if(dots[d].dist2 > max)
+ max = dots[d].dist2;
+ count[i]++;
+#ifdef DEBUG_DOTCURVE
+ printf(" best seg %d sect %d dist=%g\n", dots[d].seg, i, sqrt(dots[d].dist2));
+#endif
+ }
+
+ /* calculate the weighted average */
+ id1=0;
+ dist1=0.;
+ for(i=0; i<NWSECT; i++) {
+ if(count[i]==0)
+ continue;
+ id1++;
+ dist1 += sum[i]/count[i];
+ }
+ if(maxp)
+ *maxp = max;
+ if(id1==0) /* no dots, strange */
+ return 0.;
+ else
+ return dist1/id1; /* to get the average distance apply sqrt() */
+}
+
+/*
+ * Approximate a curve matching the giving set of points and with
+ * middle reference points going along the given segments (and no farther
+ * than these segments).
+ */
+
+void
+fapproxcurve(
+ double cv[4][2 /*X,Y*/ ], /* points 0-3 are passed in, points 1,2 - out */
+ struct dot_dist *dots, /* the dots to approximate - distances returned
+ * there may be invalid */
+ int ndots
+)
+{
+ /* b and c are the middle control points */
+#define B 0
+#define C 1
+ /* maximal number of sections on each axis - used for the first step */
+#define MAXSECT 2
+ /* number of sections used for the other steps */
+#define NORMSECT 2
+ /* when the steps become less than this many points, it's time to stop */
+#define STEPEPS 1.
+ double from[2 /*B,C*/], to[2 /*B,C*/];
+ double middf[2 /*B,C*/][2 /*X,Y*/], df;
+ double coef[2 /*B,C*/][MAXSECT];
+ double res[MAXSECT][MAXSECT], thisres, bestres, goodres;
+ int ncoef[2 /*B,C*/], best[2 /*B,C*/], good[2 /*B,C*/];
+ int i, j, k, keepsym;
+ char bc[]="BC";
+ char xy[]="XY";
+
+#ifdef DEBUG_APPROXCV
+ fprintf(stderr, "Curve points:");
+ for(i=0; i<4; i++) {
+ fprintf(stderr, " ");
+ printdot(cv[i]);
+ }
+ fprintf(stderr, "\nDots:");
+ for(i=0; i<ndots; i++) {
+ fprintf(stderr, " ");
+ printdot(dots[i].p);
+ }
+ fprintf(stderr, "\n");
+#endif
+
+ /* load the endpoints and calculate differences */
+ for(i=0; i<2; i++) {
+ /* i is X, Y */
+ middf[B][i] = cv[1][i]-cv[0][i];
+ middf[C][i] = cv[2][i]-cv[3][i];
+
+ /* i is B, C */
+ from[i] = 0.;
+ to[i] = 1.;
+ ncoef[i] = MAXSECT;
+ }
+
+ while(ncoef[B] != 1 || ncoef[C] != 1) {
+ /* prepare the values of coefficients */
+ for(i=0; i<2; i++) { /*B,C*/
+#ifdef DEBUG_APPROXCV
+ fprintf(stderr, "Coefficients by %c(%g,%g):", bc[i], from[i], to[i]);
+#endif
+ df = (to[i]-from[i]) / (ncoef[i]*2);
+ for(j=0; j<ncoef[i]; j++) {
+ coef[i][j] = from[i] + df*(2*j+1);
+#ifdef DEBUG_APPROXCV
+ fprintf(stderr, " %g", coef[i][j]);
+#endif
+ }
+#ifdef DEBUG_APPROXCV
+ fprintf(stderr, "\n");
+#endif
+ }
+ bestres = FBIGVAL;
+ /* i iterates by ncoef[B], j iterates by ncoef[C] */
+ for(i=0; i<ncoef[B]; i++) {
+ for(j=0; j<ncoef[C]; j++) {
+ for(k=0; k<2; k++) { /*X, Y*/
+ cv[1][k] = cv[0][k] + middf[B][k]*coef[B][i];
+ cv[2][k] = cv[3][k] + middf[C][k]*coef[C][j];
+ }
+ res[i][j] = thisres = fdotcurvdist2(cv, dots, ndots, NULL);
+ if(thisres < bestres) {
+ goodres = bestres;
+ good[B] = best[B];
+ good[C] = best[C];
+ bestres = thisres;
+ best[B] = i;
+ best[C] = j;
+ } else if(thisres < goodres) {
+ goodres = thisres;
+ good[B] = i;
+ good[C] = j;
+ }
+#ifdef DEBUG_APPROXCV
+ fprintf(stderr, " at (%g,%g) dist=%g %s\n", coef[B][i], coef[C][j], sqrt(thisres),
+ (best[B]==i && best[C]==j)? "(BEST)":"");
+#endif
+ }
+ }
+#ifdef DEBUG_APPROXCV
+ fprintf(stderr, " best: at (%g, %g) dist=%g\n",
+ coef[B][best[B]], coef[C][best[C]], sqrt(bestres));
+ fprintf(stderr, " B:%d,%d C:%d,%d -- 2nd best: at (%g, %g) dist=%g\n",
+ best[B], good[B], best[C], good[C], coef[B][good[B]], coef[C][good[C]], sqrt(goodres));
+#endif
+
+ if(bestres < (0.1*0.1)) { /* consider it close enough */
+ /* calculate the coordinates to return */
+ for(k=0; k<2; k++) { /*X, Y*/
+ cv[1][k] = cv[0][k] + middf[B][k]*coef[B][best[B]];
+ cv[2][k] = cv[3][k] + middf[C][k]*coef[C][best[C]];
+ }
+#ifdef DEBUG_APPROXCV
+ fprintf(stderr, "quick approximated middle points "); printdot(cv[1]);
+ fprintf(stderr, " "); printdot(cv[2]); fprintf(stderr, "\n");
+#endif
+ return;
+ }
+ keepsym = 0;
+ if(best[B] != best[C] && best[B]-best[C] == good[C]-good[B]) {
+ keepsym = 1;
+#ifdef DEBUG_APPROXCV
+ fprintf(stderr, "keeping symmetry!\n");
+#endif
+ }
+ for(i=0; i<2; i++) { /*B,C*/
+ if(ncoef[i]==1)
+ continue;
+ if(keepsym) {
+ /* try to keep the symmetry */
+ if(best[i] < good[i]) {
+ from[i] = coef[i][best[i]];
+ to[i] = coef[i][good[i]];
+ } else {
+ from[i] = coef[i][good[i]];
+ to[i] = coef[i][best[i]];
+ }
+ } else {
+ df = (to[i]-from[i]) / ncoef[i];
+ from[i] += df*best[i];
+ to[i] = from[i] + df;
+ }
+ if( fabs(df*middf[i][0]) < STEPEPS && fabs(df*middf[i][1]) < STEPEPS) {
+ /* this side has converged */
+ from[i] = to[i] = (from[i]+to[i]) / 2.;
+ ncoef[i] = 1;
+ } else
+ ncoef[i] = NORMSECT;
+ }
+
+ }
+ /* calculate the coordinates to return */
+ for(k=0; k<2; k++) { /*X, Y*/
+ cv[1][k] = cv[0][k] + middf[B][k]*from[B];
+ cv[2][k] = cv[3][k] + middf[C][k]*from[C];
+ }
+#ifdef DEBUG_APPROXCV
+ fprintf(stderr, "approximated middle points "); printdot(cv[1]);
+ fprintf(stderr, " "); printdot(cv[2]); fprintf(stderr, "\n");
+#endif
+#undef B
+#undef C
+#undef MAXSECT
+#undef NORMSECT
+#undef STEPEPS
+}
+
+/*
+ * Find the squared value of the sinus of the angle between the
+ * end of ge1 and the beginning of ge2
+ * The curve must be normalized.
+ */
+
+static double
+fjointsin2(
+ GENTRY *ge1,
+ GENTRY *ge2
+)
+{
+ double d[3][2 /*X,Y*/];
+ double scale1, scale2, len1, len2;
+ int axis;
+
+ if(ge1->rtg < 0) {
+ d[1][X] = ge1->fx3 - ge1->prev->fx3;
+ d[1][Y] = ge1->fy3 - ge1->prev->fy3;
+ } else {
+ d[1][X] = ge1->fx3 - ge1->fpoints[X][ge1->rtg];
+ d[1][Y] = ge1->fy3 - ge1->fpoints[Y][ge1->rtg];
+ }
+ d[2][X] = ge2->fpoints[X][ge2->ftg] - ge2->prev->fx3;
+ d[2][Y] = ge2->fpoints[Y][ge2->ftg] - ge2->prev->fy3;
+
+ len1 = sqrt( d[1][X]*d[1][X] + d[1][Y]*d[1][Y] );
+ len2 = sqrt( d[2][X]*d[2][X] + d[2][Y]*d[2][Y] );
+ /* scale the 2nd segment to the length of 1
+ * and to make sure that the 1st segment is longer scale it to
+ * the length of 2 and extend to the same distance backwards
+ */
+ scale1 = 2./len1;
+ scale2 = 1./len2;
+
+ for(axis=0; axis <2; axis++) {
+ d[0][axis] = -( d[1][axis] *= scale1 );
+ d[2][axis] *= scale2;
+ }
+ return fdotsegdist2(d, d[2]);
+}
+
+#if 0
+/* find the area covered by the curve
+ * (limited by the projections to the X axis)
+ */
+
+static double
+fcvarea(
+ GENTRY *ge
+)
+{
+ double Ly, My, Ny, Py, Qx, Rx, Sx;
+ double area;
+
+ /* y = Ly*t^3 + My*t^2 + Ny*t + Py */
+ Ly = -ge->prev->fy3 + 3*(ge->fy1 - ge->fy2) + ge->fy3;
+ My = 3*ge->prev->fy3 - 6*ge->fy1 + 3*ge->fy2;
+ Ny = 3*(-ge->prev->fy3 + ge->fy1);
+ Py = ge->prev->fy3;
+
+ /* dx/dt = Qx*t^2 + Rx*t + Sx */
+ Qx = 3*(-ge->prev->fx3 + 3*(ge->fx1 - ge->fx2) + ge->fx3);
+ Rx = 6*(ge->prev->fx3 - 2*ge->fx1 + ge->fx2);
+ Sx = 3*(-ge->prev->fx3 + ge->fx1);
+
+ /* area is integral[from 0 to 1]( y(t) * dx(t)/dt *dt) */
+ area = 1./6.*(Ly*Qx) + 1./5.*(Ly*Rx + My*Qx)
+ + 1./4.*(Ly*Sx + My*Rx + Ny*Qx) + 1./3.*(My*Sx + Ny*Rx + Py*Qx)
+ + 1./2.*(Ny*Sx + Py*Rx) + Py*Sx;
+
+ return area;
+}
+#endif
+
+/* find the value of point on the curve at the given parameter t,
+ * along the given axis (0 - X, 1 - Y).
+ */
+
+static double
+fcvval(
+ GENTRY *ge,
+ int axis,
+ double t
+)
+{
+ double t2, mt, mt2;
+
+ /* val = A*(1-t)^3 + 3*B*(1-t)^2*t + 3*C*(1-t)*t^2 + D*t^3 */
+ t2 = t*t;
+ mt = 1-t;
+ mt2 = mt*mt;
+
+ return ge->prev->fpoints[axis][2]*mt2*mt
+ + 3*(ge->fpoints[axis][0]*mt2*t + ge->fpoints[axis][1]*mt*t2)
+ + ge->fpoints[axis][2]*t*t2;
+}
+
+/*
+ * Find ndots equally spaced dots on a curve or line and fill
+ * their coordinates into the dots array
+ */
+
+static void
+fsampledots(
+ GENTRY *ge,
+ double dots[][2], /* the dots to fill */
+ int ndots
+)
+{
+ int i, axis;
+ double t, nf, dx, d[2];
+
+ nf = ndots+1;
+ if(ge->type == GE_CURVE) {
+ for(i=0; i<ndots; i++) {
+ t = (i+1)/nf;
+ for(axis=0; axis<2; axis++)
+ dots[i][axis] = fcvval(ge, axis, t);
+ }
+ } else { /* line */
+ d[0] = ge->fx3 - ge->prev->fx3;
+ d[1] = ge->fy3 - ge->prev->fy3;
+ for(i=0; i<ndots; i++) {
+ t = (i+1)/nf;
+ for(axis=0; axis<2; axis++)
+ dots[i][axis] = ge->prev->fpoints[axis][2]
+ + t*d[axis];
+ }
+ }
+}
+
+/*
+ * Allocate a structure gex_con
+ */
+
+static void
+alloc_gex_con(
+ GENTRY *ge
+)
+{
+ ge->ext = (void*)calloc(1, sizeof(GEX_CON));
+ if(ge->ext == 0) {
+ fprintf (stderr, "****malloc failed %s line %d\n", __FILE__, __LINE__);
+ exit(255);
+ }
+}
+
+/*
+ * Normalize a gentry for fforceconcise() : find the points that
+ * can be used to calculate the tangents.
+ */
+
+static void
+fnormalizege(
+ GENTRY *ge
+)
+{
+ int midsame, frontsame, rearsame;
+
+ if(ge->type == GE_LINE) {
+ ge->ftg = 2;
+ ge->rtg = -1;
+ } else { /* assume it's a curve */
+ midsame = (fabs(ge->fx1-ge->fx2)<FEPS && fabs(ge->fy1-ge->fy2)<FEPS);
+ frontsame = (fabs(ge->fx1-ge->prev->fx3)<FEPS && fabs(ge->fy1-ge->prev->fy3)<FEPS);
+ rearsame = (fabs(ge->fx3-ge->fx2)<FEPS && fabs(ge->fy3-ge->fy2)<FEPS);
+
+ if(midsame && (frontsame || rearsame) ) {
+ /* essentially a line */
+ ge->ftg = 2;
+ ge->rtg = -1;
+ } else {
+ if(frontsame) {
+ ge->ftg = 1;
+ } else {
+ ge->ftg = 0;
+ }
+ if(rearsame) {
+ ge->rtg = 0;
+ } else {
+ ge->rtg = 1;
+ }
+ }
+ }
+}
+
+/* various definition for the processing of outlines */
+
+/* maximal average quadratic distance from the original curve
+ * (in dots) to consider the joined curve good
+ */
+#define CVEPS 1.5
+#define CVEPS2 (CVEPS*CVEPS)
+/* squared sinus of the maximal angle that we consider a smooth joint */
+#define SMOOTHSIN2 0.25 /* 0.25==sin(30 degrees)^2 */
+/* squared line length that we consider small */
+#define SMALL_LINE2 (15.*15.)
+/* how many times a curve must be bigger than a line to join, squared */
+#define TIMES_LINE2 (3.*3.)
+
+/*
+ * Normalize and analyse a gentry for fforceconcise() and fill out the gex_con
+ * structure
+ */
+
+static void
+fanalyzege(
+ GENTRY *ge
+)
+{
+ int i, ix, iy;
+ double avsd2, dots[3][2 /*X,Y*/];
+ GEX_CON *gex;
+
+ gex = X_CON(ge);
+ memset(gex, 0, sizeof *gex);
+
+ gex->len2 = 0;
+ for(i=0; i<2; i++) {
+ avsd2 = gex->d[i] = ge->fpoints[i][2] - ge->prev->fpoints[i][2];
+ gex->len2 += avsd2*avsd2;
+ }
+ gex->sin2 = fjointsin2(ge, ge->frwd);
+ if(ge->type == GE_CURVE) {
+ ge->dir = fgetcvdir(ge);
+ for(i=0; i<2; i++) {
+ dots[0][i] = ge->prev->fpoints[i][2];
+ dots[1][i] = ge->fpoints[i][2];
+ dots[2][i] = fcvval(ge, i, 0.5);
+ }
+ avsd2 = fdotsegdist2(dots, dots[2]);
+ if(avsd2 <= CVEPS2) {
+ gex->flags |= GEXF_FLAT;
+ }
+ } else {
+ ge->dir = CVDIR_FEQUAL|CVDIR_REQUAL;
+ gex->flags |= GEXF_FLAT;
+ }
+ if(gex->flags & GEXF_FLAT) {
+ if( fabs(gex->d[X]) > FEPS && fabs(gex->d[Y]) < 5.
+ && fabs(gex->d[Y] / gex->d[X]) < 0.2)
+ gex->flags |= GEXF_HOR;
+ else if( fabs(gex->d[Y]) > FEPS && fabs(gex->d[X]) < 5.
+ && fabs(gex->d[X] / gex->d[Y]) < 0.2)
+ gex->flags |= GEXF_VERT;
+ }
+ ix = gex->isd[X] = fsign(gex->d[X]);
+ iy = gex->isd[Y] = fsign(gex->d[Y]);
+ if(ix <= 0) {
+ if(iy <= 0)
+ gex->flags |= GEXF_QDL;
+ if(iy >= 0)
+ gex->flags |= GEXF_QUL;
+ if(gex->flags & GEXF_HOR)
+ gex->flags |= GEXF_IDQ_L;
+ }
+ if(ix >= 0) {
+ if(iy <= 0)
+ gex->flags |= GEXF_QDR;
+ if(iy >= 0)
+ gex->flags |= GEXF_QUR;
+ if(gex->flags & GEXF_HOR)
+ gex->flags |= GEXF_IDQ_R;
+ }
+ if(gex->flags & GEXF_VERT) {
+ if(iy <= 0) {
+ gex->flags |= GEXF_IDQ_U;
+ } else { /* supposedly there is no 0-sized entry */
+ gex->flags |= GEXF_IDQ_D;
+ }
+ }
+}
+
+/*
+ * Analyse a joint between this and following gentry for fforceconcise()
+ * and fill out the corresponding parts of the gex_con structure
+ * Bothe entries must be analyzed first.
+ */
+
+static void
+fanalyzejoint(
+ GENTRY *ge
+)
+{
+ GENTRY *nge = ge->frwd;
+ GENTRY tge;
+ GEX_CON *gex, *ngex;
+ double avsd2, dots[3][2 /*X,Y*/];
+ int i;
+
+ gex = X_CON(ge); ngex = X_CON(nge);
+
+ /* look if they can be joined honestly */
+
+ /* if any is flat, they should join smoothly */
+ if( (gex->flags & GEXF_FLAT || ngex->flags & GEXF_FLAT)
+ && gex->sin2 > SMOOTHSIN2)
+ goto try_flatboth;
+
+ if(ge->type == GE_LINE) {
+ if(nge->type == GE_LINE) {
+ if(gex->len2 > SMALL_LINE2 || ngex->len2 > SMALL_LINE2)
+ goto try_flatboth;
+ } else {
+ if(gex->len2*TIMES_LINE2 > ngex->len2)
+ goto try_flatboth;
+ }
+ } else if(nge->type == GE_LINE) {
+ if(ngex->len2*TIMES_LINE2 > gex->len2)
+ goto try_flatboth;
+ }
+
+ /* if curve changes direction */
+ if( gex->isd[X]*ngex->isd[X]<0 || gex->isd[Y]*ngex->isd[Y]<0)
+ goto try_idealone;
+
+ /* if would create a zigzag */
+ if( ((ge->dir&CVDIR_FRONT)-CVDIR_FEQUAL) * ((nge->dir&CVDIR_REAR)-CVDIR_REQUAL) < 0 )
+ goto try_flatone;
+
+ if( fcrossraysge(ge, nge, NULL, NULL, NULL) )
+ gex->flags |= GEXF_JGOOD;
+
+try_flatone:
+ /* look if they can be joined by flatting out one of the entries */
+
+ /* at this point we know that the general direction of the
+ * gentries is OK
+ */
+
+ if( gex->flags & GEXF_FLAT ) {
+ tge = *ge;
+ tge.fx1 = tge.fx3;
+ tge.fy1 = tge.fy3;
+ fnormalizege(&tge);
+ if( fcrossraysge(&tge, nge, NULL, NULL, NULL) )
+ gex->flags |= GEXF_JFLAT|GEXF_JFLAT1;
+ }
+ if( ngex->flags & GEXF_FLAT ) {
+ tge = *nge;
+ tge.fx2 = ge->fx3;
+ tge.fy2 = ge->fy3;
+ fnormalizege(&tge);
+ if( fcrossraysge(ge, &tge, NULL, NULL, NULL) )
+ gex->flags |= GEXF_JFLAT|GEXF_JFLAT2;
+ }
+
+try_idealone:
+ /* look if one of the entries can be brought to an idealized
+ * horizontal or vertical position and then joined
+ */
+ if( gex->flags & GEXF_HOR && gex->isd[X]*ngex->isd[X]>=0 ) {
+ tge = *ge;
+ tge.fx1 = tge.fx3;
+ tge.fy1 = ge->prev->fy3; /* force horizontal */
+ fnormalizege(&tge);
+ if( fcrossraysge(&tge, nge, NULL, NULL, NULL) )
+ gex->flags |= GEXF_JID|GEXF_JID1;
+ } else if( gex->flags & GEXF_VERT && gex->isd[Y]*ngex->isd[Y]>=0 ) {
+ tge = *ge;
+ tge.fx1 = ge->prev->fx3; /* force vertical */
+ tge.fy1 = tge.fy3;
+ fnormalizege(&tge);
+ if( fcrossraysge(&tge, nge, NULL, NULL, NULL) )
+ gex->flags |= GEXF_JID|GEXF_JID1;
+ }
+ if( ngex->flags & GEXF_HOR && gex->isd[X]*ngex->isd[X]>=0 ) {
+ tge = *nge;
+ tge.fx2 = ge->fx3;
+ tge.fy2 = nge->fy3; /* force horizontal */
+ fnormalizege(&tge);
+ if( fcrossraysge(ge, &tge, NULL, NULL, NULL) )
+ gex->flags |= GEXF_JID|GEXF_JID2;
+ } else if( ngex->flags & GEXF_VERT && gex->isd[Y]*ngex->isd[Y]>=0 ) {
+ tge = *nge;
+ tge.fx2 = nge->fx3; /* force vertical */
+ tge.fy2 = ge->fy3;
+ fnormalizege(&tge);
+ if( fcrossraysge(ge, &tge, NULL, NULL, NULL) )
+ gex->flags |= GEXF_JID|GEXF_JID2;
+ }
+
+try_flatboth:
+ /* look if we can change them to one line */
+ if(gex->flags & GEXF_FLAT && ngex->flags & GEXF_FLAT) {
+ for(i=0; i<2; i++) {
+ dots[0][i] = ge->prev->fpoints[i][2];
+ dots[1][i] = nge->fpoints[i][2];
+ dots[2][i] = ge->fpoints[i][2];
+ }
+ if( fdotsegdist2(dots, dots[2]) <= CVEPS2)
+ gex->flags |= GEXF_JLINE;
+ }
+}
+
+/*
+ * Force conciseness of one contour in the glyph,
+ * the contour is indicated by one entry from it.
+ */
+
+static void
+fconcisecontour(
+ GLYPH *g,
+ GENTRY *startge
+)
+{
+/* initial maximal number of dots to be used as reference */
+#define MAXDOTS ((NREFDOTS+1)*12)
+
+ GENTRY *ge, *pge, *nge, *ige;
+ GEX_CON *gex, *pgex, *ngex, *nngex;
+ GENTRY tpge, tnge;
+ int quad, qq, i, j, ndots, maxdots;
+ int found[2];
+ int joinmask, pflag, nflag;
+ struct dot_dist *dots;
+ double avsd2, maxd2, eps2;
+ double apcv[4][2];
+
+ if(startge == 0) {
+ fprintf(stderr, "WARNING: assertion in %s line %d, please report it to the ttf2pt1 project\n",
+ __FILE__, __LINE__);
+ fprintf(stderr, "Strange contour in glyph %s\n", g->name);
+ dumppaths(g, NULL, NULL);
+ return;
+ }
+
+ if(startge->type != GE_CURVE && startge->type != GE_LINE)
+ return; /* probably a degenerate contour */
+
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "processing contour 0x%p of glyph %s\n", startge, g->name);
+
+ maxdots = MAXDOTS;
+ dots = (struct dot_dist *)malloc(sizeof(*dots)*maxdots);
+ if(dots == NULL) {
+ fprintf (stderr, "****malloc failed %s line %d\n", __FILE__, __LINE__);
+ exit(255);
+ }
+
+ ge = startge;
+ joinmask = GEXF_JGOOD;
+ while(1) {
+ restart:
+ gex = X_CON(ge);
+ if((gex->flags & GEXF_JMASK) > ((joinmask<<1)-1)) {
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "found higher flag (%x>%x) at 0x%p\n",
+ gex->flags & GEXF_JMASK, ((joinmask<<1)-1), ge);
+ joinmask <<= 1;
+ startge = ge; /* have to redo the pass */
+ continue;
+ }
+ if(( gex->flags & joinmask )==0)
+ goto next;
+
+ /* if we happen to be in the middle of a string of
+ * joinable entries, find its beginning
+ */
+ if( gex->flags & (GEXF_JCVMASK^GEXF_JID) )
+ quad = gex->flags & X_CON_F(ge->frwd) & GEXF_QMASK;
+ else if( gex->flags & GEXF_JID2 )
+ quad = gex->flags & GEXF_QFROM_IDEAL(X_CON_F(ge->frwd)) & GEXF_QMASK;
+ else /* must be GEXF_JID1 */
+ quad = GEXF_QFROM_IDEAL(gex->flags) & X_CON_F(ge->frwd) & GEXF_QMASK;
+
+ pge = ge;
+ pgex = X_CON(pge->bkwd);
+
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "ge %p prev -> 0x%p ", ge, pge);
+
+ while(pgex->flags & GEXF_JCVMASK) {
+ if( !(pgex->flags & ((GEXF_JCVMASK^GEXF_JID)|GEXF_JID2)) )
+ qq = GEXF_QFROM_IDEAL(pgex->flags);
+ else
+ qq = pgex->flags & GEXF_QMASK;
+
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "(%x?%x)", quad, qq);
+
+ if( !(quad & qq) ) {
+ if( !(X_CON_F(pge) & (GEXF_JCVMASK^GEXF_JID))
+ && pgex->flags & (GEXF_JCVMASK^GEXF_JID) ) {
+ /* the previos entry is definitely a better match */
+ if(pge == ge) {
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "\nprev is a better match at %p\n", pge);
+ startge = ge;
+ goto next;
+ } else
+ pge = pge->frwd;
+ }
+ break;
+ }
+
+ quad &= qq;
+ pge = pge->bkwd;
+ pgex = X_CON(pge->bkwd);
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "0x%p ", pge);
+ }
+
+ /* collect as many entries for joining as possible */
+ nge = ge->frwd;
+ ngex = X_CON(nge);
+ nngex = X_CON(nge->frwd);
+
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, ": 0x%x\nnext -> 0x%p ", pge, nge);
+
+ while(ngex->flags & GEXF_JCVMASK) {
+ if( !(ngex->flags & ((GEXF_JCVMASK^GEXF_JID)|GEXF_JID1)) )
+ qq = GEXF_QFROM_IDEAL(nngex->flags);
+ else
+ qq = nngex->flags & GEXF_QMASK;
+
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "(%x?%x)", quad, qq);
+ if( !(quad & qq) ) {
+ if( !(X_CON_F(nge->bkwd) & (GEXF_JCVMASK^GEXF_JID))
+ && ngex->flags & (GEXF_JCVMASK^GEXF_JID) ) {
+ /* the next-next entry is definitely a better match */
+ if(nge == ge->frwd) {
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "\nnext %x is a better match than %x at %p (jmask %x)\n",
+ ngex->flags & GEXF_JCVMASK, gex->flags & GEXF_JCVMASK, nge, joinmask);
+ goto next;
+ } else
+ nge = nge->bkwd;
+ }
+ break;
+ }
+
+ quad &= qq;
+ nge = nge->frwd;
+ ngex = nngex;
+ nngex = X_CON(nge->frwd);
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "0x%p ", nge);
+ }
+
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, ": 0x%x\n", nge);
+
+ /* XXX add splitting of last entries if neccessary */
+
+ /* make sure that all the reference dots are valid */
+ for(ige = pge; ige != nge->frwd; ige = ige->frwd) {
+ nngex = X_CON(ige);
+ if( !(nngex->flags & GEXF_VDOTS) ) {
+ fsampledots(ige, nngex->dots, NREFDOTS);
+ nngex->flags |= GEXF_VDOTS;
+ }
+ }
+
+ /* do the actual joining */
+ while(1) {
+ pgex = X_CON(pge);
+ ngex = X_CON(nge->bkwd);
+ /* now the segments to be joined are pge...nge */
+
+ ndots = 0;
+ for(ige = pge; ige != nge->frwd; ige = ige->frwd) {
+ if(maxdots < ndots+(NREFDOTS+1)) {
+ maxdots += MAXDOTS;
+ dots = (struct dot_dist *)realloc((void *)dots, sizeof(*dots)*maxdots);
+ if(dots == NULL) {
+ fprintf (stderr, "****malloc failed %s line %d\n", __FILE__, __LINE__);
+ exit(255);
+ }
+ }
+ nngex = X_CON(ige);
+ for(i=0; i<NREFDOTS; i++) {
+ for(j=0; j<2; j++)
+ dots[ndots].p[j] = nngex->dots[i][j];
+ ndots++;
+ }
+ for(j=0; j<2; j++)
+ dots[ndots].p[j] = ige->fpoints[j][2];
+ ndots++;
+ }
+ ndots--; /* the last point is not interesting */
+
+ tpge = *pge;
+ pflag = pgex->flags;
+ if(pflag & (GEXF_JGOOD|GEXF_JFLAT2|GEXF_JID2)) {
+ /* nothing */
+ } else if(pflag & GEXF_JFLAT) {
+ tpge.fx1 = tpge.fx3;
+ tpge.fy1 = tpge.fy3;
+ } else if(pflag & GEXF_JID) {
+ if(pflag & GEXF_HOR)
+ tpge.fy1 = tpge.bkwd->fy3;
+ else
+ tpge.fx1 = tpge.bkwd->fx3;
+ }
+
+ tnge = *nge;
+ nflag = ngex->flags;
+ if(nflag & (GEXF_JGOOD|GEXF_JFLAT1|GEXF_JID)
+ && !(nflag & GEXF_JID2)) {
+ /* nothing */
+ } else if(nflag & GEXF_JFLAT) {
+ tnge.fx2 = tnge.bkwd->fx3;
+ tnge.fy2 = tnge.bkwd->fy3;
+ } else if(nflag & GEXF_JID) {
+ if(X_CON_F(nge) & GEXF_HOR)
+ tnge.fy2 = tnge.fy3;
+ else
+ tnge.fx2 = tnge.fx3;
+ }
+
+ fnormalizege(&tpge);
+ fnormalizege(&tnge);
+ if( fcrossraysge(&tpge, &tnge, NULL, NULL, &apcv[1]) ) {
+ apcv[0][X] = tpge.bkwd->fx3;
+ apcv[0][Y] = tpge.bkwd->fy3;
+ /* apcv[1] and apcv[2] were filled by fcrossraysge() */
+ apcv[3][X] = tnge.fx3;
+ apcv[3][Y] = tnge.fy3;
+
+ /* calculate the precision depending on the smaller dimension of the curve */
+ maxd2 = apcv[3][X]-apcv[0][X];
+ maxd2 *= maxd2;
+ eps2 = apcv[3][Y]-apcv[0][Y];
+ eps2 *= eps2;
+ if(maxd2 < eps2)
+ eps2 = maxd2;
+ eps2 *= (CVEPS2*4.) / (400.*400.);
+ if(eps2 < CVEPS2)
+ eps2 = CVEPS2;
+ else if(eps2 > CVEPS2*4.)
+ eps2 = CVEPS2*4.;
+
+ fapproxcurve(apcv, dots, ndots);
+
+ avsd2 = fdotcurvdist2(apcv, dots, ndots, &maxd2);
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "avsd = %g, maxd = %g, ", sqrt(avsd2), sqrt(maxd2));
+ if(avsd2 <= eps2 && maxd2 <= eps2*2.) {
+ /* we've guessed a curve that is close enough */
+ ggoodcv++; ggoodcvdots += ndots;
+
+ if(ISDBG(FCONCISE)) {
+ fprintf(stderr, "in %s joined %p-%p to ", g->name, pge, nge);
+ for(i=0; i<4; i++) {
+ fprintf(stderr, " (%g, %g)", apcv[i][X], apcv[i][Y]);
+ }
+ fprintf(stderr, " from\n");
+ dumppaths(g, pge, nge);
+ }
+ for(i=0; i<3; i++) {
+ pge->fxn[i] = apcv[i+1][X];
+ pge->fyn[i] = apcv[i+1][Y];
+ }
+ pge->type = GE_CURVE;
+ ge = pge;
+ for(ige = pge->frwd; ; ige = pge->frwd) {
+ if(ige == pge) {
+ fprintf(stderr, "WARNING: assertion in %s line %d, please report it to the ttf2pt1 project\n",
+ __FILE__, __LINE__);
+ free(dots);
+ return;
+ }
+ if(startge == ige)
+ startge = pge;
+ free(ige->ext);
+ freethisge(ige);
+ if(ige == nge)
+ break;
+ }
+ fnormalizege(ge);
+ if(ISDBG(FCONCISE)) {
+ fprintf(stderr, "normalized ");
+ for(i=0; i<3; i++) {
+ fprintf(stderr, " (%g, %g)", ge->fpoints[X][i], ge->fpoints[Y][i]);
+ }
+ fprintf(stderr, "\n");
+ }
+ fanalyzege(ge);
+ fanalyzejoint(ge);
+ fanalyzege(ge->bkwd);
+ fanalyzejoint(ge->bkwd);
+
+ /* the results of this join will have to be reconsidered */
+ startge = ge = ge->frwd;
+ goto restart;
+ } else {
+ gbadcv++; gbadcvdots += ndots;
+ }
+ }
+
+ /* if we're down to 2 entries then the join has failed */
+ if(pge->frwd == nge) {
+ pgex->flags &= ~joinmask;
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "no match\n");
+ goto next;
+ }
+
+ /* reduce the number of entries by dropping one at some end,
+ * should never drop the original ge from the range
+ */
+
+ if(nge->bkwd == ge
+ || (pge != ge && (pgex->flags & GEXF_JCVMASK) <= (ngex->flags & GEXF_JCVMASK)) ) {
+ pge = pge->frwd;
+ } else {
+ nge = nge->bkwd;
+ }
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "next try: %p to %p\n", pge, nge);
+ }
+
+next:
+ ge = ge->frwd;
+ if(ge == startge) {
+ joinmask = (joinmask >> 1) & GEXF_JCVMASK;
+ if(joinmask == 0)
+ break;
+ }
+ }
+
+ /* join flat segments into lines */
+ /* here ge==startge */
+ while(1) {
+ gex = X_CON(ge);
+ if( !(gex->flags & GEXF_JLINE) )
+ goto next2;
+
+ ndots = 0;
+ dots[ndots].p[X] = ge->fx3;
+ dots[ndots].p[Y] = ge->fy3;
+ ndots++;
+
+ pge = ge->bkwd;
+ nge = ge->frwd;
+
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "joining LINE from %p-%p\n", ge, nge);
+
+ while(pge!=nge) {
+ pgex = X_CON(pge);
+ ngex = X_CON(nge);
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "(p=%p/%x n=0x%x/%x) ", pge, pgex->flags & GEXF_JLINE,
+ nge, ngex->flags & GEXF_JLINE);
+ if( !((pgex->flags | ngex->flags) & GEXF_JLINE) ) {
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "(end p=%p n=%p) ", pge, nge);
+ break;
+ }
+
+ if(maxdots < ndots+2) {
+ maxdots += MAXDOTS;
+ dots = (struct dot_dist *)realloc((void *)dots, sizeof(*dots)*maxdots);
+ if(dots == NULL) {
+ fprintf (stderr, "****malloc failed %s line %d\n", __FILE__, __LINE__);
+ exit(255);
+ }
+ }
+ if( pgex->flags & GEXF_JLINE ) {
+ for(i=0; i<2; i++) {
+ apcv[0][i] = pge->bkwd->fpoints[i][2];
+ apcv[1][i] = nge->fpoints[i][2];
+ dots[ndots].p[i] = pge->fpoints[i][2];
+ }
+ ndots++;
+ for(i=0; i<ndots; i++) {
+ avsd2 = fdotsegdist2(apcv, dots[i].p);
+ if(avsd2 > CVEPS2)
+ break;
+ }
+ if(i<ndots) { /* failed to join */
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "failed to join prev %p ", pge);
+ ndots--;
+ pgex->flags &= ~GEXF_JLINE;
+ } else {
+ pge = pge->bkwd;
+ if(pge == nge) {
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "intersected at prev %p ", pge);
+ break; /* oops, tried to self-intersect */
+ }
+ }
+ } else if(ISDBG(FCONCISE))
+ fprintf(stderr, "(p=%p) ", pge);
+
+ if( ngex->flags & GEXF_JLINE ) {
+ for(i=0; i<2; i++) {
+ apcv[0][i] = pge->fpoints[i][2]; /* pge points before the 1st segment */
+ apcv[1][i] = nge->frwd->fpoints[i][2];
+ dots[ndots].p[i] = nge->fpoints[i][2];
+ }
+ ndots++;
+ for(i=0; i<ndots; i++) {
+ avsd2 = fdotsegdist2(apcv, dots[i].p);
+ if(avsd2 > CVEPS2)
+ break;
+ }
+ if(i<ndots) { /* failed to join */
+ if(ISDBG(FCONCISE))
+ fprintf(stderr, "failed to join next %p ", nge->frwd);
+ ndots--;
+ ngex->flags &= ~GEXF_JLINE;
+ } else {
+ nge = nge->frwd;
+ }
+ } else if(ISDBG(FCONCISE))
+ fprintf(stderr, "(n=%p) ", nge);
+ }
+
+ pge = pge->frwd; /* now the limits are pge...nge inclusive */
+ if(pge == nge) /* a deeply perversive contour */
+ break;
+
+ if(ISDBG(FCONCISE)) {
+ fprintf(stderr, "\nin %s joined LINE %p-%p from\n", g->name, pge, nge);
+ dumppaths(g, pge, nge);
+ }
+ pge->type = GE_LINE;
+ for(i=0; i<2; i++) {
+ pge->fpoints[i][2] = nge->fpoints[i][2];
+ }
+ fnormalizege(pge);
+ X_CON_F(pge) &= ~GEXF_JLINE;
+
+ ge = pge;
+ for(ige = pge->frwd; ; ige = pge->frwd) {
+ if(ige == pge) {
+ fprintf(stderr, "WARNING: assertion in %s line %d, please report it to the ttf2pt1 project\n",
+ __FILE__, __LINE__);
+ free(dots);
+ return;
+ }
+ if(startge == ige)
+ startge = pge;
+ free(ige->ext);
+ freethisge(ige);
+ if(ige == nge)
+ break;
+ }
+next2:
+ ge = ge->frwd;
+ if(ge == startge)
+ break;
+ }
+
+ free(dots);
+}
+
+/* force conciseness: substitute 2 or more curves going in the
+** same quadrant with one curve
+** in floating point
+*/
+
+void
+fforceconcise(
+ GLYPH * g
+)
+{
+
+ GENTRY *ge, *nge, *endge, *xge;
+
+ assertisfloat(g, "enforcing conciseness");
+
+ fdelsmall(g, 0.05);
+ assertpath(g->entries, __FILE__, __LINE__, g->name);
+
+ if(ISDBG(FCONCISE))
+ dumppaths(g, NULL, NULL);
+
+ /* collect more information about each gentry and their joints */
+ for (ge = g->entries; ge != 0; ge = ge->next)
+ if (ge->type == GE_CURVE || ge->type == GE_LINE)
+ fnormalizege(ge);
+
+ for (ge = g->entries; ge != 0; ge = ge->next)
+ if (ge->type == GE_CURVE || ge->type == GE_LINE) {
+ alloc_gex_con(ge);
+ fanalyzege(ge);
+ }
+
+ /* see what we can do about joining */
+ for (ge = g->entries; ge != 0; ge = ge->next)
+ if (ge->type == GE_CURVE || ge->type == GE_LINE)
+ fanalyzejoint(ge);
+
+ /* now do the joining */
+ for (ge = g->entries; ge != 0; ge = ge->next)
+ if(ge->type == GE_MOVE)
+ fconcisecontour(g, ge->next);
+
+ for (ge = g->entries; ge != 0; ge = ge->next)
+ if (ge->type == GE_CURVE || ge->type == GE_LINE)
+ free(ge->ext);
+}
+
+void
+print_glyph(
+ int glyphno
+)
+{
+ GLYPH *g;
+ GENTRY *ge;
+ int x = 0, y = 0;
+ int i;
+ int grp, lastgrp= -1;
+
+ if(ISDBG(FCONCISE) && glyphno == 0) {
+ fprintf(stderr, "Guessed curves: bad %d/%d good %d/%d\n",
+ gbadcv, gbadcvdots, ggoodcv, ggoodcvdots);
+ }
+
+ g = &glyph_list[glyphno];
+
+ fprintf(pfa_file, "/%s { \n", g->name);
+
+ /* consider widths >MAXLEGALWIDTH as bugs */
+ if( g->scaledwidth <= MAXLEGALWIDTH ) {
+ fprintf(pfa_file, "0 %d hsbw\n", g->scaledwidth);
+ } else {
+ fprintf(pfa_file, "0 1000 hsbw\n");
+ WARNING_2 fprintf(stderr, "glyph %s: width %d seems to be buggy, set to 1000\n",
+ g->name, g->scaledwidth);
+ }
+
+#if 0
+ fprintf(pfa_file, "%% contours: ");
+ for (i = 0; i < g->ncontours; i++)
+ fprintf(pfa_file, "%s(%d,%d) ", (g->contours[i].direction == DIR_OUTER ? "out" : "in"),
+ g->contours[i].xofmin, g->contours[i].ymin);
+ fprintf(pfa_file, "\n");
+
+ if (g->rymin < 5000)
+ fprintf(pfa_file, "%d lower%s\n", g->rymin, (g->flatymin ? "flat" : "curve"));
+ if (g->rymax > -5000)
+ fprintf(pfa_file, "%d upper%s\n", g->rymax, (g->flatymax ? "flat" : "curve"));
+#endif
+
+ if (g->hstems)
+ for (i = 0; i < g->nhs; i += 2) {
+ if (g->hstems[i].flags & ST_3) {
+ fprintf(pfa_file, "%d %d %d %d %d %d hstem3\n",
+ g->hstems[i].value,
+ g->hstems[i + 1].value - g->hstems[i].value,
+ g->hstems[i + 2].value,
+ g->hstems[i + 3].value - g->hstems[i + 2].value,
+ g->hstems[i + 4].value,
+ g->hstems[i + 5].value - g->hstems[i + 4].value
+ );
+ i += 4;
+ } else {
+ fprintf(pfa_file, "%d %d hstem\n", g->hstems[i].value,
+ g->hstems[i + 1].value - g->hstems[i].value);
+ }
+ }
+
+ if (g->vstems)
+ for (i = 0; i < g->nvs; i += 2) {
+ if (g->vstems[i].flags & ST_3) {
+ fprintf(pfa_file, "%d %d %d %d %d %d vstem3\n",
+ g->vstems[i].value,
+ g->vstems[i + 1].value - g->vstems[i].value,
+ g->vstems[i + 2].value,
+ g->vstems[i + 3].value - g->vstems[i + 2].value,
+ g->vstems[i + 4].value,
+ g->vstems[i + 5].value - g->vstems[i + 4].value
+ );
+ i += 4;
+ } else {
+ fprintf(pfa_file, "%d %d vstem\n", g->vstems[i].value,
+ g->vstems[i + 1].value - g->vstems[i].value);
+ }
+ }
+
+ for (ge = g->entries; ge != 0; ge = ge->next) {
+ if(g->nsg>0) {
+ grp=ge->stemid;
+ if(grp >= 0 && grp != lastgrp) {
+ fprintf(pfa_file, "%d 4 callsubr\n", grp+g->firstsubr);
+ lastgrp=grp;
+ }
+ }
+
+ switch (ge->type) {
+ case GE_MOVE:
+ if (absolute)
+ fprintf(pfa_file, "%d %d amoveto\n", ge->ix3, ge->iy3);
+ else
+ rmoveto(ge->ix3 - x, ge->iy3 - y);
+ if (0)
+ fprintf(stderr, "Glyph %s: print moveto(%d, %d)\n",
+ g->name, ge->ix3, ge->iy3);
+ x = ge->ix3;
+ y = ge->iy3;
+ break;
+ case GE_LINE:
+ if (absolute)
+ fprintf(pfa_file, "%d %d alineto\n", ge->ix3, ge->iy3);
+ else
+ rlineto(ge->ix3 - x, ge->iy3 - y);
+ x = ge->ix3;
+ y = ge->iy3;
+ break;
+ case GE_CURVE:
+ if (absolute)
+ fprintf(pfa_file, "%d %d %d %d %d %d arcurveto\n",
+ ge->ix1, ge->iy1, ge->ix2, ge->iy2, ge->ix3, ge->iy3);
+ else
+ rrcurveto(ge->ix1 - x, ge->iy1 - y,
+ ge->ix2 - ge->ix1, ge->iy2 - ge->iy1,
+ ge->ix3 - ge->ix2, ge->iy3 - ge->iy2);
+ x = ge->ix3;
+ y = ge->iy3;
+ break;
+ case GE_PATH:
+ closepath();
+ break;
+ default:
+ WARNING_1 fprintf(stderr, "**** Glyph %s: unknown entry type '%c'\n",
+ g->name, ge->type);
+ break;
+ }
+ }
+
+ fprintf(pfa_file, "endchar } ND\n");
+}
+
+/* print the subroutines for this glyph, returns the number of them */
+int
+print_glyph_subs(
+ int glyphno,
+ int startid /* start numbering subroutines from this id */
+)
+{
+ GLYPH *g;
+ int i, grp;
+
+ g = &glyph_list[glyphno];
+
+ if(!hints || !subhints || g->nsg<1)
+ return 0;
+
+ g->firstsubr=startid;
+
+#if 0
+ fprintf(pfa_file, "%% %s %d\n", g->name, g->nsg);
+#endif
+ for(grp=0; grp<g->nsg; grp++) {
+ fprintf(pfa_file, "dup %d {\n", startid++);
+ for(i= (grp==0)? 0 : g->nsbs[grp-1]; i<g->nsbs[grp]; i++)
+ fprintf(pfa_file, "\t%d %d %cstem\n", g->sbstems[i].low,
+ g->sbstems[i].high-g->sbstems[i].low,
+ g->sbstems[i].isvert ? 'v' : 'h');
+ fprintf(pfa_file, "\treturn\n\t} NP\n");
+ }
+
+ return g->nsg;
+}
+
+void
+print_glyph_metrics(
+ int code,
+ int glyphno
+)
+{
+ GLYPH *g;
+
+ g = &glyph_list[glyphno];
+
+ if(transform)
+ fprintf(afm_file, "C %d ; WX %d ; N %s ; B %d %d %d %d ;\n",
+ code, g->scaledwidth, g->name,
+ iscale(g->xMin), iscale(g->yMin), iscale(g->xMax), iscale(g->yMax));
+ else
+ fprintf(afm_file, "C %d ; WX %d ; N %s ; B %d %d %d %d ;\n",
+ code, g->scaledwidth, g->name,
+ g->xMin, g->yMin, g->xMax, g->yMax);
+}
+
+/*
+ SB:
+ An important note about the BlueValues.
+
+ The Adobe documentation says that the maximal width of a Blue zone
+ is connected to the value of BlueScale, which is by default 0.039625.
+ The BlueScale value defines, at which point size the overshoot
+ suppression be disabled.
+
+ The formula for it that is given in the manual is:
+
+ BlueScale=point_size/240, for a 300dpi device
+
+ that makes us wonder what is this 240 standing for. Incidentally
+ 240=72*1000/300, where 72 is the relation between inches and points,
+ 1000 is the size of the glyph matrix, and 300dpi is the resolution of
+ the output device. Knowing that we can recalculate the formula for
+ the font size in pixels rather than points:
+
+ BlueScale=pixel_size/1000
+
+ That looks a lot simpler than the original formula, does not it ?
+ And the limitation about the maximal width of zone also looks
+ a lot simpler after the transformation:
+
+ max_width < 1000/pixel_size
+
+ that ensures that even at the maximal pixel size when the overshoot
+ suppression is disabled the zone width will be less than one pixel.
+ This is important, failure to comply to this limit will result in
+ really ugly fonts (been there, done that). But knowing the formula
+ for the pixel width, we see that in fact we can use the maximal width
+ of 24, not 23 as specified in the manual.
+
+*/
+
+#define MAXBLUEWIDTH (24)
+
+/*
+ * Find the indexes of the most frequent values
+ * in the hystogram, sort them in ascending order, and save which one
+ * was the best one (if asked).
+ * Returns the number of values found (may be less than maximal because
+ * we ignore the zero values)
+ */
+
+#define MAXHYST (2000) /* size of the hystogram */
+#define HYSTBASE 500
+
+static int
+besthyst(
+ int *hyst, /* the hystogram */
+ int base, /* the base point of the hystogram */
+ int *best, /* the array for indexes of best values */
+ int nbest, /* its allocated size */
+ int width, /* minimal difference between indexes */
+ int *bestindp /* returned top point */
+)
+{
+ unsigned char hused[MAXHYST / 8 + 1];
+ int i, max, j, w, last = 0;
+ int nf = 0;
+
+ width--;
+
+ memset(hused, 0 , sizeof hused);
+
+ max = 1;
+ for (i = 0; i < nbest && max != 0; i++) {
+ best[i] = 0;
+ max = 0;
+ for (j = 1; j < MAXHYST - 1; j++) {
+ w = hyst[j];
+
+ if (w > max && (hused[j>>3] & (1 << (j & 0x07))) == 0) {
+ best[i] = j;
+ max = w;
+ }
+ }
+ if (max != 0) {
+ if (max < last/2) {
+ /* do not pick the too low values */
+ break;
+ }
+ for (j = best[i] - width; j <= best[i] + width; j++) {
+ if (j >= 0 && j < MAXHYST)
+ hused[j >> 3] |= (1 << (j & 0x07));
+ }
+ last = max;
+ best[i] -= base;
+ nf = i + 1;
+ }
+ }
+
+ if (bestindp)
+ *bestindp = best[0];
+
+ /* sort the indexes in ascending order */
+ for (i = 0; i < nf; i++) {
+ for (j = i + 1; j < nf; j++)
+ if (best[j] < best[i]) {
+ w = best[i];
+ best[i] = best[j];
+ best[j] = w;
+ }
+ }
+
+ return nf;
+}
+
+/*
+ * Find the next best Blue zone in the hystogram.
+ * Return the weight of the found zone.
+ */
+
+static int
+bestblue(
+ short *zhyst, /* the zones hystogram */
+ short *physt, /* the points hystogram */
+ short *ozhyst, /* the other zones hystogram */
+ int *bluetab /* where to put the found zone */
+)
+{
+ int i, j, w, max, ind, first, last;
+
+ /* find the highest point in the zones hystogram */
+ /* if we have a plateau, take its center */
+ /* if we have multiple peaks, take the first one */
+
+ max = -1;
+ first = last = -10;
+ for (i = 0; i <= MAXHYST - MAXBLUEWIDTH; i++) {
+ w = zhyst[i];
+ if (w > max) {
+ first = last = i;
+ max = w;
+ } else if (w == max) {
+ if (last == i - 1)
+ last = i;
+ }
+ }
+ ind = (first + last) / 2;
+
+ if (max == 0) /* no zones left */
+ return 0;
+
+ /* now we reuse `first' and `last' as inclusive borders of the zone */
+ first = ind;
+ last = ind + (MAXBLUEWIDTH - 1);
+
+ /* our maximal width is far too big, so we try to make it narrower */
+ w = max;
+ j = (w & 1); /* a pseudo-random bit */
+ while (1) {
+ while (physt[first] == 0)
+ first++;
+ while (physt[last] == 0)
+ last--;
+ if (last - first < (MAXBLUEWIDTH * 2 / 3) || (max - w) * 10 > max)
+ break;
+
+ if (physt[first] < physt[last]
+ || (physt[first] == physt[last] && j)) {
+ if (physt[first] * 20 > w) /* if weight is >5%,
+ * stop */
+ break;
+ w -= physt[first];
+ first++;
+ j = 0;
+ } else {
+ if (physt[last] * 20 > w) /* if weight is >5%,
+ * stop */
+ break;
+ w -= physt[last];
+ last--;
+ j = 1;
+ }
+ }
+
+ /* save our zone */
+ bluetab[0] = first - HYSTBASE;
+ bluetab[1] = last - HYSTBASE;
+
+ /* invalidate all the zones overlapping with this one */
+ /* the constant of 2 is determined by the default value of BlueFuzz */
+ for (i = first - (MAXBLUEWIDTH - 1) - 2; i <= last + 2; i++)
+ if (i >= 0 && i < MAXHYST) {
+ zhyst[i] = 0;
+ ozhyst[i] = 0;
+ }
+ return w;
+}
+
+/*
+ * Try to find the Blue Values, bounding box and italic angle
+ */
+
+void
+findblues(void)
+{
+ /* hystograms for upper and lower zones */
+ short hystl[MAXHYST];
+ short hystu[MAXHYST];
+ short zuhyst[MAXHYST];
+ short zlhyst[MAXHYST];
+ int nchars;
+ int i, j, k, w, max;
+ GENTRY *ge;
+ GLYPH *g;
+ double ang;
+
+ /* find the lowest and highest points of glyphs */
+ /* and by the way build the values for FontBBox */
+ /* and build the hystogram for the ItalicAngle */
+
+ /* re-use hystl for the hystogram of italic angle */
+
+ bbox[0] = bbox[1] = 5000;
+ bbox[2] = bbox[3] = -5000;
+
+ for (i = 0; i < MAXHYST; i++)
+ hystl[i] = 0;
+
+ nchars = 0;
+
+ for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+ if (g->flags & GF_USED) {
+ nchars++;
+
+ g->rymin = 5000;
+ g->rymax = -5000;
+ for (ge = g->entries; ge != 0; ge = ge->next) {
+ if (ge->type == GE_LINE) {
+
+ j = ge->iy3 - ge->prev->iy3;
+ k = ge->ix3 - ge->prev->ix3;
+ if (j > 0)
+ ang = atan2(-k, j) * 180.0 / M_PI;
+ else
+ ang = atan2(k, -j) * 180.0 / M_PI;
+
+ k /= 100;
+ j /= 100;
+ if (ang > -45.0 && ang < 45.0) {
+ /*
+ * be careful to not overflow
+ * the counter
+ */
+ hystl[HYSTBASE + (int) (ang * 10.0)] += (k * k + j * j) / 4;
+ }
+ if (ge->iy3 == ge->prev->iy3) {
+ if (ge->iy3 <= g->rymin) {
+ g->rymin = ge->iy3;
+ g->flatymin = 1;
+ }
+ if (ge->iy3 >= g->rymax) {
+ g->rymax = ge->iy3;
+ g->flatymax = 1;
+ }
+ } else {
+ if (ge->iy3 < g->rymin) {
+ g->rymin = ge->iy3;
+ g->flatymin = 0;
+ }
+ if (ge->iy3 > g->rymax) {
+ g->rymax = ge->iy3;
+ g->flatymax = 0;
+ }
+ }
+ } else if (ge->type == GE_CURVE) {
+ if (ge->iy3 < g->rymin) {
+ g->rymin = ge->iy3;
+ g->flatymin = 0;
+ }
+ if (ge->iy3 > g->rymax) {
+ g->rymax = ge->iy3;
+ g->flatymax = 0;
+ }
+ }
+ if (ge->type == GE_LINE || ge->type == GE_CURVE) {
+ if (ge->ix3 < bbox[0])
+ bbox[0] = ge->ix3;
+ if (ge->ix3 > bbox[2])
+ bbox[2] = ge->ix3;
+ if (ge->iy3 < bbox[1])
+ bbox[1] = ge->iy3;
+ if (ge->iy3 > bbox[3])
+ bbox[3] = ge->iy3;
+ }
+ }
+ }
+ }
+
+ /* get the most popular angle */
+ max = 0;
+ w = 0;
+ for (i = 0; i < MAXHYST; i++) {
+ if (hystl[i] > w) {
+ w = hystl[i];
+ max = i;
+ }
+ }
+ ang = (double) (max - HYSTBASE) / 10.0;
+ WARNING_2 fprintf(stderr, "Guessed italic angle: %f\n", ang);
+ if (italic_angle == 0.0)
+ italic_angle = ang;
+
+ /* build the hystogram of the lower points */
+ for (i = 0; i < MAXHYST; i++)
+ hystl[i] = 0;
+
+ for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+ if ((g->flags & GF_USED)
+ && g->rymin + HYSTBASE >= 0 && g->rymin < MAXHYST - HYSTBASE) {
+ hystl[g->rymin + HYSTBASE]++;
+ }
+ }
+
+ /* build the hystogram of the upper points */
+ for (i = 0; i < MAXHYST; i++)
+ hystu[i] = 0;
+
+ for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+ if ((g->flags & GF_USED)
+ && g->rymax + HYSTBASE >= 0 && g->rymax < MAXHYST - HYSTBASE) {
+ hystu[g->rymax + HYSTBASE]++;
+ }
+ }
+
+ /* build the hystogram of all the possible lower zones with max width */
+ for (i = 0; i < MAXHYST; i++)
+ zlhyst[i] = 0;
+
+ for (i = 0; i <= MAXHYST - MAXBLUEWIDTH; i++) {
+ for (j = 0; j < MAXBLUEWIDTH; j++)
+ zlhyst[i] += hystl[i + j];
+ }
+
+ /* build the hystogram of all the possible upper zones with max width */
+ for (i = 0; i < MAXHYST; i++)
+ zuhyst[i] = 0;
+
+ for (i = 0; i <= MAXHYST - MAXBLUEWIDTH; i++) {
+ for (j = 0; j < MAXBLUEWIDTH; j++)
+ zuhyst[i] += hystu[i + j];
+ }
+
+ /* find the baseline */
+ w = bestblue(zlhyst, hystl, zuhyst, &bluevalues[0]);
+ if (0)
+ fprintf(stderr, "BaselineBlue zone %d%% %d...%d\n", w * 100 / nchars,
+ bluevalues[0], bluevalues[1]);
+
+ if (w == 0) /* no baseline, something weird */
+ return;
+
+ /* find the upper zones */
+ for (nblues = 2; nblues < 14; nblues += 2) {
+ w = bestblue(zuhyst, hystu, zlhyst, &bluevalues[nblues]);
+
+ if (0)
+ fprintf(stderr, "Blue zone %d%% %d...%d\n", w * 100 / nchars,
+ bluevalues[nblues], bluevalues[nblues+1]);
+
+ if (w * 20 < nchars)
+ break; /* don't save this zone */
+ }
+
+ /* find the lower zones */
+ for (notherb = 0; notherb < 10; notherb += 2) {
+ w = bestblue(zlhyst, hystl, zuhyst, &otherblues[notherb]);
+
+ if (0)
+ fprintf(stderr, "OtherBlue zone %d%% %d...%d\n", w * 100 / nchars,
+ otherblues[notherb], otherblues[notherb+1]);
+
+
+ if (w * 20 < nchars)
+ break; /* don't save this zone */
+ }
+
+}
+
+/*
+ * Find the actual width of the glyph and modify the
+ * description to reflect it. Not guaranteed to do
+ * any good, may make character spacing too wide.
+ */
+
+void
+docorrectwidth(void)
+{
+ int i;
+ GENTRY *ge;
+ GLYPH *g;
+ int xmin, xmax;
+ int maxwidth, minsp;
+
+ /* enforce this minimal spacing,
+ * we limit the amount of the enforced spacing to avoid
+ * spacing the bold wonts too widely
+ */
+ minsp = (stdhw>60 || stdhw<10)? 60 : stdhw;
+
+ for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+ g->oldwidth=g->scaledwidth; /* save the old width, will need for AFM */
+
+ if (correctwidth && g->flags & GF_USED) {
+ xmin = 5000;
+ xmax = -5000;
+ for (ge = g->entries; ge != 0; ge = ge->next) {
+ if (ge->type != GE_LINE && ge->type != GE_CURVE)
+ continue;
+
+ if (ge->ix3 <= xmin) {
+ xmin = ge->ix3;
+ }
+ if (ge->ix3 >= xmax) {
+ xmax = ge->ix3;
+ }
+ }
+
+ maxwidth=xmax+minsp;
+ if( g->scaledwidth < maxwidth ) {
+ g->scaledwidth = maxwidth;
+ WARNING_3 fprintf(stderr, "glyph %s: extended from %d to %d\n",
+ g->name, g->oldwidth, g->scaledwidth );
+ }
+ }
+ }
+
+}
+
+/*
+ * Try to find the typical stem widths
+ */
+
+void
+stemstatistics(void)
+{
+#define MINDIST 10 /* minimal distance between the widths */
+ int hyst[MAXHYST+MINDIST*2];
+ int best[12];
+ int i, j, k, w;
+ int nchars;
+ int ns;
+ STEM *s;
+ GLYPH *g;
+
+ /* start with typical stem width */
+
+ nchars=0;
+
+ /* build the hystogram of horizontal stem widths */
+ memset(hyst, 0, sizeof hyst);
+
+ for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+ if (g->flags & GF_USED) {
+ nchars++;
+ s = g->hstems;
+ for (j = 0; j < g->nhs; j += 2) {
+ if ((s[j].flags | s[j + 1].flags) & ST_END)
+ continue;
+ w = s[j + 1].value - s[j].value+1;
+ if(w==20) /* split stems should not be counted */
+ continue;
+ if (w > 0 && w < MAXHYST - 1) {
+ /*
+ * handle some fuzz present in
+ * converted fonts
+ */
+ hyst[w+MINDIST] += MINDIST-1;
+ for(k=1; k<MINDIST-1; k++) {
+ hyst[w+MINDIST + k] += MINDIST-1-k;
+ hyst[w+MINDIST - k] += MINDIST-1-k;
+ }
+ }
+ }
+ }
+ }
+
+ /* find 12 most frequent values */
+ ns = besthyst(hyst+MINDIST, 0, best, 12, MINDIST, &stdhw);
+
+ /* store data in stemsnaph */
+ for (i = 0; i < ns; i++)
+ stemsnaph[i] = best[i];
+ if (ns < 12)
+ stemsnaph[ns] = 0;
+
+ /* build the hystogram of vertical stem widths */
+ memset(hyst, 0, sizeof hyst);
+
+ for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+ if (g->flags & GF_USED) {
+ s = g->vstems;
+ for (j = 0; j < g->nvs; j += 2) {
+ if ((s[j].flags | s[j + 1].flags) & ST_END)
+ continue;
+ w = s[j + 1].value - s[j].value+1;
+ if (w > 0 && w < MAXHYST - 1) {
+ /*
+ * handle some fuzz present in
+ * converted fonts
+ */
+ hyst[w+MINDIST] += MINDIST-1;
+ for(k=1; k<MINDIST-1; k++) {
+ hyst[w+MINDIST + k] += MINDIST-1-k;
+ hyst[w+MINDIST - k] += MINDIST-1-k;
+ }
+ }
+ }
+ }
+ }
+
+ /* find 12 most frequent values */
+ ns = besthyst(hyst+MINDIST, 0, best, 12, MINDIST, &stdvw);
+
+ /* store data in stemsnaph */
+ for (i = 0; i < ns; i++)
+ stemsnapv[i] = best[i];
+ if (ns < 12)
+ stemsnapv[ns] = 0;
+
+#undef MINDIST
+}
+
+/*
+ * SB
+ * A funny thing: TTF paths are going in reverse direction compared
+ * to Type1. So after all (because the rest of logic uses TTF
+ * path directions) we have to reverse the paths.
+ *
+ * It was a big headache to discover that.
+ */
+
+/* works on both int and float paths */
+
+void
+reversepathsfromto(
+ GENTRY * from,
+ GENTRY * to
+)
+{
+ GENTRY *ge, *nge, *pge;
+ GENTRY *cur, *next;
+ int i, n, ilast[2];
+ double flast[2], f;
+
+ for (ge = from; ge != 0 && ge != to; ge = ge->next) {
+ if(ge->type == GE_LINE || ge->type == GE_CURVE) {
+ if (ISDBG(REVERSAL))
+ fprintf(stderr, "reverse path 0x%x <- 0x%x, 0x%x\n", ge, ge->prev, ge->bkwd);
+
+ /* cut out the path itself */
+ pge = ge->prev; /* GE_MOVE */
+ if (pge == 0) {
+ fprintf(stderr, "**! No MOVE before line !!! Fatal. ****\n");
+ exit(1);
+ }
+ nge = ge->bkwd->next; /* GE_PATH */
+ pge->next = nge;
+ nge->prev = pge;
+ ge->bkwd->next = 0; /* mark end of chain */
+
+ /* remember the starting point */
+ if(ge->flags & GEF_FLOAT) {
+ flast[0] = pge->fx3;
+ flast[1] = pge->fy3;
+ } else {
+ ilast[0] = pge->ix3;
+ ilast[1] = pge->iy3;
+ }
+
+ /* then reinsert them in backwards order */
+ for(cur = ge; cur != 0; cur = next ) {
+ next = cur->next; /* or addgeafter() will screw it up */
+ if(cur->flags & GEF_FLOAT) {
+ for(i=0; i<2; i++) {
+ /* reverse the direction of path element */
+ f = cur->fpoints[i][0];
+ cur->fpoints[i][0] = cur->fpoints[i][1];
+ cur->fpoints[i][1] = f;
+ f = flast[i];
+ flast[i] = cur->fpoints[i][2];
+ cur->fpoints[i][2] = f;
+ }
+ } else {
+ for(i=0; i<2; i++) {
+ /* reverse the direction of path element */
+ n = cur->ipoints[i][0];
+ cur->ipoints[i][0] = cur->ipoints[i][1];
+ cur->ipoints[i][1] = n;
+ n = ilast[i];
+ ilast[i] = cur->ipoints[i][2];
+ cur->ipoints[i][2] = n;
+ }
+ }
+ addgeafter(pge, cur);
+ }
+
+ /* restore the starting point */
+ if(ge->flags & GEF_FLOAT) {
+ pge->fx3 = flast[0];
+ pge->fy3 = flast[1];
+ } else {
+ pge->ix3 = ilast[0];
+ pge->iy3 = ilast[1];
+ }
+
+ ge = nge;
+ }
+
+ }
+}
+
+void
+reversepaths(
+ GLYPH * g
+)
+{
+ reversepathsfromto(g->entries, NULL);
+}
+
+/* add a kerning pair information, scales the value */
+
+void
+addkernpair(
+ unsigned id1,
+ unsigned id2,
+ int unscval
+)
+{
+ static unsigned char *bits = 0;
+ static int lastid;
+ GLYPH *g = &glyph_list[id1];
+ int i, n;
+ struct kern *p;
+
+ if(unscval == 0 || id1 >= numglyphs || id2 >= numglyphs)
+ return;
+
+ if( (glyph_list[id1].flags & GF_USED)==0
+ || (glyph_list[id2].flags & GF_USED)==0 )
+ return;
+
+ if(bits == 0) {
+ bits = calloc( BITMAP_BYTES(numglyphs), 1);
+ if (bits == NULL) {
+ fprintf (stderr, "****malloc failed %s line %d\n", __FILE__, __LINE__);
+ exit(255);
+ }
+ lastid = id1;
+ }
+
+ if(lastid != id1) {
+ /* refill the bitmap cache */
+ memset(bits, 0,BITMAP_BYTES(numglyphs));
+ p = g->kern;
+ for(i=g->kerncount; i>0; i--) {
+ n = (p++)->id;
+ SET_BITMAP(bits, n);
+ }
+ lastid = id1;
+ }
+
+ if(IS_BITMAP(bits, id2))
+ return; /* duplicate */
+
+ if(g->kerncount <= g->kernalloc) {
+ g->kernalloc += 8;
+ p = realloc(g->kern, sizeof(struct kern) * g->kernalloc);
+ if(p == 0) {
+ fprintf (stderr, "** realloc failed, kerning data will be incomplete\n");
+ }
+ g->kern = p;
+ }
+
+ SET_BITMAP(bits, id2);
+ p = &g->kern[g->kerncount];
+ p->id = id2;
+ p->val = iscale(unscval) - (g->scaledwidth - g->oldwidth);
+ g->kerncount++;
+ kerning_pairs++;
+}
+
+/* print out the kerning information */
+
+void
+print_kerning(
+ FILE *afm_file
+)
+{
+ int i, j, n;
+ GLYPH *g;
+ struct kern *p;
+
+ if( kerning_pairs == 0 )
+ return;
+
+ fprintf(afm_file, "StartKernData\n");
+ fprintf(afm_file, "StartKernPairs %hd\n", kerning_pairs);
+
+ for(i=0; i<numglyphs; i++) {
+ g = &glyph_list[i];
+ if( (g->flags & GF_USED) ==0)
+ continue;
+ p = g->kern;
+ for(j=g->kerncount; j>0; j--, p++) {
+ fprintf(afm_file, "KPX %s %s %d\n", g->name,
+ glyph_list[ p->id ].name, p->val );
+ }
+ }
+
+ fprintf(afm_file, "EndKernPairs\n");
+ fprintf(afm_file, "EndKernData\n");
+}
+
+
+#if 0
+
+/*
+** This function is commented out because the information
+** collected by it is not used anywhere else yet. Now
+** it only collects the directions of contours. And the
+** direction of contours gets fixed already in draw_glyf().
+**
+***********************************************
+**
+** Here we expect that the paths are already closed.
+** We also expect that the contours do not intersect
+** and that curves doesn't cross any border of quadrant.
+**
+** Find which contours go inside which and what is
+** their proper direction. Then fix the direction
+** to make it right.
+**
+*/
+
+#define MAXCONT 1000
+
+void
+fixcontours(
+ GLYPH * g
+)
+{
+ CONTOUR cont[MAXCONT];
+ short ymax[MAXCONT]; /* the highest point */
+ short xofmax[MAXCONT]; /* X-coordinate of any point
+ * at ymax */
+ short ymin[MAXCONT]; /* the lowest point */
+ short xofmin[MAXCONT]; /* X-coordinate of any point
+ * at ymin */
+ short count[MAXCONT]; /* count of lines */
+ char dir[MAXCONT]; /* in which direction they must go */
+ GENTRY *start[MAXCONT], *minptr[MAXCONT], *maxptr[MAXCONT];
+ int ncont;
+ int i;
+ int dx1, dy1, dx2, dy2;
+ GENTRY *ge, *nge;
+
+ /* find the contours and their most upper/lower points */
+ ncont = 0;
+ ymax[0] = -5000;
+ ymin[0] = 5000;
+ for (ge = g->entries; ge != 0; ge = ge->next) {
+ if (ge->type == GE_LINE || ge->type == GE_CURVE) {
+ if (ge->iy3 > ymax[ncont]) {
+ ymax[ncont] = ge->iy3;
+ xofmax[ncont] = ge->ix3;
+ maxptr[ncont] = ge;
+ }
+ if (ge->iy3 < ymin[ncont]) {
+ ymin[ncont] = ge->iy3;
+ xofmin[ncont] = ge->ix3;
+ minptr[ncont] = ge;
+ }
+ }
+ if (ge->frwd != ge->next) {
+ start[ncont++] = ge->frwd;
+ ymax[ncont] = -5000;
+ ymin[ncont] = 5000;
+ }
+ }
+
+ /* determine the directions of contours */
+ for (i = 0; i < ncont; i++) {
+ ge = minptr[i];
+ nge = ge->frwd;
+
+ if (ge->type == GE_CURVE) {
+ dx1 = ge->ix3 - ge->ix2;
+ dy1 = ge->iy3 - ge->iy2;
+
+ if (dx1 == 0 && dy1 == 0) { /* a pathological case */
+ dx1 = ge->ix3 - ge->ix1;
+ dy1 = ge->iy3 - ge->iy1;
+ }
+ if (dx1 == 0 && dy1 == 0) { /* a more pathological
+ * case */
+ dx1 = ge->ix3 - ge->prev->ix3;
+ dy1 = ge->iy3 - ge->prev->iy3;
+ }
+ } else {
+ dx1 = ge->ix3 - ge->prev->ix3;
+ dy1 = ge->iy3 - ge->prev->iy3;
+ }
+ if (nge->type == GE_CURVE) {
+ dx2 = ge->ix3 - nge->ix1;
+ dy2 = ge->iy3 - nge->iy1;
+ if (dx1 == 0 && dy1 == 0) { /* a pathological case */
+ dx2 = ge->ix3 - nge->ix2;
+ dy2 = ge->iy3 - nge->iy2;
+ }
+ if (dx1 == 0 && dy1 == 0) { /* a more pathological
+ * case */
+ dx2 = ge->ix3 - nge->ix3;
+ dy2 = ge->iy3 - nge->iy3;
+ }
+ } else {
+ dx2 = ge->ix3 - nge->ix3;
+ dy2 = ge->iy3 - nge->iy3;
+ }
+
+ /* compare angles */
+ cont[i].direction = DIR_INNER;
+ if (dy1 == 0) {
+ if (dx1 < 0)
+ cont[i].direction = DIR_OUTER;
+ } else if (dy2 == 0) {
+ if (dx2 > 0)
+ cont[i].direction = DIR_OUTER;
+ } else if (dx2 * dy1 < dx1 * dy2)
+ cont[i].direction = DIR_OUTER;
+
+ cont[i].ymin = ymin[i];
+ cont[i].xofmin = xofmin[i];
+ }
+
+ /* save the information that may be needed further */
+ g->ncontours = ncont;
+ if (ncont > 0) {
+ g->contours = malloc(sizeof(CONTOUR) * ncont);
+ if (g->contours == 0) {
+ fprintf(stderr, "***** Memory allocation error *****\n");
+ exit(255);
+ }
+ memcpy(g->contours, cont, sizeof(CONTOUR) * ncont);
+ }
+}
+
+#endif
+
+/*
+ *
+ */
+