aboutsummaryrefslogtreecommitdiff
path: root/nx-X11/extras/Mesa/src/mesa/main/macros.h
diff options
context:
space:
mode:
Diffstat (limited to 'nx-X11/extras/Mesa/src/mesa/main/macros.h')
-rw-r--r--nx-X11/extras/Mesa/src/mesa/main/macros.h654
1 files changed, 654 insertions, 0 deletions
diff --git a/nx-X11/extras/Mesa/src/mesa/main/macros.h b/nx-X11/extras/Mesa/src/mesa/main/macros.h
new file mode 100644
index 000000000..a398dd812
--- /dev/null
+++ b/nx-X11/extras/Mesa/src/mesa/main/macros.h
@@ -0,0 +1,654 @@
+/**
+ * \file macros.h
+ * A collection of useful macros.
+ */
+
+/*
+ * Mesa 3-D graphics library
+ * Version: 6.0
+ *
+ * Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+#ifndef MACROS_H
+#define MACROS_H
+
+#include "imports.h"
+
+
+/**
+ * \name Integer / float conversion for colors, normals, etc.
+ */
+/*@{*/
+
+/** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
+extern GLfloat _mesa_ubyte_to_float_color_tab[256];
+#define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
+
+/** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
+#define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
+
+
+/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
+#define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
+
+/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
+#define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
+
+
+/** Convert GLushort in [0,65536] to GLfloat in [0.0,1.0] */
+#define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
+
+/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
+#define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
+
+/** Convert GLfloat in [0.0,1.0] to GLshort in [-32768,32767] */
+#define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
+
+
+/** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
+#define UINT_TO_FLOAT(U) ((GLfloat) (U) * (1.0F / 4294967295.0F))
+
+/** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
+#define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
+
+
+/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
+#define INT_TO_FLOAT(I) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0F))
+
+/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
+/* causes overflow:
+#define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0F * (X))) - 1) / 2 )
+*/
+/* a close approximation: */
+#define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
+
+
+#define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
+#define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
+#define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
+#define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
+#define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
+
+
+#define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
+#define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
+#define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
+#define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
+#define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
+#define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
+ us = ( (GLushort) IROUND( CLAMP((f), 0.0, 1.0) * 65535.0F) )
+#define CLAMPED_FLOAT_TO_USHORT(us, f) \
+ us = ( (GLushort) IROUND( (f) * 65535.0F) )
+
+/*@}*/
+
+
+/** Stepping a GLfloat pointer by a byte stride */
+#define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
+/** Stepping a GLuint pointer by a byte stride */
+#define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
+/** Stepping a GLubyte[4] pointer by a byte stride */
+#define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
+/** Stepping a GLfloat[4] pointer by a byte stride */
+#define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
+/** Stepping a GLchan[4] pointer by a byte stride */
+#define STRIDE_4CHAN(p, i) (p = (GLchan (*)[4])((GLubyte *)p + i))
+/** Stepping a GLchan pointer by a byte stride */
+#define STRIDE_CHAN(p, i) (p = (GLchan *)((GLubyte *)p + i))
+/** Stepping a \p t pointer by a byte stride */
+#define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
+
+
+/**********************************************************************/
+/** \name 4-element vector operations */
+/*@{*/
+
+/** Zero */
+#define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
+
+/** Test for equality */
+#define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
+ (a)[1] == (b)[1] && \
+ (a)[2] == (b)[2] && \
+ (a)[3] == (b)[3])
+
+/** Test for equality (unsigned bytes) */
+#if defined(__i386__)
+#define TEST_EQ_4UBV(DST, SRC) *((GLuint*)(DST)) == *((GLuint*)(SRC))
+#else
+#define TEST_EQ_4UBV(DST, SRC) TEST_EQ_4V(DST, SRC)
+#endif
+
+/** Copy a 4-element vector */
+#define COPY_4V( DST, SRC ) \
+do { \
+ (DST)[0] = (SRC)[0]; \
+ (DST)[1] = (SRC)[1]; \
+ (DST)[2] = (SRC)[2]; \
+ (DST)[3] = (SRC)[3]; \
+} while (0)
+
+/** Copy a 4-element vector with cast */
+#define COPY_4V_CAST( DST, SRC, CAST ) \
+do { \
+ (DST)[0] = (CAST)(SRC)[0]; \
+ (DST)[1] = (CAST)(SRC)[1]; \
+ (DST)[2] = (CAST)(SRC)[2]; \
+ (DST)[3] = (CAST)(SRC)[3]; \
+} while (0)
+
+/** Copy a 4-element unsigned byte vector */
+#if defined(__i386__)
+#define COPY_4UBV(DST, SRC) \
+do { \
+ *((GLuint*)(DST)) = *((GLuint*)(SRC)); \
+} while (0)
+#else
+/* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
+#define COPY_4UBV(DST, SRC) \
+do { \
+ (DST)[0] = (SRC)[0]; \
+ (DST)[1] = (SRC)[1]; \
+ (DST)[2] = (SRC)[2]; \
+ (DST)[3] = (SRC)[3]; \
+} while (0)
+#endif
+
+/** Copy a 4-element float vector (Use COPY_FLOAT to avoid loading FPU) */
+#define COPY_4FV( DST, SRC ) \
+do { \
+ COPY_FLOAT((DST)[0], (SRC)[0]); \
+ COPY_FLOAT((DST)[1], (SRC)[1]); \
+ COPY_FLOAT((DST)[2], (SRC)[2]); \
+ COPY_FLOAT((DST)[3], (SRC)[3]); \
+} while (0)
+
+
+/** Copy \p SZ elements into a 4-element vector */
+#define COPY_SZ_4V(DST, SZ, SRC) \
+do { \
+ switch (SZ) { \
+ case 4: (DST)[3] = (SRC)[3]; \
+ case 3: (DST)[2] = (SRC)[2]; \
+ case 2: (DST)[1] = (SRC)[1]; \
+ case 1: (DST)[0] = (SRC)[0]; \
+ } \
+} while(0)
+
+/** Copy \p SZ elements into a homegeneous (4-element) vector, giving
+ * default values to the remaining */
+#define COPY_CLEAN_4V(DST, SZ, SRC) \
+do { \
+ ASSIGN_4V( DST, 0, 0, 0, 1 ); \
+ COPY_SZ_4V( DST, SZ, SRC ); \
+} while (0)
+
+/** Subtraction */
+#define SUB_4V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
+ (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
+ (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
+ (DST)[3] = (SRCA)[3] - (SRCB)[3]; \
+} while (0)
+
+/** Addition */
+#define ADD_4V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
+ (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
+ (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
+ (DST)[3] = (SRCA)[3] + (SRCB)[3]; \
+} while (0)
+
+/** Element-wise multiplication */
+#define SCALE_4V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
+ (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
+ (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
+ (DST)[3] = (SRCA)[3] * (SRCB)[3]; \
+} while (0)
+
+/** In-place addition */
+#define ACC_4V( DST, SRC ) \
+do { \
+ (DST)[0] += (SRC)[0]; \
+ (DST)[1] += (SRC)[1]; \
+ (DST)[2] += (SRC)[2]; \
+ (DST)[3] += (SRC)[3]; \
+} while (0)
+
+/** Element-wise multiplication and addition */
+#define ACC_SCALE_4V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
+ (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
+ (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
+ (DST)[3] += (SRCA)[3] * (SRCB)[3]; \
+} while (0)
+
+/** In-place scalar multiplication and addition */
+#define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
+do { \
+ (DST)[0] += S * (SRCB)[0]; \
+ (DST)[1] += S * (SRCB)[1]; \
+ (DST)[2] += S * (SRCB)[2]; \
+ (DST)[3] += S * (SRCB)[3]; \
+} while (0)
+
+/** Scalar multiplication */
+#define SCALE_SCALAR_4V( DST, S, SRCB ) \
+do { \
+ (DST)[0] = S * (SRCB)[0]; \
+ (DST)[1] = S * (SRCB)[1]; \
+ (DST)[2] = S * (SRCB)[2]; \
+ (DST)[3] = S * (SRCB)[3]; \
+} while (0)
+
+/** In-place scalar multiplication */
+#define SELF_SCALE_SCALAR_4V( DST, S ) \
+do { \
+ (DST)[0] *= S; \
+ (DST)[1] *= S; \
+ (DST)[2] *= S; \
+ (DST)[3] *= S; \
+} while (0)
+
+/** Assignment */
+#define ASSIGN_4V( V, V0, V1, V2, V3 ) \
+do { \
+ V[0] = V0; \
+ V[1] = V1; \
+ V[2] = V2; \
+ V[3] = V3; \
+} while(0)
+
+/*@}*/
+
+
+/**********************************************************************/
+/** \name 3-element vector operations*/
+/*@{*/
+
+/** Zero */
+#define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
+
+/** Test for equality */
+#define TEST_EQ_3V(a,b) \
+ ((a)[0] == (b)[0] && \
+ (a)[1] == (b)[1] && \
+ (a)[2] == (b)[2])
+
+/** Copy a 3-element vector */
+#define COPY_3V( DST, SRC ) \
+do { \
+ (DST)[0] = (SRC)[0]; \
+ (DST)[1] = (SRC)[1]; \
+ (DST)[2] = (SRC)[2]; \
+} while (0)
+
+/** Copy a 3-element vector with cast */
+#define COPY_3V_CAST( DST, SRC, CAST ) \
+do { \
+ (DST)[0] = (CAST)(SRC)[0]; \
+ (DST)[1] = (CAST)(SRC)[1]; \
+ (DST)[2] = (CAST)(SRC)[2]; \
+} while (0)
+
+/** Copy a 3-element float vector */
+#define COPY_3FV( DST, SRC ) \
+do { \
+ const GLfloat *_tmp = (SRC); \
+ (DST)[0] = _tmp[0]; \
+ (DST)[1] = _tmp[1]; \
+ (DST)[2] = _tmp[2]; \
+} while (0)
+
+/** Subtraction */
+#define SUB_3V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
+ (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
+ (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
+} while (0)
+
+/** Addition */
+#define ADD_3V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
+ (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
+ (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
+} while (0)
+
+/** In-place scalar multiplication */
+#define SCALE_3V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
+ (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
+ (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
+} while (0)
+
+/** In-place element-wise multiplication */
+#define SELF_SCALE_3V( DST, SRC ) \
+do { \
+ (DST)[0] *= (SRC)[0]; \
+ (DST)[1] *= (SRC)[1]; \
+ (DST)[2] *= (SRC)[2]; \
+} while (0)
+
+/** In-place addition */
+#define ACC_3V( DST, SRC ) \
+do { \
+ (DST)[0] += (SRC)[0]; \
+ (DST)[1] += (SRC)[1]; \
+ (DST)[2] += (SRC)[2]; \
+} while (0)
+
+/** Element-wise multiplication and addition */
+#define ACC_SCALE_3V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
+ (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
+ (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
+} while (0)
+
+/** Scalar multiplication */
+#define SCALE_SCALAR_3V( DST, S, SRCB ) \
+do { \
+ (DST)[0] = S * (SRCB)[0]; \
+ (DST)[1] = S * (SRCB)[1]; \
+ (DST)[2] = S * (SRCB)[2]; \
+} while (0)
+
+/** In-place scalar multiplication and addition */
+#define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
+do { \
+ (DST)[0] += S * (SRCB)[0]; \
+ (DST)[1] += S * (SRCB)[1]; \
+ (DST)[2] += S * (SRCB)[2]; \
+} while (0)
+
+/** In-place scalar multiplication */
+#define SELF_SCALE_SCALAR_3V( DST, S ) \
+do { \
+ (DST)[0] *= S; \
+ (DST)[1] *= S; \
+ (DST)[2] *= S; \
+} while (0)
+
+/** In-place scalar addition */
+#define ACC_SCALAR_3V( DST, S ) \
+do { \
+ (DST)[0] += S; \
+ (DST)[1] += S; \
+ (DST)[2] += S; \
+} while (0)
+
+/** Assignment */
+#define ASSIGN_3V( V, V0, V1, V2 ) \
+do { \
+ V[0] = V0; \
+ V[1] = V1; \
+ V[2] = V2; \
+} while(0)
+
+/*@}*/
+
+
+/**********************************************************************/
+/** \name 2-element vector operations*/
+/*@{*/
+
+/** Zero */
+#define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
+
+/** Copy a 2-element vector */
+#define COPY_2V( DST, SRC ) \
+do { \
+ (DST)[0] = (SRC)[0]; \
+ (DST)[1] = (SRC)[1]; \
+} while (0)
+
+/** Copy a 2-element vector with cast */
+#define COPY_2V_CAST( DST, SRC, CAST ) \
+do { \
+ (DST)[0] = (CAST)(SRC)[0]; \
+ (DST)[1] = (CAST)(SRC)[1]; \
+} while (0)
+
+/** Copy a 2-element float vector */
+#define COPY_2FV( DST, SRC ) \
+do { \
+ const GLfloat *_tmp = (SRC); \
+ (DST)[0] = _tmp[0]; \
+ (DST)[1] = _tmp[1]; \
+} while (0)
+
+/** Subtraction */
+#define SUB_2V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
+ (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
+} while (0)
+
+/** Addition */
+#define ADD_2V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
+ (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
+} while (0)
+
+/** In-place scalar multiplication */
+#define SCALE_2V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
+ (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
+} while (0)
+
+/** In-place addition */
+#define ACC_2V( DST, SRC ) \
+do { \
+ (DST)[0] += (SRC)[0]; \
+ (DST)[1] += (SRC)[1]; \
+} while (0)
+
+/** Element-wise multiplication and addition */
+#define ACC_SCALE_2V( DST, SRCA, SRCB ) \
+do { \
+ (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
+ (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
+} while (0)
+
+/** Scalar multiplication */
+#define SCALE_SCALAR_2V( DST, S, SRCB ) \
+do { \
+ (DST)[0] = S * (SRCB)[0]; \
+ (DST)[1] = S * (SRCB)[1]; \
+} while (0)
+
+/** In-place scalar multiplication and addition */
+#define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
+do { \
+ (DST)[0] += S * (SRCB)[0]; \
+ (DST)[1] += S * (SRCB)[1]; \
+} while (0)
+
+/** In-place scalar multiplication */
+#define SELF_SCALE_SCALAR_2V( DST, S ) \
+do { \
+ (DST)[0] *= S; \
+ (DST)[1] *= S; \
+} while (0)
+
+/** In-place scalar addition */
+#define ACC_SCALAR_2V( DST, S ) \
+do { \
+ (DST)[0] += S; \
+ (DST)[1] += S; \
+} while (0)
+
+
+
+/**
+ * Linear interpolation
+ *
+ * \note \p OUT argument is evaluated twice!
+ * \note Be wary of using *coord++ as an argument to any of these macros!
+ */
+#define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
+
+/* Can do better with integer math
+ */
+#define INTERP_UB( t, dstub, outub, inub ) \
+do { \
+ GLfloat inf = UBYTE_TO_FLOAT( inub ); \
+ GLfloat outf = UBYTE_TO_FLOAT( outub ); \
+ GLfloat dstf = LINTERP( t, outf, inf ); \
+ UNCLAMPED_FLOAT_TO_UBYTE( dstub, dstf ); \
+} while (0)
+
+#define INTERP_CHAN( t, dstc, outc, inc ) \
+do { \
+ GLfloat inf = CHAN_TO_FLOAT( inc ); \
+ GLfloat outf = CHAN_TO_FLOAT( outc ); \
+ GLfloat dstf = LINTERP( t, outf, inf ); \
+ UNCLAMPED_FLOAT_TO_CHAN( dstc, dstf ); \
+} while (0)
+
+#define INTERP_UI( t, dstui, outui, inui ) \
+ dstui = (GLuint) (GLint) LINTERP( (t), (GLfloat) (outui), (GLfloat) (inui) )
+
+#define INTERP_F( t, dstf, outf, inf ) \
+ dstf = LINTERP( t, outf, inf )
+
+#define INTERP_4F( t, dst, out, in ) \
+do { \
+ dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
+ dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
+ dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
+ dst[3] = LINTERP( (t), (out)[3], (in)[3] ); \
+} while (0)
+
+#define INTERP_3F( t, dst, out, in ) \
+do { \
+ dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
+ dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
+ dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
+} while (0)
+
+#define INTERP_4CHAN( t, dst, out, in ) \
+do { \
+ INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
+ INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
+ INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
+ INTERP_CHAN( (t), (dst)[3], (out)[3], (in)[3] ); \
+} while (0)
+
+#define INTERP_3CHAN( t, dst, out, in ) \
+do { \
+ INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
+ INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
+ INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
+} while (0)
+
+#define INTERP_SZ( t, vec, to, out, in, sz ) \
+do { \
+ switch (sz) { \
+ case 4: vec[to][3] = LINTERP( (t), (vec)[out][3], (vec)[in][3] ); \
+ case 3: vec[to][2] = LINTERP( (t), (vec)[out][2], (vec)[in][2] ); \
+ case 2: vec[to][1] = LINTERP( (t), (vec)[out][1], (vec)[in][1] ); \
+ case 1: vec[to][0] = LINTERP( (t), (vec)[out][0], (vec)[in][0] ); \
+ } \
+} while(0)
+
+
+
+/** Assign scalers to short vectors */
+#define ASSIGN_2V( V, V0, V1 ) \
+do { \
+ V[0] = V0; \
+ V[1] = V1; \
+} while(0)
+
+/*@}*/
+
+
+
+/** Clamp X to [MIN,MAX] */
+#define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
+
+/** Assign X to CLAMP(X, MIN, MAX) */
+#define CLAMP_SELF(x, mn, mx) \
+ ( (x)<(mn) ? ((x) = (mn)) : ((x)>(mx) ? ((x)=(mx)) : (x)) )
+
+
+
+/** Minimum of two values: */
+#define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
+
+/** Maximum of two values: */
+#define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
+
+/** Dot product of two 2-element vectors */
+#define DOT2( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] )
+
+/** Dot product of two 3-element vectors */
+#define DOT3( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] )
+
+/** Dot product of two 4-element vectors */
+#define DOT4( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \
+ (a)[2]*(b)[2] + (a)[3]*(b)[3] )
+
+/** Dot product of two 4-element vectors */
+#define DOT4V(v,a,b,c,d) (v[0]*(a) + v[1]*(b) + v[2]*(c) + v[3]*(d))
+
+
+/** Cross product of two 3-element vectors */
+#define CROSS3(n, u, v) \
+do { \
+ (n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; \
+ (n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; \
+ (n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0]; \
+} while (0)
+
+
+/* Normalize a 3-element vector to unit length. */
+#define NORMALIZE_3FV( V ) \
+do { \
+ GLfloat len = (GLfloat) LEN_SQUARED_3FV(V); \
+ if (len) { \
+ len = INV_SQRTF(len); \
+ (V)[0] = (GLfloat) ((V)[0] * len); \
+ (V)[1] = (GLfloat) ((V)[1] * len); \
+ (V)[2] = (GLfloat) ((V)[2] * len); \
+ } \
+} while(0)
+
+#define LEN_3FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]))
+#define LEN_2FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]))
+
+#define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])
+#define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1])
+
+
+#endif