aboutsummaryrefslogtreecommitdiff
path: root/nx-X11/extras/Mesa/src/mesa/shader/nvvertexec.c
diff options
context:
space:
mode:
Diffstat (limited to 'nx-X11/extras/Mesa/src/mesa/shader/nvvertexec.c')
-rw-r--r--nx-X11/extras/Mesa/src/mesa/shader/nvvertexec.c851
1 files changed, 851 insertions, 0 deletions
diff --git a/nx-X11/extras/Mesa/src/mesa/shader/nvvertexec.c b/nx-X11/extras/Mesa/src/mesa/shader/nvvertexec.c
new file mode 100644
index 000000000..dd5959688
--- /dev/null
+++ b/nx-X11/extras/Mesa/src/mesa/shader/nvvertexec.c
@@ -0,0 +1,851 @@
+/*
+ * Mesa 3-D graphics library
+ * Version: 6.5
+ *
+ * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file nvvertexec.c
+ * Code to execute vertex programs.
+ * \author Brian Paul
+ */
+
+#include "glheader.h"
+#include "context.h"
+#include "imports.h"
+#include "macros.h"
+#include "mtypes.h"
+#include "nvvertexec.h"
+#include "nvvertprog.h"
+#include "program.h"
+#include "math/m_matrix.h"
+
+
+static const GLfloat ZeroVec[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
+
+
+/**
+ * Load/initialize the vertex program registers which need to be set
+ * per-vertex.
+ */
+void
+_mesa_init_vp_per_vertex_registers(GLcontext *ctx)
+{
+ /* Input registers get initialized from the current vertex attribs */
+ MEMCPY(ctx->VertexProgram.Inputs, ctx->Current.Attrib,
+ VERT_ATTRIB_MAX * 4 * sizeof(GLfloat));
+
+ if (ctx->VertexProgram.Current->IsNVProgram) {
+ GLuint i;
+ /* Output/result regs are initialized to [0,0,0,1] */
+ for (i = 0; i < MAX_NV_VERTEX_PROGRAM_OUTPUTS; i++) {
+ ASSIGN_4V(ctx->VertexProgram.Outputs[i], 0.0F, 0.0F, 0.0F, 1.0F);
+ }
+ /* Temp regs are initialized to [0,0,0,0] */
+ for (i = 0; i < MAX_NV_VERTEX_PROGRAM_TEMPS; i++) {
+ ASSIGN_4V(ctx->VertexProgram.Temporaries[i], 0.0F, 0.0F, 0.0F, 0.0F);
+ }
+ ASSIGN_4V(ctx->VertexProgram.AddressReg, 0, 0, 0, 0);
+ }
+}
+
+
+
+/**
+ * Copy the 16 elements of a matrix into four consecutive program
+ * registers starting at 'pos'.
+ */
+static void
+load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
+{
+ GLuint i;
+ for (i = 0; i < 4; i++) {
+ registers[pos + i][0] = mat[0 + i];
+ registers[pos + i][1] = mat[4 + i];
+ registers[pos + i][2] = mat[8 + i];
+ registers[pos + i][3] = mat[12 + i];
+ }
+}
+
+
+/**
+ * As above, but transpose the matrix.
+ */
+static void
+load_transpose_matrix(GLfloat registers[][4], GLuint pos,
+ const GLfloat mat[16])
+{
+ MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
+}
+
+
+/**
+ * Load program parameter registers with tracked matrices (if NV program)
+ * or GL state values (if ARB program).
+ * This needs to be done per glBegin/glEnd, not per-vertex.
+ */
+void
+_mesa_init_vp_per_primitive_registers(GLcontext *ctx)
+{
+ if (ctx->VertexProgram.Current->IsNVProgram) {
+ GLuint i;
+
+ for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
+ /* point 'mat' at source matrix */
+ GLmatrix *mat;
+ if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
+ mat = ctx->ModelviewMatrixStack.Top;
+ }
+ else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
+ mat = ctx->ProjectionMatrixStack.Top;
+ }
+ else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
+ mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top;
+ }
+ else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
+ mat = ctx->ColorMatrixStack.Top;
+ }
+ else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
+ /* XXX verify the combined matrix is up to date */
+ mat = &ctx->_ModelProjectMatrix;
+ }
+ else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
+ ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
+ GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
+ ASSERT(n < MAX_PROGRAM_MATRICES);
+ mat = ctx->ProgramMatrixStack[n].Top;
+ }
+ else {
+ /* no matrix is tracked, but we leave the register values as-is */
+ assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
+ continue;
+ }
+
+ /* load the matrix */
+ if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
+ load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
+ }
+ else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
+ _math_matrix_analyse(mat); /* update the inverse */
+ ASSERT(!_math_matrix_is_dirty(mat));
+ load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
+ }
+ else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
+ load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
+ }
+ else {
+ assert(ctx->VertexProgram.TrackMatrixTransform[i]
+ == GL_INVERSE_TRANSPOSE_NV);
+ _math_matrix_analyse(mat); /* update the inverse */
+ ASSERT(!_math_matrix_is_dirty(mat));
+ load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
+ }
+ }
+ }
+ else {
+ /* Using and ARB vertex program */
+ if (ctx->VertexProgram.Current->Parameters) {
+ /* Grab the state GL state and put into registers */
+ _mesa_load_state_parameters(ctx,
+ ctx->VertexProgram.Current->Parameters);
+ }
+ }
+}
+
+
+
+/**
+ * For debugging. Dump the current vertex program machine registers.
+ */
+void
+_mesa_dump_vp_state( const struct gl_vertex_program_state *state )
+{
+ int i;
+ _mesa_printf("VertexIn:\n");
+ for (i = 0; i < MAX_NV_VERTEX_PROGRAM_INPUTS; i++) {
+ _mesa_printf("%d: %f %f %f %f ", i,
+ state->Inputs[i][0],
+ state->Inputs[i][1],
+ state->Inputs[i][2],
+ state->Inputs[i][3]);
+ }
+ _mesa_printf("\n");
+
+ _mesa_printf("VertexOut:\n");
+ for (i = 0; i < MAX_NV_VERTEX_PROGRAM_OUTPUTS; i++) {
+ _mesa_printf("%d: %f %f %f %f ", i,
+ state->Outputs[i][0],
+ state->Outputs[i][1],
+ state->Outputs[i][2],
+ state->Outputs[i][3]);
+ }
+ _mesa_printf("\n");
+
+ _mesa_printf("Registers:\n");
+ for (i = 0; i < MAX_NV_VERTEX_PROGRAM_TEMPS; i++) {
+ _mesa_printf("%d: %f %f %f %f ", i,
+ state->Temporaries[i][0],
+ state->Temporaries[i][1],
+ state->Temporaries[i][2],
+ state->Temporaries[i][3]);
+ }
+ _mesa_printf("\n");
+
+ _mesa_printf("Parameters:\n");
+ for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS; i++) {
+ _mesa_printf("%d: %f %f %f %f ", i,
+ state->Parameters[i][0],
+ state->Parameters[i][1],
+ state->Parameters[i][2],
+ state->Parameters[i][3]);
+ }
+ _mesa_printf("\n");
+}
+
+
+
+/**
+ * Return a pointer to the 4-element float vector specified by the given
+ * source register.
+ */
+static INLINE const GLfloat *
+get_register_pointer( const struct vp_src_register *source,
+ const struct gl_vertex_program_state *state )
+{
+ if (source->RelAddr) {
+ const GLint reg = source->Index + state->AddressReg[0];
+ ASSERT( (source->File == PROGRAM_ENV_PARAM) ||
+ (source->File == PROGRAM_STATE_VAR) );
+ if (reg < 0 || reg > MAX_NV_VERTEX_PROGRAM_PARAMS)
+ return ZeroVec;
+ else if (source->File == PROGRAM_ENV_PARAM)
+ return state->Parameters[reg];
+ else
+ return state->Current->Parameters->ParameterValues[reg];
+ }
+ else {
+ switch (source->File) {
+ case PROGRAM_TEMPORARY:
+ ASSERT(source->Index < MAX_NV_VERTEX_PROGRAM_TEMPS);
+ return state->Temporaries[source->Index];
+ case PROGRAM_INPUT:
+ ASSERT(source->Index < MAX_NV_VERTEX_PROGRAM_INPUTS);
+ return state->Inputs[source->Index];
+ case PROGRAM_OUTPUT:
+ /* This is only needed for the PRINT instruction */
+ ASSERT(source->Index < MAX_NV_VERTEX_PROGRAM_OUTPUTS);
+ return state->Outputs[source->Index];
+ case PROGRAM_LOCAL_PARAM:
+ ASSERT(source->Index < MAX_PROGRAM_LOCAL_PARAMS);
+ return state->Current->Base.LocalParams[source->Index];
+ case PROGRAM_ENV_PARAM:
+ ASSERT(source->Index < MAX_NV_VERTEX_PROGRAM_PARAMS);
+ return state->Parameters[source->Index];
+ case PROGRAM_STATE_VAR:
+ ASSERT(source->Index < state->Current->Parameters->NumParameters);
+ return state->Current->Parameters->ParameterValues[source->Index];
+ default:
+ _mesa_problem(NULL,
+ "Bad source register file in get_register_pointer");
+ return NULL;
+ }
+ }
+ return NULL;
+}
+
+
+/**
+ * Fetch a 4-element float vector from the given source register.
+ * Apply swizzling and negating as needed.
+ */
+static INLINE void
+fetch_vector4( const struct vp_src_register *source,
+ const struct gl_vertex_program_state *state,
+ GLfloat result[4] )
+{
+ const GLfloat *src = get_register_pointer(source, state);
+
+ if (source->Negate) {
+ result[0] = -src[GET_SWZ(source->Swizzle, 0)];
+ result[1] = -src[GET_SWZ(source->Swizzle, 1)];
+ result[2] = -src[GET_SWZ(source->Swizzle, 2)];
+ result[3] = -src[GET_SWZ(source->Swizzle, 3)];
+ }
+ else {
+ result[0] = src[GET_SWZ(source->Swizzle, 0)];
+ result[1] = src[GET_SWZ(source->Swizzle, 1)];
+ result[2] = src[GET_SWZ(source->Swizzle, 2)];
+ result[3] = src[GET_SWZ(source->Swizzle, 3)];
+ }
+}
+
+
+
+/**
+ * As above, but only return result[0] element.
+ */
+static INLINE void
+fetch_vector1( const struct vp_src_register *source,
+ const struct gl_vertex_program_state *state,
+ GLfloat result[4] )
+{
+ const GLfloat *src = get_register_pointer(source, state);
+
+ if (source->Negate) {
+ result[0] = -src[GET_SWZ(source->Swizzle, 0)];
+ }
+ else {
+ result[0] = src[GET_SWZ(source->Swizzle, 0)];
+ }
+}
+
+
+/**
+ * Store 4 floats into a register.
+ */
+static void
+store_vector4( const struct vp_dst_register *dest,
+ struct gl_vertex_program_state *state,
+ const GLfloat value[4] )
+{
+ GLfloat *dst;
+ switch (dest->File) {
+ case PROGRAM_TEMPORARY:
+ dst = state->Temporaries[dest->Index];
+ break;
+ case PROGRAM_OUTPUT:
+ dst = state->Outputs[dest->Index];
+ break;
+ case PROGRAM_ENV_PARAM:
+ {
+ /* a slight hack */
+ GET_CURRENT_CONTEXT(ctx);
+ dst = ctx->VertexProgram.Parameters[dest->Index];
+ }
+ break;
+ default:
+ _mesa_problem(NULL, "Invalid register file in store_vector4(file=%d)",
+ dest->File);
+ return;
+ }
+
+ if (dest->WriteMask & WRITEMASK_X)
+ dst[0] = value[0];
+ if (dest->WriteMask & WRITEMASK_Y)
+ dst[1] = value[1];
+ if (dest->WriteMask & WRITEMASK_Z)
+ dst[2] = value[2];
+ if (dest->WriteMask & WRITEMASK_W)
+ dst[3] = value[3];
+}
+
+
+/**
+ * Set x to positive or negative infinity.
+ */
+#if defined(USE_IEEE) || defined(_WIN32)
+#define SET_POS_INFINITY(x) ( *((GLuint *) (void *)&x) = 0x7F800000 )
+#define SET_NEG_INFINITY(x) ( *((GLuint *) (void *)&x) = 0xFF800000 )
+#elif defined(VMS)
+#define SET_POS_INFINITY(x) x = __MAXFLOAT
+#define SET_NEG_INFINITY(x) x = -__MAXFLOAT
+#else
+#define SET_POS_INFINITY(x) x = (GLfloat) HUGE_VAL
+#define SET_NEG_INFINITY(x) x = (GLfloat) -HUGE_VAL
+#endif
+
+#define SET_FLOAT_BITS(x, bits) ((fi_type *) (void *) &(x))->i = bits
+
+
+/**
+ * Execute the given vertex program
+ */
+void
+_mesa_exec_vertex_program(GLcontext *ctx, const struct vertex_program *program)
+{
+ struct gl_vertex_program_state *state = &ctx->VertexProgram;
+ const struct vp_instruction *inst;
+
+ ctx->_CurrentProgram = GL_VERTEX_PROGRAM_ARB; /* or NV, doesn't matter */
+
+ /* If the program is position invariant, multiply the input
+ * position and the MVP matrix and stick it into the output pos slot
+ */
+ if (ctx->VertexProgram.Current->IsPositionInvariant) {
+ TRANSFORM_POINT( ctx->VertexProgram.Outputs[0],
+ ctx->_ModelProjectMatrix.m,
+ ctx->VertexProgram.Inputs[0]);
+
+ /* XXX: This could go elsewhere */
+ ctx->VertexProgram.Current->OutputsWritten |= 0x1;
+ }
+ for (inst = program->Instructions; ; inst++) {
+
+ if (ctx->VertexProgram.CallbackEnabled &&
+ ctx->VertexProgram.Callback) {
+ ctx->VertexProgram.CurrentPosition = inst->StringPos;
+ ctx->VertexProgram.Callback(program->Base.Target,
+ ctx->VertexProgram.CallbackData);
+ }
+
+ switch (inst->Opcode) {
+ case VP_OPCODE_MOV:
+ {
+ GLfloat t[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ store_vector4( &inst->DstReg, state, t );
+ }
+ break;
+ case VP_OPCODE_LIT:
+ {
+ const GLfloat epsilon = 1.0F / 256.0F; /* per NV spec */
+ GLfloat t[4], lit[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ t[0] = MAX2(t[0], 0.0F);
+ t[1] = MAX2(t[1], 0.0F);
+ t[3] = CLAMP(t[3], -(128.0F - epsilon), (128.0F - epsilon));
+ lit[0] = 1.0;
+ lit[1] = t[0];
+ lit[2] = (t[0] > 0.0) ? (GLfloat) _mesa_pow(t[1], t[3]) : 0.0F;
+ lit[3] = 1.0;
+ store_vector4( &inst->DstReg, state, lit );
+ }
+ break;
+ case VP_OPCODE_RCP:
+ {
+ GLfloat t[4];
+ fetch_vector1( &inst->SrcReg[0], state, t );
+ if (t[0] != 1.0F)
+ t[0] = 1.0F / t[0]; /* div by zero is infinity! */
+ t[1] = t[2] = t[3] = t[0];
+ store_vector4( &inst->DstReg, state, t );
+ }
+ break;
+ case VP_OPCODE_RSQ:
+ {
+ GLfloat t[4];
+ fetch_vector1( &inst->SrcReg[0], state, t );
+ t[0] = INV_SQRTF(FABSF(t[0]));
+ t[1] = t[2] = t[3] = t[0];
+ store_vector4( &inst->DstReg, state, t );
+ }
+ break;
+ case VP_OPCODE_EXP:
+ {
+ GLfloat t[4], q[4], floor_t0;
+ fetch_vector1( &inst->SrcReg[0], state, t );
+ floor_t0 = (float) floor(t[0]);
+ if (floor_t0 > FLT_MAX_EXP) {
+ SET_POS_INFINITY(q[0]);
+ SET_POS_INFINITY(q[2]);
+ }
+ else if (floor_t0 < FLT_MIN_EXP) {
+ q[0] = 0.0F;
+ q[2] = 0.0F;
+ }
+ else {
+#ifdef USE_IEEE
+ GLint ii = (GLint) floor_t0;
+ ii = (ii < 23) + 0x3f800000;
+ SET_FLOAT_BITS(q[0], ii);
+ q[0] = *((GLfloat *) (void *)&ii);
+#else
+ q[0] = (GLfloat) pow(2.0, floor_t0);
+#endif
+ q[2] = (GLfloat) (q[0] * LOG2(q[1]));
+ }
+ q[1] = t[0] - floor_t0;
+ q[3] = 1.0F;
+ store_vector4( &inst->DstReg, state, q );
+ }
+ break;
+ case VP_OPCODE_LOG:
+ {
+ GLfloat t[4], q[4], abs_t0;
+ fetch_vector1( &inst->SrcReg[0], state, t );
+ abs_t0 = (GLfloat) fabs(t[0]);
+ if (abs_t0 != 0.0F) {
+ /* Since we really can't handle infinite values on VMS
+ * like other OSes we'll use __MAXFLOAT to represent
+ * infinity. This may need some tweaking.
+ */
+#ifdef VMS
+ if (abs_t0 == __MAXFLOAT)
+#else
+ if (IS_INF_OR_NAN(abs_t0))
+#endif
+ {
+ SET_POS_INFINITY(q[0]);
+ q[1] = 1.0F;
+ SET_POS_INFINITY(q[2]);
+ }
+ else {
+ int exponent;
+ double mantissa = frexp(t[0], &exponent);
+ q[0] = (GLfloat) (exponent - 1);
+ q[1] = (GLfloat) (2.0 * mantissa); /* map [.5, 1) -> [1, 2) */
+ q[2] = (GLfloat) (q[0] + LOG2(q[1]));
+ }
+ }
+ else {
+ SET_NEG_INFINITY(q[0]);
+ q[1] = 1.0F;
+ SET_NEG_INFINITY(q[2]);
+ }
+ q[3] = 1.0;
+ store_vector4( &inst->DstReg, state, q );
+ }
+ break;
+ case VP_OPCODE_MUL:
+ {
+ GLfloat t[4], u[4], prod[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ prod[0] = t[0] * u[0];
+ prod[1] = t[1] * u[1];
+ prod[2] = t[2] * u[2];
+ prod[3] = t[3] * u[3];
+ store_vector4( &inst->DstReg, state, prod );
+ }
+ break;
+ case VP_OPCODE_ADD:
+ {
+ GLfloat t[4], u[4], sum[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ sum[0] = t[0] + u[0];
+ sum[1] = t[1] + u[1];
+ sum[2] = t[2] + u[2];
+ sum[3] = t[3] + u[3];
+ store_vector4( &inst->DstReg, state, sum );
+ }
+ break;
+ case VP_OPCODE_DP3:
+ {
+ GLfloat t[4], u[4], dot[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ dot[0] = t[0] * u[0] + t[1] * u[1] + t[2] * u[2];
+ dot[1] = dot[2] = dot[3] = dot[0];
+ store_vector4( &inst->DstReg, state, dot );
+ }
+ break;
+ case VP_OPCODE_DP4:
+ {
+ GLfloat t[4], u[4], dot[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ dot[0] = t[0] * u[0] + t[1] * u[1] + t[2] * u[2] + t[3] * u[3];
+ dot[1] = dot[2] = dot[3] = dot[0];
+ store_vector4( &inst->DstReg, state, dot );
+ }
+ break;
+ case VP_OPCODE_DST:
+ {
+ GLfloat t[4], u[4], dst[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ dst[0] = 1.0F;
+ dst[1] = t[1] * u[1];
+ dst[2] = t[2];
+ dst[3] = u[3];
+ store_vector4( &inst->DstReg, state, dst );
+ }
+ break;
+ case VP_OPCODE_MIN:
+ {
+ GLfloat t[4], u[4], min[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ min[0] = (t[0] < u[0]) ? t[0] : u[0];
+ min[1] = (t[1] < u[1]) ? t[1] : u[1];
+ min[2] = (t[2] < u[2]) ? t[2] : u[2];
+ min[3] = (t[3] < u[3]) ? t[3] : u[3];
+ store_vector4( &inst->DstReg, state, min );
+ }
+ break;
+ case VP_OPCODE_MAX:
+ {
+ GLfloat t[4], u[4], max[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ max[0] = (t[0] > u[0]) ? t[0] : u[0];
+ max[1] = (t[1] > u[1]) ? t[1] : u[1];
+ max[2] = (t[2] > u[2]) ? t[2] : u[2];
+ max[3] = (t[3] > u[3]) ? t[3] : u[3];
+ store_vector4( &inst->DstReg, state, max );
+ }
+ break;
+ case VP_OPCODE_SLT:
+ {
+ GLfloat t[4], u[4], slt[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ slt[0] = (t[0] < u[0]) ? 1.0F : 0.0F;
+ slt[1] = (t[1] < u[1]) ? 1.0F : 0.0F;
+ slt[2] = (t[2] < u[2]) ? 1.0F : 0.0F;
+ slt[3] = (t[3] < u[3]) ? 1.0F : 0.0F;
+ store_vector4( &inst->DstReg, state, slt );
+ }
+ break;
+ case VP_OPCODE_SGE:
+ {
+ GLfloat t[4], u[4], sge[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ sge[0] = (t[0] >= u[0]) ? 1.0F : 0.0F;
+ sge[1] = (t[1] >= u[1]) ? 1.0F : 0.0F;
+ sge[2] = (t[2] >= u[2]) ? 1.0F : 0.0F;
+ sge[3] = (t[3] >= u[3]) ? 1.0F : 0.0F;
+ store_vector4( &inst->DstReg, state, sge );
+ }
+ break;
+ case VP_OPCODE_MAD:
+ {
+ GLfloat t[4], u[4], v[4], sum[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ fetch_vector4( &inst->SrcReg[2], state, v );
+ sum[0] = t[0] * u[0] + v[0];
+ sum[1] = t[1] * u[1] + v[1];
+ sum[2] = t[2] * u[2] + v[2];
+ sum[3] = t[3] * u[3] + v[3];
+ store_vector4( &inst->DstReg, state, sum );
+ }
+ break;
+ case VP_OPCODE_ARL:
+ {
+ GLfloat t[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ state->AddressReg[0] = (GLint) floor(t[0]);
+ }
+ break;
+ case VP_OPCODE_DPH:
+ {
+ GLfloat t[4], u[4], dot[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ dot[0] = t[0] * u[0] + t[1] * u[1] + t[2] * u[2] + u[3];
+ dot[1] = dot[2] = dot[3] = dot[0];
+ store_vector4( &inst->DstReg, state, dot );
+ }
+ break;
+ case VP_OPCODE_RCC:
+ {
+ GLfloat t[4], u;
+ fetch_vector1( &inst->SrcReg[0], state, t );
+ if (t[0] == 1.0F)
+ u = 1.0F;
+ else
+ u = 1.0F / t[0];
+ if (u > 0.0F) {
+ if (u > 1.884467e+019F) {
+ u = 1.884467e+019F; /* IEEE 32-bit binary value 0x5F800000 */
+ }
+ else if (u < 5.42101e-020F) {
+ u = 5.42101e-020F; /* IEEE 32-bit binary value 0x1F800000 */
+ }
+ }
+ else {
+ if (u < -1.884467e+019F) {
+ u = -1.884467e+019F; /* IEEE 32-bit binary value 0xDF800000 */
+ }
+ else if (u > -5.42101e-020F) {
+ u = -5.42101e-020F; /* IEEE 32-bit binary value 0x9F800000 */
+ }
+ }
+ t[0] = t[1] = t[2] = t[3] = u;
+ store_vector4( &inst->DstReg, state, t );
+ }
+ break;
+ case VP_OPCODE_SUB: /* GL_NV_vertex_program1_1 */
+ {
+ GLfloat t[4], u[4], sum[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ sum[0] = t[0] - u[0];
+ sum[1] = t[1] - u[1];
+ sum[2] = t[2] - u[2];
+ sum[3] = t[3] - u[3];
+ store_vector4( &inst->DstReg, state, sum );
+ }
+ break;
+ case VP_OPCODE_ABS: /* GL_NV_vertex_program1_1 */
+ {
+ GLfloat t[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ if (t[0] < 0.0) t[0] = -t[0];
+ if (t[1] < 0.0) t[1] = -t[1];
+ if (t[2] < 0.0) t[2] = -t[2];
+ if (t[3] < 0.0) t[3] = -t[3];
+ store_vector4( &inst->DstReg, state, t );
+ }
+ break;
+ case VP_OPCODE_FLR: /* GL_ARB_vertex_program */
+ {
+ GLfloat t[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ t[0] = FLOORF(t[0]);
+ t[1] = FLOORF(t[1]);
+ t[2] = FLOORF(t[2]);
+ t[3] = FLOORF(t[3]);
+ store_vector4( &inst->DstReg, state, t );
+ }
+ break;
+ case VP_OPCODE_FRC: /* GL_ARB_vertex_program */
+ {
+ GLfloat t[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ t[0] = t[0] - FLOORF(t[0]);
+ t[1] = t[1] - FLOORF(t[1]);
+ t[2] = t[2] - FLOORF(t[2]);
+ t[3] = t[3] - FLOORF(t[3]);
+ store_vector4( &inst->DstReg, state, t );
+ }
+ break;
+ case VP_OPCODE_EX2: /* GL_ARB_vertex_program */
+ {
+ GLfloat t[4];
+ fetch_vector1( &inst->SrcReg[0], state, t );
+ t[0] = t[1] = t[2] = t[3] = (GLfloat)_mesa_pow(2.0, t[0]);
+ store_vector4( &inst->DstReg, state, t );
+ }
+ break;
+ case VP_OPCODE_LG2: /* GL_ARB_vertex_program */
+ {
+ GLfloat t[4];
+ fetch_vector1( &inst->SrcReg[0], state, t );
+ t[0] = t[1] = t[2] = t[3] = LOG2(t[0]);
+ store_vector4( &inst->DstReg, state, t );
+ }
+ break;
+ case VP_OPCODE_POW: /* GL_ARB_vertex_program */
+ {
+ GLfloat t[4], u[4];
+ fetch_vector1( &inst->SrcReg[0], state, t );
+ fetch_vector1( &inst->SrcReg[1], state, u );
+ t[0] = t[1] = t[2] = t[3] = (GLfloat)_mesa_pow(t[0], u[0]);
+ store_vector4( &inst->DstReg, state, t );
+ }
+ break;
+ case VP_OPCODE_XPD: /* GL_ARB_vertex_program */
+ {
+ GLfloat t[4], u[4], cross[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ fetch_vector4( &inst->SrcReg[1], state, u );
+ cross[0] = t[1] * u[2] - t[2] * u[1];
+ cross[1] = t[2] * u[0] - t[0] * u[2];
+ cross[2] = t[0] * u[1] - t[1] * u[0];
+ store_vector4( &inst->DstReg, state, cross );
+ }
+ break;
+ case VP_OPCODE_SWZ: /* GL_ARB_vertex_program */
+ {
+ const struct vp_src_register *source = &inst->SrcReg[0];
+ const GLfloat *src = get_register_pointer(source, state);
+ GLfloat result[4];
+ GLuint i;
+
+ /* do extended swizzling here */
+ for (i = 0; i < 4; i++) {
+ if (GET_SWZ(source->Swizzle, i) == SWIZZLE_ZERO)
+ result[i] = 0.0;
+ else if (GET_SWZ(source->Swizzle, i) == SWIZZLE_ONE)
+ result[i] = 1.0;
+ else
+ result[i] = src[GET_SWZ(source->Swizzle, i)];
+ if (source->Negate & (1 << i))
+ result[i] = -result[i];
+ }
+ store_vector4( &inst->DstReg, state, result );
+ }
+ break;
+ case VP_OPCODE_PRINT:
+ if (inst->SrcReg[0].File) {
+ GLfloat t[4];
+ fetch_vector4( &inst->SrcReg[0], state, t );
+ _mesa_printf("%s%g, %g, %g, %g\n",
+ (char *) inst->Data, t[0], t[1], t[2], t[3]);
+ }
+ else {
+ _mesa_printf("%s\n", (char *) inst->Data);
+ }
+ break;
+ case VP_OPCODE_END:
+ ctx->_CurrentProgram = 0;
+ return;
+ default:
+ /* bad instruction opcode */
+ _mesa_problem(ctx, "Bad VP Opcode in _mesa_exec_vertex_program");
+ ctx->_CurrentProgram = 0;
+ return;
+ } /* switch */
+ } /* for */
+
+ ctx->_CurrentProgram = 0;
+}
+
+
+
+/**
+Thoughts on vertex program optimization:
+
+The obvious thing to do is to compile the vertex program into X86/SSE/3DNow!
+assembly code. That will probably be a lot of work.
+
+Another approach might be to replace the vp_instruction->Opcode field with
+a pointer to a specialized C function which executes the instruction.
+In particular we can write functions which skip swizzling, negating,
+masking, relative addressing, etc. when they're not needed.
+
+For example:
+
+void simple_add( struct vp_instruction *inst )
+{
+ GLfloat *sum = machine->Registers[inst->DstReg.Register];
+ GLfloat *a = machine->Registers[inst->SrcReg[0].Register];
+ GLfloat *b = machine->Registers[inst->SrcReg[1].Register];
+ sum[0] = a[0] + b[0];
+ sum[1] = a[1] + b[1];
+ sum[2] = a[2] + b[2];
+ sum[3] = a[3] + b[3];
+}
+
+*/
+
+/*
+
+KW:
+
+A first step would be to 'vectorize' the programs in the same way as
+the normal transformation code in the tnl module. Thus each opcode
+takes zero or more input vectors (registers) and produces one or more
+output vectors.
+
+These operations would intially be coded in C, with machine-specific
+assembly following, as is currently the case for matrix
+transformations in the math/ directory. The preprocessing scheme for
+selecting simpler operations Brian describes above would also work
+here.
+
+This should give reasonable performance without excessive effort.
+
+*/