aboutsummaryrefslogtreecommitdiff
path: root/nx-X11/extras/Mesa/src/mesa/swrast/s_nvfragprog.c
diff options
context:
space:
mode:
Diffstat (limited to 'nx-X11/extras/Mesa/src/mesa/swrast/s_nvfragprog.c')
-rw-r--r--nx-X11/extras/Mesa/src/mesa/swrast/s_nvfragprog.c1507
1 files changed, 1507 insertions, 0 deletions
diff --git a/nx-X11/extras/Mesa/src/mesa/swrast/s_nvfragprog.c b/nx-X11/extras/Mesa/src/mesa/swrast/s_nvfragprog.c
new file mode 100644
index 000000000..5ee4a041a
--- /dev/null
+++ b/nx-X11/extras/Mesa/src/mesa/swrast/s_nvfragprog.c
@@ -0,0 +1,1507 @@
+/*
+ * Mesa 3-D graphics library
+ * Version: 6.4
+ *
+ * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+/*
+ * Regarding GL_NV_fragment_program:
+ *
+ * Portions of this software may use or implement intellectual
+ * property owned and licensed by NVIDIA Corporation. NVIDIA disclaims
+ * any and all warranties with respect to such intellectual property,
+ * including any use thereof or modifications thereto.
+ */
+
+#include "glheader.h"
+#include "colormac.h"
+#include "context.h"
+#include "nvfragprog.h"
+#include "macros.h"
+#include "program.h"
+
+#include "s_nvfragprog.h"
+#include "s_span.h"
+#include "s_texture.h"
+
+
+/* if 1, print some debugging info */
+#define DEBUG_FRAG 0
+
+/**
+ * Fetch a texel.
+ */
+static void
+fetch_texel( GLcontext *ctx, const GLfloat texcoord[4], GLfloat lambda,
+ GLuint unit, GLfloat color[4] )
+{
+ GLchan rgba[4];
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+
+ /* XXX use a float-valued TextureSample routine here!!! */
+ swrast->TextureSample[unit](ctx, unit, ctx->Texture.Unit[unit]._Current,
+ 1, (const GLfloat (*)[4]) texcoord,
+ &lambda, &rgba);
+ color[0] = CHAN_TO_FLOAT(rgba[0]);
+ color[1] = CHAN_TO_FLOAT(rgba[1]);
+ color[2] = CHAN_TO_FLOAT(rgba[2]);
+ color[3] = CHAN_TO_FLOAT(rgba[3]);
+}
+
+
+/**
+ * Fetch a texel with the given partial derivatives to compute a level
+ * of detail in the mipmap.
+ */
+static void
+fetch_texel_deriv( GLcontext *ctx, const GLfloat texcoord[4],
+ const GLfloat texdx[4], const GLfloat texdy[4],
+ GLuint unit, GLfloat color[4] )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ const struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current;
+ const struct gl_texture_image *texImg = texObj->Image[0][texObj->BaseLevel];
+ const GLfloat texW = (GLfloat) texImg->WidthScale;
+ const GLfloat texH = (GLfloat) texImg->HeightScale;
+ GLchan rgba[4];
+
+ GLfloat lambda = _swrast_compute_lambda(texdx[0], texdy[0], /* ds/dx, ds/dy */
+ texdx[1], texdy[1], /* dt/dx, dt/dy */
+ texdx[3], texdy[2], /* dq/dx, dq/dy */
+ texW, texH,
+ texcoord[0], texcoord[1], texcoord[3],
+ 1.0F / texcoord[3]);
+
+ swrast->TextureSample[unit](ctx, unit, ctx->Texture.Unit[unit]._Current,
+ 1, (const GLfloat (*)[4]) texcoord,
+ &lambda, &rgba);
+ color[0] = CHAN_TO_FLOAT(rgba[0]);
+ color[1] = CHAN_TO_FLOAT(rgba[1]);
+ color[2] = CHAN_TO_FLOAT(rgba[2]);
+ color[3] = CHAN_TO_FLOAT(rgba[3]);
+}
+
+
+/**
+ * Return a pointer to the 4-element float vector specified by the given
+ * source register.
+ */
+static INLINE const GLfloat *
+get_register_pointer( GLcontext *ctx,
+ const struct fp_src_register *source,
+ const struct fp_machine *machine,
+ const struct fragment_program *program )
+{
+ const GLfloat *src;
+ switch (source->File) {
+ case PROGRAM_TEMPORARY:
+ ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_TEMPS);
+ src = machine->Temporaries[source->Index];
+ break;
+ case PROGRAM_INPUT:
+ ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_INPUTS);
+ src = machine->Inputs[source->Index];
+ break;
+ case PROGRAM_OUTPUT:
+ /* This is only for PRINT */
+ ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_OUTPUTS);
+ src = machine->Outputs[source->Index];
+ break;
+ case PROGRAM_LOCAL_PARAM:
+ ASSERT(source->Index < MAX_PROGRAM_LOCAL_PARAMS);
+ src = program->Base.LocalParams[source->Index];
+ break;
+ case PROGRAM_ENV_PARAM:
+ ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_PARAMS);
+ src = ctx->FragmentProgram.Parameters[source->Index];
+ break;
+ case PROGRAM_STATE_VAR:
+ /* Fallthrough */
+ case PROGRAM_NAMED_PARAM:
+ ASSERT(source->Index < (GLint) program->Parameters->NumParameters);
+ src = program->Parameters->ParameterValues[source->Index];
+ break;
+ default:
+ _mesa_problem(ctx, "Invalid input register file %d in fetch_vector4", source->File);
+ src = NULL;
+ }
+ return src;
+}
+
+
+/**
+ * Fetch a 4-element float vector from the given source register.
+ * Apply swizzling and negating as needed.
+ */
+static void
+fetch_vector4( GLcontext *ctx,
+ const struct fp_src_register *source,
+ const struct fp_machine *machine,
+ const struct fragment_program *program,
+ GLfloat result[4] )
+{
+ const GLfloat *src = get_register_pointer(ctx, source, machine, program);
+ ASSERT(src);
+
+ result[0] = src[GET_SWZ(source->Swizzle, 0)];
+ result[1] = src[GET_SWZ(source->Swizzle, 1)];
+ result[2] = src[GET_SWZ(source->Swizzle, 2)];
+ result[3] = src[GET_SWZ(source->Swizzle, 3)];
+
+ if (source->NegateBase) {
+ result[0] = -result[0];
+ result[1] = -result[1];
+ result[2] = -result[2];
+ result[3] = -result[3];
+ }
+ if (source->Abs) {
+ result[0] = FABSF(result[0]);
+ result[1] = FABSF(result[1]);
+ result[2] = FABSF(result[2]);
+ result[3] = FABSF(result[3]);
+ }
+ if (source->NegateAbs) {
+ result[0] = -result[0];
+ result[1] = -result[1];
+ result[2] = -result[2];
+ result[3] = -result[3];
+ }
+}
+
+
+/**
+ * Fetch the derivative with respect to X for the given register.
+ * \return GL_TRUE if it was easily computed or GL_FALSE if we
+ * need to execute another instance of the program (ugh)!
+ */
+static GLboolean
+fetch_vector4_deriv( GLcontext *ctx,
+ const struct fp_src_register *source,
+ const struct sw_span *span,
+ char xOrY, GLint column, GLfloat result[4] )
+{
+ GLfloat src[4];
+
+ ASSERT(xOrY == 'X' || xOrY == 'Y');
+
+ switch (source->Index) {
+ case FRAG_ATTRIB_WPOS:
+ if (xOrY == 'X') {
+ src[0] = 1.0;
+ src[1] = 0.0;
+ src[2] = span->dzdx / ctx->DrawBuffer->_DepthMaxF;
+ src[3] = span->dwdx;
+ }
+ else {
+ src[0] = 0.0;
+ src[1] = 1.0;
+ src[2] = span->dzdy / ctx->DrawBuffer->_DepthMaxF;
+ src[3] = span->dwdy;
+ }
+ break;
+ case FRAG_ATTRIB_COL0:
+ if (xOrY == 'X') {
+ src[0] = span->drdx * (1.0F / CHAN_MAXF);
+ src[1] = span->dgdx * (1.0F / CHAN_MAXF);
+ src[2] = span->dbdx * (1.0F / CHAN_MAXF);
+ src[3] = span->dadx * (1.0F / CHAN_MAXF);
+ }
+ else {
+ src[0] = span->drdy * (1.0F / CHAN_MAXF);
+ src[1] = span->dgdy * (1.0F / CHAN_MAXF);
+ src[2] = span->dbdy * (1.0F / CHAN_MAXF);
+ src[3] = span->dady * (1.0F / CHAN_MAXF);
+ }
+ break;
+ case FRAG_ATTRIB_COL1:
+ if (xOrY == 'X') {
+ src[0] = span->dsrdx * (1.0F / CHAN_MAXF);
+ src[1] = span->dsgdx * (1.0F / CHAN_MAXF);
+ src[2] = span->dsbdx * (1.0F / CHAN_MAXF);
+ src[3] = 0.0; /* XXX need this */
+ }
+ else {
+ src[0] = span->dsrdy * (1.0F / CHAN_MAXF);
+ src[1] = span->dsgdy * (1.0F / CHAN_MAXF);
+ src[2] = span->dsbdy * (1.0F / CHAN_MAXF);
+ src[3] = 0.0; /* XXX need this */
+ }
+ break;
+ case FRAG_ATTRIB_FOGC:
+ if (xOrY == 'X') {
+ src[0] = span->dfogdx;
+ src[1] = 0.0;
+ src[2] = 0.0;
+ src[3] = 0.0;
+ }
+ else {
+ src[0] = span->dfogdy;
+ src[1] = 0.0;
+ src[2] = 0.0;
+ src[3] = 0.0;
+ }
+ break;
+ case FRAG_ATTRIB_TEX0:
+ case FRAG_ATTRIB_TEX1:
+ case FRAG_ATTRIB_TEX2:
+ case FRAG_ATTRIB_TEX3:
+ case FRAG_ATTRIB_TEX4:
+ case FRAG_ATTRIB_TEX5:
+ case FRAG_ATTRIB_TEX6:
+ case FRAG_ATTRIB_TEX7:
+ if (xOrY == 'X') {
+ const GLuint u = source->Index - FRAG_ATTRIB_TEX0;
+ /* this is a little tricky - I think I've got it right */
+ const GLfloat invQ = 1.0f / (span->tex[u][3]
+ + span->texStepX[u][3] * column);
+ src[0] = span->texStepX[u][0] * invQ;
+ src[1] = span->texStepX[u][1] * invQ;
+ src[2] = span->texStepX[u][2] * invQ;
+ src[3] = span->texStepX[u][3] * invQ;
+ }
+ else {
+ const GLuint u = source->Index - FRAG_ATTRIB_TEX0;
+ /* Tricky, as above, but in Y direction */
+ const GLfloat invQ = 1.0f / (span->tex[u][3] + span->texStepY[u][3]);
+ src[0] = span->texStepY[u][0] * invQ;
+ src[1] = span->texStepY[u][1] * invQ;
+ src[2] = span->texStepY[u][2] * invQ;
+ src[3] = span->texStepY[u][3] * invQ;
+ }
+ break;
+ default:
+ return GL_FALSE;
+ }
+
+ result[0] = src[GET_SWZ(source->Swizzle, 0)];
+ result[1] = src[GET_SWZ(source->Swizzle, 1)];
+ result[2] = src[GET_SWZ(source->Swizzle, 2)];
+ result[3] = src[GET_SWZ(source->Swizzle, 3)];
+
+ if (source->NegateBase) {
+ result[0] = -result[0];
+ result[1] = -result[1];
+ result[2] = -result[2];
+ result[3] = -result[3];
+ }
+ if (source->Abs) {
+ result[0] = FABSF(result[0]);
+ result[1] = FABSF(result[1]);
+ result[2] = FABSF(result[2]);
+ result[3] = FABSF(result[3]);
+ }
+ if (source->NegateAbs) {
+ result[0] = -result[0];
+ result[1] = -result[1];
+ result[2] = -result[2];
+ result[3] = -result[3];
+ }
+ return GL_TRUE;
+}
+
+
+/**
+ * As above, but only return result[0] element.
+ */
+static void
+fetch_vector1( GLcontext *ctx,
+ const struct fp_src_register *source,
+ const struct fp_machine *machine,
+ const struct fragment_program *program,
+ GLfloat result[4] )
+{
+ const GLfloat *src = get_register_pointer(ctx, source, machine, program);
+ ASSERT(src);
+
+ result[0] = src[GET_SWZ(source->Swizzle, 0)];
+
+ if (source->NegateBase) {
+ result[0] = -result[0];
+ }
+ if (source->Abs) {
+ result[0] = FABSF(result[0]);
+ }
+ if (source->NegateAbs) {
+ result[0] = -result[0];
+ }
+}
+
+
+/**
+ * Test value against zero and return GT, LT, EQ or UN if NaN.
+ */
+static INLINE GLuint
+generate_cc( float value )
+{
+ if (value != value)
+ return COND_UN; /* NaN */
+ if (value > 0.0F)
+ return COND_GT;
+ if (value < 0.0F)
+ return COND_LT;
+ return COND_EQ;
+}
+
+
+/**
+ * Test if the ccMaskRule is satisfied by the given condition code.
+ * Used to mask destination writes according to the current condition codee.
+ */
+static INLINE GLboolean
+test_cc(GLuint condCode, GLuint ccMaskRule)
+{
+ switch (ccMaskRule) {
+ case COND_EQ: return (condCode == COND_EQ);
+ case COND_NE: return (condCode != COND_EQ);
+ case COND_LT: return (condCode == COND_LT);
+ case COND_GE: return (condCode == COND_GT || condCode == COND_EQ);
+ case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
+ case COND_GT: return (condCode == COND_GT);
+ case COND_TR: return GL_TRUE;
+ case COND_FL: return GL_FALSE;
+ default: return GL_TRUE;
+ }
+}
+
+
+/**
+ * Store 4 floats into a register. Observe the instructions saturate and
+ * set-condition-code flags.
+ */
+static void
+store_vector4( const struct fp_instruction *inst,
+ struct fp_machine *machine,
+ const GLfloat value[4] )
+{
+ const struct fp_dst_register *dest = &(inst->DstReg);
+ const GLboolean clamp = inst->Saturate;
+ const GLboolean updateCC = inst->UpdateCondRegister;
+ GLfloat *dstReg;
+ GLfloat dummyReg[4];
+ GLfloat clampedValue[4];
+ GLboolean condWriteMask[4];
+ GLuint writeMask = dest->WriteMask;
+
+ switch (dest->File) {
+ case PROGRAM_OUTPUT:
+ dstReg = machine->Outputs[dest->Index];
+ break;
+ case PROGRAM_TEMPORARY:
+ dstReg = machine->Temporaries[dest->Index];
+ break;
+ case PROGRAM_WRITE_ONLY:
+ dstReg = dummyReg;
+ return;
+ default:
+ _mesa_problem(NULL, "bad register file in store_vector4(fp)");
+ return;
+ }
+
+#if DEBUG_FRAG
+ if (value[0] > 1.0e10 ||
+ IS_INF_OR_NAN(value[0]) ||
+ IS_INF_OR_NAN(value[1]) ||
+ IS_INF_OR_NAN(value[2]) ||
+ IS_INF_OR_NAN(value[3]) )
+ printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
+#endif
+
+ if (clamp) {
+ clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
+ clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
+ clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
+ clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
+ value = clampedValue;
+ }
+
+ if (dest->CondMask != COND_TR) {
+ condWriteMask[0] = GET_BIT(writeMask, 0)
+ && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 0)], dest->CondMask);
+ condWriteMask[1] = GET_BIT(writeMask, 1)
+ && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 1)], dest->CondMask);
+ condWriteMask[2] = GET_BIT(writeMask, 2)
+ && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 2)], dest->CondMask);
+ condWriteMask[3] = GET_BIT(writeMask, 3)
+ && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 3)], dest->CondMask);
+
+ writeMask = ((condWriteMask[0] << 0) |
+ (condWriteMask[1] << 1) |
+ (condWriteMask[2] << 2) |
+ (condWriteMask[3] << 3));
+ }
+
+ if (GET_BIT(writeMask, 0)) {
+ dstReg[0] = value[0];
+ if (updateCC)
+ machine->CondCodes[0] = generate_cc(value[0]);
+ }
+ if (GET_BIT(writeMask, 1)) {
+ dstReg[1] = value[1];
+ if (updateCC)
+ machine->CondCodes[1] = generate_cc(value[1]);
+ }
+ if (GET_BIT(writeMask, 2)) {
+ dstReg[2] = value[2];
+ if (updateCC)
+ machine->CondCodes[2] = generate_cc(value[2]);
+ }
+ if (GET_BIT(writeMask, 3)) {
+ dstReg[3] = value[3];
+ if (updateCC)
+ machine->CondCodes[3] = generate_cc(value[3]);
+ }
+}
+
+
+/**
+ * Initialize a new machine state instance from an existing one, adding
+ * the partial derivatives onto the input registers.
+ * Used to implement DDX and DDY instructions in non-trivial cases.
+ */
+static void
+init_machine_deriv( GLcontext *ctx,
+ const struct fp_machine *machine,
+ const struct fragment_program *program,
+ const struct sw_span *span, char xOrY,
+ struct fp_machine *dMachine )
+{
+ GLuint u;
+
+ ASSERT(xOrY == 'X' || xOrY == 'Y');
+
+ /* copy existing machine */
+ _mesa_memcpy(dMachine, machine, sizeof(struct fp_machine));
+
+ if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) {
+ /* Clear temporary registers (undefined for ARB_f_p) */
+ _mesa_bzero( (void*) machine->Temporaries,
+ MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat));
+ }
+
+ /* Add derivatives */
+ if (program->InputsRead & (1 << FRAG_ATTRIB_WPOS)) {
+ GLfloat *wpos = (GLfloat*) machine->Inputs[FRAG_ATTRIB_WPOS];
+ if (xOrY == 'X') {
+ wpos[0] += 1.0F;
+ wpos[1] += 0.0F;
+ wpos[2] += span->dzdx;
+ wpos[3] += span->dwdx;
+ }
+ else {
+ wpos[0] += 0.0F;
+ wpos[1] += 1.0F;
+ wpos[2] += span->dzdy;
+ wpos[3] += span->dwdy;
+ }
+ }
+ if (program->InputsRead & (1 << FRAG_ATTRIB_COL0)) {
+ GLfloat *col0 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL0];
+ if (xOrY == 'X') {
+ col0[0] += span->drdx * (1.0F / CHAN_MAXF);
+ col0[1] += span->dgdx * (1.0F / CHAN_MAXF);
+ col0[2] += span->dbdx * (1.0F / CHAN_MAXF);
+ col0[3] += span->dadx * (1.0F / CHAN_MAXF);
+ }
+ else {
+ col0[0] += span->drdy * (1.0F / CHAN_MAXF);
+ col0[1] += span->dgdy * (1.0F / CHAN_MAXF);
+ col0[2] += span->dbdy * (1.0F / CHAN_MAXF);
+ col0[3] += span->dady * (1.0F / CHAN_MAXF);
+ }
+ }
+ if (program->InputsRead & (1 << FRAG_ATTRIB_COL1)) {
+ GLfloat *col1 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL1];
+ if (xOrY == 'X') {
+ col1[0] += span->dsrdx * (1.0F / CHAN_MAXF);
+ col1[1] += span->dsgdx * (1.0F / CHAN_MAXF);
+ col1[2] += span->dsbdx * (1.0F / CHAN_MAXF);
+ col1[3] += 0.0; /*XXX fix */
+ }
+ else {
+ col1[0] += span->dsrdy * (1.0F / CHAN_MAXF);
+ col1[1] += span->dsgdy * (1.0F / CHAN_MAXF);
+ col1[2] += span->dsbdy * (1.0F / CHAN_MAXF);
+ col1[3] += 0.0; /*XXX fix */
+ }
+ }
+ if (program->InputsRead & (1 << FRAG_ATTRIB_FOGC)) {
+ GLfloat *fogc = (GLfloat*) machine->Inputs[FRAG_ATTRIB_FOGC];
+ if (xOrY == 'X') {
+ fogc[0] += span->dfogdx;
+ }
+ else {
+ fogc[0] += span->dfogdy;
+ }
+ }
+ for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
+ if (program->InputsRead & (1 << (FRAG_ATTRIB_TEX0 + u))) {
+ GLfloat *tex = (GLfloat*) machine->Inputs[FRAG_ATTRIB_TEX0 + u];
+ /* XXX perspective-correct interpolation */
+ if (xOrY == 'X') {
+ tex[0] += span->texStepX[u][0];
+ tex[1] += span->texStepX[u][1];
+ tex[2] += span->texStepX[u][2];
+ tex[3] += span->texStepX[u][3];
+ }
+ else {
+ tex[0] += span->texStepY[u][0];
+ tex[1] += span->texStepY[u][1];
+ tex[2] += span->texStepY[u][2];
+ tex[3] += span->texStepY[u][3];
+ }
+ }
+ }
+
+ /* init condition codes */
+ dMachine->CondCodes[0] = COND_EQ;
+ dMachine->CondCodes[1] = COND_EQ;
+ dMachine->CondCodes[2] = COND_EQ;
+ dMachine->CondCodes[3] = COND_EQ;
+}
+
+
+/**
+ * Execute the given vertex program.
+ * NOTE: we do everything in single-precision floating point; we don't
+ * currently observe the single/half/fixed-precision qualifiers.
+ * \param ctx - rendering context
+ * \param program - the fragment program to execute
+ * \param machine - machine state (register file)
+ * \param maxInst - max number of instructions to execute
+ * \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
+ */
+static GLboolean
+execute_program( GLcontext *ctx,
+ const struct fragment_program *program, GLuint maxInst,
+ struct fp_machine *machine, const struct sw_span *span,
+ GLuint column )
+{
+ GLuint pc;
+
+#if DEBUG_FRAG
+ printf("execute fragment program --------------------\n");
+#endif
+
+ for (pc = 0; pc < maxInst; pc++) {
+ const struct fp_instruction *inst = program->Instructions + pc;
+
+ if (ctx->FragmentProgram.CallbackEnabled &&
+ ctx->FragmentProgram.Callback) {
+ ctx->FragmentProgram.CurrentPosition = inst->StringPos;
+ ctx->FragmentProgram.Callback(program->Base.Target,
+ ctx->FragmentProgram.CallbackData);
+ }
+
+ switch (inst->Opcode) {
+ case FP_OPCODE_ABS:
+ {
+ GLfloat a[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ result[0] = FABSF(a[0]);
+ result[1] = FABSF(a[1]);
+ result[2] = FABSF(a[2]);
+ result[3] = FABSF(a[3]);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_ADD:
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = a[0] + b[0];
+ result[1] = a[1] + b[1];
+ result[2] = a[2] + b[2];
+ result[3] = a[3] + b[3];
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_CMP:
+ {
+ GLfloat a[4], b[4], c[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
+ result[0] = a[0] < 0.0F ? b[0] : c[0];
+ result[1] = a[1] < 0.0F ? b[1] : c[1];
+ result[2] = a[2] < 0.0F ? b[2] : c[2];
+ result[3] = a[3] < 0.0F ? b[3] : c[3];
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_COS:
+ {
+ GLfloat a[4], result[4];
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+ result[0] = result[1] = result[2] = result[3] = (GLfloat)_mesa_cos(a[0]);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_DDX: /* Partial derivative with respect to X */
+ {
+ GLfloat a[4], aNext[4], result[4];
+ struct fp_machine dMachine;
+ if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'X',
+ column, result)) {
+ /* This is tricky. Make a copy of the current machine state,
+ * increment the input registers by the dx or dy partial
+ * derivatives, then re-execute the program up to the
+ * preceeding instruction, then fetch the source register.
+ * Finally, find the difference in the register values for
+ * the original and derivative runs.
+ */
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);
+ init_machine_deriv(ctx, machine, program, span,
+ 'X', &dMachine);
+ execute_program(ctx, program, pc, &dMachine, span, column);
+ fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext );
+ result[0] = aNext[0] - a[0];
+ result[1] = aNext[1] - a[1];
+ result[2] = aNext[2] - a[2];
+ result[3] = aNext[3] - a[3];
+ }
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_DDY: /* Partial derivative with respect to Y */
+ {
+ GLfloat a[4], aNext[4], result[4];
+ struct fp_machine dMachine;
+ if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'Y',
+ column, result)) {
+ init_machine_deriv(ctx, machine, program, span,
+ 'Y', &dMachine);
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);
+ execute_program(ctx, program, pc, &dMachine, span, column);
+ fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext );
+ result[0] = aNext[0] - a[0];
+ result[1] = aNext[1] - a[1];
+ result[2] = aNext[2] - a[2];
+ result[3] = aNext[3] - a[3];
+ }
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_DP3:
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = result[1] = result[2] = result[3] =
+ a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
+ store_vector4( inst, machine, result );
+#if DEBUG_FRAG
+ printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
+ result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
+#endif
+ }
+ break;
+ case FP_OPCODE_DP4:
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = result[1] = result[2] = result[3] =
+ a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
+ store_vector4( inst, machine, result );
+#if DEBUG_FRAG
+ printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
+ result[0], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
+#endif
+ }
+ break;
+ case FP_OPCODE_DPH:
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = result[1] = result[2] = result[3] =
+ a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + b[3];
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_DST: /* Distance vector */
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = 1.0F;
+ result[1] = a[1] * b[1];
+ result[2] = a[2];
+ result[3] = b[3];
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_EX2: /* Exponential base 2 */
+ {
+ GLfloat a[4], result[4];
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+ result[0] = result[1] = result[2] = result[3] =
+ (GLfloat) _mesa_pow(2.0, a[0]);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_FLR:
+ {
+ GLfloat a[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ result[0] = FLOORF(a[0]);
+ result[1] = FLOORF(a[1]);
+ result[2] = FLOORF(a[2]);
+ result[3] = FLOORF(a[3]);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_FRC:
+ {
+ GLfloat a[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ result[0] = a[0] - FLOORF(a[0]);
+ result[1] = a[1] - FLOORF(a[1]);
+ result[2] = a[2] - FLOORF(a[2]);
+ result[3] = a[3] - FLOORF(a[3]);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_KIL_NV: /* NV_f_p only */
+ {
+ const GLuint swizzle = inst->DstReg.CondSwizzle;
+ const GLuint condMask = inst->DstReg.CondMask;
+ if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
+ test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
+ test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
+ test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
+ return GL_FALSE;
+ }
+ }
+ break;
+ case FP_OPCODE_KIL: /* ARB_f_p only */
+ {
+ GLfloat a[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) {
+ return GL_FALSE;
+ }
+ }
+ break;
+ case FP_OPCODE_LG2: /* log base 2 */
+ {
+ GLfloat a[4], result[4];
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+ result[0] = result[1] = result[2] = result[3]
+ = LOG2(a[0]);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_LIT:
+ {
+ const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */
+ GLfloat a[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ a[0] = MAX2(a[0], 0.0F);
+ a[1] = MAX2(a[1], 0.0F);
+ /* XXX ARB version clamps a[3], NV version doesn't */
+ a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon));
+ result[0] = 1.0F;
+ result[1] = a[0];
+ /* XXX we could probably just use pow() here */
+ if (a[0] > 0.0F) {
+ if (a[1] == 0.0 && a[3] == 0.0)
+ result[2] = 1.0;
+ else
+ result[2] = EXPF(a[3] * LOGF(a[1]));
+ }
+ else {
+ result[2] = 0.0;
+ }
+ result[3] = 1.0F;
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_LRP:
+ {
+ GLfloat a[4], b[4], c[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
+ result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
+ result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
+ result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
+ result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_MAD:
+ {
+ GLfloat a[4], b[4], c[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
+ result[0] = a[0] * b[0] + c[0];
+ result[1] = a[1] * b[1] + c[1];
+ result[2] = a[2] * b[2] + c[2];
+ result[3] = a[3] * b[3] + c[3];
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_MAX:
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = MAX2(a[0], b[0]);
+ result[1] = MAX2(a[1], b[1]);
+ result[2] = MAX2(a[2], b[2]);
+ result[3] = MAX2(a[3], b[3]);
+ store_vector4( inst, machine, result );
+#if DEBUG_FRAG
+ printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n",
+ result[0], result[1], result[2], result[3],
+ a[0], a[1], a[2], a[3],
+ b[0], b[1], b[2], b[3]);
+#endif
+ }
+ break;
+ case FP_OPCODE_MIN:
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = MIN2(a[0], b[0]);
+ result[1] = MIN2(a[1], b[1]);
+ result[2] = MIN2(a[2], b[2]);
+ result[3] = MIN2(a[3], b[3]);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_MOV:
+ {
+ GLfloat result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, result );
+ store_vector4( inst, machine, result );
+#if DEBUG_FRAG
+ printf("MOV (%g %g %g %g)\n",
+ result[0], result[1], result[2], result[3]);
+#endif
+ }
+ break;
+ case FP_OPCODE_MUL:
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = a[0] * b[0];
+ result[1] = a[1] * b[1];
+ result[2] = a[2] * b[2];
+ result[3] = a[3] * b[3];
+ store_vector4( inst, machine, result );
+#if DEBUG_FRAG
+ printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n",
+ result[0], result[1], result[2], result[3],
+ a[0], a[1], a[2], a[3],
+ b[0], b[1], b[2], b[3]);
+#endif
+ }
+ break;
+ case FP_OPCODE_PK2H: /* pack two 16-bit floats in one 32-bit float */
+ {
+ GLfloat a[4], result[4];
+ GLhalfNV hx, hy;
+ GLuint *rawResult = (GLuint *) result;
+ GLuint twoHalves;
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ hx = _mesa_float_to_half(a[0]);
+ hy = _mesa_float_to_half(a[1]);
+ twoHalves = hx | (hy << 16);
+ rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
+ = twoHalves;
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_PK2US: /* pack two GLushorts into one 32-bit float */
+ {
+ GLfloat a[4], result[4];
+ GLuint usx, usy, *rawResult = (GLuint *) result;
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ a[0] = CLAMP(a[0], 0.0F, 1.0F);
+ a[1] = CLAMP(a[1], 0.0F, 1.0F);
+ usx = IROUND(a[0] * 65535.0F);
+ usy = IROUND(a[1] * 65535.0F);
+ rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
+ = usx | (usy << 16);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_PK4B: /* pack four GLbytes into one 32-bit float */
+ {
+ GLfloat a[4], result[4];
+ GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F);
+ a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F);
+ a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F);
+ a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F);
+ ubx = IROUND(127.0F * a[0] + 128.0F);
+ uby = IROUND(127.0F * a[1] + 128.0F);
+ ubz = IROUND(127.0F * a[2] + 128.0F);
+ ubw = IROUND(127.0F * a[3] + 128.0F);
+ rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
+ = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_PK4UB: /* pack four GLubytes into one 32-bit float */
+ {
+ GLfloat a[4], result[4];
+ GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ a[0] = CLAMP(a[0], 0.0F, 1.0F);
+ a[1] = CLAMP(a[1], 0.0F, 1.0F);
+ a[2] = CLAMP(a[2], 0.0F, 1.0F);
+ a[3] = CLAMP(a[3], 0.0F, 1.0F);
+ ubx = IROUND(255.0F * a[0]);
+ uby = IROUND(255.0F * a[1]);
+ ubz = IROUND(255.0F * a[2]);
+ ubw = IROUND(255.0F * a[3]);
+ rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
+ = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_POW:
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector1( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = result[1] = result[2] = result[3]
+ = (GLfloat)_mesa_pow(a[0], b[0]);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_RCP:
+ {
+ GLfloat a[4], result[4];
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+#if DEBUG_FRAG
+ if (a[0] == 0)
+ printf("RCP(0)\n");
+ else if (IS_INF_OR_NAN(a[0]))
+ printf("RCP(inf)\n");
+#endif
+ result[0] = result[1] = result[2] = result[3]
+ = 1.0F / a[0];
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_RFL:
+ {
+ GLfloat axis[4], dir[4], result[4], tmp[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, axis );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, dir );
+ tmp[3] = axis[0] * axis[0]
+ + axis[1] * axis[1]
+ + axis[2] * axis[2];
+ tmp[0] = (2.0F * (axis[0] * dir[0] +
+ axis[1] * dir[1] +
+ axis[2] * dir[2])) / tmp[3];
+ result[0] = tmp[0] * axis[0] - dir[0];
+ result[1] = tmp[0] * axis[1] - dir[1];
+ result[2] = tmp[0] * axis[2] - dir[2];
+ /* result[3] is never written! XXX enforce in parser! */
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_RSQ: /* 1 / sqrt() */
+ {
+ GLfloat a[4], result[4];
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+ a[0] = FABSF(a[0]);
+ result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
+ store_vector4( inst, machine, result );
+#if DEBUG_FRAG
+ printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]);
+#endif
+ }
+ break;
+ case FP_OPCODE_SCS: /* sine and cos */
+ {
+ GLfloat a[4], result[4];
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+ result[0] = (GLfloat)cos(a[0]);
+ result[1] = (GLfloat)sin(a[0]);
+ result[2] = 0.0; /* undefined! */
+ result[3] = 0.0; /* undefined! */
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_SEQ: /* set on equal */
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = (a[0] == b[0]) ? 1.0F : 0.0F;
+ result[1] = (a[1] == b[1]) ? 1.0F : 0.0F;
+ result[2] = (a[2] == b[2]) ? 1.0F : 0.0F;
+ result[3] = (a[3] == b[3]) ? 1.0F : 0.0F;
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_SFL: /* set false, operands ignored */
+ {
+ static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_SGE: /* set on greater or equal */
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
+ result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
+ result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
+ result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_SGT: /* set on greater */
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = (a[0] > b[0]) ? 1.0F : 0.0F;
+ result[1] = (a[1] > b[1]) ? 1.0F : 0.0F;
+ result[2] = (a[2] > b[2]) ? 1.0F : 0.0F;
+ result[3] = (a[3] > b[3]) ? 1.0F : 0.0F;
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_SIN:
+ {
+ GLfloat a[4], result[4];
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+ result[0] = result[1] = result[2] =
+ result[3] = (GLfloat)_mesa_sin(a[0]);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_SLE: /* set on less or equal */
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F;
+ result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F;
+ result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F;
+ result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F;
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_SLT: /* set on less */
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
+ result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
+ result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
+ result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_SNE: /* set on not equal */
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;
+ result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;
+ result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;
+ result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_STR: /* set true, operands ignored */
+ {
+ static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_SUB:
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = a[0] - b[0];
+ result[1] = a[1] - b[1];
+ result[2] = a[2] - b[2];
+ result[3] = a[3] - b[3];
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_SWZ:
+ {
+ const struct fp_src_register *source = &inst->SrcReg[0];
+ const GLfloat *src = get_register_pointer(ctx, source,
+ machine, program);
+ GLfloat result[4];
+ GLuint i;
+
+ /* do extended swizzling here */
+ for (i = 0; i < 4; i++) {
+ if (GET_SWZ(source->Swizzle, i) == SWIZZLE_ZERO)
+ result[i] = 0.0;
+ else if (GET_SWZ(source->Swizzle, i) == SWIZZLE_ONE)
+ result[i] = 1.0;
+ else
+ result[i] = src[GET_SWZ(source->Swizzle, i)];
+
+ if (source->NegateBase & (1 << i))
+ result[i] = -result[i];
+ }
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_TEX: /* Both ARB and NV frag prog */
+ /* Texel lookup */
+ {
+ GLfloat texcoord[4], color[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );
+ /* Note: we pass 0 for LOD. The ARB extension requires it
+ * while the NV extension says it's implementation dependant.
+ */
+ /* KW: Previously lambda was passed as zero, but I
+ * believe this is incorrect, the spec seems to
+ * indicate rather that lambda should not be
+ * changed/biased, unlike TXB where texcoord[3] is
+ * added to the lambda calculations. The lambda should
+ * still be calculated normally for TEX & TXP though,
+ * not set to zero. Otherwise it's very difficult to
+ * implement normal GL semantics through the fragment
+ * shader.
+ */
+ fetch_texel( ctx, texcoord,
+ span->array->lambda[inst->TexSrcUnit][column],
+ inst->TexSrcUnit, color );
+ store_vector4( inst, machine, color );
+ }
+ break;
+ case FP_OPCODE_TXB: /* GL_ARB_fragment_program only */
+ /* Texel lookup with LOD bias */
+ {
+ GLfloat texcoord[4], color[4], bias, lambda;
+
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );
+ /* texcoord[3] is the bias to add to lambda */
+ bias = ctx->Texture.Unit[inst->TexSrcUnit].LodBias
+ + ctx->Texture.Unit[inst->TexSrcUnit]._Current->LodBias
+ + texcoord[3];
+ lambda = span->array->lambda[inst->TexSrcUnit][column] + bias;
+ fetch_texel( ctx, texcoord, lambda,
+ inst->TexSrcUnit, color );
+ store_vector4( inst, machine, color );
+ }
+ break;
+ case FP_OPCODE_TXD: /* GL_NV_fragment_program only */
+ /* Texture lookup w/ partial derivatives for LOD */
+ {
+ GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, dtdx );
+ fetch_vector4( ctx, &inst->SrcReg[2], machine, program, dtdy );
+ fetch_texel_deriv( ctx, texcoord, dtdx, dtdy, inst->TexSrcUnit,
+ color );
+ store_vector4( inst, machine, color );
+ }
+ break;
+ case FP_OPCODE_TXP: /* GL_ARB_fragment_program only */
+ /* Texture lookup w/ projective divide */
+ {
+ GLfloat texcoord[4], color[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );
+ /* Not so sure about this test - if texcoord[3] is
+ * zero, we'd probably be fine except for an ASSERT in
+ * IROUND_POS() which gets triggered by the inf values created.
+ */
+ if (texcoord[3] != 0.0) {
+ texcoord[0] /= texcoord[3];
+ texcoord[1] /= texcoord[3];
+ texcoord[2] /= texcoord[3];
+ }
+ /* KW: Previously lambda was passed as zero, but I
+ * believe this is incorrect, the spec seems to
+ * indicate rather that lambda should not be
+ * changed/biased, unlike TXB where texcoord[3] is
+ * added to the lambda calculations. The lambda should
+ * still be calculated normally for TEX & TXP though,
+ * not set to zero.
+ */
+ fetch_texel( ctx, texcoord,
+ span->array->lambda[inst->TexSrcUnit][column],
+ inst->TexSrcUnit, color );
+ store_vector4( inst, machine, color );
+ }
+ break;
+ case FP_OPCODE_TXP_NV: /* GL_NV_fragment_program only */
+ /* Texture lookup w/ projective divide */
+ {
+ GLfloat texcoord[4], color[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );
+ if (inst->TexSrcIdx != TEXTURE_CUBE_INDEX &&
+ texcoord[3] != 0.0) {
+ texcoord[0] /= texcoord[3];
+ texcoord[1] /= texcoord[3];
+ texcoord[2] /= texcoord[3];
+ }
+ fetch_texel( ctx, texcoord,
+ span->array->lambda[inst->TexSrcUnit][column],
+ inst->TexSrcUnit, color );
+ store_vector4( inst, machine, color );
+ }
+ break;
+ case FP_OPCODE_UP2H: /* unpack two 16-bit floats */
+ {
+ GLfloat a[4], result[4];
+ const GLuint *rawBits = (const GLuint *) a;
+ GLhalfNV hx, hy;
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+ hx = rawBits[0] & 0xffff;
+ hy = rawBits[0] >> 16;
+ result[0] = result[2] = _mesa_half_to_float(hx);
+ result[1] = result[3] = _mesa_half_to_float(hy);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_UP2US: /* unpack two GLushorts */
+ {
+ GLfloat a[4], result[4];
+ const GLuint *rawBits = (const GLuint *) a;
+ GLushort usx, usy;
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+ usx = rawBits[0] & 0xffff;
+ usy = rawBits[0] >> 16;
+ result[0] = result[2] = usx * (1.0f / 65535.0f);
+ result[1] = result[3] = usy * (1.0f / 65535.0f);
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_UP4B: /* unpack four GLbytes */
+ {
+ GLfloat a[4], result[4];
+ const GLuint *rawBits = (const GLuint *) a;
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+ result[0] = (((rawBits[0] >> 0) & 0xff) - 128) / 127.0F;
+ result[1] = (((rawBits[0] >> 8) & 0xff) - 128) / 127.0F;
+ result[2] = (((rawBits[0] >> 16) & 0xff) - 128) / 127.0F;
+ result[3] = (((rawBits[0] >> 24) & 0xff) - 128) / 127.0F;
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_UP4UB: /* unpack four GLubytes */
+ {
+ GLfloat a[4], result[4];
+ const GLuint *rawBits = (const GLuint *) a;
+ fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
+ result[0] = ((rawBits[0] >> 0) & 0xff) / 255.0F;
+ result[1] = ((rawBits[0] >> 8) & 0xff) / 255.0F;
+ result[2] = ((rawBits[0] >> 16) & 0xff) / 255.0F;
+ result[3] = ((rawBits[0] >> 24) & 0xff) / 255.0F;
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_XPD: /* cross product */
+ {
+ GLfloat a[4], b[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ result[0] = a[1] * b[2] - a[2] * b[1];
+ result[1] = a[2] * b[0] - a[0] * b[2];
+ result[2] = a[0] * b[1] - a[1] * b[0];
+ result[3] = 1.0;
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_X2D: /* 2-D matrix transform */
+ {
+ GLfloat a[4], b[4], c[4], result[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
+ fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
+ fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
+ result[0] = a[0] + b[0] * c[0] + b[1] * c[1];
+ result[1] = a[1] + b[0] * c[2] + b[1] * c[3];
+ result[2] = a[2] + b[0] * c[0] + b[1] * c[1];
+ result[3] = a[3] + b[0] * c[2] + b[1] * c[3];
+ store_vector4( inst, machine, result );
+ }
+ break;
+ case FP_OPCODE_PRINT:
+ {
+ if (inst->SrcReg[0].File != -1) {
+ GLfloat a[4];
+ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);
+ _mesa_printf("%s%g, %g, %g, %g\n", (const char *) inst->Data,
+ a[0], a[1], a[2], a[3]);
+ }
+ else {
+ _mesa_printf("%s\n", (const char *) inst->Data);
+ }
+ }
+ break;
+ case FP_OPCODE_END:
+ return GL_TRUE;
+ default:
+ _mesa_problem(ctx, "Bad opcode %d in _mesa_exec_fragment_program",
+ inst->Opcode);
+ return GL_TRUE; /* return value doesn't matter */
+ }
+ }
+ return GL_TRUE;
+}
+
+
+static void
+init_machine( GLcontext *ctx, struct fp_machine *machine,
+ const struct fragment_program *program,
+ const struct sw_span *span, GLuint col )
+{
+ GLuint inputsRead = program->InputsRead;
+ GLuint u;
+
+ if (ctx->FragmentProgram.CallbackEnabled)
+ inputsRead = ~0;
+
+ if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) {
+ /* Clear temporary registers (undefined for ARB_f_p) */
+ _mesa_bzero(machine->Temporaries,
+ MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat));
+ }
+
+ /* Load input registers */
+ if (inputsRead & (1 << FRAG_ATTRIB_WPOS)) {
+ GLfloat *wpos = machine->Inputs[FRAG_ATTRIB_WPOS];
+ ASSERT(span->arrayMask & SPAN_Z);
+ wpos[0] = (GLfloat) span->x + col;
+ wpos[1] = (GLfloat) span->y;
+ wpos[2] = (GLfloat) span->array->z[col] / ctx->DrawBuffer->_DepthMaxF;
+ wpos[3] = span->w + col * span->dwdx;
+ }
+ if (inputsRead & (1 << FRAG_ATTRIB_COL0)) {
+ GLfloat *col0 = machine->Inputs[FRAG_ATTRIB_COL0];
+ ASSERT(span->arrayMask & SPAN_RGBA);
+ col0[0] = CHAN_TO_FLOAT(span->array->rgba[col][RCOMP]);
+ col0[1] = CHAN_TO_FLOAT(span->array->rgba[col][GCOMP]);
+ col0[2] = CHAN_TO_FLOAT(span->array->rgba[col][BCOMP]);
+ col0[3] = CHAN_TO_FLOAT(span->array->rgba[col][ACOMP]);
+ }
+ if (inputsRead & (1 << FRAG_ATTRIB_COL1)) {
+ GLfloat *col1 = machine->Inputs[FRAG_ATTRIB_COL1];
+ col1[0] = CHAN_TO_FLOAT(span->array->spec[col][RCOMP]);
+ col1[1] = CHAN_TO_FLOAT(span->array->spec[col][GCOMP]);
+ col1[2] = CHAN_TO_FLOAT(span->array->spec[col][BCOMP]);
+ col1[3] = CHAN_TO_FLOAT(span->array->spec[col][ACOMP]);
+ }
+ if (inputsRead & (1 << FRAG_ATTRIB_FOGC)) {
+ GLfloat *fogc = machine->Inputs[FRAG_ATTRIB_FOGC];
+ ASSERT(span->arrayMask & SPAN_FOG);
+ fogc[0] = span->array->fog[col];
+ fogc[1] = 0.0F;
+ fogc[2] = 0.0F;
+ fogc[3] = 0.0F;
+ }
+ for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
+ if (inputsRead & (1 << (FRAG_ATTRIB_TEX0 + u))) {
+ GLfloat *tex = machine->Inputs[FRAG_ATTRIB_TEX0 + u];
+ /*ASSERT(ctx->Texture._EnabledCoordUnits & (1 << u));*/
+ COPY_4V(tex, span->array->texcoords[u][col]);
+ /*ASSERT(tex[0] != 0 || tex[1] != 0 || tex[2] != 0);*/
+ }
+ }
+
+ /* init condition codes */
+ machine->CondCodes[0] = COND_EQ;
+ machine->CondCodes[1] = COND_EQ;
+ machine->CondCodes[2] = COND_EQ;
+ machine->CondCodes[3] = COND_EQ;
+}
+
+
+
+/**
+ * Execute the current fragment program, operating on the given span.
+ */
+void
+_swrast_exec_fragment_program( GLcontext *ctx, struct sw_span *span )
+{
+ const struct fragment_program *program = ctx->FragmentProgram._Current;
+ GLuint i;
+
+ ctx->_CurrentProgram = GL_FRAGMENT_PROGRAM_ARB; /* or NV, doesn't matter */
+
+ if (program->Parameters) {
+ _mesa_load_state_parameters(ctx, program->Parameters);
+ }
+
+ for (i = 0; i < span->end; i++) {
+ if (span->array->mask[i]) {
+ init_machine(ctx, &ctx->FragmentProgram.Machine,
+ ctx->FragmentProgram._Current, span, i);
+
+#ifdef USE_TCC
+ if (!_swrast_execute_codegen_program(ctx, program, ~0,
+ &ctx->FragmentProgram.Machine,
+ span, i)) {
+ span->array->mask[i] = GL_FALSE; /* killed fragment */
+ span->writeAll = GL_FALSE;
+ }
+#else
+ if (!execute_program(ctx, program, ~0,
+ &ctx->FragmentProgram.Machine, span, i)) {
+ span->array->mask[i] = GL_FALSE; /* killed fragment */
+ span->writeAll = GL_FALSE;
+ }
+#endif
+
+ /* Store output registers */
+ {
+ const GLfloat *colOut
+ = ctx->FragmentProgram.Machine.Outputs[FRAG_OUTPUT_COLR];
+ UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][RCOMP], colOut[0]);
+ UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][GCOMP], colOut[1]);
+ UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][BCOMP], colOut[2]);
+ UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][ACOMP], colOut[3]);
+ }
+ /* depth value */
+ if (program->OutputsWritten & (1 << FRAG_OUTPUT_DEPR)) {
+ const GLfloat depth
+ = ctx->FragmentProgram.Machine.Outputs[FRAG_OUTPUT_DEPR][2];
+ span->array->z[i] = IROUND(depth * ctx->DrawBuffer->_DepthMaxF);
+ }
+ }
+ }
+
+ if (program->OutputsWritten & (1 << FRAG_OUTPUT_DEPR)) {
+ span->interpMask &= ~SPAN_Z;
+ span->arrayMask |= SPAN_Z;
+ }
+
+ ctx->_CurrentProgram = 0;
+}
+