aboutsummaryrefslogtreecommitdiff
path: root/nx-X11/extras/Mesa/src/mesa/swrast/s_span.c
diff options
context:
space:
mode:
Diffstat (limited to 'nx-X11/extras/Mesa/src/mesa/swrast/s_span.c')
-rw-r--r--nx-X11/extras/Mesa/src/mesa/swrast/s_span.c1511
1 files changed, 1511 insertions, 0 deletions
diff --git a/nx-X11/extras/Mesa/src/mesa/swrast/s_span.c b/nx-X11/extras/Mesa/src/mesa/swrast/s_span.c
new file mode 100644
index 000000000..47fa02bf1
--- /dev/null
+++ b/nx-X11/extras/Mesa/src/mesa/swrast/s_span.c
@@ -0,0 +1,1511 @@
+/*
+ * Mesa 3-D graphics library
+ * Version: 6.3
+ *
+ * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+/**
+ * \file swrast/s_span.c
+ * \brief Span processing functions used by all rasterization functions.
+ * This is where all the per-fragment tests are performed
+ * \author Brian Paul
+ */
+
+#include "glheader.h"
+#include "colormac.h"
+#include "context.h"
+#include "macros.h"
+#include "imports.h"
+
+#include "s_atifragshader.h"
+#include "s_alpha.h"
+#include "s_blend.h"
+#include "s_context.h"
+#include "s_depth.h"
+#include "s_fog.h"
+#include "s_logic.h"
+#include "s_masking.h"
+#include "s_nvfragprog.h"
+#include "s_span.h"
+#include "s_stencil.h"
+#include "s_texture.h"
+
+
+/**
+ * Init span's Z interpolation values to the RasterPos Z.
+ * Used during setup for glDraw/CopyPixels.
+ */
+void
+_swrast_span_default_z( GLcontext *ctx, struct sw_span *span )
+{
+ const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
+ if (ctx->Visual.depthBits <= 16)
+ span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
+ else
+ span->z = (GLint) (ctx->Current.RasterPos[2] * depthMax + 0.5F);
+ span->zStep = 0;
+ span->interpMask |= SPAN_Z;
+}
+
+
+/**
+ * Init span's fog interpolation values to the RasterPos fog.
+ * Used during setup for glDraw/CopyPixels.
+ */
+void
+_swrast_span_default_fog( GLcontext *ctx, struct sw_span *span )
+{
+ span->fog = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
+ span->fogStep = span->dfogdx = span->dfogdy = 0.0F;
+ span->interpMask |= SPAN_FOG;
+}
+
+
+/**
+ * Init span's rgba or index interpolation values to the RasterPos color.
+ * Used during setup for glDraw/CopyPixels.
+ */
+void
+_swrast_span_default_color( GLcontext *ctx, struct sw_span *span )
+{
+ if (ctx->Visual.rgbMode) {
+ GLchan r, g, b, a;
+ UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
+ UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
+ UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
+ UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
+#if CHAN_TYPE == GL_FLOAT
+ span->red = r;
+ span->green = g;
+ span->blue = b;
+ span->alpha = a;
+#else
+ span->red = IntToFixed(r);
+ span->green = IntToFixed(g);
+ span->blue = IntToFixed(b);
+ span->alpha = IntToFixed(a);
+#endif
+ span->redStep = 0;
+ span->greenStep = 0;
+ span->blueStep = 0;
+ span->alphaStep = 0;
+ span->interpMask |= SPAN_RGBA;
+ }
+ else {
+ span->index = FloatToFixed(ctx->Current.RasterIndex);
+ span->indexStep = 0;
+ span->interpMask |= SPAN_INDEX;
+ }
+}
+
+
+/**
+ * Init span's texcoord interpolation values to the RasterPos texcoords.
+ * Used during setup for glDraw/CopyPixels.
+ */
+void
+_swrast_span_default_texcoords( GLcontext *ctx, struct sw_span *span )
+{
+ GLuint i;
+ for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
+ const GLfloat *tc = ctx->Current.RasterTexCoords[i];
+ if (ctx->FragmentProgram._Active || ctx->ATIFragmentShader._Enabled) {
+ COPY_4V(span->tex[i], tc);
+ }
+ else if (tc[3] > 0.0F) {
+ /* use (s/q, t/q, r/q, 1) */
+ span->tex[i][0] = tc[0] / tc[3];
+ span->tex[i][1] = tc[1] / tc[3];
+ span->tex[i][2] = tc[2] / tc[3];
+ span->tex[i][3] = 1.0;
+ }
+ else {
+ ASSIGN_4V(span->tex[i], 0.0F, 0.0F, 0.0F, 1.0F);
+ }
+ ASSIGN_4V(span->texStepX[i], 0.0F, 0.0F, 0.0F, 0.0F);
+ ASSIGN_4V(span->texStepY[i], 0.0F, 0.0F, 0.0F, 0.0F);
+ }
+ span->interpMask |= SPAN_TEXTURE;
+}
+
+
+/* Fill in the span.color.rgba array from the interpolation values */
+static void
+interpolate_colors(GLcontext *ctx, struct sw_span *span)
+{
+ const GLuint n = span->end;
+ GLchan (*rgba)[4] = span->array->rgba;
+ GLuint i;
+ (void) ctx;
+
+ ASSERT((span->interpMask & SPAN_RGBA) &&
+ !(span->arrayMask & SPAN_RGBA));
+
+ if (span->interpMask & SPAN_FLAT) {
+ /* constant color */
+ GLchan color[4];
+ color[RCOMP] = FixedToChan(span->red);
+ color[GCOMP] = FixedToChan(span->green);
+ color[BCOMP] = FixedToChan(span->blue);
+ color[ACOMP] = FixedToChan(span->alpha);
+ for (i = 0; i < n; i++) {
+ COPY_CHAN4(span->array->rgba[i], color);
+ }
+ }
+ else {
+ /* interpolate */
+#if CHAN_TYPE == GL_FLOAT
+ GLfloat r = span->red;
+ GLfloat g = span->green;
+ GLfloat b = span->blue;
+ GLfloat a = span->alpha;
+ const GLfloat dr = span->redStep;
+ const GLfloat dg = span->greenStep;
+ const GLfloat db = span->blueStep;
+ const GLfloat da = span->alphaStep;
+#else
+ GLfixed r = span->red;
+ GLfixed g = span->green;
+ GLfixed b = span->blue;
+ GLfixed a = span->alpha;
+ const GLint dr = span->redStep;
+ const GLint dg = span->greenStep;
+ const GLint db = span->blueStep;
+ const GLint da = span->alphaStep;
+#endif
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = FixedToChan(r);
+ rgba[i][GCOMP] = FixedToChan(g);
+ rgba[i][BCOMP] = FixedToChan(b);
+ rgba[i][ACOMP] = FixedToChan(a);
+ r += dr;
+ g += dg;
+ b += db;
+ a += da;
+ }
+ }
+ span->arrayMask |= SPAN_RGBA;
+}
+
+
+/* Fill in the span.color.index array from the interpolation values */
+static void
+interpolate_indexes(GLcontext *ctx, struct sw_span *span)
+{
+ GLfixed index = span->index;
+ const GLint indexStep = span->indexStep;
+ const GLuint n = span->end;
+ GLuint *indexes = span->array->index;
+ GLuint i;
+ (void) ctx;
+ ASSERT((span->interpMask & SPAN_INDEX) &&
+ !(span->arrayMask & SPAN_INDEX));
+
+ if ((span->interpMask & SPAN_FLAT) || (indexStep == 0)) {
+ /* constant color */
+ index = FixedToInt(index);
+ for (i = 0; i < n; i++) {
+ indexes[i] = index;
+ }
+ }
+ else {
+ /* interpolate */
+ for (i = 0; i < n; i++) {
+ indexes[i] = FixedToInt(index);
+ index += indexStep;
+ }
+ }
+ span->arrayMask |= SPAN_INDEX;
+ span->interpMask &= ~SPAN_INDEX;
+}
+
+
+/* Fill in the span.->array->spec array from the interpolation values */
+static void
+interpolate_specular(GLcontext *ctx, struct sw_span *span)
+{
+ (void) ctx;
+ if (span->interpMask & SPAN_FLAT) {
+ /* constant color */
+ const GLchan r = FixedToChan(span->specRed);
+ const GLchan g = FixedToChan(span->specGreen);
+ const GLchan b = FixedToChan(span->specBlue);
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ span->array->spec[i][RCOMP] = r;
+ span->array->spec[i][GCOMP] = g;
+ span->array->spec[i][BCOMP] = b;
+ }
+ }
+ else {
+ /* interpolate */
+#if CHAN_TYPE == GL_FLOAT
+ GLfloat r = span->specRed;
+ GLfloat g = span->specGreen;
+ GLfloat b = span->specBlue;
+#else
+ GLfixed r = span->specRed;
+ GLfixed g = span->specGreen;
+ GLfixed b = span->specBlue;
+#endif
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ span->array->spec[i][RCOMP] = FixedToChan(r);
+ span->array->spec[i][GCOMP] = FixedToChan(g);
+ span->array->spec[i][BCOMP] = FixedToChan(b);
+ r += span->specRedStep;
+ g += span->specGreenStep;
+ b += span->specBlueStep;
+ }
+ }
+ span->arrayMask |= SPAN_SPEC;
+}
+
+
+/* Fill in the span.array.fog values from the interpolation values */
+static void
+interpolate_fog(const GLcontext *ctx, struct sw_span *span)
+{
+ GLfloat *fog = span->array->fog;
+ const GLfloat fogStep = span->fogStep;
+ GLfloat fogCoord = span->fog;
+ const GLuint haveW = (span->interpMask & SPAN_W);
+ const GLfloat wStep = haveW ? span->dwdx : 0.0F;
+ GLfloat w = haveW ? span->w : 1.0F;
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ fog[i] = fogCoord / w;
+ fogCoord += fogStep;
+ w += wStep;
+ }
+ span->arrayMask |= SPAN_FOG;
+}
+
+
+/* Fill in the span.zArray array from the interpolation values */
+void
+_swrast_span_interpolate_z( const GLcontext *ctx, struct sw_span *span )
+{
+ const GLuint n = span->end;
+ GLuint i;
+
+ ASSERT((span->interpMask & SPAN_Z) &&
+ !(span->arrayMask & SPAN_Z));
+
+ if (ctx->Visual.depthBits <= 16) {
+ GLfixed zval = span->z;
+ GLdepth *z = span->array->z;
+ for (i = 0; i < n; i++) {
+ z[i] = FixedToInt(zval);
+ zval += span->zStep;
+ }
+ }
+ else {
+ /* Deep Z buffer, no fixed->int shift */
+ GLfixed zval = span->z;
+ GLdepth *z = span->array->z;
+ for (i = 0; i < n; i++) {
+ z[i] = zval;
+ zval += span->zStep;
+ }
+ }
+ span->interpMask &= ~SPAN_Z;
+ span->arrayMask |= SPAN_Z;
+}
+
+
+/*
+ * This the ideal solution, as given in the OpenGL spec.
+ */
+#if 0
+static GLfloat
+compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
+ GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
+ GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
+{
+ GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
+ GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
+ GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
+ GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
+ GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
+ GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
+ GLfloat rho = MAX2(x, y);
+ GLfloat lambda = LOG2(rho);
+ return lambda;
+}
+#endif
+
+
+/*
+ * This is a faster approximation
+ */
+GLfloat
+_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
+ GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
+ GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
+{
+ GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
+ GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
+ GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
+ GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
+ GLfloat maxU, maxV, rho, lambda;
+ dsdx2 = FABSF(dsdx2);
+ dsdy2 = FABSF(dsdy2);
+ dtdx2 = FABSF(dtdx2);
+ dtdy2 = FABSF(dtdy2);
+ maxU = MAX2(dsdx2, dsdy2) * texW;
+ maxV = MAX2(dtdx2, dtdy2) * texH;
+ rho = MAX2(maxU, maxV);
+ lambda = LOG2(rho);
+ return lambda;
+}
+
+
+/**
+ * Fill in the span.texcoords array from the interpolation values.
+ * Note: in the places where we divide by Q (or mult by invQ) we're
+ * really doing two things: perspective correction and texcoord
+ * projection. Remember, for texcoord (s,t,r,q) we need to index
+ * texels with (s/q, t/q, r/q).
+ * If we're using a fragment program, we never do the division
+ * for texcoord projection. That's done by the TXP instruction
+ * or user-written code.
+ */
+static void
+interpolate_texcoords(GLcontext *ctx, struct sw_span *span)
+{
+ ASSERT(span->interpMask & SPAN_TEXTURE);
+ ASSERT(!(span->arrayMask & SPAN_TEXTURE));
+
+ if (ctx->Texture._EnabledCoordUnits > 1) {
+ /* multitexture */
+ GLuint u;
+ span->arrayMask |= SPAN_TEXTURE;
+ for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
+ if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
+ const struct gl_texture_object *obj =ctx->Texture.Unit[u]._Current;
+ GLfloat texW, texH;
+ GLboolean needLambda;
+ if (obj) {
+ const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
+ needLambda = (obj->MinFilter != obj->MagFilter)
+ || ctx->FragmentProgram._Active;
+ texW = img->WidthScale;
+ texH = img->HeightScale;
+ }
+ else {
+ /* using a fragment program */
+ texW = 1.0;
+ texH = 1.0;
+ needLambda = GL_FALSE;
+ }
+ if (needLambda) {
+ GLfloat (*texcoord)[4] = span->array->texcoords[u];
+ GLfloat *lambda = span->array->lambda[u];
+ const GLfloat dsdx = span->texStepX[u][0];
+ const GLfloat dsdy = span->texStepY[u][0];
+ const GLfloat dtdx = span->texStepX[u][1];
+ const GLfloat dtdy = span->texStepY[u][1];
+ const GLfloat drdx = span->texStepX[u][2];
+ const GLfloat dqdx = span->texStepX[u][3];
+ const GLfloat dqdy = span->texStepY[u][3];
+ GLfloat s = span->tex[u][0];
+ GLfloat t = span->tex[u][1];
+ GLfloat r = span->tex[u][2];
+ GLfloat q = span->tex[u][3];
+ GLuint i;
+ if (ctx->FragmentProgram._Active) {
+ /* do perspective correction but don't divide s, t, r by q */
+ const GLfloat dwdx = span->dwdx;
+ GLfloat w = span->w;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invW = 1.0F / w;
+ texcoord[i][0] = s * invW;
+ texcoord[i][1] = t * invW;
+ texcoord[i][2] = r * invW;
+ texcoord[i][3] = q * invW;
+ lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
+ dqdx, dqdy, texW, texH,
+ s, t, q, invW);
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ w += dwdx;
+ }
+
+ }
+ else {
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
+ dqdx, dqdy, texW, texH,
+ s, t, q, invQ);
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ }
+ }
+ span->arrayMask |= SPAN_LAMBDA;
+ }
+ else {
+ GLfloat (*texcoord)[4] = span->array->texcoords[u];
+ GLfloat *lambda = span->array->lambda[u];
+ const GLfloat dsdx = span->texStepX[u][0];
+ const GLfloat dtdx = span->texStepX[u][1];
+ const GLfloat drdx = span->texStepX[u][2];
+ const GLfloat dqdx = span->texStepX[u][3];
+ GLfloat s = span->tex[u][0];
+ GLfloat t = span->tex[u][1];
+ GLfloat r = span->tex[u][2];
+ GLfloat q = span->tex[u][3];
+ GLuint i;
+ if (ctx->FragmentProgram._Active) {
+ /* do perspective correction but don't divide s, t, r by q */
+ const GLfloat dwdx = span->dwdx;
+ GLfloat w = span->w;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invW = 1.0F / w;
+ texcoord[i][0] = s * invW;
+ texcoord[i][1] = t * invW;
+ texcoord[i][2] = r * invW;
+ texcoord[i][3] = q * invW;
+ lambda[i] = 0.0;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ w += dwdx;
+ }
+ }
+ else if (dqdx == 0.0F) {
+ /* Ortho projection or polygon's parallel to window X axis */
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ for (i = 0; i < span->end; i++) {
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ lambda[i] = 0.0;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ }
+ }
+ else {
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ lambda[i] = 0.0;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ }
+ }
+ } /* lambda */
+ } /* if */
+ } /* for */
+ }
+ else {
+ /* single texture */
+ const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current;
+ GLfloat texW, texH;
+ GLboolean needLambda;
+ if (obj) {
+ const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
+ needLambda = (obj->MinFilter != obj->MagFilter)
+ || ctx->FragmentProgram._Active;
+ texW = (GLfloat) img->WidthScale;
+ texH = (GLfloat) img->HeightScale;
+ }
+ else {
+ needLambda = GL_FALSE;
+ texW = texH = 1.0;
+ }
+ span->arrayMask |= SPAN_TEXTURE;
+ if (needLambda) {
+ /* just texture unit 0, with lambda */
+ GLfloat (*texcoord)[4] = span->array->texcoords[0];
+ GLfloat *lambda = span->array->lambda[0];
+ const GLfloat dsdx = span->texStepX[0][0];
+ const GLfloat dsdy = span->texStepY[0][0];
+ const GLfloat dtdx = span->texStepX[0][1];
+ const GLfloat dtdy = span->texStepY[0][1];
+ const GLfloat drdx = span->texStepX[0][2];
+ const GLfloat dqdx = span->texStepX[0][3];
+ const GLfloat dqdy = span->texStepY[0][3];
+ GLfloat s = span->tex[0][0];
+ GLfloat t = span->tex[0][1];
+ GLfloat r = span->tex[0][2];
+ GLfloat q = span->tex[0][3];
+ GLuint i;
+ if (ctx->FragmentProgram._Active) {
+ /* do perspective correction but don't divide s, t, r by q */
+ const GLfloat dwdx = span->dwdx;
+ GLfloat w = span->w;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invW = 1.0F / w;
+ texcoord[i][0] = s * invW;
+ texcoord[i][1] = t * invW;
+ texcoord[i][2] = r * invW;
+ texcoord[i][3] = q * invW;
+ lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
+ dqdx, dqdy, texW, texH,
+ s, t, q, invW);
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ w += dwdx;
+ }
+ }
+ else {
+ /* tex.c */
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
+ dqdx, dqdy, texW, texH,
+ s, t, q, invQ);
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ }
+ }
+ span->arrayMask |= SPAN_LAMBDA;
+ }
+ else {
+ /* just texture 0, without lambda */
+ GLfloat (*texcoord)[4] = span->array->texcoords[0];
+ const GLfloat dsdx = span->texStepX[0][0];
+ const GLfloat dtdx = span->texStepX[0][1];
+ const GLfloat drdx = span->texStepX[0][2];
+ const GLfloat dqdx = span->texStepX[0][3];
+ GLfloat s = span->tex[0][0];
+ GLfloat t = span->tex[0][1];
+ GLfloat r = span->tex[0][2];
+ GLfloat q = span->tex[0][3];
+ GLuint i;
+ if (ctx->FragmentProgram._Active) {
+ /* do perspective correction but don't divide s, t, r by q */
+ const GLfloat dwdx = span->dwdx;
+ GLfloat w = span->w;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invW = 1.0F / w;
+ texcoord[i][0] = s * invW;
+ texcoord[i][1] = t * invW;
+ texcoord[i][2] = r * invW;
+ texcoord[i][3] = q * invW;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ w += dwdx;
+ }
+ }
+ else if (dqdx == 0.0F) {
+ /* Ortho projection or polygon's parallel to window X axis */
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ for (i = 0; i < span->end; i++) {
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ }
+ }
+ else {
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ }
+ }
+ }
+ }
+}
+
+
+/**
+ * Apply the current polygon stipple pattern to a span of pixels.
+ */
+static void
+stipple_polygon_span( GLcontext *ctx, struct sw_span *span )
+{
+ const GLuint highbit = 0x80000000;
+ const GLuint stipple = ctx->PolygonStipple[span->y % 32];
+ GLubyte *mask = span->array->mask;
+ GLuint i, m;
+
+ ASSERT(ctx->Polygon.StippleFlag);
+ ASSERT((span->arrayMask & SPAN_XY) == 0);
+
+ m = highbit >> (GLuint) (span->x % 32);
+
+ for (i = 0; i < span->end; i++) {
+ if ((m & stipple) == 0) {
+ mask[i] = 0;
+ }
+ m = m >> 1;
+ if (m == 0) {
+ m = highbit;
+ }
+ }
+ span->writeAll = GL_FALSE;
+}
+
+
+/**
+ * Clip a pixel span to the current buffer/window boundaries:
+ * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish
+ * window clipping and scissoring.
+ * Return: GL_TRUE some pixels still visible
+ * GL_FALSE nothing visible
+ */
+static GLuint
+clip_span( GLcontext *ctx, struct sw_span *span )
+{
+ const GLint xmin = ctx->DrawBuffer->_Xmin;
+ const GLint xmax = ctx->DrawBuffer->_Xmax;
+ const GLint ymin = ctx->DrawBuffer->_Ymin;
+ const GLint ymax = ctx->DrawBuffer->_Ymax;
+
+ if (span->arrayMask & SPAN_XY) {
+ /* arrays of x/y pixel coords */
+ const GLint *x = span->array->x;
+ const GLint *y = span->array->y;
+ const GLint n = span->end;
+ GLubyte *mask = span->array->mask;
+ GLint i;
+ if (span->arrayMask & SPAN_MASK) {
+ /* note: using & intead of && to reduce branches */
+ for (i = 0; i < n; i++) {
+ mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
+ & (y[i] >= ymin) & (y[i] < ymax);
+ }
+ }
+ else {
+ /* note: using & intead of && to reduce branches */
+ for (i = 0; i < n; i++) {
+ mask[i] = (x[i] >= xmin) & (x[i] < xmax)
+ & (y[i] >= ymin) & (y[i] < ymax);
+ }
+ }
+ return GL_TRUE; /* some pixels visible */
+ }
+ else {
+ /* horizontal span of pixels */
+ const GLint x = span->x;
+ const GLint y = span->y;
+ const GLint n = span->end;
+
+ /* Trivial rejection tests */
+ if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
+ span->end = 0;
+ return GL_FALSE; /* all pixels clipped */
+ }
+
+ /* Clip to the left */
+ if (x < xmin) {
+ ASSERT(x + n > xmin);
+ span->writeAll = GL_FALSE;
+ _mesa_bzero(span->array->mask, (xmin - x) * sizeof(GLubyte));
+ }
+
+ /* Clip to right */
+ if (x + n > xmax) {
+ ASSERT(x < xmax);
+ span->end = xmax - x;
+ }
+
+ return GL_TRUE; /* some pixels visible */
+ }
+}
+
+
+/**
+ * Apply all the per-fragment opertions to a span of color index fragments
+ * and write them to the enabled color drawbuffers.
+ * The 'span' parameter can be considered to be const. Note that
+ * span->interpMask and span->arrayMask may be changed but will be restored
+ * to their original values before returning.
+ */
+void
+_swrast_write_index_span( GLcontext *ctx, struct sw_span *span)
+{
+ const SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ const struct gl_framebuffer *fb = ctx->DrawBuffer;
+ const GLuint output = 0;
+ const GLuint origInterpMask = span->interpMask;
+ const GLuint origArrayMask = span->arrayMask;
+ GLuint buf;
+
+ ASSERT(span->end <= MAX_WIDTH);
+ ASSERT(span->primitive == GL_POINT || span->primitive == GL_LINE ||
+ span->primitive == GL_POLYGON || span->primitive == GL_BITMAP);
+ ASSERT((span->interpMask | span->arrayMask) & SPAN_INDEX);
+ ASSERT((span->interpMask & span->arrayMask) == 0);
+
+ if (span->arrayMask & SPAN_MASK) {
+ /* mask was initialized by caller, probably glBitmap */
+ span->writeAll = GL_FALSE;
+ }
+ else {
+ _mesa_memset(span->array->mask, 1, span->end);
+ span->writeAll = GL_TRUE;
+ }
+
+ /* Clipping */
+ if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) {
+ if (!clip_span(ctx, span)) {
+ return;
+ }
+ }
+
+ /* Depth bounds test */
+ if (ctx->Depth.BoundsTest && ctx->Visual.depthBits > 0) {
+ if (!_swrast_depth_bounds_test(ctx, span)) {
+ return;
+ }
+ }
+
+#ifdef DEBUG
+ /* Make sure all fragments are within window bounds */
+ if (span->arrayMask & SPAN_XY) {
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ if (span->array->mask[i]) {
+ assert(span->array->x[i] >= ctx->DrawBuffer->_Xmin);
+ assert(span->array->x[i] < ctx->DrawBuffer->_Xmax);
+ assert(span->array->y[i] >= ctx->DrawBuffer->_Ymin);
+ assert(span->array->y[i] < ctx->DrawBuffer->_Ymax);
+ }
+ }
+ }
+#endif
+
+ /* Polygon Stippling */
+ if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
+ stipple_polygon_span(ctx, span);
+ }
+
+ /* Stencil and Z testing */
+ if (ctx->Depth.Test || ctx->Stencil.Enabled) {
+ if (span->interpMask & SPAN_Z)
+ _swrast_span_interpolate_z(ctx, span);
+
+ if (ctx->Stencil.Enabled) {
+ if (!_swrast_stencil_and_ztest_span(ctx, span)) {
+ span->arrayMask = origArrayMask;
+ return;
+ }
+ }
+ else {
+ ASSERT(ctx->Depth.Test);
+ if (!_swrast_depth_test_span(ctx, span)) {
+ span->interpMask = origInterpMask;
+ span->arrayMask = origArrayMask;
+ return;
+ }
+ }
+ }
+
+ /* if we get here, something passed the depth test */
+ if (ctx->Depth.OcclusionTest) {
+ ctx->OcclusionResult = GL_TRUE;
+ }
+
+#if FEATURE_ARB_occlusion_query
+ if (ctx->Occlusion.Active) {
+ /* update count of 'passed' fragments */
+ GLuint i;
+ for (i = 0; i < span->end; i++)
+ ctx->Occlusion.PassedCounter += span->array->mask[i];
+ }
+#endif
+
+ /* we have to wait until after occlusion to do this test */
+ if (ctx->Color.DrawBuffer == GL_NONE || ctx->Color.IndexMask == 0) {
+ /* write no pixels */
+ span->arrayMask = origArrayMask;
+ return;
+ }
+
+ /* Interpolate the color indexes if needed */
+ if (swrast->_FogEnabled ||
+ ctx->Color.IndexLogicOpEnabled ||
+ ctx->Color.IndexMask != 0xffffffff ||
+ (span->arrayMask & SPAN_COVERAGE)) {
+ if (span->interpMask & SPAN_INDEX) {
+ interpolate_indexes(ctx, span);
+ }
+ }
+
+ /* Fog */
+ if (swrast->_FogEnabled) {
+ _swrast_fog_ci_span(ctx, span);
+ }
+
+ /* Antialias coverage application */
+ if (span->arrayMask & SPAN_COVERAGE) {
+ const GLfloat *coverage = span->array->coverage;
+ GLuint *index = span->array->index;
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ ASSERT(coverage[i] < 16);
+ index[i] = (index[i] & ~0xf) | ((GLuint) coverage[i]);
+ }
+ }
+
+ /* Loop over drawing buffers */
+ for (buf = 0; buf < fb->_NumColorDrawBuffers[output]; buf++) {
+ struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[output][buf];
+ GLuint indexTemp[MAX_WIDTH], *index32;
+
+ ASSERT(rb->_BaseFormat == GL_COLOR_INDEX);
+
+ if (ctx->Color.IndexLogicOpEnabled ||
+ ctx->Color.IndexMask != 0xffffffff) {
+ /* make copy of incoming indexes */
+ MEMCPY(indexTemp, span->array->index, span->end * sizeof(GLuint));
+
+ if (ctx->Color.IndexLogicOpEnabled) {
+ _swrast_logicop_ci_span(ctx, rb, span, indexTemp);
+ }
+
+ if (ctx->Color.IndexMask != 0xffffffff) {
+ _swrast_mask_ci_span(ctx, rb, span, indexTemp);
+ }
+ index32 = indexTemp;
+ }
+ else {
+ index32 = span->array->index;
+ }
+
+ if ((span->interpMask & SPAN_INDEX) && span->indexStep == 0) {
+ /* all fragments have same color index */
+ GLubyte index8;
+ GLushort index16;
+ GLuint index32;
+ void *value;
+
+ if (rb->DataType == GL_UNSIGNED_BYTE) {
+ index8 = FixedToInt(span->index);
+ value = &index8;
+ }
+ else if (rb->DataType == GL_UNSIGNED_SHORT) {
+ index16 = FixedToInt(span->index);
+ value = &index16;
+ }
+ else {
+ ASSERT(rb->DataType == GL_UNSIGNED_INT);
+ index32 = FixedToInt(span->index);
+ value = &index32;
+ }
+
+ if (span->arrayMask & SPAN_XY) {
+ rb->PutMonoValues(ctx, rb, span->end, span->array->x,
+ span->array->y, value, span->array->mask);
+ }
+ else {
+ rb->PutMonoRow(ctx, rb, span->end, span->x, span->y,
+ value, span->array->mask);
+ }
+ }
+ else {
+ /* each fragment is a different color */
+ GLubyte index8[MAX_WIDTH];
+ GLushort index16[MAX_WIDTH];
+ void *values;
+
+ if (rb->DataType == GL_UNSIGNED_BYTE) {
+ GLuint k;
+ for (k = 0; k < span->end; k++) {
+ index8[k] = (GLubyte) index32[k];
+ }
+ values = index8;
+ }
+ else if (rb->DataType == GL_UNSIGNED_SHORT) {
+ GLuint k;
+ for (k = 0; k < span->end; k++) {
+ index16[k] = (GLushort) index32[k];
+ }
+ values = index16;
+ }
+ else {
+ ASSERT(rb->DataType == GL_UNSIGNED_INT);
+ values = index32;
+ }
+
+ if (span->arrayMask & SPAN_XY) {
+ rb->PutValues(ctx, rb, span->end, span->array->x, span->array->y,
+ values, span->array->mask);
+ }
+ else {
+ rb->PutRow(ctx, rb, span->end, span->x, span->y,
+ values, span->array->mask);
+ }
+ }
+ }
+
+#if OLD_RENDERBUFFER
+ /* restore default dest buffer */
+ _swrast_use_draw_buffer(ctx);
+#endif
+
+ span->interpMask = origInterpMask;
+ span->arrayMask = origArrayMask;
+}
+
+
+/**
+ * Add specular color to base color. This is used only when
+ * GL_LIGHT_MODEL_COLOR_CONTROL = GL_SEPARATE_SPECULAR_COLOR.
+ */
+static void
+add_colors(GLuint n, GLchan rgba[][4], GLchan specular[][4] )
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+#if CHAN_TYPE == GL_FLOAT
+ /* no clamping */
+ rgba[i][RCOMP] += specular[i][RCOMP];
+ rgba[i][GCOMP] += specular[i][GCOMP];
+ rgba[i][BCOMP] += specular[i][BCOMP];
+#else
+ GLint r = rgba[i][RCOMP] + specular[i][RCOMP];
+ GLint g = rgba[i][GCOMP] + specular[i][GCOMP];
+ GLint b = rgba[i][BCOMP] + specular[i][BCOMP];
+ rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
+ rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
+ rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
+#endif
+ }
+}
+
+
+/**
+ * XXX merge this code into the _swrast_write_rgba_span() routine!
+ *
+ * Draw to more than one RGBA color buffer (or none).
+ * All fragment operations, up to (but not) blending/logicop should
+ * have been done first.
+ */
+static void
+multi_write_rgba_span( GLcontext *ctx, struct sw_span *span )
+{
+#if OLD_RENDERBUFFER
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+#endif
+ const GLuint colorMask = *((GLuint *) ctx->Color.ColorMask);
+ struct gl_framebuffer *fb = ctx->DrawBuffer;
+ const GLuint output = 0;
+ GLuint i;
+
+ ASSERT(span->end < MAX_WIDTH);
+ ASSERT(colorMask != 0x0);
+
+ for (i = 0; i < fb->_NumColorDrawBuffers[output]; i++) {
+ struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[output][i];
+ GLchan rgbaTmp[MAX_WIDTH][4];
+
+#if OLD_RENDERBUFFER
+ /* obsolete code */
+ GLuint bufferBit = fb->_ColorDrawBit[output][i];
+ /* Set the current read/draw buffer */
+ swrast->CurrentBufferBit = bufferBit;
+ if (swrast->Driver.SetBuffer)
+ (*swrast->Driver.SetBuffer)(ctx, ctx->DrawBuffer, bufferBit);
+#endif
+
+ /* make copy of incoming colors */
+ MEMCPY( rgbaTmp, span->array->rgba, 4 * span->end * sizeof(GLchan) );
+
+ if (ctx->Color._LogicOpEnabled) {
+ _swrast_logicop_rgba_span(ctx, rb, span, rgbaTmp);
+ }
+ else if (ctx->Color.BlendEnabled) {
+ _swrast_blend_span(ctx, rb, span, rgbaTmp);
+ }
+
+ if (colorMask != 0xffffffff) {
+ _swrast_mask_rgba_span(ctx, rb, span, rgbaTmp);
+ }
+
+ if (span->arrayMask & SPAN_XY) {
+ /* array of pixel coords */
+ ASSERT(rb->PutValues);
+ rb->PutValues(ctx, rb, span->end, span->array->x,
+ span->array->y, rgbaTmp, span->array->mask);
+ }
+ else {
+ /* horizontal run of pixels */
+ ASSERT(rb->PutRow);
+ rb->PutRow(ctx, rb, span->end, span->x, span->y, rgbaTmp,
+ span->array->mask);
+ }
+ }
+
+#if OLD_RENDERBUFFER
+ /* restore default dest buffer */
+ _swrast_use_draw_buffer(ctx);
+#endif
+}
+
+
+/**
+ * Apply all the per-fragment operations to a span.
+ * This now includes texturing (_swrast_write_texture_span() is history).
+ * This function may modify any of the array values in the span.
+ * span->interpMask and span->arrayMask may be changed but will be restored
+ * to their original values before returning.
+ */
+void
+_swrast_write_rgba_span( GLcontext *ctx, struct sw_span *span)
+{
+ const GLuint colorMask = *((GLuint *) ctx->Color.ColorMask);
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ const GLuint origInterpMask = span->interpMask;
+ const GLuint origArrayMask = span->arrayMask;
+ const GLboolean deferredTexture = !(ctx->Color.AlphaEnabled ||
+ ctx->FragmentProgram._Active ||
+ ctx->ATIFragmentShader._Enabled);
+
+ ASSERT(span->primitive == GL_POINT || span->primitive == GL_LINE ||
+ span->primitive == GL_POLYGON || span->primitive == GL_BITMAP);
+ ASSERT(span->end <= MAX_WIDTH);
+ ASSERT((span->interpMask & span->arrayMask) == 0);
+
+ /*
+ printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__,
+ span->interpMask, span->arrayMask);
+ */
+
+ if (span->arrayMask & SPAN_MASK) {
+ /* mask was initialized by caller, probably glBitmap */
+ span->writeAll = GL_FALSE;
+ }
+ else {
+ _mesa_memset(span->array->mask, 1, span->end);
+ span->writeAll = GL_TRUE;
+ }
+
+ /* Clip to window/scissor box */
+ if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) {
+ if (!clip_span(ctx, span)) {
+ return;
+ }
+ }
+
+#ifdef DEBUG
+ /* Make sure all fragments are within window bounds */
+ if (span->arrayMask & SPAN_XY) {
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ if (span->array->mask[i]) {
+ assert(span->array->x[i] >= ctx->DrawBuffer->_Xmin);
+ assert(span->array->x[i] < ctx->DrawBuffer->_Xmax);
+ assert(span->array->y[i] >= ctx->DrawBuffer->_Ymin);
+ assert(span->array->y[i] < ctx->DrawBuffer->_Ymax);
+ }
+ }
+ }
+#endif
+
+ /* Polygon Stippling */
+ if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
+ stipple_polygon_span(ctx, span);
+ }
+
+ /* Interpolate texcoords? */
+ if (ctx->Texture._EnabledCoordUnits
+ && (span->interpMask & SPAN_TEXTURE)
+ && (span->arrayMask & SPAN_TEXTURE) == 0) {
+ interpolate_texcoords(ctx, span);
+ }
+
+ /* This is the normal place to compute the resulting fragment color/Z.
+ * As an optimization, we try to defer this until after Z/stencil
+ * testing in order to try to avoid computing colors that we won't
+ * actually need.
+ */
+ if (!deferredTexture) {
+ /* Now we need the rgba array, fill it in if needed */
+ if ((span->interpMask & SPAN_RGBA) && (span->arrayMask & SPAN_RGBA) == 0)
+ interpolate_colors(ctx, span);
+
+ if (span->interpMask & SPAN_SPEC)
+ interpolate_specular(ctx, span);
+
+ if (span->interpMask & SPAN_FOG)
+ interpolate_fog(ctx, span);
+
+ /* Compute fragment colors with fragment program or texture lookups */
+ if (ctx->FragmentProgram._Active) {
+ /* frag prog may need Z values */
+ if (span->interpMask & SPAN_Z)
+ _swrast_span_interpolate_z(ctx, span);
+ _swrast_exec_fragment_program( ctx, span );
+ }
+ else if (ctx->ATIFragmentShader._Enabled)
+ _swrast_exec_fragment_shader( ctx, span );
+ else if (ctx->Texture._EnabledUnits && (span->arrayMask & SPAN_TEXTURE))
+ _swrast_texture_span( ctx, span );
+
+ /* Do the alpha test */
+ if (!_swrast_alpha_test(ctx, span)) {
+ span->arrayMask = origArrayMask;
+ return;
+ }
+ }
+
+ /* Stencil and Z testing */
+ if (ctx->Stencil.Enabled || ctx->Depth.Test) {
+ if (span->interpMask & SPAN_Z)
+ _swrast_span_interpolate_z(ctx, span);
+
+ if (ctx->Stencil.Enabled && ctx->DrawBuffer->Visual.stencilBits > 0) {
+ /* Combined Z/stencil tests */
+ if (!_swrast_stencil_and_ztest_span(ctx, span)) {
+ span->interpMask = origInterpMask;
+ span->arrayMask = origArrayMask;
+ return;
+ }
+ }
+ else if (ctx->DrawBuffer->Visual.depthBits > 0) {
+ /* Just regular depth testing */
+ ASSERT(ctx->Depth.Test);
+ ASSERT(span->arrayMask & SPAN_Z);
+ if (!_swrast_depth_test_span(ctx, span)) {
+ span->interpMask = origInterpMask;
+ span->arrayMask = origArrayMask;
+ return;
+ }
+ }
+ }
+
+ /* if we get here, some fragments passed the depth test */
+ if (ctx->Depth.OcclusionTest) {
+ ctx->OcclusionResult = GL_TRUE;
+ }
+
+#if FEATURE_ARB_occlusion_query
+ if (ctx->Occlusion.Active) {
+ /* update count of 'passed' fragments */
+ GLuint i;
+ for (i = 0; i < span->end; i++)
+ ctx->Occlusion.PassedCounter += span->array->mask[i];
+ }
+#endif
+
+ /* We had to wait until now to check for glColorMask(0,0,0,0) because of
+ * the occlusion test.
+ */
+ if (colorMask == 0x0) {
+ span->interpMask = origInterpMask;
+ span->arrayMask = origArrayMask;
+ return;
+ }
+
+ /* If we were able to defer fragment color computation to now, there's
+ * a good chance that many fragments will have already been killed by
+ * Z/stencil testing.
+ */
+ if (deferredTexture) {
+ /* Now we need the rgba array, fill it in if needed */
+ if ((span->interpMask & SPAN_RGBA) && (span->arrayMask & SPAN_RGBA) == 0)
+ interpolate_colors(ctx, span);
+
+ if (span->interpMask & SPAN_SPEC)
+ interpolate_specular(ctx, span);
+
+ if (span->interpMask & SPAN_FOG)
+ interpolate_fog(ctx, span);
+
+ if (ctx->FragmentProgram._Active)
+ _swrast_exec_fragment_program( ctx, span );
+ else if (ctx->ATIFragmentShader._Enabled)
+ _swrast_exec_fragment_shader( ctx, span );
+ else if (ctx->Texture._EnabledUnits && (span->arrayMask & SPAN_TEXTURE))
+ _swrast_texture_span( ctx, span );
+ }
+
+ ASSERT(span->arrayMask & SPAN_RGBA);
+
+ if (!ctx->FragmentProgram._Enabled) {
+ /* Add base and specular colors */
+ if (ctx->Fog.ColorSumEnabled ||
+ (ctx->Light.Enabled &&
+ ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
+ if (span->interpMask & SPAN_SPEC) {
+ interpolate_specular(ctx, span);
+ }
+ if (span->arrayMask & SPAN_SPEC) {
+ add_colors( span->end, span->array->rgba, span->array->spec );
+ }
+ else {
+ /* We probably added the base/specular colors during the
+ * vertex stage!
+ */
+ }
+ }
+ }
+
+ /* Fog */
+ if (swrast->_FogEnabled) {
+ _swrast_fog_rgba_span(ctx, span);
+ }
+
+ /* Antialias coverage application */
+ if (span->arrayMask & SPAN_COVERAGE) {
+ GLchan (*rgba)[4] = span->array->rgba;
+ GLfloat *coverage = span->array->coverage;
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ rgba[i][ACOMP] = (GLchan) (rgba[i][ACOMP] * coverage[i]);
+ }
+ }
+
+ if (swrast->_RasterMask & MULTI_DRAW_BIT) {
+ /* need to do blend/logicop separately for each color buffer */
+ multi_write_rgba_span(ctx, span);
+ }
+ else {
+ /* normal: write to exactly one buffer */
+ struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0][0];
+
+ if (ctx->Color._LogicOpEnabled) {
+ _swrast_logicop_rgba_span(ctx, rb, span, span->array->rgba);
+ }
+ else if (ctx->Color.BlendEnabled) {
+ _swrast_blend_span(ctx, rb, span, span->array->rgba);
+ }
+
+ /* Color component masking */
+ if (colorMask != 0xffffffff) {
+ _swrast_mask_rgba_span(ctx, rb, span, span->array->rgba);
+ }
+
+ /* Finally, write the pixels to a color buffer */
+ if (span->arrayMask & SPAN_XY) {
+ /* array of pixel coords */
+ ASSERT(rb->PutValues);
+ ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA);
+ /* XXX check datatype */
+ rb->PutValues(ctx, rb, span->end, span->array->x, span->array->y,
+ span->array->rgba, span->array->mask);
+ }
+ else {
+ /* horizontal run of pixels */
+ ASSERT(rb->PutRow);
+ ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA);
+ /* XXX check datatype */
+ rb->PutRow(ctx, rb, span->end, span->x, span->y, span->array->rgba,
+ span->writeAll ? NULL : span->array->mask);
+ }
+ }
+
+ span->interpMask = origInterpMask;
+ span->arrayMask = origArrayMask;
+}
+
+
+
+/**
+ * Read RGBA pixels from frame buffer. Clipping will be done to prevent
+ * reading ouside the buffer's boundaries.
+ */
+void
+_swrast_read_rgba_span( GLcontext *ctx, struct gl_renderbuffer *rb,
+ GLuint n, GLint x, GLint y, GLchan rgba[][4] )
+{
+ const GLint bufWidth = (GLint) rb->Width;
+ const GLint bufHeight = (GLint) rb->Height;
+
+ if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
+ /* completely above, below, or right */
+ /* XXX maybe leave rgba values undefined? */
+ _mesa_bzero(rgba, 4 * n * sizeof(GLchan));
+ }
+ else {
+ GLint skip, length;
+ if (x < 0) {
+ /* left edge clipping */
+ skip = -x;
+ length = (GLint) n - skip;
+ if (length < 0) {
+ /* completely left of window */
+ return;
+ }
+ if (length > bufWidth) {
+ length = bufWidth;
+ }
+ }
+ else if ((GLint) (x + n) > bufWidth) {
+ /* right edge clipping */
+ skip = 0;
+ length = bufWidth - x;
+ if (length < 0) {
+ /* completely to right of window */
+ return;
+ }
+ }
+ else {
+ /* no clipping */
+ skip = 0;
+ length = (GLint) n;
+ }
+
+ ASSERT(rb);
+ ASSERT(rb->GetRow);
+ ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA);
+ ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
+ rb->GetRow(ctx, rb, length, x + skip, y, rgba + skip);
+ }
+}
+
+
+/**
+ * Read CI pixels from frame buffer. Clipping will be done to prevent
+ * reading ouside the buffer's boundaries.
+ */
+void
+_swrast_read_index_span( GLcontext *ctx, struct gl_renderbuffer *rb,
+ GLuint n, GLint x, GLint y, GLuint index[] )
+{
+ const GLint bufWidth = (GLint) rb->Width;
+ const GLint bufHeight = (GLint) rb->Height;
+
+ if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
+ /* completely above, below, or right */
+ _mesa_bzero(index, n * sizeof(GLuint));
+ }
+ else {
+ GLint skip, length;
+ if (x < 0) {
+ /* left edge clipping */
+ skip = -x;
+ length = (GLint) n - skip;
+ if (length < 0) {
+ /* completely left of window */
+ return;
+ }
+ if (length > bufWidth) {
+ length = bufWidth;
+ }
+ }
+ else if ((GLint) (x + n) > bufWidth) {
+ /* right edge clipping */
+ skip = 0;
+ length = bufWidth - x;
+ if (length < 0) {
+ /* completely to right of window */
+ return;
+ }
+ }
+ else {
+ /* no clipping */
+ skip = 0;
+ length = (GLint) n;
+ }
+
+ ASSERT(rb->GetRow);
+ ASSERT(rb->_BaseFormat == GL_COLOR_INDEX);
+
+ if (rb->DataType == GL_UNSIGNED_BYTE) {
+ GLubyte index8[MAX_WIDTH];
+ GLint i;
+ rb->GetRow(ctx, rb, length, x + skip, y, index8);
+ for (i = 0; i < length; i++)
+ index[skip + i] = index8[i];
+ }
+ else if (rb->DataType == GL_UNSIGNED_SHORT) {
+ GLushort index16[MAX_WIDTH];
+ GLint i;
+ rb->GetRow(ctx, rb, length, x + skip, y, index16);
+ for (i = 0; i < length; i++)
+ index[skip + i] = index16[i];
+ }
+ else if (rb->DataType == GL_UNSIGNED_INT) {
+ rb->GetRow(ctx, rb, length, x + skip, y, index + skip);
+ }
+ }
+}
+
+
+/**
+ * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
+ * reading values outside the buffer bounds.
+ * We can use this for reading any format/type of renderbuffer.
+ * \param valueSize is the size in bytes of each value put into the
+ * values array.
+ */
+void
+_swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb,
+ GLuint count, const GLint x[], const GLint y[],
+ void *values, GLuint valueSize)
+{
+ GLuint i, inCount = 0, inStart = 0;
+
+ for (i = 0; i < count; i++) {
+ if (x[i] >= 0 && y[i] >= 0 && x[i] < rb->Width && y[i] < rb->Height) {
+ /* inside */
+ if (inCount == 0)
+ inStart = i;
+ inCount++;
+ }
+ else {
+ if (inCount > 0) {
+ /* read [inStart, inStart + inCount) */
+ rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
+ (GLubyte *) values + inStart * valueSize);
+ inCount = 0;
+ }
+ }
+ }
+ if (inCount > 0) {
+ /* read last values */
+ rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
+ (GLubyte *) values + inStart * valueSize);
+ }
+}