aboutsummaryrefslogtreecommitdiff
path: root/nx-X11/extras/Mesa/src/mesa/swrast/s_tritemp.h
diff options
context:
space:
mode:
Diffstat (limited to 'nx-X11/extras/Mesa/src/mesa/swrast/s_tritemp.h')
-rw-r--r--nx-X11/extras/Mesa/src/mesa/swrast/s_tritemp.h1308
1 files changed, 1308 insertions, 0 deletions
diff --git a/nx-X11/extras/Mesa/src/mesa/swrast/s_tritemp.h b/nx-X11/extras/Mesa/src/mesa/swrast/s_tritemp.h
new file mode 100644
index 000000000..a32d8a66b
--- /dev/null
+++ b/nx-X11/extras/Mesa/src/mesa/swrast/s_tritemp.h
@@ -0,0 +1,1308 @@
+/*
+ * Mesa 3-D graphics library
+ * Version: 6.4.1
+ *
+ * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+/*
+ * Triangle Rasterizer Template
+ *
+ * This file is #include'd to generate custom triangle rasterizers.
+ *
+ * The following macros may be defined to indicate what auxillary information
+ * must be interplated across the triangle:
+ * INTERP_Z - if defined, interpolate vertex Z values
+ * INTERP_W - if defined, interpolate vertex W values
+ * INTERP_FOG - if defined, interpolate fog values
+ * INTERP_RGB - if defined, interpolate RGB values
+ * INTERP_ALPHA - if defined, interpolate Alpha values (req's INTERP_RGB)
+ * INTERP_SPEC - if defined, interpolate specular RGB values
+ * INTERP_INDEX - if defined, interpolate color index values
+ * INTERP_INT_TEX - if defined, interpolate integer ST texcoords
+ * (fast, simple 2-D texture mapping)
+ * INTERP_TEX - if defined, interpolate set 0 float STRQ texcoords
+ * NOTE: OpenGL STRQ = Mesa STUV (R was taken for red)
+ * INTERP_MULTITEX - if defined, interpolate N units of STRQ texcoords
+ *
+ * When one can directly address pixels in the color buffer the following
+ * macros can be defined and used to compute pixel addresses during
+ * rasterization (see pRow):
+ * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
+ * BYTES_PER_ROW - number of bytes per row in the color buffer
+ * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
+ * Y==0 at bottom of screen and increases upward.
+ *
+ * Similarly, for direct depth buffer access, this type is used for depth
+ * buffer addressing:
+ * DEPTH_TYPE - either GLushort or GLuint
+ *
+ * Optionally, one may provide one-time setup code per triangle:
+ * SETUP_CODE - code which is to be executed once per triangle
+ * CLEANUP_CODE - code to execute at end of triangle
+ *
+ * The following macro MUST be defined:
+ * RENDER_SPAN(span) - code to write a span of pixels.
+ *
+ * This code was designed for the origin to be in the lower-left corner.
+ *
+ * Inspired by triangle rasterizer code written by Allen Akin. Thanks Allen!
+ *
+ *
+ * Some notes on rasterization accuracy:
+ *
+ * This code uses fixed point arithmetic (the GLfixed type) to iterate
+ * over the triangle edges and interpolate ancillary data (such as Z,
+ * color, secondary color, etc). The number of fractional bits in
+ * GLfixed and the value of SUB_PIXEL_BITS has a direct bearing on the
+ * accuracy of rasterization.
+ *
+ * If SUB_PIXEL_BITS=4 then we'll snap the vertices to the nearest
+ * 1/16 of a pixel. If we're walking up a long, nearly vertical edge
+ * (dx=1/16, dy=1024) we'll need 4 + 10 = 14 fractional bits in
+ * GLfixed to walk the edge without error. If the maximum viewport
+ * height is 4K pixels, then we'll need 4 + 12 = 16 fractional bits.
+ *
+ * Historically, Mesa has used 11 fractional bits in GLfixed, snaps
+ * vertices to 1/16 pixel and allowed a maximum viewport height of 2K
+ * pixels. 11 fractional bits is actually insufficient for accurately
+ * rasterizing some triangles. More recently, the maximum viewport
+ * height was increased to 4K pixels. Thus, Mesa should be using 16
+ * fractional bits in GLfixed. Unfortunately, there may be some issues
+ * with setting FIXED_FRAC_BITS=16, such as multiplication overflow.
+ * This will have to be examined in some detail...
+ *
+ * For now, if you find rasterization errors, particularly with tall,
+ * sliver triangles, try increasing FIXED_FRAC_BITS and/or decreasing
+ * SUB_PIXEL_BITS.
+ */
+
+/*
+ * ColorTemp is used for intermediate color values.
+ */
+#if CHAN_TYPE == GL_FLOAT
+#define ColorTemp GLfloat
+#else
+#define ColorTemp GLint /* same as GLfixed */
+#endif
+
+
+/*
+ * Walk triangle edges with GLfixed or GLdouble
+ */
+#if TRIANGLE_WALK_DOUBLE
+#define GLinterp GLdouble
+#define InterpToInt(X) ((GLint) (X))
+#define INTERP_ONE 1.0
+#else
+#define GLinterp GLfixed
+#define InterpToInt(X) FixedToInt(X)
+#define INTERP_ONE FIXED_ONE
+#endif
+
+
+/*
+ * Either loop over all texture units, or just use unit zero.
+ */
+#ifdef INTERP_MULTITEX
+#define TEX_UNIT_LOOP(CODE) \
+ { \
+ GLuint u; \
+ for (u = 0; u < ctx->Const.MaxTextureUnits; u++) { \
+ if (ctx->Texture._EnabledCoordUnits & (1 << u)) { \
+ CODE \
+ } \
+ } \
+ }
+#define INTERP_TEX
+#elif defined(INTERP_TEX)
+#define TEX_UNIT_LOOP(CODE) \
+ { \
+ const GLuint u = 0; \
+ CODE \
+ }
+#endif
+
+
+
+/*
+ * Some code we unfortunately need to prevent negative interpolated colors.
+ */
+#ifndef CLAMP_INTERPOLANT
+#define CLAMP_INTERPOLANT(CHANNEL, CHANNELSTEP, LEN) \
+do { \
+ GLfixed endVal = span.CHANNEL + (LEN) * span.CHANNELSTEP; \
+ if (endVal < 0) { \
+ span.CHANNEL -= endVal; \
+ } \
+ if (span.CHANNEL < 0) { \
+ span.CHANNEL = 0; \
+ } \
+} while (0)
+#endif
+
+
+static void NAME(GLcontext *ctx, const SWvertex *v0,
+ const SWvertex *v1,
+ const SWvertex *v2 )
+{
+ typedef struct {
+ const SWvertex *v0, *v1; /* Y(v0) < Y(v1) */
+#if TRIANGLE_WALK_DOUBLE
+ GLdouble dx; /* X(v1) - X(v0) */
+ GLdouble dy; /* Y(v1) - Y(v0) */
+ GLdouble dxdy; /* dx/dy */
+ GLdouble adjy; /* adjust from v[0]->fy to fsy, scaled */
+ GLdouble fsx; /* first sample point x coord */
+ GLdouble fsy;
+ GLdouble fx0; /*X of lower endpoint */
+#else
+ GLfloat dx; /* X(v1) - X(v0) */
+ GLfloat dy; /* Y(v1) - Y(v0) */
+ GLfloat dxdy; /* dx/dy */
+ GLfixed fdxdy; /* dx/dy in fixed-point */
+ GLfloat adjy; /* adjust from v[0]->fy to fsy, scaled */
+ GLfixed fsx; /* first sample point x coord */
+ GLfixed fsy;
+ GLfixed fx0; /* fixed pt X of lower endpoint */
+#endif
+ GLint lines; /* number of lines to be sampled on this edge */
+ } EdgeT;
+
+#ifdef INTERP_Z
+ const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
+ const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
+ const GLfloat maxDepth = ctx->DrawBuffer->_DepthMaxF;
+#define FixedToDepth(F) ((F) >> fixedToDepthShift)
+#endif
+ EdgeT eMaj, eTop, eBot;
+ GLfloat oneOverArea;
+ const SWvertex *vMin, *vMid, *vMax; /* Y(vMin)<=Y(vMid)<=Y(vMax) */
+ GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
+#if !TRIANGLE_WALK_DOUBLE
+ const GLint snapMask = ~((FIXED_ONE / (1 << SUB_PIXEL_BITS)) - 1); /* for x/y coord snapping */
+#endif
+ GLinterp vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
+
+ struct sw_span span;
+
+ INIT_SPAN(span, GL_POLYGON, 0, 0, 0);
+
+#ifdef INTERP_Z
+ (void) fixedToDepthShift;
+#endif
+
+ /*
+ printf("%s()\n", __FUNCTION__);
+ printf(" %g, %g, %g\n", v0->win[0], v0->win[1], v0->win[2]);
+ printf(" %g, %g, %g\n", v1->win[0], v1->win[1], v1->win[2]);
+ printf(" %g, %g, %g\n", v2->win[0], v2->win[1], v2->win[2]);
+ */
+ /*
+ ASSERT(v0->win[2] >= 0.0);
+ ASSERT(v1->win[2] >= 0.0);
+ ASSERT(v2->win[2] >= 0.0);
+ */
+ /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
+ * And find the order of the 3 vertices along the Y axis.
+ */
+ {
+#if TRIANGLE_WALK_DOUBLE
+ const GLdouble fy0 = v0->win[1] - 0.5;
+ const GLdouble fy1 = v1->win[1] - 0.5;
+ const GLdouble fy2 = v2->win[1] - 0.5;
+#else
+ const GLfixed fy0 = FloatToFixed(v0->win[1] - 0.5F) & snapMask;
+ const GLfixed fy1 = FloatToFixed(v1->win[1] - 0.5F) & snapMask;
+ const GLfixed fy2 = FloatToFixed(v2->win[1] - 0.5F) & snapMask;
+#endif
+ if (fy0 <= fy1) {
+ if (fy1 <= fy2) {
+ /* y0 <= y1 <= y2 */
+ vMin = v0; vMid = v1; vMax = v2;
+ vMin_fy = fy0; vMid_fy = fy1; vMax_fy = fy2;
+ }
+ else if (fy2 <= fy0) {
+ /* y2 <= y0 <= y1 */
+ vMin = v2; vMid = v0; vMax = v1;
+ vMin_fy = fy2; vMid_fy = fy0; vMax_fy = fy1;
+ }
+ else {
+ /* y0 <= y2 <= y1 */
+ vMin = v0; vMid = v2; vMax = v1;
+ vMin_fy = fy0; vMid_fy = fy2; vMax_fy = fy1;
+ bf = -bf;
+ }
+ }
+ else {
+ if (fy0 <= fy2) {
+ /* y1 <= y0 <= y2 */
+ vMin = v1; vMid = v0; vMax = v2;
+ vMin_fy = fy1; vMid_fy = fy0; vMax_fy = fy2;
+ bf = -bf;
+ }
+ else if (fy2 <= fy1) {
+ /* y2 <= y1 <= y0 */
+ vMin = v2; vMid = v1; vMax = v0;
+ vMin_fy = fy2; vMid_fy = fy1; vMax_fy = fy0;
+ bf = -bf;
+ }
+ else {
+ /* y1 <= y2 <= y0 */
+ vMin = v1; vMid = v2; vMax = v0;
+ vMin_fy = fy1; vMid_fy = fy2; vMax_fy = fy0;
+ }
+ }
+
+ /* fixed point X coords */
+#if TRIANGLE_WALK_DOUBLE
+ vMin_fx = vMin->win[0] + 0.5;
+ vMid_fx = vMid->win[0] + 0.5;
+ vMax_fx = vMax->win[0] + 0.5;
+#else
+ vMin_fx = FloatToFixed(vMin->win[0] + 0.5F) & snapMask;
+ vMid_fx = FloatToFixed(vMid->win[0] + 0.5F) & snapMask;
+ vMax_fx = FloatToFixed(vMax->win[0] + 0.5F) & snapMask;
+#endif
+ }
+
+ /* vertex/edge relationship */
+ eMaj.v0 = vMin; eMaj.v1 = vMax; /*TODO: .v1's not needed */
+ eTop.v0 = vMid; eTop.v1 = vMax;
+ eBot.v0 = vMin; eBot.v1 = vMid;
+
+ /* compute deltas for each edge: vertex[upper] - vertex[lower] */
+#if TRIANGLE_WALK_DOUBLE
+ eMaj.dx = vMax_fx - vMin_fx;
+ eMaj.dy = vMax_fy - vMin_fy;
+ eTop.dx = vMax_fx - vMid_fx;
+ eTop.dy = vMax_fy - vMid_fy;
+ eBot.dx = vMid_fx - vMin_fx;
+ eBot.dy = vMid_fy - vMin_fy;
+#else
+ eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
+ eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
+ eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
+ eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
+ eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
+ eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
+#endif
+
+ /* compute area, oneOverArea and perform backface culling */
+ {
+#if TRIANGLE_WALK_DOUBLE
+ const GLdouble area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
+#else
+ const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
+#endif
+ /* Do backface culling */
+ if (area * bf < 0.0)
+ return;
+
+ if (IS_INF_OR_NAN(area) || area == 0.0F)
+ return;
+
+ oneOverArea = 1.0F / area;
+ }
+
+
+ span.facing = ctx->_Facing; /* for 2-sided stencil test */
+
+ /* Edge setup. For a triangle strip these could be reused... */
+ {
+#if TRIANGLE_WALK_DOUBLE
+ eMaj.fsy = CEILF(vMin_fy);
+ eMaj.lines = (GLint) CEILF(vMax_fy - eMaj.fsy);
+#else
+ eMaj.fsy = FixedCeil(vMin_fy);
+ eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
+#endif
+ if (eMaj.lines > 0) {
+ eMaj.dxdy = eMaj.dx / eMaj.dy;
+#if TRIANGLE_WALK_DOUBLE
+ eMaj.adjy = (eMaj.fsy - vMin_fy) * FIXED_SCALE; /* SCALED! */
+ eMaj.fx0 = vMin_fx;
+ eMaj.fsx = eMaj.fx0 + (eMaj.adjy * eMaj.dxdy) / (GLdouble) FIXED_SCALE;
+#else
+ eMaj.fdxdy = SignedFloatToFixed(eMaj.dxdy);
+ eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy); /* SCALED! */
+ eMaj.fx0 = vMin_fx;
+ eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * eMaj.dxdy);
+#endif
+ }
+ else {
+ return; /*CULLED*/
+ }
+
+#if TRIANGLE_WALK_DOUBLE
+ eTop.fsy = CEILF(vMid_fy);
+ eTop.lines = (GLint) CEILF(vMax_fy - eTop.fsy);
+#else
+ eTop.fsy = FixedCeil(vMid_fy);
+ eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
+#endif
+ if (eTop.lines > 0) {
+ eTop.dxdy = eTop.dx / eTop.dy;
+#if TRIANGLE_WALK_DOUBLE
+ eTop.adjy = (eTop.fsy - vMid_fy) * FIXED_SCALE; /* SCALED! */
+ eTop.fx0 = vMid_fx;
+ eTop.fsx = eTop.fx0 + (eTop.adjy * eTop.dxdy) / (GLdouble) FIXED_SCALE;
+#else
+ eTop.fdxdy = SignedFloatToFixed(eTop.dxdy);
+ eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
+ eTop.fx0 = vMid_fx;
+ eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * eTop.dxdy);
+#endif
+ }
+
+#if TRIANGLE_WALK_DOUBLE
+ eBot.fsy = CEILF(vMin_fy);
+ eBot.lines = (GLint) CEILF(vMid_fy - eBot.fsy);
+#else
+ eBot.fsy = FixedCeil(vMin_fy);
+ eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
+#endif
+ if (eBot.lines > 0) {
+ eBot.dxdy = eBot.dx / eBot.dy;
+#if TRIANGLE_WALK_DOUBLE
+ eBot.adjy = (eBot.fsy - vMin_fy) * FIXED_SCALE; /* SCALED! */
+ eBot.fx0 = vMin_fx;
+ eBot.fsx = eBot.fx0 + (eBot.adjy * eBot.dxdy) / (GLdouble) FIXED_SCALE;
+#else
+ eBot.fdxdy = SignedFloatToFixed(eBot.dxdy);
+ eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy); /* SCALED! */
+ eBot.fx0 = vMin_fx;
+ eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * eBot.dxdy);
+#endif
+ }
+ }
+
+ /*
+ * Conceptually, we view a triangle as two subtriangles
+ * separated by a perfectly horizontal line. The edge that is
+ * intersected by this line is one with maximal absolute dy; we
+ * call it a ``major'' edge. The other two edges are the
+ * ``top'' edge (for the upper subtriangle) and the ``bottom''
+ * edge (for the lower subtriangle). If either of these two
+ * edges is horizontal or very close to horizontal, the
+ * corresponding subtriangle might cover zero sample points;
+ * we take care to handle such cases, for performance as well
+ * as correctness.
+ *
+ * By stepping rasterization parameters along the major edge,
+ * we can avoid recomputing them at the discontinuity where
+ * the top and bottom edges meet. However, this forces us to
+ * be able to scan both left-to-right and right-to-left.
+ * Also, we must determine whether the major edge is at the
+ * left or right side of the triangle. We do this by
+ * computing the magnitude of the cross-product of the major
+ * and top edges. Since this magnitude depends on the sine of
+ * the angle between the two edges, its sign tells us whether
+ * we turn to the left or to the right when travelling along
+ * the major edge to the top edge, and from this we infer
+ * whether the major edge is on the left or the right.
+ *
+ * Serendipitously, this cross-product magnitude is also a
+ * value we need to compute the iteration parameter
+ * derivatives for the triangle, and it can be used to perform
+ * backface culling because its sign tells us whether the
+ * triangle is clockwise or counterclockwise. In this code we
+ * refer to it as ``area'' because it's also proportional to
+ * the pixel area of the triangle.
+ */
+
+ {
+ GLint scan_from_left_to_right; /* true if scanning left-to-right */
+#ifdef INTERP_INDEX
+ GLfloat didx, didy;
+#endif
+
+ /*
+ * Execute user-supplied setup code
+ */
+#ifdef SETUP_CODE
+ SETUP_CODE
+#endif
+
+ scan_from_left_to_right = (oneOverArea < 0.0F);
+
+
+ /* compute d?/dx and d?/dy derivatives */
+#ifdef INTERP_Z
+ span.interpMask |= SPAN_Z;
+ {
+ GLfloat eMaj_dz = vMax->win[2] - vMin->win[2];
+ GLfloat eBot_dz = vMid->win[2] - vMin->win[2];
+ span.dzdx = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
+ if (span.dzdx > maxDepth || span.dzdx < -maxDepth) {
+ /* probably a sliver triangle */
+ span.dzdx = 0.0;
+ span.dzdy = 0.0;
+ }
+ else {
+ span.dzdy = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
+ }
+ if (depthBits <= 16)
+ span.zStep = SignedFloatToFixed(span.dzdx);
+ else
+ span.zStep = (GLint) span.dzdx;
+ }
+#endif
+#ifdef INTERP_W
+ span.interpMask |= SPAN_W;
+ {
+ const GLfloat eMaj_dw = vMax->win[3] - vMin->win[3];
+ const GLfloat eBot_dw = vMid->win[3] - vMin->win[3];
+ span.dwdx = oneOverArea * (eMaj_dw * eBot.dy - eMaj.dy * eBot_dw);
+ span.dwdy = oneOverArea * (eMaj.dx * eBot_dw - eMaj_dw * eBot.dx);
+ }
+#endif
+#ifdef INTERP_FOG
+ span.interpMask |= SPAN_FOG;
+ {
+# ifdef INTERP_W
+ const GLfloat wMax = vMax->win[3], wMin = vMin->win[3], wMid = vMid->win[3];
+ const GLfloat eMaj_dfog = vMax->fog * wMax - vMin->fog * wMin;
+ const GLfloat eBot_dfog = vMid->fog * wMid - vMin->fog * wMin;
+# else
+ const GLfloat eMaj_dfog = vMax->fog - vMin->fog;
+ const GLfloat eBot_dfog = vMid->fog - vMin->fog;
+# endif
+ span.dfogdx = oneOverArea * (eMaj_dfog * eBot.dy - eMaj.dy * eBot_dfog);
+ span.dfogdy = oneOverArea * (eMaj.dx * eBot_dfog - eMaj_dfog * eBot.dx);
+ span.fogStep = span.dfogdx;
+ }
+#endif
+#ifdef INTERP_RGB
+ span.interpMask |= SPAN_RGBA;
+ if (ctx->Light.ShadeModel == GL_SMOOTH) {
+ GLfloat eMaj_dr = (GLfloat) ((ColorTemp) vMax->color[RCOMP] - (ColorTemp) vMin->color[RCOMP]);
+ GLfloat eBot_dr = (GLfloat) ((ColorTemp) vMid->color[RCOMP] - (ColorTemp) vMin->color[RCOMP]);
+ GLfloat eMaj_dg = (GLfloat) ((ColorTemp) vMax->color[GCOMP] - (ColorTemp) vMin->color[GCOMP]);
+ GLfloat eBot_dg = (GLfloat) ((ColorTemp) vMid->color[GCOMP] - (ColorTemp) vMin->color[GCOMP]);
+ GLfloat eMaj_db = (GLfloat) ((ColorTemp) vMax->color[BCOMP] - (ColorTemp) vMin->color[BCOMP]);
+ GLfloat eBot_db = (GLfloat) ((ColorTemp) vMid->color[BCOMP] - (ColorTemp) vMin->color[BCOMP]);
+# ifdef INTERP_ALPHA
+ GLfloat eMaj_da = (GLfloat) ((ColorTemp) vMax->color[ACOMP] - (ColorTemp) vMin->color[ACOMP]);
+ GLfloat eBot_da = (GLfloat) ((ColorTemp) vMid->color[ACOMP] - (ColorTemp) vMin->color[ACOMP]);
+# endif
+ span.drdx = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
+ span.drdy = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
+ span.dgdx = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
+ span.dgdy = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
+ span.dbdx = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
+ span.dbdy = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
+# if CHAN_TYPE == GL_FLOAT
+ span.redStep = span.drdx;
+ span.greenStep = span.dgdx;
+ span.blueStep = span.dbdx;
+# else
+ span.redStep = SignedFloatToFixed(span.drdx);
+ span.greenStep = SignedFloatToFixed(span.dgdx);
+ span.blueStep = SignedFloatToFixed(span.dbdx);
+# endif /* GL_FLOAT */
+# ifdef INTERP_ALPHA
+ span.dadx = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
+ span.dady = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
+# if CHAN_TYPE == GL_FLOAT
+ span.alphaStep = span.dadx;
+# else
+ span.alphaStep = SignedFloatToFixed(span.dadx);
+# endif /* GL_FLOAT */
+# endif /* INTERP_ALPHA */
+ }
+ else {
+ ASSERT(ctx->Light.ShadeModel == GL_FLAT);
+ span.interpMask |= SPAN_FLAT;
+ span.drdx = span.drdy = 0.0F;
+ span.dgdx = span.dgdy = 0.0F;
+ span.dbdx = span.dbdy = 0.0F;
+# if CHAN_TYPE == GL_FLOAT
+ span.redStep = 0.0F;
+ span.greenStep = 0.0F;
+ span.blueStep = 0.0F;
+# else
+ span.redStep = 0;
+ span.greenStep = 0;
+ span.blueStep = 0;
+# endif /* GL_FLOAT */
+# ifdef INTERP_ALPHA
+ span.dadx = span.dady = 0.0F;
+# if CHAN_TYPE == GL_FLOAT
+ span.alphaStep = 0.0F;
+# else
+ span.alphaStep = 0;
+# endif /* GL_FLOAT */
+# endif
+ }
+#endif /* INTERP_RGB */
+#ifdef INTERP_SPEC
+ span.interpMask |= SPAN_SPEC;
+ if (ctx->Light.ShadeModel == GL_SMOOTH) {
+ GLfloat eMaj_dsr = (GLfloat) ((ColorTemp) vMax->specular[RCOMP] - (ColorTemp) vMin->specular[RCOMP]);
+ GLfloat eBot_dsr = (GLfloat) ((ColorTemp) vMid->specular[RCOMP] - (ColorTemp) vMin->specular[RCOMP]);
+ GLfloat eMaj_dsg = (GLfloat) ((ColorTemp) vMax->specular[GCOMP] - (ColorTemp) vMin->specular[GCOMP]);
+ GLfloat eBot_dsg = (GLfloat) ((ColorTemp) vMid->specular[GCOMP] - (ColorTemp) vMin->specular[GCOMP]);
+ GLfloat eMaj_dsb = (GLfloat) ((ColorTemp) vMax->specular[BCOMP] - (ColorTemp) vMin->specular[BCOMP]);
+ GLfloat eBot_dsb = (GLfloat) ((ColorTemp) vMid->specular[BCOMP] - (ColorTemp) vMin->specular[BCOMP]);
+ span.dsrdx = oneOverArea * (eMaj_dsr * eBot.dy - eMaj.dy * eBot_dsr);
+ span.dsrdy = oneOverArea * (eMaj.dx * eBot_dsr - eMaj_dsr * eBot.dx);
+ span.dsgdx = oneOverArea * (eMaj_dsg * eBot.dy - eMaj.dy * eBot_dsg);
+ span.dsgdy = oneOverArea * (eMaj.dx * eBot_dsg - eMaj_dsg * eBot.dx);
+ span.dsbdx = oneOverArea * (eMaj_dsb * eBot.dy - eMaj.dy * eBot_dsb);
+ span.dsbdy = oneOverArea * (eMaj.dx * eBot_dsb - eMaj_dsb * eBot.dx);
+# if CHAN_TYPE == GL_FLOAT
+ span.specRedStep = span.dsrdx;
+ span.specGreenStep = span.dsgdx;
+ span.specBlueStep = span.dsbdx;
+# else
+ span.specRedStep = SignedFloatToFixed(span.dsrdx);
+ span.specGreenStep = SignedFloatToFixed(span.dsgdx);
+ span.specBlueStep = SignedFloatToFixed(span.dsbdx);
+# endif
+ }
+ else {
+ span.dsrdx = span.dsrdy = 0.0F;
+ span.dsgdx = span.dsgdy = 0.0F;
+ span.dsbdx = span.dsbdy = 0.0F;
+# if CHAN_TYPE == GL_FLOAT
+ span.specRedStep = 0.0F;
+ span.specGreenStep = 0.0F;
+ span.specBlueStep = 0.0F;
+# else
+ span.specRedStep = 0;
+ span.specGreenStep = 0;
+ span.specBlueStep = 0;
+# endif
+ }
+#endif /* INTERP_SPEC */
+#ifdef INTERP_INDEX
+ span.interpMask |= SPAN_INDEX;
+ if (ctx->Light.ShadeModel == GL_SMOOTH) {
+ GLfloat eMaj_di = vMax->index - vMin->index;
+ GLfloat eBot_di = vMid->index - vMin->index;
+ didx = oneOverArea * (eMaj_di * eBot.dy - eMaj.dy * eBot_di);
+ didy = oneOverArea * (eMaj.dx * eBot_di - eMaj_di * eBot.dx);
+ span.indexStep = SignedFloatToFixed(didx);
+ }
+ else {
+ span.interpMask |= SPAN_FLAT;
+ didx = didy = 0.0F;
+ span.indexStep = 0;
+ }
+#endif
+#ifdef INTERP_INT_TEX
+ span.interpMask |= SPAN_INT_TEXTURE;
+ {
+ GLfloat eMaj_ds = (vMax->texcoord[0][0] - vMin->texcoord[0][0]) * S_SCALE;
+ GLfloat eBot_ds = (vMid->texcoord[0][0] - vMin->texcoord[0][0]) * S_SCALE;
+ GLfloat eMaj_dt = (vMax->texcoord[0][1] - vMin->texcoord[0][1]) * T_SCALE;
+ GLfloat eBot_dt = (vMid->texcoord[0][1] - vMin->texcoord[0][1]) * T_SCALE;
+ span.texStepX[0][0] = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
+ span.texStepY[0][0] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
+ span.texStepX[0][1] = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
+ span.texStepY[0][1] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
+ span.intTexStep[0] = SignedFloatToFixed(span.texStepX[0][0]);
+ span.intTexStep[1] = SignedFloatToFixed(span.texStepX[0][1]);
+ }
+#endif
+#ifdef INTERP_TEX
+ span.interpMask |= SPAN_TEXTURE;
+ {
+ /* win[3] is 1/W */
+ const GLfloat wMax = vMax->win[3], wMin = vMin->win[3], wMid = vMid->win[3];
+ TEX_UNIT_LOOP(
+ GLfloat eMaj_ds = vMax->texcoord[u][0] * wMax - vMin->texcoord[u][0] * wMin;
+ GLfloat eBot_ds = vMid->texcoord[u][0] * wMid - vMin->texcoord[u][0] * wMin;
+ GLfloat eMaj_dt = vMax->texcoord[u][1] * wMax - vMin->texcoord[u][1] * wMin;
+ GLfloat eBot_dt = vMid->texcoord[u][1] * wMid - vMin->texcoord[u][1] * wMin;
+ GLfloat eMaj_du = vMax->texcoord[u][2] * wMax - vMin->texcoord[u][2] * wMin;
+ GLfloat eBot_du = vMid->texcoord[u][2] * wMid - vMin->texcoord[u][2] * wMin;
+ GLfloat eMaj_dv = vMax->texcoord[u][3] * wMax - vMin->texcoord[u][3] * wMin;
+ GLfloat eBot_dv = vMid->texcoord[u][3] * wMid - vMin->texcoord[u][3] * wMin;
+ span.texStepX[u][0] = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
+ span.texStepY[u][0] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
+ span.texStepX[u][1] = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
+ span.texStepY[u][1] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
+ span.texStepX[u][2] = oneOverArea * (eMaj_du * eBot.dy - eMaj.dy * eBot_du);
+ span.texStepY[u][2] = oneOverArea * (eMaj.dx * eBot_du - eMaj_du * eBot.dx);
+ span.texStepX[u][3] = oneOverArea * (eMaj_dv * eBot.dy - eMaj.dy * eBot_dv);
+ span.texStepY[u][3] = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
+ )
+ }
+#endif
+
+ /*
+ * We always sample at pixel centers. However, we avoid
+ * explicit half-pixel offsets in this code by incorporating
+ * the proper offset in each of x and y during the
+ * transformation to window coordinates.
+ *
+ * We also apply the usual rasterization rules to prevent
+ * cracks and overlaps. A pixel is considered inside a
+ * subtriangle if it meets all of four conditions: it is on or
+ * to the right of the left edge, strictly to the left of the
+ * right edge, on or below the top edge, and strictly above
+ * the bottom edge. (Some edges may be degenerate.)
+ *
+ * The following discussion assumes left-to-right scanning
+ * (that is, the major edge is on the left); the right-to-left
+ * case is a straightforward variation.
+ *
+ * We start by finding the half-integral y coordinate that is
+ * at or below the top of the triangle. This gives us the
+ * first scan line that could possibly contain pixels that are
+ * inside the triangle.
+ *
+ * Next we creep down the major edge until we reach that y,
+ * and compute the corresponding x coordinate on the edge.
+ * Then we find the half-integral x that lies on or just
+ * inside the edge. This is the first pixel that might lie in
+ * the interior of the triangle. (We won't know for sure
+ * until we check the other edges.)
+ *
+ * As we rasterize the triangle, we'll step down the major
+ * edge. For each step in y, we'll move an integer number
+ * of steps in x. There are two possible x step sizes, which
+ * we'll call the ``inner'' step (guaranteed to land on the
+ * edge or inside it) and the ``outer'' step (guaranteed to
+ * land on the edge or outside it). The inner and outer steps
+ * differ by one. During rasterization we maintain an error
+ * term that indicates our distance from the true edge, and
+ * select either the inner step or the outer step, whichever
+ * gets us to the first pixel that falls inside the triangle.
+ *
+ * All parameters (z, red, etc.) as well as the buffer
+ * addresses for color and z have inner and outer step values,
+ * so that we can increment them appropriately. This method
+ * eliminates the need to adjust parameters by creeping a
+ * sub-pixel amount into the triangle at each scanline.
+ */
+
+ {
+ GLint subTriangle;
+ GLinterp fxLeftEdge = 0, fxRightEdge = 0;
+ GLinterp fdxLeftEdge = 0, fdxRightEdge = 0;
+ GLinterp fError = 0, fdError = 0;
+#ifdef PIXEL_ADDRESS
+ PIXEL_TYPE *pRow = NULL;
+ GLint dPRowOuter = 0, dPRowInner; /* offset in bytes */
+#endif
+#ifdef INTERP_Z
+# ifdef DEPTH_TYPE
+ struct gl_renderbuffer *zrb
+ = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
+ DEPTH_TYPE *zRow = NULL;
+ GLint dZRowOuter = 0, dZRowInner; /* offset in bytes */
+# endif
+ GLfixed zLeft = 0, fdzOuter = 0, fdzInner;
+#endif
+#ifdef INTERP_W
+ GLfloat wLeft = 0, dwOuter = 0, dwInner;
+#endif
+#ifdef INTERP_FOG
+ GLfloat fogLeft = 0, dfogOuter = 0, dfogInner;
+#endif
+#ifdef INTERP_RGB
+ ColorTemp rLeft = 0, fdrOuter = 0, fdrInner;
+ ColorTemp gLeft = 0, fdgOuter = 0, fdgInner;
+ ColorTemp bLeft = 0, fdbOuter = 0, fdbInner;
+#endif
+#ifdef INTERP_ALPHA
+ ColorTemp aLeft = 0, fdaOuter = 0, fdaInner;
+#endif
+#ifdef INTERP_SPEC
+ ColorTemp srLeft=0, dsrOuter=0, dsrInner;
+ ColorTemp sgLeft=0, dsgOuter=0, dsgInner;
+ ColorTemp sbLeft=0, dsbOuter=0, dsbInner;
+#endif
+#ifdef INTERP_INDEX
+ GLfixed iLeft=0, diOuter=0, diInner;
+#endif
+#ifdef INTERP_INT_TEX
+ GLfixed sLeft=0, dsOuter=0, dsInner;
+ GLfixed tLeft=0, dtOuter=0, dtInner;
+#endif
+#ifdef INTERP_TEX
+ GLfloat sLeft[MAX_TEXTURE_COORD_UNITS];
+ GLfloat tLeft[MAX_TEXTURE_COORD_UNITS];
+ GLfloat uLeft[MAX_TEXTURE_COORD_UNITS];
+ GLfloat vLeft[MAX_TEXTURE_COORD_UNITS];
+ GLfloat dsOuter[MAX_TEXTURE_COORD_UNITS], dsInner[MAX_TEXTURE_COORD_UNITS];
+ GLfloat dtOuter[MAX_TEXTURE_COORD_UNITS], dtInner[MAX_TEXTURE_COORD_UNITS];
+ GLfloat duOuter[MAX_TEXTURE_COORD_UNITS], duInner[MAX_TEXTURE_COORD_UNITS];
+ GLfloat dvOuter[MAX_TEXTURE_COORD_UNITS], dvInner[MAX_TEXTURE_COORD_UNITS];
+#endif
+
+ for (subTriangle=0; subTriangle<=1; subTriangle++) {
+ EdgeT *eLeft, *eRight;
+ int setupLeft, setupRight;
+ int lines;
+
+ if (subTriangle==0) {
+ /* bottom half */
+ if (scan_from_left_to_right) {
+ eLeft = &eMaj;
+ eRight = &eBot;
+ lines = eRight->lines;
+ setupLeft = 1;
+ setupRight = 1;
+ }
+ else {
+ eLeft = &eBot;
+ eRight = &eMaj;
+ lines = eLeft->lines;
+ setupLeft = 1;
+ setupRight = 1;
+ }
+ }
+ else {
+ /* top half */
+ if (scan_from_left_to_right) {
+ eLeft = &eMaj;
+ eRight = &eTop;
+ lines = eRight->lines;
+ setupLeft = 0;
+ setupRight = 1;
+ }
+ else {
+ eLeft = &eTop;
+ eRight = &eMaj;
+ lines = eLeft->lines;
+ setupLeft = 1;
+ setupRight = 0;
+ }
+ if (lines == 0)
+ return;
+ }
+
+ if (setupLeft && eLeft->lines > 0) {
+ const SWvertex *vLower = eLeft->v0;
+#if TRIANGLE_WALK_DOUBLE
+ const GLdouble fsy = eLeft->fsy;
+ const GLdouble fsx = eLeft->fsx;
+ const GLdouble fx = CEILF(fsx);
+ const GLdouble adjx = (fx - eLeft->fx0) * FIXED_SCALE; /* SCALED! */
+#else
+ const GLfixed fsy = eLeft->fsy;
+ const GLfixed fsx = eLeft->fsx; /* no fractional part */
+ const GLfixed fx = FixedCeil(fsx); /* no fractional part */
+ const GLfixed adjx = (GLinterp) (fx - eLeft->fx0); /* SCALED! */
+#endif
+ const GLinterp adjy = (GLinterp) eLeft->adjy; /* SCALED! */
+ GLint idxOuter;
+#if TRIANGLE_WALK_DOUBLE
+ GLdouble dxOuter;
+
+ fError = fx - fsx - 1.0;
+ fxLeftEdge = fsx;
+ fdxLeftEdge = eLeft->dxdy;
+ dxOuter = FLOORF(fdxLeftEdge);
+ fdError = dxOuter - fdxLeftEdge + 1.0;
+ idxOuter = (GLint) dxOuter;
+ span.y = (GLint) fsy;
+#else
+ GLfloat dxOuter;
+ GLfixed fdxOuter;
+
+ fError = fx - fsx - FIXED_ONE;
+ fxLeftEdge = fsx - FIXED_EPSILON;
+ fdxLeftEdge = eLeft->fdxdy;
+ fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
+ fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
+ idxOuter = FixedToInt(fdxOuter);
+ dxOuter = (GLfloat) idxOuter;
+ span.y = FixedToInt(fsy);
+#endif
+
+ /* silence warnings on some compilers */
+ (void) dxOuter;
+ (void) adjx;
+ (void) adjy;
+ (void) vLower;
+
+#ifdef PIXEL_ADDRESS
+ {
+ pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(InterpToInt(fxLeftEdge), span.y);
+ dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
+ /* negative because Y=0 at bottom and increases upward */
+ }
+#endif
+ /*
+ * Now we need the set of parameter (z, color, etc.) values at
+ * the point (fx, fsy). This gives us properly-sampled parameter
+ * values that we can step from pixel to pixel. Furthermore,
+ * although we might have intermediate results that overflow
+ * the normal parameter range when we step temporarily outside
+ * the triangle, we shouldn't overflow or underflow for any
+ * pixel that's actually inside the triangle.
+ */
+
+#ifdef INTERP_Z
+ {
+ GLfloat z0 = vLower->win[2];
+ if (depthBits <= 16) {
+ /* interpolate fixed-pt values */
+ GLfloat tmp = (z0 * FIXED_SCALE + span.dzdx * adjx + span.dzdy * adjy) + FIXED_HALF;
+ if (tmp < MAX_GLUINT / 2)
+ zLeft = (GLfixed) tmp;
+ else
+ zLeft = MAX_GLUINT / 2;
+ fdzOuter = SignedFloatToFixed(span.dzdy + dxOuter * span.dzdx);
+ }
+ else {
+ /* interpolate depth values exactly */
+ zLeft = (GLint) (z0 + span.dzdx * FixedToFloat(adjx) + span.dzdy * FixedToFloat(adjy));
+ fdzOuter = (GLint) (span.dzdy + dxOuter * span.dzdx);
+ }
+# ifdef DEPTH_TYPE
+ zRow = (DEPTH_TYPE *)
+ zrb->GetPointer(ctx, zrb, InterpToInt(fxLeftEdge), span.y);
+ dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
+# endif
+ }
+#endif
+#ifdef INTERP_W
+ wLeft = vLower->win[3] + (span.dwdx * adjx + span.dwdy * adjy) * (1.0F/FIXED_SCALE);
+ dwOuter = span.dwdy + dxOuter * span.dwdx;
+#endif
+#ifdef INTERP_FOG
+# ifdef INTERP_W
+ fogLeft = vLower->fog * vLower->win[3] + (span.dfogdx * adjx + span.dfogdy * adjy) * (1.0F/FIXED_SCALE);
+# else
+ fogLeft = vLower->fog + (span.dfogdx * adjx + span.dfogdy * adjy) * (1.0F/FIXED_SCALE);
+# endif
+ dfogOuter = span.dfogdy + dxOuter * span.dfogdx;
+#endif
+#ifdef INTERP_RGB
+ if (ctx->Light.ShadeModel == GL_SMOOTH) {
+# if CHAN_TYPE == GL_FLOAT
+ rLeft = vLower->color[RCOMP] + (span.drdx * adjx + span.drdy * adjy) * (1.0F / FIXED_SCALE);
+ gLeft = vLower->color[GCOMP] + (span.dgdx * adjx + span.dgdy * adjy) * (1.0F / FIXED_SCALE);
+ bLeft = vLower->color[BCOMP] + (span.dbdx * adjx + span.dbdy * adjy) * (1.0F / FIXED_SCALE);
+ fdrOuter = span.drdy + dxOuter * span.drdx;
+ fdgOuter = span.dgdy + dxOuter * span.dgdx;
+ fdbOuter = span.dbdy + dxOuter * span.dbdx;
+# else
+ rLeft = (GLint)(ChanToFixed(vLower->color[RCOMP]) + span.drdx * adjx + span.drdy * adjy) + FIXED_HALF;
+ gLeft = (GLint)(ChanToFixed(vLower->color[GCOMP]) + span.dgdx * adjx + span.dgdy * adjy) + FIXED_HALF;
+ bLeft = (GLint)(ChanToFixed(vLower->color[BCOMP]) + span.dbdx * adjx + span.dbdy * adjy) + FIXED_HALF;
+ fdrOuter = SignedFloatToFixed(span.drdy + dxOuter * span.drdx);
+ fdgOuter = SignedFloatToFixed(span.dgdy + dxOuter * span.dgdx);
+ fdbOuter = SignedFloatToFixed(span.dbdy + dxOuter * span.dbdx);
+# endif
+# ifdef INTERP_ALPHA
+# if CHAN_TYPE == GL_FLOAT
+ aLeft = vLower->color[ACOMP] + (span.dadx * adjx + span.dady * adjy) * (1.0F / FIXED_SCALE);
+ fdaOuter = span.dady + dxOuter * span.dadx;
+# else
+ aLeft = (GLint)(ChanToFixed(vLower->color[ACOMP]) + span.dadx * adjx + span.dady * adjy) + FIXED_HALF;
+ fdaOuter = SignedFloatToFixed(span.dady + dxOuter * span.dadx);
+# endif
+# endif
+ }
+ else {
+ ASSERT(ctx->Light.ShadeModel == GL_FLAT);
+# if CHAN_TYPE == GL_FLOAT
+ rLeft = v2->color[RCOMP];
+ gLeft = v2->color[GCOMP];
+ bLeft = v2->color[BCOMP];
+ fdrOuter = fdgOuter = fdbOuter = 0.0F;
+# else
+ rLeft = ChanToFixed(v2->color[RCOMP]);
+ gLeft = ChanToFixed(v2->color[GCOMP]);
+ bLeft = ChanToFixed(v2->color[BCOMP]);
+ fdrOuter = fdgOuter = fdbOuter = 0;
+# endif
+# ifdef INTERP_ALPHA
+# if CHAN_TYPE == GL_FLOAT
+ aLeft = v2->color[ACOMP];
+ fdaOuter = 0.0F;
+# else
+ aLeft = ChanToFixed(v2->color[ACOMP]);
+ fdaOuter = 0;
+# endif
+# endif
+ }
+#endif /* INTERP_RGB */
+
+
+#ifdef INTERP_SPEC
+ if (ctx->Light.ShadeModel == GL_SMOOTH) {
+# if CHAN_TYPE == GL_FLOAT
+ srLeft = vLower->specular[RCOMP] + (span.dsrdx * adjx + span.dsrdy * adjy) * (1.0F / FIXED_SCALE);
+ sgLeft = vLower->specular[GCOMP] + (span.dsgdx * adjx + span.dsgdy * adjy) * (1.0F / FIXED_SCALE);
+ sbLeft = vLower->specular[BCOMP] + (span.dsbdx * adjx + span.dsbdy * adjy) * (1.0F / FIXED_SCALE);
+ dsrOuter = span.dsrdy + dxOuter * span.dsrdx;
+ dsgOuter = span.dsgdy + dxOuter * span.dsgdx;
+ dsbOuter = span.dsbdy + dxOuter * span.dsbdx;
+# else
+ srLeft = (GLfixed) (ChanToFixed(vLower->specular[RCOMP]) + span.dsrdx * adjx + span.dsrdy * adjy) + FIXED_HALF;
+ sgLeft = (GLfixed) (ChanToFixed(vLower->specular[GCOMP]) + span.dsgdx * adjx + span.dsgdy * adjy) + FIXED_HALF;
+ sbLeft = (GLfixed) (ChanToFixed(vLower->specular[BCOMP]) + span.dsbdx * adjx + span.dsbdy * adjy) + FIXED_HALF;
+ dsrOuter = SignedFloatToFixed(span.dsrdy + dxOuter * span.dsrdx);
+ dsgOuter = SignedFloatToFixed(span.dsgdy + dxOuter * span.dsgdx);
+ dsbOuter = SignedFloatToFixed(span.dsbdy + dxOuter * span.dsbdx);
+# endif
+ }
+ else {
+ ASSERT(ctx->Light.ShadeModel == GL_FLAT);
+#if CHAN_TYPE == GL_FLOAT
+ srLeft = v2->specular[RCOMP];
+ sgLeft = v2->specular[GCOMP];
+ sbLeft = v2->specular[BCOMP];
+ dsrOuter = dsgOuter = dsbOuter = 0.0F;
+# else
+ srLeft = ChanToFixed(v2->specular[RCOMP]);
+ sgLeft = ChanToFixed(v2->specular[GCOMP]);
+ sbLeft = ChanToFixed(v2->specular[BCOMP]);
+ dsrOuter = dsgOuter = dsbOuter = 0;
+# endif
+ }
+#endif
+
+#ifdef INTERP_INDEX
+ if (ctx->Light.ShadeModel == GL_SMOOTH) {
+ iLeft = (GLfixed)(vLower->index * FIXED_SCALE
+ + didx * adjx + didy * adjy) + FIXED_HALF;
+ diOuter = SignedFloatToFixed(didy + dxOuter * didx);
+ }
+ else {
+ ASSERT(ctx->Light.ShadeModel == GL_FLAT);
+ iLeft = FloatToFixed(v2->index);
+ diOuter = 0;
+ }
+#endif
+#ifdef INTERP_INT_TEX
+ {
+ GLfloat s0, t0;
+ s0 = vLower->texcoord[0][0] * S_SCALE;
+ sLeft = (GLfixed)(s0 * FIXED_SCALE + span.texStepX[0][0] * adjx
+ + span.texStepY[0][0] * adjy) + FIXED_HALF;
+ dsOuter = SignedFloatToFixed(span.texStepY[0][0] + dxOuter * span.texStepX[0][0]);
+
+ t0 = vLower->texcoord[0][1] * T_SCALE;
+ tLeft = (GLfixed)(t0 * FIXED_SCALE + span.texStepX[0][1] * adjx
+ + span.texStepY[0][1] * adjy) + FIXED_HALF;
+ dtOuter = SignedFloatToFixed(span.texStepY[0][1] + dxOuter * span.texStepX[0][1]);
+ }
+#endif
+#ifdef INTERP_TEX
+ TEX_UNIT_LOOP(
+ const GLfloat invW = vLower->win[3];
+ const GLfloat s0 = vLower->texcoord[u][0] * invW;
+ const GLfloat t0 = vLower->texcoord[u][1] * invW;
+ const GLfloat u0 = vLower->texcoord[u][2] * invW;
+ const GLfloat v0 = vLower->texcoord[u][3] * invW;
+ sLeft[u] = s0 + (span.texStepX[u][0] * adjx + span.texStepY[u][0] * adjy) * (1.0F/FIXED_SCALE);
+ tLeft[u] = t0 + (span.texStepX[u][1] * adjx + span.texStepY[u][1] * adjy) * (1.0F/FIXED_SCALE);
+ uLeft[u] = u0 + (span.texStepX[u][2] * adjx + span.texStepY[u][2] * adjy) * (1.0F/FIXED_SCALE);
+ vLeft[u] = v0 + (span.texStepX[u][3] * adjx + span.texStepY[u][3] * adjy) * (1.0F/FIXED_SCALE);
+ dsOuter[u] = span.texStepY[u][0] + dxOuter * span.texStepX[u][0];
+ dtOuter[u] = span.texStepY[u][1] + dxOuter * span.texStepX[u][1];
+ duOuter[u] = span.texStepY[u][2] + dxOuter * span.texStepX[u][2];
+ dvOuter[u] = span.texStepY[u][3] + dxOuter * span.texStepX[u][3];
+ )
+#endif
+ } /*if setupLeft*/
+
+
+ if (setupRight && eRight->lines>0) {
+#if TRIANGLE_WALK_DOUBLE
+ fxRightEdge = eRight->fsx;
+ fdxRightEdge = eRight->dxdy;
+#else
+ fxRightEdge = eRight->fsx - FIXED_EPSILON;
+ fdxRightEdge = eRight->fdxdy;
+#endif
+ }
+
+ if (lines==0) {
+ continue;
+ }
+
+
+ /* Rasterize setup */
+#ifdef PIXEL_ADDRESS
+ dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
+#endif
+#ifdef INTERP_Z
+# ifdef DEPTH_TYPE
+ dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
+# endif
+ fdzInner = fdzOuter + span.zStep;
+#endif
+#ifdef INTERP_W
+ dwInner = dwOuter + span.dwdx;
+#endif
+#ifdef INTERP_FOG
+ dfogInner = dfogOuter + span.dfogdx;
+#endif
+#ifdef INTERP_RGB
+ fdrInner = fdrOuter + span.redStep;
+ fdgInner = fdgOuter + span.greenStep;
+ fdbInner = fdbOuter + span.blueStep;
+#endif
+#ifdef INTERP_ALPHA
+ fdaInner = fdaOuter + span.alphaStep;
+#endif
+#ifdef INTERP_SPEC
+ dsrInner = dsrOuter + span.specRedStep;
+ dsgInner = dsgOuter + span.specGreenStep;
+ dsbInner = dsbOuter + span.specBlueStep;
+#endif
+#ifdef INTERP_INDEX
+ diInner = diOuter + span.indexStep;
+#endif
+#ifdef INTERP_INT_TEX
+ dsInner = dsOuter + span.intTexStep[0];
+ dtInner = dtOuter + span.intTexStep[1];
+#endif
+#ifdef INTERP_TEX
+ TEX_UNIT_LOOP(
+ dsInner[u] = dsOuter[u] + span.texStepX[u][0];
+ dtInner[u] = dtOuter[u] + span.texStepX[u][1];
+ duInner[u] = duOuter[u] + span.texStepX[u][2];
+ dvInner[u] = dvOuter[u] + span.texStepX[u][3];
+ )
+#endif
+
+ while (lines > 0) {
+ /* initialize the span interpolants to the leftmost value */
+ /* ff = fixed-pt fragment */
+ const GLint right = InterpToInt(fxRightEdge);
+ span.x = InterpToInt(fxLeftEdge);
+ if (right <= span.x)
+ span.end = 0;
+ else
+ span.end = right - span.x;
+
+#ifdef INTERP_Z
+ span.z = zLeft;
+#endif
+#ifdef INTERP_W
+ span.w = wLeft;
+#endif
+#ifdef INTERP_FOG
+ span.fog = fogLeft;
+#endif
+#ifdef INTERP_RGB
+ span.red = rLeft;
+ span.green = gLeft;
+ span.blue = bLeft;
+#endif
+#ifdef INTERP_ALPHA
+ span.alpha = aLeft;
+#endif
+#ifdef INTERP_SPEC
+ span.specRed = srLeft;
+ span.specGreen = sgLeft;
+ span.specBlue = sbLeft;
+#endif
+#ifdef INTERP_INDEX
+ span.index = iLeft;
+#endif
+#ifdef INTERP_INT_TEX
+ span.intTex[0] = sLeft;
+ span.intTex[1] = tLeft;
+#endif
+
+#ifdef INTERP_TEX
+ TEX_UNIT_LOOP(
+ span.tex[u][0] = sLeft[u];
+ span.tex[u][1] = tLeft[u];
+ span.tex[u][2] = uLeft[u];
+ span.tex[u][3] = vLeft[u];
+ )
+#endif
+
+ /* This is where we actually generate fragments */
+ /* XXX the test for span.y > 0 _shouldn't_ be needed but
+ * it fixes a problem on 64-bit Opterons (bug 4842).
+ */
+ if (span.end > 0 && span.y >= 0) {
+ const GLint len = span.end - 1;
+ (void) len;
+#ifdef INTERP_RGB
+ CLAMP_INTERPOLANT(red, redStep, len);
+ CLAMP_INTERPOLANT(green, greenStep, len);
+ CLAMP_INTERPOLANT(blue, blueStep, len);
+#endif
+#ifdef INTERP_ALPHA
+ CLAMP_INTERPOLANT(alpha, alphaStep, len);
+#endif
+#ifdef INTERP_SPEC
+ CLAMP_INTERPOLANT(specRed, specRedStep, len);
+ CLAMP_INTERPOLANT(specGreen, specGreenStep, len);
+ CLAMP_INTERPOLANT(specBlue, specBlueStep, len);
+#endif
+#ifdef INTERP_INDEX
+ CLAMP_INTERPOLANT(index, indexStep, len);
+#endif
+ { RENDER_SPAN( span ); }
+ }
+
+ /*
+ * Advance to the next scan line. Compute the
+ * new edge coordinates, and adjust the
+ * pixel-center x coordinate so that it stays
+ * on or inside the major edge.
+ */
+ span.y++;
+ lines--;
+
+ fxLeftEdge += fdxLeftEdge;
+ fxRightEdge += fdxRightEdge;
+
+ fError += fdError;
+ if (fError >= 0) {
+ fError -= INTERP_ONE;
+
+#ifdef PIXEL_ADDRESS
+ pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
+#endif
+#ifdef INTERP_Z
+# ifdef DEPTH_TYPE
+ zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
+# endif
+ zLeft += fdzOuter;
+#endif
+#ifdef INTERP_W
+ wLeft += dwOuter;
+#endif
+#ifdef INTERP_FOG
+ fogLeft += dfogOuter;
+#endif
+#ifdef INTERP_RGB
+ rLeft += fdrOuter;
+ gLeft += fdgOuter;
+ bLeft += fdbOuter;
+#endif
+#ifdef INTERP_ALPHA
+ aLeft += fdaOuter;
+#endif
+#ifdef INTERP_SPEC
+ srLeft += dsrOuter;
+ sgLeft += dsgOuter;
+ sbLeft += dsbOuter;
+#endif
+#ifdef INTERP_INDEX
+ iLeft += diOuter;
+#endif
+#ifdef INTERP_INT_TEX
+ sLeft += dsOuter;
+ tLeft += dtOuter;
+#endif
+#ifdef INTERP_TEX
+ TEX_UNIT_LOOP(
+ sLeft[u] += dsOuter[u];
+ tLeft[u] += dtOuter[u];
+ uLeft[u] += duOuter[u];
+ vLeft[u] += dvOuter[u];
+ )
+#endif
+ }
+ else {
+#ifdef PIXEL_ADDRESS
+ pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
+#endif
+#ifdef INTERP_Z
+# ifdef DEPTH_TYPE
+ zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
+# endif
+ zLeft += fdzInner;
+#endif
+#ifdef INTERP_W
+ wLeft += dwInner;
+#endif
+#ifdef INTERP_FOG
+ fogLeft += dfogInner;
+#endif
+#ifdef INTERP_RGB
+ rLeft += fdrInner;
+ gLeft += fdgInner;
+ bLeft += fdbInner;
+#endif
+#ifdef INTERP_ALPHA
+ aLeft += fdaInner;
+#endif
+#ifdef INTERP_SPEC
+ srLeft += dsrInner;
+ sgLeft += dsgInner;
+ sbLeft += dsbInner;
+#endif
+#ifdef INTERP_INDEX
+ iLeft += diInner;
+#endif
+#ifdef INTERP_INT_TEX
+ sLeft += dsInner;
+ tLeft += dtInner;
+#endif
+#ifdef INTERP_TEX
+ TEX_UNIT_LOOP(
+ sLeft[u] += dsInner[u];
+ tLeft[u] += dtInner[u];
+ uLeft[u] += duInner[u];
+ vLeft[u] += dvInner[u];
+ )
+#endif
+ }
+ } /*while lines>0*/
+
+ } /* for subTriangle */
+
+ }
+#ifdef CLEANUP_CODE
+ CLEANUP_CODE
+#endif
+ }
+}
+
+#undef SETUP_CODE
+#undef CLEANUP_CODE
+#undef RENDER_SPAN
+
+#undef PIXEL_TYPE
+#undef BYTES_PER_ROW
+#undef PIXEL_ADDRESS
+#undef DEPTH_TYPE
+
+#undef INTERP_Z
+#undef INTERP_W
+#undef INTERP_FOG
+#undef INTERP_RGB
+#undef INTERP_ALPHA
+#undef INTERP_SPEC
+#undef INTERP_INDEX
+#undef INTERP_INT_TEX
+#undef INTERP_TEX
+#undef INTERP_MULTITEX
+#undef TEX_UNIT_LOOP
+
+#undef S_SCALE
+#undef T_SCALE
+
+#undef FixedToDepth
+#undef ColorTemp
+#undef GLinterp
+#undef InterpToInt
+#undef INTERP_ONE
+
+#undef NAME