// //Copyright (C) 2002-2005 3Dlabs Inc. Ltd. //All rights reserved. // //Redistribution and use in source and binary forms, with or without //modification, are permitted provided that the following conditions //are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //POSSIBILITY OF SUCH DAMAGE. // #include "localintermediate.h" #include "../Include/ShHandle.h" // // Two purposes: // 1. Show an example of how to iterate tree. Functions can // also directly call Traverse() on children themselves to // have finer grained control over the process than shown here. // See the last function for how to get started. // 2. Print out a text based description of the tree. // // // Use this class to carry along data from node to node in // the traversal // class TOutputTraverser : public TIntermTraverser { public: TOutputTraverser(TInfoSink& i) : infoSink(i) { } TInfoSink& infoSink; }; TString TType::getCompleteString() const { char buf[100]; char *p = &buf[0]; if (qualifier != EvqTemporary && qualifier != EvqGlobal) p += sprintf(p, "%s ", getQualifierString()); if (array) p += sprintf(p, "array of "); if (matrix) p += sprintf(p, "%dX%d matrix of ", size, size); else if (size > 1) p += sprintf(p, "%d-component vector of ", size); sprintf(p, "%s", getBasicString()); return TString(buf); } // // Helper functions for printing, not part of traversing. // void OutputTreeText(TInfoSink& infoSink, TIntermNode* node, const int depth) { int i; infoSink.debug << FormatSourceLoc(node->getLine()); for (i = 0; i < depth; ++i) infoSink.debug << " "; } // // The rest of the file are the traversal functions. The last one // is the one that starts the traversal. // // Return true from interior nodes to have the external traversal // continue on to children. If you process children yourself, // return false. // void OutputSymbol(TIntermSymbol* node, TIntermTraverser* it) { TOutputTraverser* oit = static_cast(it); OutputTreeText(oit->infoSink, node, oit->depth); char buf[100]; sprintf(buf, "'%s' (%s)\n", node->getSymbol().c_str(), node->getCompleteString().c_str()); oit->infoSink.debug << buf; } bool OutputBinary(bool /* preVisit */, TIntermBinary* node, TIntermTraverser* it) { TOutputTraverser* oit = static_cast(it); TInfoSink& out = oit->infoSink; OutputTreeText(out, node, oit->depth); switch (node->getOp()) { case EOpAssign: out.debug << "move second child to first child"; break; case EOpAddAssign: out.debug << "add second child into first child"; break; case EOpSubAssign: out.debug << "subtract second child into first child"; break; case EOpMulAssign: out.debug << "multiply second child into first child"; break; case EOpVectorTimesMatrixAssign: out.debug << "matrix mult second child into first child"; break; case EOpVectorTimesScalarAssign: out.debug << "vector scale second child into first child"; break; case EOpMatrixTimesScalarAssign: out.debug << "matrix scale second child into first child"; break; case EOpMatrixTimesMatrixAssign: out.debug << "matrix mult second child into first child"; break; case EOpDivAssign: out.debug << "divide second child into first child"; break; case EOpModAssign: out.debug << "mod second child into first child"; break; case EOpAndAssign: out.debug << "and second child into first child"; break; case EOpInclusiveOrAssign: out.debug << "or second child into first child"; break; case EOpExclusiveOrAssign: out.debug << "exclusive or second child into first child"; break; case EOpLeftShiftAssign: out.debug << "left shift second child into first child"; break; case EOpRightShiftAssign: out.debug << "right shift second child into first child"; break; case EOpIndexDirect: out.debug << "direct index"; break; case EOpIndexIndirect: out.debug << "indirect index"; break; case EOpIndexDirectStruct: out.debug << "direct index for structure"; break; case EOpVectorSwizzle: out.debug << "vector swizzle"; break; case EOpAdd: out.debug << "add"; break; case EOpSub: out.debug << "subtract"; break; case EOpMul: out.debug << "component-wise multiply"; break; case EOpDiv: out.debug << "divide"; break; case EOpMod: out.debug << "mod"; break; case EOpRightShift: out.debug << "right-shift"; break; case EOpLeftShift: out.debug << "left-shift"; break; case EOpAnd: out.debug << "bitwise and"; break; case EOpInclusiveOr: out.debug << "inclusive-or"; break; case EOpExclusiveOr: out.debug << "exclusive-or"; break; case EOpEqual: out.debug << "Compare Equal"; break; case EOpNotEqual: out.debug << "Compare Not Equal"; break; case EOpLessThan: out.debug << "Compare Less Than"; break; case EOpGreaterThan: out.debug << "Compare Greater Than"; break; case EOpLessThanEqual: out.debug << "Compare Less Than or Equal"; break; case EOpGreaterThanEqual: out.debug << "Compare Greater Than or Equal"; break; case EOpVectorTimesScalar: out.debug << "vector-scale"; break; case EOpVectorTimesMatrix: out.debug << "vector-times-matrix"; break; case EOpMatrixTimesVector: out.debug << "matrix-times-vector"; break; case EOpMatrixTimesScalar: out.debug << "matrix-scale"; break; case EOpMatrixTimesMatrix: out.debug << "matrix-multiply"; break; case EOpLogicalOr: out.debug << "logical-or"; break; case EOpLogicalXor: out.debug << "logical-xor"; break; case EOpLogicalAnd: out.debug << "logical-and"; break; default: out.debug << ""; } out.debug << " (" << node->getCompleteString() << ")"; out.debug << "\n"; return true; } bool OutputUnary(bool /* preVisit */, TIntermUnary* node, TIntermTraverser* it) { TOutputTraverser* oit = static_cast(it); TInfoSink& out = oit->infoSink; OutputTreeText(out, node, oit->depth); switch (node->getOp()) { case EOpNegative: out.debug << "Negate value"; break; case EOpVectorLogicalNot: case EOpLogicalNot: out.debug << "Negate conditional"; break; case EOpBitwiseNot: out.debug << "Bitwise not"; break; case EOpPostIncrement: out.debug << "Post-Increment"; break; case EOpPostDecrement: out.debug << "Post-Decrement"; break; case EOpPreIncrement: out.debug << "Pre-Increment"; break; case EOpPreDecrement: out.debug << "Pre-Decrement"; break; case EOpConvIntToBool: out.debug << "Convert int to bool"; break; case EOpConvFloatToBool:out.debug << "Convert float to bool";break; case EOpConvBoolToFloat:out.debug << "Convert bool to float";break; case EOpConvIntToFloat: out.debug << "Convert int to float"; break; case EOpConvFloatToInt: out.debug << "Convert float to int"; break; case EOpConvBoolToInt: out.debug << "Convert bool to int"; break; case EOpRadians: out.debug << "radians"; break; case EOpDegrees: out.debug << "degrees"; break; case EOpSin: out.debug << "sine"; break; case EOpCos: out.debug << "cosine"; break; case EOpTan: out.debug << "tangent"; break; case EOpAsin: out.debug << "arc sine"; break; case EOpAcos: out.debug << "arc cosine"; break; case EOpAtan: out.debug << "arc tangent"; break; case EOpExp: out.debug << "exp"; break; case EOpLog: out.debug << "log"; break; case EOpExp2: out.debug << "exp2"; break; case EOpLog2: out.debug << "log2"; break; case EOpSqrt: out.debug << "sqrt"; break; case EOpInverseSqrt: out.debug << "inverse sqrt"; break; case EOpAbs: out.debug << "Absolute value"; break; case EOpSign: out.debug << "Sign"; break; case EOpFloor: out.debug << "Floor"; break; case EOpCeil: out.debug << "Ceiling"; break; case EOpFract: out.debug << "Fraction"; break; case EOpLength: out.debug << "length"; break; case EOpNormalize: out.debug << "normalize"; break; case EOpDPdx: out.debug << "dPdx"; break; case EOpDPdy: out.debug << "dPdy"; break; case EOpFwidth: out.debug << "fwidth"; break; case EOpAny: out.debug << "any"; break; case EOpAll: out.debug << "all"; break; default: out.debug.message(EPrefixError, "Bad unary op"); } out.debug << " (" << node->getCompleteString() << ")"; out.debug << "\n"; return true; } bool OutputAggregate(bool /* preVisit */, TIntermAggregate* node, TIntermTraverser* it) { TOutputTraverser* oit = static_cast(it); TInfoSink& out = oit->infoSink; if (node->getOp() == EOpNull) { out.debug.message(EPrefixError, "node is still EOpNull!"); return true; } OutputTreeText(out, node, oit->depth); switch (node->getOp()) { case EOpSequence: out.debug << "Sequence\n"; return true; case EOpComma: out.debug << "Comma\n"; return true; case EOpFunction: out.debug << "Function Definition: " << node->getName(); break; case EOpFunctionCall: out.debug << "Function Call: " << node->getName(); break; case EOpParameters: out.debug << "Function Parameters: "; break; case EOpConstructFloat: out.debug << "Construct float"; break; case EOpConstructVec2: out.debug << "Construct vec2"; break; case EOpConstructVec3: out.debug << "Construct vec3"; break; case EOpConstructVec4: out.debug << "Construct vec4"; break; case EOpConstructBool: out.debug << "Construct bool"; break; case EOpConstructBVec2: out.debug << "Construct bvec2"; break; case EOpConstructBVec3: out.debug << "Construct bvec3"; break; case EOpConstructBVec4: out.debug << "Construct bvec4"; break; case EOpConstructInt: out.debug << "Construct int"; break; case EOpConstructIVec2: out.debug << "Construct ivec2"; break; case EOpConstructIVec3: out.debug << "Construct ivec3"; break; case EOpConstructIVec4: out.debug << "Construct ivec4"; break; case EOpConstructMat2: out.debug << "Construct mat2"; break; case EOpConstructMat3: out.debug << "Construct mat3"; break; case EOpConstructMat4: out.debug << "Construct mat4"; break; case EOpConstructStruct: out.debug << "Construct structure"; break; case EOpLessThan: out.debug << "Compare Less Than"; break; case EOpGreaterThan: out.debug << "Compare Greater Than"; break; case EOpLessThanEqual: out.debug << "Compare Less Than or Equal"; break; case EOpGreaterThanEqual: out.debug << "Compare Greater Than or Equal"; break; case EOpVectorEqual: out.debug << "Equal"; break; case EOpVectorNotEqual: out.debug << "NotEqual"; break; case EOpMod: out.debug << "mod"; break; case EOpPow: out.debug << "pow"; break; case EOpAtan: out.debug << "arc tangent"; break; case EOpMin: out.debug << "min"; break; case EOpMax: out.debug << "max"; break; case EOpClamp: out.debug << "clamp"; break; case EOpMix: out.debug << "mix"; break; case EOpStep: out.debug << "step"; break; case EOpSmoothStep: out.debug << "smoothstep"; break; case EOpDistance: out.debug << "distance"; break; case EOpDot: out.debug << "dot-product"; break; case EOpCross: out.debug << "cross-product"; break; case EOpFaceForward: out.debug << "face-forward"; break; case EOpReflect: out.debug << "reflect"; break; case EOpRefract: out.debug << "refract"; break; case EOpMul: out.debug << "component-wise multiply"; break; case EOpItof: out.debug << "itof"; break; case EOpFtoi: out.debug << "ftoi"; break; case EOpSkipPixels: out.debug << "skipPixels"; break; case EOpReadInput: out.debug << "readInput"; break; case EOpWritePixel: out.debug << "writePixel"; break; case EOpBitmapLsb: out.debug << "bitmapLSB"; break; case EOpBitmapMsb: out.debug << "bitmapMSB"; break; case EOpWriteOutput: out.debug << "writeOutput"; break; case EOpReadPixel: out.debug << "readPixel"; break; default: out.debug.message(EPrefixError, "Bad aggregation op"); } if (node->getOp() != EOpSequence && node->getOp() != EOpParameters) out.debug << " (" << node->getCompleteString() << ")"; out.debug << "\n"; return true; } bool OutputSelection(bool /* preVisit */, TIntermSelection* node, TIntermTraverser* it) { TOutputTraverser* oit = static_cast(it); TInfoSink& out = oit->infoSink; OutputTreeText(out, node, oit->depth); out.debug << "Test condition and select"; out.debug << " (" << node->getCompleteString() << ")\n"; ++oit->depth; OutputTreeText(oit->infoSink, node, oit->depth); out.debug << "Condition\n"; node->getCondition()->traverse(it); OutputTreeText(oit->infoSink, node, oit->depth); if (node->getTrueBlock()) { out.debug << "true case\n"; node->getTrueBlock()->traverse(it); } else out.debug << "true case is null\n"; if (node->getFalseBlock()) { OutputTreeText(oit->infoSink, node, oit->depth); out.debug << "false case\n"; node->getFalseBlock()->traverse(it); } --oit->depth; return false; } void OutputConstantUnion(TIntermConstantUnion* node, TIntermTraverser* it) { TOutputTraverser* oit = static_cast(it); TInfoSink& out = oit->infoSink; int size = 0; if (node->getType().getBasicType() == EbtStruct) size = node->getType().getStructSize(); else size = node->getType().getInstanceSize(); for (int i = 0; i < size; i++) { OutputTreeText(out, node, oit->depth); switch (node->getType().getBasicType()) { case EbtBool: if (node->getUnionArrayPointer()[i].bConst) out.debug << "true"; else out.debug << "false"; out.debug << " (" << "const bool" << ")"; out.debug << "\n"; break; case EbtFloat: { char buf[300]; sprintf(buf, "%f (%s)", node->getUnionArrayPointer()[i].fConst, "const float"); out.debug << buf << "\n"; } break; case EbtInt: { char buf[300]; sprintf(buf, "%d (%s)", node->getUnionArrayPointer()[i].iConst, "const int"); out.debug << buf << "\n"; break; } default: out.info.message(EPrefixInternalError, "Unknown constant", node->getLine()); break; } } } bool OutputLoop(bool /* preVisit */, TIntermLoop* node, TIntermTraverser* it) { TOutputTraverser* oit = static_cast(it); TInfoSink& out = oit->infoSink; OutputTreeText(out, node, oit->depth); out.debug << "Loop with condition "; if (! node->testFirst()) out.debug << "not "; out.debug << "tested first\n"; ++oit->depth; OutputTreeText(oit->infoSink, node, oit->depth); if (node->getTest()) { out.debug << "Loop Condition\n"; node->getTest()->traverse(it); } else out.debug << "No loop condition\n"; OutputTreeText(oit->infoSink, node, oit->depth); if (node->getBody()) { out.debug << "Loop Body\n"; node->getBody()->traverse(it); } else out.debug << "No loop body\n"; if (node->getTerminal()) { OutputTreeText(oit->infoSink, node, oit->depth); out.debug << "Loop Terminal Expression\n"; node->getTerminal()->traverse(it); } --oit->depth; return false; } bool OutputBranch(bool /* previsit*/, TIntermBranch* node, TIntermTraverser* it) { TOutputTraverser* oit = static_cast(it); TInfoSink& out = oit->infoSink; OutputTreeText(out, node, oit->depth); switch (node->getFlowOp()) { case EOpKill: out.debug << "Branch: Kill"; break; case EOpBreak: out.debug << "Branch: Break"; break; case EOpContinue: out.debug << "Branch: Continue"; break; case EOpReturn: out.debug << "Branch: Return"; break; default: out.debug << "Branch: Unknown Branch"; break; } if (node->getExpression()) { out.debug << " with expression\n"; ++oit->depth; node->getExpression()->traverse(it); --oit->depth; } else out.debug << "\n"; return false; } // // This function is the one to call externally to start the traversal. // Individual functions can be initialized to 0 to skip processing of that // type of node. It's children will still be processed. // void TIntermediate::outputTree(TIntermNode* root) { if (root == 0) return; TOutputTraverser it(infoSink); it.visitAggregate = OutputAggregate; it.visitBinary = OutputBinary; it.visitConstantUnion = OutputConstantUnion; it.visitSelection = OutputSelection; it.visitSymbol = OutputSymbol; it.visitUnary = OutputUnary; it.visitLoop = OutputLoop; it.visitBranch = OutputBranch; root->traverse(&it); }