/* * Mesa 3-D graphics library * Version: 5.1 * * Copyright (C) 1999-2003 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "glheader.h" #include "macros.h" #include "imports.h" #include "colormac.h" #include "s_context.h" #include "s_span.h" #include "s_stencil.h" #include "s_zoom.h" /* * Helper function called from _swrast_write_zoomed_rgba/rgb/index_span(). */ static void zoom_span( GLcontext *ctx, const struct sw_span *span, const GLvoid *src, GLint y0, GLenum format, GLint skipPixels ) { GLint r0, r1, row; GLint c0, c1, skipCol; GLint i, j; const GLuint maxWidth = MIN2( ctx->DrawBuffer->Width, MAX_WIDTH ); struct sw_span zoomed; struct span_arrays zoomed_arrays; /* this is big! */ /* no pixel arrays! must be horizontal spans. */ ASSERT((span->arrayMask & SPAN_XY) == 0); ASSERT(span->primitive == GL_BITMAP); INIT_SPAN(zoomed, GL_BITMAP, 0, 0, 0); zoomed.array = &zoomed_arrays; /* copy fog interp info */ zoomed.fog = span->fog; zoomed.fogStep = span->fogStep; /* XXX copy texcoord info? */ if (format == GL_RGBA || format == GL_RGB) { /* copy Z info */ zoomed.z = span->z; zoomed.zStep = span->zStep; /* we'll generate an array of colorss */ zoomed.interpMask = span->interpMask & ~SPAN_RGBA; zoomed.arrayMask |= SPAN_RGBA; } else if (format == GL_COLOR_INDEX) { /* copy Z info */ zoomed.z = span->z; zoomed.zStep = span->zStep; /* we'll generate an array of color indexes */ zoomed.interpMask = span->interpMask & ~SPAN_INDEX; zoomed.arrayMask |= SPAN_INDEX; } else { assert(format == GL_DEPTH_COMPONENT); /* Copy color info */ zoomed.red = span->red; zoomed.green = span->green; zoomed.blue = span->blue; zoomed.alpha = span->alpha; zoomed.redStep = span->redStep; zoomed.greenStep = span->greenStep; zoomed.blueStep = span->blueStep; zoomed.alphaStep = span->alphaStep; /* we'll generate an array of depth values */ zoomed.interpMask = span->interpMask & ~SPAN_Z; zoomed.arrayMask |= SPAN_Z; } /* * Compute which columns to draw: [c0, c1) */ c0 = (GLint) (span->x + skipPixels * ctx->Pixel.ZoomX); c1 = (GLint) (span->x + (skipPixels + span->end) * ctx->Pixel.ZoomX); if (c0 == c1) { return; } else if (c1 < c0) { /* swap */ GLint ctmp = c1; c1 = c0; c0 = ctmp; } if (c0 < 0) { zoomed.x = 0; zoomed.start = 0; zoomed.end = c1; skipCol = -c0; } else { zoomed.x = c0; zoomed.start = 0; zoomed.end = c1 - c0; skipCol = 0; } if (zoomed.end > maxWidth) zoomed.end = maxWidth; /* * Compute which rows to draw: [r0, r1) */ row = span->y - y0; r0 = y0 + (GLint) (row * ctx->Pixel.ZoomY); r1 = y0 + (GLint) ((row+1) * ctx->Pixel.ZoomY); if (r0 == r1) { return; } else if (r1 < r0) { /* swap */ GLint rtmp = r1; r1 = r0; r0 = rtmp; } ASSERT(r0 < r1); ASSERT(c0 < c1); /* * Trivial clip rejection testing. */ if (r1 < 0) /* below window */ return; if (r0 >= (GLint) ctx->DrawBuffer->Height) /* above window */ return; if (c1 < 0) /* left of window */ return; if (c0 >= (GLint) ctx->DrawBuffer->Width) /* right of window */ return; /* zoom the span horizontally */ if (format == GL_RGBA) { const GLchan (*rgba)[4] = (const GLchan (*)[4]) src; if (ctx->Pixel.ZoomX == -1.0F) { /* common case */ for (j = (GLint) zoomed.start; j < (GLint) zoomed.end; j++) { i = span->end - (j + skipCol) - 1; COPY_CHAN4(zoomed.array->rgba[j], rgba[i]); } } else { /* general solution */ const GLfloat xscale = 1.0F / ctx->Pixel.ZoomX; for (j = (GLint) zoomed.start; j < (GLint) zoomed.end; j++) { i = (GLint) ((j + skipCol) * xscale); if (ctx->Pixel.ZoomX < 0.0) { ASSERT(i <= 0); i = span->end + i - 1; } ASSERT(i >= 0); ASSERT(i < (GLint) span->end); COPY_CHAN4(zoomed.array->rgba[j], rgba[i]); } } } else if (format == GL_RGB) { const GLchan (*rgb)[3] = (const GLchan (*)[3]) src; if (ctx->Pixel.ZoomX == -1.0F) { /* common case */ for (j = (GLint) zoomed.start; j < (GLint) zoomed.end; j++) { i = span->end - (j + skipCol) - 1; zoomed.array->rgba[j][0] = rgb[i][0]; zoomed.array->rgba[j][1] = rgb[i][1]; zoomed.array->rgba[j][2] = rgb[i][2]; zoomed.array->rgba[j][3] = CHAN_MAX; } } else { /* general solution */ const GLfloat xscale = 1.0F / ctx->Pixel.ZoomX; for (j = (GLint) zoomed.start; j < (GLint) zoomed.end; j++) { i = (GLint) ((j + skipCol) * xscale); if (ctx->Pixel.ZoomX < 0.0) { ASSERT(i <= 0); i = span->end + i - 1; } ASSERT(i >= 0); ASSERT(i < (GLint) span->end); zoomed.array->rgba[j][0] = rgb[i][0]; zoomed.array->rgba[j][1] = rgb[i][1]; zoomed.array->rgba[j][2] = rgb[i][2]; zoomed.array->rgba[j][3] = CHAN_MAX; } } } else if (format == GL_COLOR_INDEX) { const GLuint *indexes = (const GLuint *) src; if (ctx->Pixel.ZoomX == -1.0F) { /* common case */ for (j = (GLint) zoomed.start; j < (GLint) zoomed.end; j++) { i = span->end - (j + skipCol) - 1; zoomed.array->index[j] = indexes[i]; } } else { /* general solution */ const GLfloat xscale = 1.0F / ctx->Pixel.ZoomX; for (j = (GLint) zoomed.start; j < (GLint) zoomed.end; j++) { i = (GLint) ((j + skipCol) * xscale); if (ctx->Pixel.ZoomX < 0.0) { ASSERT(i <= 0); i = span->end + i - 1; } ASSERT(i >= 0); ASSERT(i < (GLint) span->end); zoomed.array->index[j] = indexes[i]; } } } else { const GLdepth *zValues = (const GLuint *) src; assert(format == GL_DEPTH_COMPONENT); if (ctx->Pixel.ZoomX == -1.0F) { /* common case */ for (j = (GLint) zoomed.start; j < (GLint) zoomed.end; j++) { i = span->end - (j + skipCol) - 1; zoomed.array->z[j] = zValues[i]; } } else { /* general solution */ const GLfloat xscale = 1.0F / ctx->Pixel.ZoomX; for (j = (GLint) zoomed.start; j < (GLint) zoomed.end; j++) { i = (GLint) ((j + skipCol) * xscale); if (ctx->Pixel.ZoomX < 0.0) { ASSERT(i <= 0); i = span->end + i - 1; } ASSERT(i >= 0); ASSERT(i < (GLint) span->end); zoomed.array->z[j] = zValues[i]; } } /* Now, fall into either the RGB or COLOR_INDEX path below */ if (ctx->Visual.rgbMode) format = GL_RGBA; else format = GL_COLOR_INDEX; } /* write the span in rows [r0, r1) */ if (format == GL_RGBA || format == GL_RGB) { /* Writing the span may modify the colors, so make a backup now if we're * going to call _swrast_write_zoomed_span() more than once. * Also, clipping may change the span end value, so store it as well. */ GLchan rgbaSave[MAX_WIDTH][4]; const GLint end = zoomed.end; /* save */ if (r1 - r0 > 1) { MEMCPY(rgbaSave, zoomed.array->rgba, zoomed.end * 4 * sizeof(GLchan)); } for (zoomed.y = r0; zoomed.y < r1; zoomed.y++) { _swrast_write_rgba_span(ctx, &zoomed); zoomed.end = end; /* restore */ if (r1 - r0 > 1) { /* restore the colors */ MEMCPY(zoomed.array->rgba, rgbaSave, zoomed.end*4 * sizeof(GLchan)); } } } else if (format == GL_COLOR_INDEX) { GLuint indexSave[MAX_WIDTH]; const GLint end = zoomed.end; /* save */ if (r1 - r0 > 1) { MEMCPY(indexSave, zoomed.array->index, zoomed.end * sizeof(GLuint)); } for (zoomed.y = r0; zoomed.y < r1; zoomed.y++) { _swrast_write_index_span(ctx, &zoomed); zoomed.end = end; /* restore */ if (r1 - r0 > 1) { /* restore the colors */ MEMCPY(zoomed.array->index, indexSave, zoomed.end * sizeof(GLuint)); } } } } void _swrast_write_zoomed_rgba_span( GLcontext *ctx, const struct sw_span *span, CONST GLchan rgba[][4], GLint y0, GLint skipPixels ) { zoom_span(ctx, span, (const GLvoid *) rgba, y0, GL_RGBA, skipPixels); } void _swrast_write_zoomed_rgb_span( GLcontext *ctx, const struct sw_span *span, CONST GLchan rgb[][3], GLint y0, GLint skipPixels ) { zoom_span(ctx, span, (const GLvoid *) rgb, y0, GL_RGB, skipPixels); } void _swrast_write_zoomed_index_span( GLcontext *ctx, const struct sw_span *span, GLint y0, GLint skipPixels ) { zoom_span(ctx, span, (const GLvoid *) span->array->index, y0, GL_COLOR_INDEX, skipPixels); } void _swrast_write_zoomed_depth_span( GLcontext *ctx, const struct sw_span *span, GLint y0, GLint skipPixels ) { zoom_span(ctx, span, (const GLvoid *) span->array->z, y0, GL_DEPTH_COMPONENT, skipPixels); } /* * As above, but write stencil values. */ void _swrast_write_zoomed_stencil_span( GLcontext *ctx, GLuint n, GLint x, GLint y, const GLstencil stencil[], GLint y0, GLint skipPixels ) { GLint m; GLint r0, r1, row, r; GLint i, j, skipcol; GLstencil zstencil[MAX_WIDTH]; /* zoomed stencil values */ GLint maxwidth = MIN2( ctx->DrawBuffer->Width, MAX_WIDTH ); (void) skipPixels; /* XXX this shouldn't be ignored */ /* compute width of output row */ m = (GLint) FABSF( n * ctx->Pixel.ZoomX ); if (m==0) { return; } if (ctx->Pixel.ZoomX<0.0) { /* adjust x coordinate for left/right mirroring */ x = x - m; } /* compute which rows to draw */ row = y - y0; r0 = y0 + (GLint) (row * ctx->Pixel.ZoomY); r1 = y0 + (GLint) ((row+1) * ctx->Pixel.ZoomY); if (r0==r1) { return; } else if (r1= (GLint) ctx->DrawBuffer->Height && r1 >= (GLint) ctx->DrawBuffer->Height) { /* above window */ return; } /* check if left edge is outside window */ skipcol = 0; if (x<0) { skipcol = -x; m += x; } /* make sure span isn't too long or short */ if (m>maxwidth) { m = maxwidth; } else if (m<=0) { return; } ASSERT( m <= MAX_WIDTH ); /* zoom the span horizontally */ if (ctx->Pixel.ZoomX==-1.0F) { /* n==m */ for (j=0;jPixel.ZoomX; for (j=0;j