/* $Xorg: XlibInt.c,v 1.8 2001/02/09 02:03:38 xorgcvs Exp $ */ /* Copyright 1985, 1986, 1987, 1998 The Open Group Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from The Open Group. */ /**************************************************************************/ /* */ /* Copyright (c) 2001, 2011 NoMachine, http://www.nomachine.com/. */ /* */ /* NX-X11, NX protocol compression and NX extensions to this software */ /* are copyright of NoMachine. Redistribution and use of the present */ /* software is allowed according to terms specified in the file LICENSE */ /* which comes in the source distribution. */ /* */ /* Check http://www.nomachine.com/licensing.html for applicability. */ /* */ /* NX and NoMachine are trademarks of Medialogic S.p.A. */ /* */ /* All rights reserved. */ /* */ /**************************************************************************/ /* $XFree86: xc/lib/X11/XlibInt.c,v 3.38 2003/10/30 21:55:05 alanh Exp $ */ /* * XlibInt.c - Internal support routines for the C subroutine * interface library (Xlib) to the X Window System Protocol V11.0. */ #define NEED_EVENTS #define NEED_REPLIES #ifdef WIN32 #define _XLIBINT_ #endif #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "Xlibint.h" #include <X11/Xpoll.h> #include <X11/Xtrans/Xtrans.h> #include <X11/extensions/xcmiscstr.h> #include <stdio.h> #ifdef WIN32 #include <direct.h> #endif #ifdef XTHREADS #include "locking.h" /* these pointers get initialized by XInitThreads */ LockInfoPtr _Xglobal_lock = NULL; void (*_XCreateMutex_fn)(LockInfoPtr) = NULL; /* struct _XCVList *(*_XCreateCVL_fn)() = NULL; */ void (*_XFreeMutex_fn)(LockInfoPtr) = NULL; void (*_XLockMutex_fn)( LockInfoPtr /* lock */ #if defined(XTHREADS_WARN) || defined(XTHREADS_FILE_LINE) , char * /* file */ , int /* line */ #endif ) = NULL; void (*_XUnlockMutex_fn)( LockInfoPtr /* lock */ #if defined(XTHREADS_WARN) || defined(XTHREADS_FILE_LINE) , char * /* file */ , int /* line */ #endif ) = NULL; xthread_t (*_Xthread_self_fn)(void) = NULL; #define XThread_Self() ((*_Xthread_self_fn)()) #define UnlockNextReplyReader(d) if ((d)->lock) \ (*(d)->lock->pop_reader)((d),&(d)->lock->reply_awaiters,&(d)->lock->reply_awaiters_tail) #define QueueReplyReaderLock(d) ((d)->lock ? \ (*(d)->lock->push_reader)(d,&(d)->lock->reply_awaiters_tail) : NULL) #define QueueEventReaderLock(d) ((d)->lock ? \ (*(d)->lock->push_reader)(d,&(d)->lock->event_awaiters_tail) : NULL) #if defined(XTHREADS_WARN) || defined(XTHREADS_FILE_LINE) #define InternalLockDisplay(d,wskip) if ((d)->lock) \ (*(d)->lock->internal_lock_display)(d,wskip,__FILE__,__LINE__) #else #define InternalLockDisplay(d,wskip) if ((d)->lock) \ (*(d)->lock->internal_lock_display)(d,wskip) #endif #else /* XTHREADS else */ #define UnlockNextReplyReader(d) #define UnlockNextEventReader(d) #define InternalLockDisplay(d,wskip) #endif /* XTHREADS else */ #include "NX.h" #ifdef NX_TRANS_SOCKET #include "NX.h" #include "NXvars.h" static struct timeval retry; /* * From Xtranssock.c. Presently the congestion state * is reported by the proxy to the application, by * invoking the callback directly. The function will * be possibly used in the future, to be able to track * the bandwidth usage even when the NX transport is * not running. Note that in this sample implementation * the congestion state is checked very often and can * be surely optimized. */ #ifdef NX_TRANS_CHANGE extern int _X11TransSocketCongestionChange(XtransConnInfo, int *); #endif #endif /* #ifdef NX_TRANS_SOCKET */ /* check for both EAGAIN and EWOULDBLOCK, because some supposedly POSIX * systems are broken and return EWOULDBLOCK when they should return EAGAIN */ #ifdef WIN32 #define ETEST() (WSAGetLastError() == WSAEWOULDBLOCK) #else #ifdef __CYGWIN__ /* Cygwin uses ENOBUFS to signal socket is full */ #define ETEST() (errno == EAGAIN || errno == EWOULDBLOCK || errno == ENOBUFS) #else #if defined(EAGAIN) && defined(EWOULDBLOCK) #define ETEST() (errno == EAGAIN || errno == EWOULDBLOCK) #else #ifdef EAGAIN #define ETEST() (errno == EAGAIN) #else #define ETEST() (errno == EWOULDBLOCK) #endif /* EAGAIN */ #endif /* EAGAIN && EWOULDBLOCK */ #endif /* __CYGWIN__ */ #endif /* WIN32 */ #ifdef WIN32 #define ECHECK(err) (WSAGetLastError() == err) #define ESET(val) WSASetLastError(val) #else #ifdef __UNIXOS2__ #define ECHECK(err) (errno == err) #define ESET(val) #else #ifdef ISC #define ECHECK(err) ((errno == err) || ETEST()) #else #define ECHECK(err) (errno == err) #endif #define ESET(val) errno = val #endif #endif #if defined(LOCALCONN) || defined(LACHMAN) #ifdef EMSGSIZE #define ESZTEST() (ECHECK(EMSGSIZE) || ECHECK(ERANGE)) #else #define ESZTEST() ECHECK(ERANGE) #endif #else #ifdef EMSGSIZE #define ESZTEST() ECHECK(EMSGSIZE) #endif #endif #ifdef __UNIXOS2__ #define select(n,r,w,x,t) os2ClientSelect(n,r,w,x,t) #include <limits.h> #define MAX_PATH _POSIX_PATH_MAX #endif #ifdef MUSTCOPY #define STARTITERATE(tpvar,type,start,endcond) \ { register char *cpvar; \ for (cpvar = (char *) (start); endcond; ) { \ type dummy; memcpy ((char *) &dummy, cpvar, SIZEOF(type)); \ tpvar = &dummy; #define ITERPTR(tpvar) cpvar #define RESETITERPTR(tpvar,type,start) cpvar = start #define INCITERPTR(tpvar,type) cpvar += SIZEOF(type) #define ENDITERATE }} #else #define STARTITERATE(tpvar,type,start,endcond) \ for (tpvar = (type *) (start); endcond; ) #define ITERPTR(tpvar) (char *)tpvar #define RESETITERPTR(tpvar,type,start) tpvar = (type *) (start) #define INCITERPTR(tpvar,type) tpvar++ #define ENDITERATE #endif /* MUSTCOPY */ typedef union { xReply rep; char buf[BUFSIZE]; } _XAlignedBuffer; static char *_XAsyncReply( Display *dpy, register xReply *rep, char *buf, register int *lenp, Bool discard); static void _XProcessInternalConnection( Display *dpy, struct _XConnectionInfo *conn_info); #define SEQLIMIT (65535 - (BUFSIZE / SIZEOF(xReq)) - 10) /* * The following routines are internal routines used by Xlib for protocol * packet transmission and reception. * * _XIOError(Display *) will be called if any sort of system call error occurs. * This is assumed to be a fatal condition, i.e., XIOError should not return. * * _XError(Display *, xError *) will be called whenever an X_Error event is * received. This is not assumed to be a fatal condition, i.e., it is * acceptable for this procedure to return. However, XError should NOT * perform any operations (directly or indirectly) on the DISPLAY. * * Routines declared with a return type of 'Status' return 0 on failure, * and non 0 on success. Routines with no declared return type don't * return anything. Whenever possible routines that create objects return * the object they have created. */ static xReq _dummy_request = { 0, 0, 0 }; #ifdef NX_TRANS_SOCKET /* * Replace the standard Select with a version giving NX a * chance to check its own descriptors. This doesn't cover * the cases where the system is using poll or when system- * specific defines override the Select definition (OS/2). */ int _XSelect(int maxfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout) { #ifdef NX_TRANS_TEST fprintf(stderr, "_XSelect: Called with [%d][%p][%p][%p][%p].\n", maxfds, (void *) readfds, (void *) writefds, (void *) exceptfds, (void *) timeout); #endif if (NXTransRunning(NX_FD_ANY)) { fd_set t_readfds, t_writefds; struct timeval t_timeout; int n, r, e; #ifdef NX_TRANS_TEST if (exceptfds != NULL) { fprintf(stderr, "_XSelect: WARNING! Can't handle exception fds in select.\n"); } #endif if (readfds == NULL) { FD_ZERO(&t_readfds); readfds = &t_readfds; } if (writefds == NULL) { FD_ZERO(&t_writefds); writefds = &t_writefds; } if (timeout == NULL) { t_timeout.tv_sec = 10; t_timeout.tv_usec = 0; timeout = &t_timeout; } n = maxfds; /* * If the transport is gone avoid * sleeping until the timeout. */ if (NXTransPrepare(&n, readfds, writefds, timeout) != 0) { NXTransSelect(&r, &e, &n, readfds, writefds, timeout); NXTransExecute(&r, &e, &n, readfds, writefds, timeout); errno = e; return r; } else { return 0; } } else { return select(maxfds, readfds, writefds, exceptfds, timeout); } } #else /* #ifdef NX_TRANS_SOCKET */ int _XSelect(int maxfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout) { return select(maxfds, readfds, writefds, exceptfds, timeout); } #endif /* #ifdef NX_TRANS_SOCKET */ /* * This is an OS dependent routine which: * 1) returns as soon as the connection can be written on.... * 2) if the connection can be read, must enqueue events and handle errors, * until the connection is writable. */ static void _XWaitForWritable( Display *dpy #ifdef XTHREADS , xcondition_t cv /* our reading condition variable */ #endif ) { #ifdef USE_POLL struct pollfd filedes; #else fd_set r_mask; fd_set w_mask; #endif int nfound; #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_CHANGE) int congestion; #endif #ifdef NX_TRANS_SOCKET if (_XGetIOError(dpy)) { return; } #endif #ifdef USE_POLL filedes.fd = dpy->fd; filedes.events = 0; #else FD_ZERO(&r_mask); FD_ZERO(&w_mask); #endif for (;;) { #ifdef XTHREADS /* We allow only one thread at a time to read, to minimize passing of read data between threads. Now, who is it? If there is a non-NULL reply_awaiters and we (i.e., our cv) are not at the head of it, then whoever is at the head is the reader, and we don't read. Otherwise there is no reply_awaiters or we are at the head, having just appended ourselves. In this case, if there is a event_awaiters, then whoever is at the head of it got there before we did, and they are the reader. Last cases: no event_awaiters and we are at the head of reply_awaiters or reply_awaiters is NULL: we are the reader, since there is obviously no one else involved. XXX - what if cv is NULL and someone else comes along after us while we are waiting? */ if (!dpy->lock || (!dpy->lock->event_awaiters && (!dpy->lock->reply_awaiters || dpy->lock->reply_awaiters->cv == cv))) #endif #ifndef NX_TRANS_SOCKET #ifdef USE_POLL filedes.events = POLLIN; filedes.events |= POLLOUT; #else FD_SET(dpy->fd, &r_mask); FD_SET(dpy->fd, &w_mask); #endif #endif /* #ifndef NX_TRANS_SOCKET */ do { #ifdef NX_TRANS_SOCKET /* * Give a chance to the registered client to perform * any needed operation before entering the select. */ #ifdef NX_TRANS_TEST fprintf(stderr, "_XWaitForWritable: WAIT! Waiting for the display to become writable.\n"); #endif NXTransFlush(dpy->fd); if (_NXDisplayBlockFunction != NULL) { (*_NXDisplayBlockFunction)(dpy, NXBlockWrite); } /* * Need to set again the descriptors as we could have * run multiple selects before having the possibility * to read or write to the X connection. */ #ifdef USE_POLL filedes.events = POLLIN; filedes.events |= POLLOUT; #else FD_SET(dpy->fd, &r_mask); FD_SET(dpy->fd, &w_mask); #endif #endif /* #ifdef NX_TRANS_SOCKET */ UnlockDisplay(dpy); #ifdef USE_POLL #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XWaitForWritable: Calling poll().\n"); #endif nfound = poll (&filedes, 1, -1); #else #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XWaitForWritable: Calling select() after [%ld] ms.\n", NXTransTime()); #endif #ifdef NX_TRANS_SOCKET /* * Give a chance to the callback to detect * the failure of the display even if we * miss the interrupt inside the select. */ if (_NXDisplayErrorFunction != NULL) { retry.tv_sec = 5; retry.tv_usec = 0; nfound = Select (dpy->fd + 1, &r_mask, &w_mask, NULL, &retry); } else { nfound = Select (dpy->fd + 1, &r_mask, &w_mask, NULL, NULL); } #else nfound = Select (dpy->fd + 1, &r_mask, &w_mask, NULL, NULL); #endif #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XWaitForWritable: Out of select() with [%d] after [%ld] ms.\n", nfound, NXTransTime()); if (FD_ISSET(dpy->fd, &r_mask)) { BytesReadable_t pend; _X11TransBytesReadable(dpy->trans_conn, &pend); fprintf(stderr, "_XWaitForWritable: Descriptor [%d] is ready with [%ld] bytes to read.\n", dpy->fd, pend); } if (FD_ISSET(dpy->fd, &w_mask)) { fprintf(stderr, "_XWaitForWritable: Descriptor [%d] has become writable.\n\n", dpy->fd); } #endif #endif InternalLockDisplay(dpy, cv != NULL); #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_CHANGE) if (_NXDisplayCongestionFunction != NULL && _X11TransSocketCongestionChange(dpy->trans_conn, &congestion) == 1) { (*_NXDisplayCongestionFunction)(dpy, congestion); } #endif #ifdef NX_TRANS_SOCKET if (nfound <= 0) { if ((nfound == -1 && !ECHECK(EINTR)) || (_NXDisplayErrorFunction != NULL && (*_NXDisplayErrorFunction)(dpy, _XGetIOError(dpy)))) { _XIOError(dpy); return; } } #else if (nfound < 0 && !ECHECK(EINTR)) _XIOError(dpy); #endif } while (nfound <= 0); if ( #ifdef USE_POLL filedes.revents & POLLIN #else FD_ISSET(dpy->fd, &r_mask) #endif ) { _XAlignedBuffer buf; BytesReadable_t pend; register int len; register xReply *rep; /* find out how much data can be read */ if (_X11TransBytesReadable(dpy->trans_conn, &pend) < 0) #ifdef NX_TRANS_SOCKET { _XIOError(dpy); return; } #else _XIOError(dpy); #endif len = pend; /* must read at least one xEvent; if none is pending, then we'll just block waiting for it */ if (len < SIZEOF(xReply) #ifdef XTHREADS || dpy->async_handlers #endif ) len = SIZEOF(xReply); /* but we won't read more than the max buffer size */ if (len > BUFSIZE) len = BUFSIZE; /* round down to an integral number of XReps */ len = (len / SIZEOF(xReply)) * SIZEOF(xReply); (void) _XRead (dpy, buf.buf, (long) len); STARTITERATE(rep,xReply,buf.buf,len > 0) { if (rep->generic.type == X_Reply) { int tmp = len; RESETITERPTR(rep,xReply, _XAsyncReply (dpy, rep, ITERPTR(rep), &tmp, True)); len = tmp; pend = len; } else { if (rep->generic.type == X_Error) _XError (dpy, (xError *)rep); else /* must be an event packet */ _XEnq (dpy, (xEvent *)rep); INCITERPTR(rep,xReply); len -= SIZEOF(xReply); } } ENDITERATE #ifdef XTHREADS if (dpy->lock && dpy->lock->event_awaiters) ConditionSignal(dpy, dpy->lock->event_awaiters->cv); #endif } #ifdef USE_POLL if (filedes.revents & (POLLOUT|POLLHUP|POLLERR)) #else if (FD_ISSET(dpy->fd, &w_mask)) #endif { #ifdef XTHREADS if (dpy->lock) { ConditionBroadcast(dpy, dpy->lock->writers); } #endif return; } } } #define POLLFD_CACHE_SIZE 5 /* initialize the struct array passed to poll() below */ Bool _XPollfdCacheInit( Display *dpy) { #ifdef USE_POLL struct pollfd *pfp; pfp = (struct pollfd *)Xmalloc(POLLFD_CACHE_SIZE * sizeof(struct pollfd)); if (!pfp) return False; pfp[0].fd = dpy->fd; pfp[0].events = POLLIN; dpy->filedes = (XPointer)pfp; #endif return True; } void _XPollfdCacheAdd( Display *dpy, int fd) { #ifdef USE_POLL struct pollfd *pfp = (struct pollfd *)dpy->filedes; if (dpy->im_fd_length <= POLLFD_CACHE_SIZE) { pfp[dpy->im_fd_length].fd = fd; pfp[dpy->im_fd_length].events = POLLIN; } #endif } /* ARGSUSED */ void _XPollfdCacheDel( Display *dpy, int fd) /* not used */ { #ifdef USE_POLL struct pollfd *pfp = (struct pollfd *)dpy->filedes; struct _XConnectionInfo *conni; /* just recalculate whole list */ if (dpy->im_fd_length <= POLLFD_CACHE_SIZE) { int loc = 1; for (conni = dpy->im_fd_info; conni; conni=conni->next) { pfp[loc].fd = conni->fd; pfp[loc].events = POLLIN; loc++; } } #endif } /* returns True iff there is an event in the queue newer than serial_num */ static Bool _XNewerQueuedEvent( Display *dpy, int serial_num) { _XQEvent *qev; if (dpy->next_event_serial_num == serial_num) return False; qev = dpy->head; while (qev) { if (qev->qserial_num >= serial_num) { return True; } qev = qev->next; } return False; } static int _XWaitForReadable( Display *dpy) { int result; int fd = dpy->fd; struct _XConnectionInfo *ilist; register int saved_event_serial = 0; int in_read_events = 0; register Bool did_proc_conni = False; #ifdef USE_POLL struct pollfd *filedes; #else fd_set r_mask; int highest_fd = fd; #endif #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_CHANGE) int congestion; #endif #ifdef NX_TRANS_SOCKET if (_XGetIOError(dpy)) { return -1; } #endif #ifdef USE_POLL if (dpy->im_fd_length + 1 > POLLFD_CACHE_SIZE && !(dpy->flags & XlibDisplayProcConni)) { /* XXX - this fallback is gross */ int i; filedes = (struct pollfd *)Xmalloc(dpy->im_fd_length * sizeof(struct pollfd)); filedes[0].fd = fd; filedes[0].events = POLLIN; for (ilist=dpy->im_fd_info, i=1; ilist; ilist=ilist->next, i++) { filedes[i].fd = ilist->fd; filedes[i].events = POLLIN; } } else { filedes = (struct pollfd *)dpy->filedes; } #else FD_ZERO(&r_mask); #endif for (;;) { #ifndef USE_POLL FD_SET(fd, &r_mask); if (!(dpy->flags & XlibDisplayProcConni)) for (ilist=dpy->im_fd_info; ilist; ilist=ilist->next) { FD_SET(ilist->fd, &r_mask); if (ilist->fd > highest_fd) highest_fd = ilist->fd; } #endif UnlockDisplay(dpy); #ifdef USE_POLL #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XWaitForReadable: Calling poll().\n"); #endif result = poll(filedes, (dpy->flags & XlibDisplayProcConni) ? 1 : 1+dpy->im_fd_length, -1); #else #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XWaitForReadable: Calling select().\n"); #endif #ifdef NX_TRANS_SOCKET /* * Give a chance to the registered application * to perform any needed operation. */ #ifdef NX_TRANS_TEST fprintf(stderr, "_XWaitForReadable: WAIT! Waiting for the display to become readable.\n"); #endif NXTransFlush(dpy->fd); if (_NXDisplayBlockFunction != NULL) { (*_NXDisplayBlockFunction)(dpy, NXBlockRead); } if (_NXDisplayErrorFunction != NULL) { retry.tv_sec = 5; retry.tv_usec = 0; result = Select(highest_fd + 1, &r_mask, NULL, NULL, &retry); } else { result = Select(highest_fd + 1, &r_mask, NULL, NULL, NULL); } #else result = Select(highest_fd + 1, &r_mask, NULL, NULL, NULL); #endif #endif #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XWaitForReadable: Out of select with result [%d] and errno [%d].\n", result, (result < 0 ? errno : 0)); #endif InternalLockDisplay(dpy, dpy->flags & XlibDisplayReply); #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_CHANGE) if (_NXDisplayCongestionFunction != NULL && _X11TransSocketCongestionChange(dpy->trans_conn, &congestion) == 1) { (*_NXDisplayCongestionFunction)(dpy, congestion); } #endif #ifdef NX_TRANS_SOCKET if (result <= 0) { if ((result == -1 && !ECHECK(EINTR)) || (_NXDisplayErrorFunction != NULL && (*_NXDisplayErrorFunction)(dpy, _XGetIOError(dpy)))) { _XIOError(dpy); return -1; } continue; } #else if (result == -1 && !ECHECK(EINTR)) _XIOError(dpy); if (result <= 0) continue; #endif #ifdef USE_POLL if (filedes[0].revents & (POLLIN|POLLHUP|POLLERR)) #else if (FD_ISSET(fd, &r_mask)) #endif break; if (!(dpy->flags & XlibDisplayProcConni)) { int i; saved_event_serial = dpy->next_event_serial_num; /* dpy flags can be clobbered by internal connection callback */ in_read_events = dpy->flags & XlibDisplayReadEvents; for (ilist=dpy->im_fd_info, i=1; ilist; ilist=ilist->next, i++) { #ifdef USE_POLL if (filedes[i].revents & POLLIN) #else if (FD_ISSET(ilist->fd, &r_mask)) #endif { _XProcessInternalConnection(dpy, ilist); did_proc_conni = True; } } #ifdef USE_POLL if (dpy->im_fd_length + 1 > POLLFD_CACHE_SIZE) Xfree(filedes); #endif } if (did_proc_conni) { /* some internal connection callback might have done an XPutBackEvent. We notice it here and if we needed an event, we can return all the way. */ if (_XNewerQueuedEvent(dpy, saved_event_serial) && (in_read_events #ifdef XTHREADS || (dpy->lock && dpy->lock->event_awaiters) #endif )) return -2; did_proc_conni = False; } } #ifdef XTHREADS #ifdef XTHREADS_DEBUG printf("thread %x _XWaitForReadable returning\n", XThread_Self()); #endif #endif return 0; } static int _XSeqSyncFunction( register Display *dpy) { xGetInputFocusReply rep; register xReq *req; #ifdef NX_TRANS_SOCKET #ifdef NX_TRANS_DEBUG fprintf(stderr, "_XSeqSyncFunction: Going to synchronize the display.\n"); #endif if (dpy->flags & XlibDisplayIOError) { #ifdef NX_TRANS_DEBUG fprintf(stderr, "_XSeqSyncFunction: Returning 0 with I/O error detected.\n"); #endif return 0; } #endif LockDisplay(dpy); if ((dpy->request - dpy->last_request_read) >= (BUFSIZE / SIZEOF(xReq))) { GetEmptyReq(GetInputFocus, req); (void) _XReply (dpy, (xReply *)&rep, 0, xTrue); } /* could get XID handler while waiting for reply in MT env */ if (dpy->synchandler == _XSeqSyncFunction) { dpy->synchandler = dpy->savedsynchandler; dpy->flags &= ~XlibDisplayPrivSync; } UnlockDisplay(dpy); SyncHandle(); return 0; } #ifdef XTHREADS static void _XFlushInt( register Display *dpy, register xcondition_t cv); #endif /* * _XFlush - Flush the X request buffer. If the buffer is empty, no * action is taken. This routine correctly handles incremental writes. * This routine may have to be reworked if int < long. */ void _XFlush( register Display *dpy) { #ifdef XTHREADS /* With multi-threading we introduce an internal routine to which we can pass a condition variable to do locking correctly. */ _XFlushInt(dpy, NULL); } /* _XFlushInt - Internal version of _XFlush used to do multi-threaded * locking correctly. */ static void _XFlushInt( register Display *dpy, register xcondition_t cv) { #endif /* XTHREADS*/ register long size, todo; register int write_stat; register char *bufindex; _XExtension *ext; #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_CHANGE) int congestion; #endif #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XFlushInt: Entering flush with [%d] bytes to write.\n", (dpy->bufptr - dpy->buffer)); #endif /* This fix resets the bufptr to the front of the buffer so * additional appends to the bufptr will not corrupt memory. Since * the server is down, these appends are no-op's anyway but * callers of _XFlush() are not verifying this before they call it. */ if (dpy->flags & XlibDisplayIOError) { #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XFlushInt: Returning with I/O error detected.\n"); #endif dpy->bufptr = dpy->buffer; dpy->last_req = (char *)&_dummy_request; return; } #ifdef XTHREADS #ifdef NX_TRANS_SOCKET while (dpy->flags & XlibDisplayWriting) { if (_XGetIOError(dpy)) { return; } #else while (dpy->flags & XlibDisplayWriting) { #endif if (dpy->lock) { ConditionWait(dpy, dpy->lock->writers); } else { _XWaitForWritable (dpy, cv); } } #endif size = todo = dpy->bufptr - dpy->buffer; if (!size) return; #ifdef XTHREADS dpy->flags |= XlibDisplayWriting; /* make sure no one else can put in data */ dpy->bufptr = dpy->bufmax; #endif for (ext = dpy->flushes; ext; ext = ext->next_flush) (*ext->before_flush)(dpy, &ext->codes, dpy->buffer, size); bufindex = dpy->buffer; /* * While write has not written the entire buffer, keep looping * until the entire buffer is written. bufindex will be * incremented and size decremented as buffer is written out. */ while (size) { ESET(0); write_stat = _X11TransWrite(dpy->trans_conn, bufindex, (int) todo); if (write_stat >= 0) { #ifdef NX_TRANS_SOCKET if (_NXDisplayWriteFunction != NULL) { (*_NXDisplayWriteFunction)(dpy, write_stat); } #ifdef NX_TRANS_CHANGE if (_NXDisplayCongestionFunction != NULL && _X11TransSocketCongestionChange(dpy->trans_conn, &congestion) == 1) { (*_NXDisplayCongestionFunction)(dpy, congestion); } #endif #endif size -= write_stat; todo = size; bufindex += write_stat; } else if (ETEST()) { _XWaitForWritable(dpy #ifdef XTHREADS , cv #endif ); #ifdef SUNSYSV } else if (ECHECK(0)) { _XWaitForWritable(dpy #ifdef XTHREADS , cv #endif ); #endif #ifdef ESZTEST } else if (ESZTEST()) { if (todo > 1) todo >>= 1; else { _XWaitForWritable(dpy #ifdef XTHREADS , cv #endif ); } #endif #ifdef NX_TRANS_SOCKET } else if (!ECHECK(EINTR) || (_NXDisplayErrorFunction != NULL && (*_NXDisplayErrorFunction)(dpy, _XGetIOError(dpy)))) { _XIOError(dpy); return; } #else } else if (!ECHECK(EINTR)) { /* Write failed! */ /* errno set by write system call. */ _XIOError(dpy); } #endif #ifdef NX_TRANS_SOCKET if (_XGetIOError(dpy)) { return; } #endif } dpy->last_req = (char *)&_dummy_request; if ((dpy->request - dpy->last_request_read) >= SEQLIMIT && !(dpy->flags & XlibDisplayPrivSync)) { dpy->savedsynchandler = dpy->synchandler; dpy->synchandler = _XSeqSyncFunction; dpy->flags |= XlibDisplayPrivSync; } dpy->bufptr = dpy->buffer; #ifdef XTHREADS dpy->flags &= ~XlibDisplayWriting; #endif } int _XEventsQueued( register Display *dpy, int mode) { register int len; BytesReadable_t pend; _XAlignedBuffer buf; register xReply *rep; char *read_buf; #ifdef XTHREADS int entry_event_serial_num; struct _XCVList *cvl = NULL; xthread_t self; #ifdef XTHREADS_DEBUG printf("_XEventsQueued called in thread %x\n", XThread_Self()); #endif #endif /* XTHREADS*/ if (mode == QueuedAfterFlush) { _XFlush(dpy); if (dpy->qlen) return(dpy->qlen); } #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) if (dpy->flags & XlibDisplayIOError) { fprintf(stderr, "_XEventsQueued: Returning [%d] after display failure.\n", dpy->qlen); } #endif if (dpy->flags & XlibDisplayIOError) return(dpy->qlen); #ifdef XTHREADS /* create our condition variable and append to list, * unless we were called from within XProcessInternalConnection * or XLockDisplay */ xthread_clear_id(self); if (dpy->lock && (xthread_have_id (dpy->lock->conni_thread) || xthread_have_id (dpy->lock->locking_thread))) /* some thread is in XProcessInternalConnection or XLockDisplay so we have to see if we are it */ self = XThread_Self(); if (!xthread_have_id(self) || (!xthread_equal(self, dpy->lock->conni_thread) && !xthread_equal(self, dpy->lock->locking_thread))) { /* In the multi-threaded case, if there is someone else reading events, then there aren't any available, so we just return. If we waited we would block. */ if (dpy->lock && dpy->lock->event_awaiters) return dpy->qlen; /* nobody here but us, so lock out any newcomers */ cvl = QueueEventReaderLock(dpy); } while (dpy->lock && cvl && dpy->lock->reply_first) { /* note which events we have already seen so we'll know if _XReply (in another thread) reads one */ entry_event_serial_num = dpy->next_event_serial_num; ConditionWait(dpy, cvl->cv); /* did _XReply read an event we can return? */ if (_XNewerQueuedEvent(dpy, entry_event_serial_num)) { UnlockNextEventReader(dpy); return 0; } } #endif /* XTHREADS*/ #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XEventsQueued: Checking bytes readable.\n"); #endif if (_X11TransBytesReadable(dpy->trans_conn, &pend) < 0) #ifdef NX_TRANS_SOCKET { _XIOError(dpy); return (dpy->qlen); } #else _XIOError(dpy); #endif #ifdef XCONN_CHECK_FREQ /* This is a crock, required because FIONREAD or equivalent is * not guaranteed to detect a broken connection. */ if (!pend && !dpy->qlen && ++dpy->conn_checker >= XCONN_CHECK_FREQ) { int result; #ifdef USE_POLL struct pollfd filedes; #else fd_set r_mask; static struct timeval zero_time; #endif dpy->conn_checker = 0; #ifdef USE_POLL #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XEventsQueued: Calling poll().\n"); #endif filedes.fd = dpy->fd; filedes.events = POLLIN; if ((result = poll(&filedes, 1, 0))) #else #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XEventsQueued: Calling select().\n"); #endif FD_ZERO(&r_mask); FD_SET(dpy->fd, &r_mask); if ((result = Select(dpy->fd + 1, &r_mask, NULL, NULL, &zero_time))) #endif { if (result > 0) { if (_X11TransBytesReadable(dpy->trans_conn, &pend) < 0) #ifdef NX_TRANS_SOCKET { _XIOError(dpy); return (dpy->qlen); } #else _XIOError(dpy); #endif /* we should not get zero, if we do, force a read */ if (!pend) pend = SIZEOF(xReply); } #ifdef NX_TRANS_SOCKET if (result <= 0) { if ((result == -1 && !ECHECK(EINTR)) || (_NXDisplayErrorFunction != NULL && (*_NXDisplayErrorFunction)(dpy, _XGetIOError(dpy)))) { _XIOError(dpy); return (dpy->qlen); } } #else else if (result < 0 && !ECHECK(EINTR)) _XIOError(dpy); #endif } } #endif /* XCONN_CHECK_FREQ */ if (!(len = pend)) { /* _XFlush can enqueue events */ #ifdef XTHREADS if (cvl) #endif { UnlockNextEventReader(dpy); } #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XEventsQueued: Returning [%d].\n", dpy->qlen); #endif return(dpy->qlen); } /* Force a read if there is not enough data. Otherwise, * a select() loop at a higher-level will spin undesirably, * and we've seen at least one OS that appears to not update * the result from FIONREAD once it has returned nonzero. */ #ifdef XTHREADS if (dpy->lock && dpy->lock->reply_awaiters) { read_buf = (char *)dpy->lock->reply_awaiters->buf; len = SIZEOF(xReply); } else #endif /* XTHREADS*/ { read_buf = buf.buf; if (len < SIZEOF(xReply) #ifdef XTHREADS || dpy->async_handlers #endif ) len = SIZEOF(xReply); else if (len > BUFSIZE) len = BUFSIZE; len = (len / SIZEOF(xReply)) * SIZEOF(xReply); } #ifdef XCONN_CHECK_FREQ dpy->conn_checker = 0; #endif (void) _XRead (dpy, read_buf, (long) len); #ifdef NX_TRANS_SOCKET if (_XGetIOError(dpy)) { return(dpy->qlen); } #endif #ifdef XTHREADS /* what did we actually read: reply or event? */ if (dpy->lock && dpy->lock->reply_awaiters) { if (((xReply *)read_buf)->generic.type == X_Reply || ((xReply *)read_buf)->generic.type == X_Error) { dpy->lock->reply_was_read = True; dpy->lock->reply_first = True; if (read_buf != (char *)dpy->lock->reply_awaiters->buf) memcpy(dpy->lock->reply_awaiters->buf, read_buf, len); if (cvl) { UnlockNextEventReader(dpy); } return(dpy->qlen); /* we read, so we can return */ } else if (read_buf != buf.buf) memcpy(buf.buf, read_buf, len); } #endif /* XTHREADS*/ STARTITERATE(rep,xReply,buf.buf,len > 0) { if (rep->generic.type == X_Reply) { int tmp = len; RESETITERPTR(rep,xReply, _XAsyncReply (dpy, rep, ITERPTR(rep), &tmp, True)); len = tmp; pend = len; } else { if (rep->generic.type == X_Error) _XError (dpy, (xError *)rep); else /* must be an event packet */ _XEnq (dpy, (xEvent *)rep); INCITERPTR(rep,xReply); len -= SIZEOF(xReply); } } ENDITERATE #ifdef XTHREADS if (cvl) #endif { UnlockNextEventReader(dpy); } return(dpy->qlen); } /* _XReadEvents - Flush the output queue, * then read as many events as possible (but at least 1) and enqueue them */ void _XReadEvents( register Display *dpy) { _XAlignedBuffer buf; BytesReadable_t pend; int len; register xReply *rep; Bool not_yet_flushed = True; char *read_buf; int i; int entry_event_serial_num = dpy->next_event_serial_num; #ifdef XTHREADS struct _XCVList *cvl = NULL; xthread_t self; #ifdef XTHREADS_DEBUG printf("_XReadEvents called in thread %x\n", XThread_Self()); #endif /* create our condition variable and append to list, * unless we were called from within XProcessInternalConnection * or XLockDisplay */ xthread_clear_id(self); if (dpy->lock && (xthread_have_id (dpy->lock->conni_thread) || xthread_have_id (dpy->lock->locking_thread))) /* some thread is in XProcessInternalConnection or XLockDisplay so we have to see if we are it */ self = XThread_Self(); if (!xthread_have_id(self) || (!xthread_equal(self, dpy->lock->conni_thread) && !xthread_equal(self, dpy->lock->locking_thread))) cvl = QueueEventReaderLock(dpy); #endif /* XTHREADS */ do { #ifdef XTHREADS /* if it is not our turn to read an event off the wire, wait til we're at head of list */ if (dpy->lock && cvl && (dpy->lock->event_awaiters != cvl || dpy->lock->reply_first)) { ConditionWait(dpy, cvl->cv); continue; } #endif /* XTHREADS */ /* find out how much data can be read */ if (_X11TransBytesReadable(dpy->trans_conn, &pend) < 0) #ifdef NX_TRANS_SOCKET { _XIOError(dpy); return; } #else _XIOError(dpy); #endif len = pend; /* must read at least one xEvent; if none is pending, then we'll just flush and block waiting for it */ if (len < SIZEOF(xEvent) #ifdef XTHREADS || dpy->async_handlers #endif ) { len = SIZEOF(xEvent); /* don't flush until the first time we would block */ if (not_yet_flushed) { _XFlush (dpy); if (_XNewerQueuedEvent(dpy, entry_event_serial_num)) { /* _XReply has read an event for us */ goto got_event; } not_yet_flushed = False; } } #ifdef XTHREADS /* If someone is waiting for a reply, gamble that the reply will be the next thing on the wire and read it into their buffer. */ if (dpy->lock && dpy->lock->reply_awaiters) { read_buf = (char *)dpy->lock->reply_awaiters->buf; len = SIZEOF(xReply); } else #endif /* XTHREADS*/ { read_buf = buf.buf; /* but we won't read more than the max buffer size */ if (len > BUFSIZE) len = BUFSIZE; /* round down to an integral number of XReps */ len = (len / SIZEOF(xEvent)) * SIZEOF(xEvent); } #ifdef XTHREADS if (xthread_have_id(self)) /* save value we may have to stick in conni_thread */ dpy->lock->reading_thread = self; #endif /* XTHREADS */ dpy->flags |= XlibDisplayReadEvents; i = _XRead (dpy, read_buf, (long) len); dpy->flags &= ~XlibDisplayReadEvents; #ifdef NX_TRANS_SOCKET if (dpy->flags & XlibDisplayIOError) { #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XReadEvents: Returning with I/O error detected.\n"); #endif return; } #endif if (i == -2) { /* special flag from _XRead to say that internal connection has done XPutBackEvent. Which we can use so we're done. */ got_event: #ifdef XTHREADS if (dpy->lock && dpy->lock->lock_wait) { if (dpy->lock->event_awaiters != cvl) /* since it is not us, must be user lock thread */ ConditionSignal(dpy, dpy->lock->event_awaiters->cv); (*dpy->lock->lock_wait)(dpy); continue; } #endif break; } #ifdef XTHREADS if (xthread_have_id(self)) xthread_clear_id(dpy->lock->reading_thread); /* what did we actually read: reply or event? */ if (dpy->lock && dpy->lock->reply_awaiters) { if (((xReply *)read_buf)->generic.type == X_Reply || ((xReply *)read_buf)->generic.type == X_Error) { dpy->lock->reply_was_read = True; dpy->lock->reply_first = True; if (read_buf != (char *)dpy->lock->reply_awaiters->buf) memcpy(dpy->lock->reply_awaiters->buf, read_buf, len); ConditionSignal(dpy, dpy->lock->reply_awaiters->cv); continue; } else if (read_buf != buf.buf) memcpy(buf.buf, read_buf, len); } #endif /* XTHREADS */ STARTITERATE(rep,xReply,buf.buf,len > 0) { if (rep->generic.type == X_Reply) { RESETITERPTR(rep,xReply, _XAsyncReply (dpy, rep, ITERPTR(rep), &len, True)); pend = len; } else { if (rep->generic.type == X_Error) _XError (dpy, (xError *) rep); else /* must be an event packet */ _XEnq (dpy, (xEvent *)rep); INCITERPTR(rep,xReply); len -= SIZEOF(xReply); } } ENDITERATE; } while (!_XNewerQueuedEvent(dpy, entry_event_serial_num)); UnlockNextEventReader(dpy); } /* * _XRead - Read bytes from the socket taking into account incomplete * reads. This routine may have to be reworked if int < long. */ int _XRead( register Display *dpy, register char *data, register long size) { register long bytes_read; #ifdef XTHREADS int original_size = size; #endif #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_CHANGE) int congestion; #endif if ((dpy->flags & XlibDisplayIOError) || size == 0) return 0; ESET(0); #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_CHANGE) while (1) { /* * Need to check the congestion state * after the read so split the statement * in multiple blocks. */ bytes_read = _X11TransRead(dpy->trans_conn, data, (int)size); if (_NXDisplayCongestionFunction != NULL && _X11TransSocketCongestionChange(dpy->trans_conn, &congestion) == 1) { (*_NXDisplayCongestionFunction)(dpy, congestion); } if (bytes_read == size) { break; } #else while ((bytes_read = _X11TransRead(dpy->trans_conn, data, (int)size)) != size) { #endif if (bytes_read > 0) { size -= bytes_read; data += bytes_read; } else if (ETEST()) { if (_XWaitForReadable(dpy) == -2) return -2; /* internal connection did XPutBackEvent */ ESET(0); } #ifdef SUNSYSV else if (ECHECK(0)) { if (_XWaitForReadable(dpy) == -2) return -2; /* internal connection did XPutBackEvent */ } #endif else if (bytes_read == 0) { /* Read failed because of end of file! */ ESET(EPIPE); #ifdef NX_TRANS_SOCKET _XIOError(dpy); return -1; #else _XIOError(dpy); #endif } else /* bytes_read is less than 0; presumably -1 */ { /* If it's a system call interrupt, it's not an error. */ #ifdef NX_TRANS_SOCKET if (!ECHECK(EINTR) || (_NXDisplayErrorFunction != NULL && (*_NXDisplayErrorFunction)(dpy, _XGetIOError(dpy)))) { _XIOError(dpy); return -1; } #else if (!ECHECK(EINTR)) _XIOError(dpy); #endif } #ifdef NX_TRANS_SOCKET if (_XGetIOError(dpy)) { return -1; } #endif } #ifdef XTHREADS if (dpy->lock && dpy->lock->reply_bytes_left > 0) { dpy->lock->reply_bytes_left -= original_size; if (dpy->lock->reply_bytes_left == 0) { dpy->flags &= ~XlibDisplayReply; UnlockNextReplyReader(dpy); } } #endif /* XTHREADS*/ return 0; } #ifdef LONG64 void _XRead32( Display *dpy, register long *data, long len) { register int *buf; register long i; if (len) { (void) _XRead(dpy, (char *)data, len); i = len >> 2; buf = (int *)data + i; data += i; while (--i >= 0) *--data = *--buf; } } #endif /* LONG64 */ #ifdef WORD64 /* * XXX This is a *really* stupid way of doing this.... * PACKBUFFERSIZE must be a multiple of 4. */ #define PACKBUFFERSIZE 4096 /* * _XRead32 - Read bytes from the socket unpacking each 32 bits * into a long (64 bits on a CRAY computer). * */ static void _doXRead32( register Display *dpy, register long *data register long size, register char *packbuffer) { long *lpack,*lp; long mask32 = 0x00000000ffffffff; long maskw, nwords, i, bits; _XReadPad (dpy, packbuffer, size); lp = data; lpack = (long *) packbuffer; nwords = size >> 2; bits = 32; for(i=0;i<nwords;i++){ maskw = mask32 << bits; *lp++ = ( *lpack & maskw ) >> bits; bits = bits ^32; if(bits){ lpack++; } } } void _XRead32( Display *dpy, long *data, long len) { char packbuffer[PACKBUFFERSIZE]; unsigned nunits = PACKBUFFERSIZE >> 2; for (; len > PACKBUFFERSIZE; len -= PACKBUFFERSIZE, data += nunits) { _doXRead32 (dpy, data, PACKBUFFERSIZE, packbuffer); } if (len) _doXRead32 (dpy, data, len, packbuffer); } /* * _XRead16 - Read bytes from the socket unpacking each 16 bits * into a long (64 bits on a CRAY computer). * */ static _doXRead16( register Display *dpy, register short *data, register long size, char *packbuffer) { long *lpack,*lp; long mask16 = 0x000000000000ffff; long maskw, nwords, i, bits; (void) _XRead(dpy,packbuffer,size); /* don't do a padded read... */ lp = (long *) data; lpack = (long *) packbuffer; nwords = size >> 1; /* number of 16 bit words to be unpacked */ bits = 48; for(i=0;i<nwords;i++){ maskw = mask16 << bits; *lp++ = ( *lpack & maskw ) >> bits; bits -= 16; if(bits < 0){ lpack++; bits = 48; } } } void _XRead16( Display *dpy, short *data, long len) { char packbuffer[PACKBUFFERSIZE]; unsigned nunits = PACKBUFFERSIZE >> 1; for (; len > PACKBUFFERSIZE; len -= PACKBUFFERSIZE, data += nunits) { _doXRead16 (dpy, data, PACKBUFFERSIZE, packbuffer); } if (len) _doXRead16 (dpy, data, len, packbuffer); } void _XRead16Pad( Display *dpy, short *data, long size) { int slop = (size & 3); short slopbuf[3]; _XRead16 (dpy, data, size); if (slop > 0) { _XRead16 (dpy, slopbuf, 4 - slop); } } #endif /* WORD64 */ /* * _XReadPad - Read bytes from the socket taking into account incomplete * reads. If the number of bytes is not 0 mod 4, read additional pad * bytes. This routine may have to be reworked if int < long. */ void _XReadPad( register Display *dpy, register char *data, register long size) { register long bytes_read; struct iovec iov[2]; char pad[3]; #ifdef XTHREADS int original_size; #endif #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_CHANGE) int congestion; #endif if ((dpy->flags & XlibDisplayIOError) || size == 0) return; iov[0].iov_len = (int)size; iov[0].iov_base = data; /* * The following hack is used to provide 32 bit long-word * aligned padding. The [1] vector is of length 0, 1, 2, or 3, * whatever is needed. */ iov[1].iov_len = -size & 3; iov[1].iov_base = pad; size += iov[1].iov_len; #ifdef XTHREADS original_size = size; #endif ESET(0); #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_CHANGE) while (1) { bytes_read = _X11TransReadv (dpy->trans_conn, iov, 2); if (_NXDisplayCongestionFunction != NULL && _X11TransSocketCongestionChange(dpy->trans_conn, &congestion) == 1) { (*_NXDisplayCongestionFunction)(dpy, congestion); } if (bytes_read == size) { break; } #else while ((bytes_read = _X11TransReadv (dpy->trans_conn, iov, 2)) != size) { #endif if (bytes_read > 0) { size -= bytes_read; if (iov[0].iov_len < bytes_read) { int pad_bytes_read = bytes_read - iov[0].iov_len; iov[1].iov_len -= pad_bytes_read; iov[1].iov_base = (char *)iov[1].iov_base + pad_bytes_read; iov[0].iov_len = 0; } else { iov[0].iov_len -= bytes_read; iov[0].iov_base = (char *)iov[0].iov_base + bytes_read; } } else if (ETEST()) { _XWaitForReadable(dpy); ESET(0); } #ifdef SUNSYSV else if (ECHECK(0)) { _XWaitForReadable(dpy); } #endif else if (bytes_read == 0) { /* Read failed because of end of file! */ ESET(EPIPE); #ifdef NX_TRANS_SOCKET _XIOError(dpy); return; #else _XIOError(dpy); #endif } else /* bytes_read is less than 0; presumably -1 */ { /* If it's a system call interrupt, it's not an error. */ #ifdef NX_TRANS_SOCKET if (!ECHECK(EINTR) || (_NXDisplayErrorFunction != NULL && (*_NXDisplayErrorFunction)(dpy, _XGetIOError(dpy)))) { _XIOError(dpy); return; } #else if (!ECHECK(EINTR)) _XIOError(dpy); #endif } #ifdef NX_TRANS_SOCKET if (_XGetIOError(dpy)) { return; } #endif } #ifdef XTHREADS if (dpy->lock && dpy->lock->reply_bytes_left > 0) { dpy->lock->reply_bytes_left -= original_size; if (dpy->lock->reply_bytes_left == 0) { dpy->flags &= ~XlibDisplayReply; UnlockNextReplyReader(dpy); } } #endif /* XTHREADS*/ } /* * _XSend - Flush the buffer and send the client data. 32 bit word aligned * transmission is used, if size is not 0 mod 4, extra bytes are transmitted. * This routine may have to be reworked if int < long; */ void _XSend ( register Display *dpy, _Xconst char *data, register long size) { struct iovec iov[3]; static char const pad[3] = {0, 0, 0}; /* XText8 and XText16 require that the padding bytes be zero! */ long skip, dbufsize, padsize, total, todo; _XExtension *ext; #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_CHANGE) int congestion; #endif #ifdef NX_TRANS_SOCKET #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XSend: Sending data with [%d] bytes to write.\n", (dpy->bufptr - dpy->buffer)); #endif if (!size || (dpy->flags & XlibDisplayIOError)) { if (dpy->flags & XlibDisplayIOError) { #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XSend: Returning with I/O error detected.\n"); #endif dpy->bufptr = dpy->buffer; dpy->last_req = (char *)&_dummy_request; } return; } #else if (!size || (dpy->flags & XlibDisplayIOError)) return; #endif dbufsize = dpy->bufptr - dpy->buffer; #ifdef XTHREADS dpy->flags |= XlibDisplayWriting; /* make sure no one else can put in data */ dpy->bufptr = dpy->bufmax; #endif padsize = -size & 3; for (ext = dpy->flushes; ext; ext = ext->next_flush) { (*ext->before_flush)(dpy, &ext->codes, dpy->buffer, dbufsize); (*ext->before_flush)(dpy, &ext->codes, (char *)data, size); if (padsize) (*ext->before_flush)(dpy, &ext->codes, pad, padsize); } skip = 0; todo = total = dbufsize + size + padsize; /* * There are 3 pieces that may need to be written out: * * o whatever is in the display buffer * o the data passed in by the user * o any padding needed to 32bit align the whole mess * * This loop looks at all 3 pieces each time through. It uses skip * to figure out whether or not a given piece is needed. */ while (total) { long before = skip; /* amount of whole thing written */ long remain = todo; /* amount to try this time, <= total */ int i = 0; long len; /* You could be very general here and have "in" and "out" iovecs * and write a loop without using a macro, but what the heck. This * translates to: * * how much of this piece is new? * if more new then we are trying this time, clamp * if nothing new * then bump down amount already written, for next piece * else put new stuff in iovec, will need all of next piece * * Note that todo had better be at least 1 or else we'll end up * writing 0 iovecs. */ #define InsertIOV(pointer, length) \ len = (length) - before; \ if (len > remain) \ len = remain; \ if (len <= 0) { \ before = (-len); \ } else { \ iov[i].iov_len = len; \ iov[i].iov_base = (pointer) + before; \ i++; \ remain -= len; \ before = 0; \ } InsertIOV (dpy->buffer, dbufsize) InsertIOV ((char *)data, size) InsertIOV ((char *)pad, padsize) ESET(0); if ((len = _X11TransWritev(dpy->trans_conn, iov, i)) >= 0) { #ifdef NX_TRANS_SOCKET if (_NXDisplayWriteFunction != NULL) { (*_NXDisplayWriteFunction)(dpy, len); } #ifdef NX_TRANS_CHANGE if (_NXDisplayCongestionFunction != NULL && _X11TransSocketCongestionChange(dpy->trans_conn, &congestion) == 1) { (*_NXDisplayCongestionFunction)(dpy, congestion); } #endif #endif skip += len; total -= len; todo = total; } else if (ETEST()) { _XWaitForWritable(dpy #ifdef XTHREADS , NULL #endif ); #ifdef SUNSYSV } else if (ECHECK(0)) { _XWaitForWritable(dpy #ifdef XTHREADS , NULL #endif ); #endif #ifdef ESZTEST } else if (ESZTEST()) { if (todo > 1) todo >>= 1; else { _XWaitForWritable(dpy #ifdef XTHREADS , NULL #endif ); } #endif #ifdef NX_TRANS_SOCKET } else if (!ECHECK(EINTR) || (_NXDisplayErrorFunction != NULL && (*_NXDisplayErrorFunction)(dpy, _XGetIOError(dpy)))) { _XIOError(dpy); return; } #else } else if (!ECHECK(EINTR)) { _XIOError(dpy); } #endif #ifdef NX_TRANS_SOCKET if (_XGetIOError(dpy)) { return; } #endif } dpy->last_req = (char *) & _dummy_request; if ((dpy->request - dpy->last_request_read) >= SEQLIMIT && !(dpy->flags & XlibDisplayPrivSync)) { dpy->savedsynchandler = dpy->synchandler; dpy->synchandler = _XSeqSyncFunction; dpy->flags |= XlibDisplayPrivSync; } dpy->bufptr = dpy->buffer; #ifdef XTHREADS dpy->flags &= ~XlibDisplayWriting; #endif return; } static void _XGetMiscCode( register Display *dpy) { xQueryExtensionReply qrep; register xQueryExtensionReq *qreq; xXCMiscGetVersionReply vrep; register xXCMiscGetVersionReq *vreq; if (dpy->xcmisc_opcode) return; GetReq(QueryExtension, qreq); qreq->nbytes = sizeof(XCMiscExtensionName) - 1; qreq->length += (qreq->nbytes+(unsigned)3)>>2; _XSend(dpy, XCMiscExtensionName, (long)qreq->nbytes); if (!_XReply (dpy, (xReply *)&qrep, 0, xTrue)) dpy->xcmisc_opcode = -1; else { GetReq(XCMiscGetVersion, vreq); vreq->reqType = qrep.major_opcode; vreq->miscReqType = X_XCMiscGetVersion; vreq->majorVersion = XCMiscMajorVersion; vreq->minorVersion = XCMiscMinorVersion; if (!_XReply (dpy, (xReply *)&vrep, 0, xTrue)) dpy->xcmisc_opcode = -1; else dpy->xcmisc_opcode = qrep.major_opcode; } } static int _XIDHandler( register Display *dpy) { xXCMiscGetXIDRangeReply grep; register xXCMiscGetXIDRangeReq *greq; LockDisplay(dpy); _XGetMiscCode(dpy); if (dpy->xcmisc_opcode > 0) { GetReq(XCMiscGetXIDRange, greq); greq->reqType = dpy->xcmisc_opcode; greq->miscReqType = X_XCMiscGetXIDRange; if (_XReply (dpy, (xReply *)&grep, 0, xTrue) && grep.count) { dpy->resource_id = ((grep.start_id - dpy->resource_base) >> dpy->resource_shift); dpy->resource_max = dpy->resource_id; if (grep.count > 5) dpy->resource_max += grep.count - 6; dpy->resource_max <<= dpy->resource_shift; } } if (dpy->flags & XlibDisplayPrivSync) { dpy->synchandler = dpy->savedsynchandler; dpy->flags &= ~XlibDisplayPrivSync; } UnlockDisplay(dpy); SyncHandle(); return 0; } /* * _XAllocID - resource ID allocation routine. */ XID _XAllocID( register Display *dpy) { XID id; id = dpy->resource_id << dpy->resource_shift; if (id >= dpy->resource_max) { if (!(dpy->flags & XlibDisplayPrivSync)) { dpy->savedsynchandler = dpy->synchandler; dpy->flags |= XlibDisplayPrivSync; } dpy->synchandler = _XIDHandler; dpy->resource_max = dpy->resource_mask + 1; } if (id <= dpy->resource_mask) { dpy->resource_id++; return (dpy->resource_base + id); } if (id != 0x10000000) { (void) fprintf(stderr, "Xlib: resource ID allocation space exhausted!\n"); id = 0x10000000; dpy->resource_id = id >> dpy->resource_shift; } return id; } /* * _XAllocIDs - multiple resource ID allocation routine. */ void _XAllocIDs( register Display *dpy, XID *ids, int count) { XID id; int i; xXCMiscGetXIDListReply grep; register xXCMiscGetXIDListReq *greq; id = dpy->resource_id << dpy->resource_shift; if (dpy->resource_max <= dpy->resource_mask && id <= dpy->resource_mask && (dpy->resource_max - id) > ((count - 1) << dpy->resource_shift)) { id += dpy->resource_base; for (i = 0; i < count; i++) { ids[i] = id; id += (1 << dpy->resource_shift); dpy->resource_id++; } return; } grep.count = 0; _XGetMiscCode(dpy); if (dpy->xcmisc_opcode > 0) { GetReq(XCMiscGetXIDList, greq); greq->reqType = dpy->xcmisc_opcode; greq->miscReqType = X_XCMiscGetXIDList; greq->count = count; if (_XReply(dpy, (xReply *)&grep, 0, xFalse) && grep.count) { _XRead32(dpy, (long *) ids, 4L * (long) (grep.count)); for (i = 0; i < grep.count; i++) { id = (ids[i] - dpy->resource_base) >> dpy->resource_shift; if (id >= dpy->resource_id) dpy->resource_id = id; } if (id >= dpy->resource_max) { if (!(dpy->flags & XlibDisplayPrivSync)) { dpy->savedsynchandler = dpy->synchandler; dpy->flags |= XlibDisplayPrivSync; } dpy->synchandler = _XIDHandler; dpy->resource_max = dpy->resource_mask + 1; } } } for (i = grep.count; i < count; i++) ids[i] = XAllocID(dpy); } /* * The hard part about this is that we only get 16 bits from a reply. * We have three values that will march along, with the following invariant: * dpy->last_request_read <= rep->sequenceNumber <= dpy->request * We have to keep * dpy->request - dpy->last_request_read < 2^16 * or else we won't know for sure what value to use in events. We do this * by forcing syncs when we get close. */ unsigned long _XSetLastRequestRead( register Display *dpy, register xGenericReply *rep) { register unsigned long newseq, lastseq; lastseq = dpy->last_request_read; /* * KeymapNotify has no sequence number, but is always guaranteed * to immediately follow another event, except when generated via * SendEvent (hmmm). */ if ((rep->type & 0x7f) == KeymapNotify) return(lastseq); newseq = (lastseq & ~((unsigned long)0xffff)) | rep->sequenceNumber; if (newseq < lastseq) { newseq += 0x10000; if (newseq > dpy->request) { #ifdef NX_TRANS_SOCKET if (_NXLostSequenceFunction != NULL) { (*_NXLostSequenceFunction)(dpy, newseq, dpy->request, (unsigned int) rep->type); } else { (void) fprintf (stderr, "Xlib: sequence lost (0x%lx > 0x%lx) in reply type 0x%x!\n", newseq, dpy->request, (unsigned int) rep->type); } #else /* #ifdef NX_TRANS_SOCKET */ (void) fprintf (stderr, "Xlib: sequence lost (0x%lx > 0x%lx) in reply type 0x%x!\n", newseq, dpy->request, (unsigned int) rep->type); #endif /* #ifdef NX_TRANS_SOCKET */ newseq -= 0x10000; } } dpy->last_request_read = newseq; return(newseq); } /* * _XReply - Wait for a reply packet and copy its contents into the * specified rep. Meanwhile we must handle error and event packets that * we may encounter. */ Status _XReply ( register Display *dpy, register xReply *rep, int extra, /* number of 32-bit words expected after the reply */ Bool discard) /* should I discard data following "extra" words? */ { /* Pull out the serial number now, so that (currently illegal) requests * generated by an error handler don't confuse us. */ unsigned long cur_request = dpy->request; #ifdef XTHREADS struct _XCVList *cvl; #endif #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XReply: Going to wait for an X reply.\n"); #endif #ifdef NX_TRANS_SOCKET if (dpy->flags & XlibDisplayIOError) { #ifdef NX_TRANS_DEBUG fprintf(stderr, "_XReply: Returning 0 with I/O error detected.\n"); #endif return 0; } #else if (dpy->flags & XlibDisplayIOError) return 0; #endif #ifdef XTHREADS /* create our condition variable and append to list */ cvl = QueueReplyReaderLock(dpy); if (cvl) { cvl->buf = rep; if (dpy->lock->reply_awaiters == cvl && !dpy->lock->event_awaiters) dpy->lock->reply_first = True; } #ifdef XTHREADS_DEBUG printf("_XReply called in thread %x, adding %x to cvl\n", XThread_Self(), cvl); #endif #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XReply: Going to flush the display buffer.\n"); #endif _XFlushInt(dpy, cvl ? cvl->cv : NULL); /* if it is not our turn to read a reply off the wire, * wait til we're at head of list. if there is an event waiter, * and our reply hasn't been read, they'll be in select and will * hand control back to us next. */ if(dpy->lock && (dpy->lock->reply_awaiters != cvl || !dpy->lock->reply_first)) { ConditionWait(dpy, cvl->cv); } dpy->flags |= XlibDisplayReply; #else /* XTHREADS else */ _XFlush(dpy); #endif #ifdef NX_TRANS_SOCKET /* * We are going to block waiting for the remote * X server. Be sure that the proxy has flushed * all the data. */ #ifdef NX_TRANS_TEST fprintf(stderr, "_XReply: Requesting a flush of the NX transport.\n"); #endif NXTransFlush(dpy->fd); #endif for (;;) { #ifdef XTHREADS /* Did another thread's _XReadEvents get our reply by accident? */ if (!dpy->lock || !dpy->lock->reply_was_read) #endif (void) _XRead(dpy, (char *)rep, (long)SIZEOF(xReply)); #ifdef XTHREADS if (dpy->lock) dpy->lock->reply_was_read = False; #endif switch ((int)rep->generic.type) { case X_Reply: /* Reply received. Fast update for synchronous replies, * but deal with multiple outstanding replies. */ if (rep->generic.sequenceNumber == (cur_request & 0xffff)) dpy->last_request_read = cur_request; else { int pend = SIZEOF(xReply); if (_XAsyncReply(dpy, rep, (char *)rep, &pend, False) != (char *)rep) continue; } if (extra <= rep->generic.length) { if (extra > 0) /* * Read the extra data into storage immediately * following the GenericReply structure. */ (void) _XRead (dpy, (char *) (NEXTPTR(rep,xReply)), ((long)extra) << 2); if (discard) { if (extra < rep->generic.length) _XEatData(dpy, (rep->generic.length - extra) << 2); } #ifdef XTHREADS if (dpy->lock) { if (discard) { dpy->lock->reply_bytes_left = 0; } else { dpy->lock->reply_bytes_left = (rep->generic.length - extra) << 2; } if (dpy->lock->reply_bytes_left == 0) { dpy->flags &= ~XlibDisplayReply; UnlockNextReplyReader(dpy); } } else dpy->flags &= ~XlibDisplayReply; #endif return 1; } /* *if we get here, then extra > rep->generic.length--meaning we * read a reply that's shorter than we expected. This is an * error, but we still need to figure out how to handle it... */ (void) _XRead (dpy, (char *) (NEXTPTR(rep,xReply)), ((long) rep->generic.length) << 2); dpy->flags &= ~XlibDisplayReply; UnlockNextReplyReader(dpy); #ifdef NX_TRANS_SOCKET /* * The original code has provision * for returning already. */ #endif _XIOError (dpy); return (0); case X_Error: { register _XExtension *ext; register Bool ret = False; int ret_code; xError *err = (xError *) rep; unsigned long serial; dpy->flags &= ~XlibDisplayReply; serial = _XSetLastRequestRead(dpy, (xGenericReply *)rep); if (serial == cur_request) /* do not die on "no such font", "can't allocate", "can't grab" failures */ switch ((int)err->errorCode) { case BadName: switch (err->majorCode) { case X_LookupColor: case X_AllocNamedColor: UnlockNextReplyReader(dpy); return(0); } break; case BadFont: if (err->majorCode == X_QueryFont) { UnlockNextReplyReader(dpy); return (0); } break; case BadAlloc: case BadAccess: UnlockNextReplyReader(dpy); return (0); } /* * we better see if there is an extension who may * want to suppress the error. */ for (ext = dpy->ext_procs; !ret && ext; ext = ext->next) { if (ext->error) ret = (*ext->error)(dpy, err, &ext->codes, &ret_code); } if (!ret) { _XError(dpy, err); ret_code = 0; } if (serial == cur_request) { UnlockNextReplyReader(dpy); return(ret_code); } } /* case X_Error */ break; default: _XEnq(dpy, (xEvent *) rep); #ifdef XTHREADS if (dpy->lock && dpy->lock->event_awaiters) ConditionSignal(dpy, dpy->lock->event_awaiters->cv); #endif break; } #ifdef NX_TRANS_SOCKET if (_XGetIOError(dpy)) { UnlockNextReplyReader(dpy); return 0; } #endif } } static char * _XAsyncReply( Display *dpy, register xReply *rep, char *buf, register int *lenp, Bool discard) { register _XAsyncHandler *async, *next; register int len; register Bool consumed = False; char *nbuf; (void) _XSetLastRequestRead(dpy, &rep->generic); len = SIZEOF(xReply) + (rep->generic.length << 2); if (len < SIZEOF(xReply)) { #ifdef NX_TRANS_SOCKET /* * The original code has provision * for returning already. */ #endif _XIOError (dpy); buf += *lenp; *lenp = 0; return buf; } for (async = dpy->async_handlers; async; async = next) { next = async->next; if ((consumed = (*async->handler)(dpy, rep, buf, *lenp, async->data))) break; } if (!consumed) { if (!discard) return buf; (void) fprintf(stderr, "Xlib: unexpected async reply (sequence 0x%lx)!\n", dpy->last_request_read); #ifdef XTHREADS #ifdef XTHREADS_DEBUG printf("thread %x, unexpected async reply\n", XThread_Self()); #endif #endif if (len > *lenp) _XEatData(dpy, len - *lenp); } if (len < SIZEOF(xReply)) { #ifdef NX_TRANS_SOCKET /* * The original code has provision * for returning already. */ #endif _XIOError (dpy); buf += *lenp; *lenp = 0; return buf; } if (len >= *lenp) { buf += *lenp; *lenp = 0; return buf; } *lenp -= len; buf += len; len = *lenp; nbuf = buf; while (len > SIZEOF(xReply)) { if (*buf == X_Reply) return nbuf; buf += SIZEOF(xReply); len -= SIZEOF(xReply); } if (len > 0 && len < SIZEOF(xReply)) { buf = nbuf; len = SIZEOF(xReply) - len; nbuf -= len; memmove(nbuf, buf, *lenp); (void) _XRead(dpy, nbuf + *lenp, (long)len); *lenp += len; } return nbuf; } /* * Support for internal connections, such as an IM might use. * By Stephen Gildea, X Consortium, September 1993 */ /* _XRegisterInternalConnection * Each IM (or Xlib extension) that opens a file descriptor that Xlib should * include in its select/poll mask must call this function to register the * fd with Xlib. Any XConnectionWatchProc registered by XAddConnectionWatch * will also be called. * * Whenever Xlib detects input available on fd, it will call callback * with call_data to process it. If non-Xlib code calls select/poll * and detects input available, it must call XProcessInternalConnection, * which will call the associated callback. * * Non-Xlib code can learn about these additional fds by calling * XInternalConnectionNumbers or, more typically, by registering * a XConnectionWatchProc with XAddConnectionWatch * to be called when fds are registered or unregistered. * * Returns True if registration succeeded, False if not, typically * because could not allocate memory. * Assumes Display locked when called. */ Status _XRegisterInternalConnection( Display* dpy, int fd, _XInternalConnectionProc callback, XPointer call_data ) { struct _XConnectionInfo *new_conni, **iptr; struct _XConnWatchInfo *watchers; XPointer *wd; #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XRegisterInternalConnection: Got called.\n"); #endif new_conni = (struct _XConnectionInfo*)Xmalloc(sizeof(struct _XConnectionInfo)); if (!new_conni) return 0; new_conni->watch_data = (XPointer *)Xmalloc(dpy->watcher_count * sizeof(XPointer)); if (!new_conni->watch_data) { Xfree(new_conni); return 0; } new_conni->fd = fd; new_conni->read_callback = callback; new_conni->call_data = call_data; new_conni->next = NULL; /* link new structure onto end of list */ for (iptr = &dpy->im_fd_info; *iptr; iptr = &(*iptr)->next) ; *iptr = new_conni; dpy->im_fd_length++; _XPollfdCacheAdd(dpy, fd); for (watchers=dpy->conn_watchers, wd=new_conni->watch_data; watchers; watchers=watchers->next, wd++) { *wd = NULL; /* for cleanliness */ (*watchers->fn) (dpy, watchers->client_data, fd, True, wd); } return 1; } /* _XUnregisterInternalConnection * Each IM (or Xlib extension) that closes a file descriptor previously * registered with _XRegisterInternalConnection must call this function. * Any XConnectionWatchProc registered by XAddConnectionWatch * will also be called. * * Assumes Display locked when called. */ void _XUnregisterInternalConnection( Display* dpy, int fd ) { struct _XConnectionInfo *info_list, **prev; struct _XConnWatchInfo *watch; XPointer *wd; #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XUnregisterInternalConnection: Got called.\n"); #endif for (prev = &dpy->im_fd_info; (info_list = *prev); prev = &info_list->next) { if (info_list->fd == fd) { *prev = info_list->next; dpy->im_fd_length--; for (watch=dpy->conn_watchers, wd=info_list->watch_data; watch; watch=watch->next, wd++) { (*watch->fn) (dpy, watch->client_data, fd, False, wd); } if (info_list->watch_data) Xfree (info_list->watch_data); Xfree (info_list); break; } } _XPollfdCacheDel(dpy, fd); } /* XInternalConnectionNumbers * Returns an array of fds and an array of corresponding call data. * Typically a XConnectionWatchProc registered with XAddConnectionWatch * will be used instead of this function to discover * additional fds to include in the select/poll mask. * * The list is allocated with Xmalloc and should be freed by the caller * with Xfree; */ Status XInternalConnectionNumbers( Display *dpy, int **fd_return, int *count_return ) { int count; struct _XConnectionInfo *info_list; int *fd_list; #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "XInternalConnectionNumbers: Got called.\n"); #endif LockDisplay(dpy); count = 0; for (info_list=dpy->im_fd_info; info_list; info_list=info_list->next) count++; fd_list = (int*) Xmalloc (count * sizeof(int)); if (!fd_list) { UnlockDisplay(dpy); return 0; } count = 0; for (info_list=dpy->im_fd_info; info_list; info_list=info_list->next) { fd_list[count] = info_list->fd; count++; } UnlockDisplay(dpy); *fd_return = fd_list; *count_return = count; return 1; } static void _XProcessInternalConnection( Display *dpy, struct _XConnectionInfo *conn_info) { dpy->flags |= XlibDisplayProcConni; #ifdef XTHREADS if (dpy->lock) { /* check cache to avoid call to thread_self */ if (xthread_have_id(dpy->lock->reading_thread)) dpy->lock->conni_thread = dpy->lock->reading_thread; else dpy->lock->conni_thread = XThread_Self(); } #endif /* XTHREADS */ UnlockDisplay(dpy); (*conn_info->read_callback) (dpy, conn_info->fd, conn_info->call_data); LockDisplay(dpy); #ifdef XTHREADS if (dpy->lock) xthread_clear_id(dpy->lock->conni_thread); #endif /* XTHREADS */ dpy->flags &= ~XlibDisplayProcConni; } /* XProcessInternalConnection * Call the _XInternalConnectionProc registered by _XRegisterInternalConnection * for this fd. * The Display is NOT locked during the call. */ void XProcessInternalConnection( Display* dpy, int fd ) { struct _XConnectionInfo *info_list; #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "XProcessInternalConnection: Got called.\n"); #endif LockDisplay(dpy); for (info_list=dpy->im_fd_info; info_list; info_list=info_list->next) { if (info_list->fd == fd) { _XProcessInternalConnection(dpy, info_list); break; } } UnlockDisplay(dpy); } /* XAddConnectionWatch * Register a callback to be called whenever _XRegisterInternalConnection * or _XUnregisterInternalConnection is called. * Callbacks are called with the Display locked. * If any connections are already registered, the callback is immediately * called for each of them. */ Status XAddConnectionWatch( Display* dpy, XConnectionWatchProc callback, XPointer client_data ) { struct _XConnWatchInfo *new_watcher, **wptr; struct _XConnectionInfo *info_list; XPointer *wd_array; #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "XAddConnectionWatch: Got called.\n"); #endif LockDisplay(dpy); /* allocate new watch data */ for (info_list=dpy->im_fd_info; info_list; info_list=info_list->next) { wd_array = (XPointer *)Xrealloc((char *)info_list->watch_data, (dpy->watcher_count + 1) * sizeof(XPointer)); if (!wd_array) { UnlockDisplay(dpy); return 0; } wd_array[dpy->watcher_count] = NULL; /* for cleanliness */ } new_watcher = (struct _XConnWatchInfo*)Xmalloc(sizeof(struct _XConnWatchInfo)); if (!new_watcher) { UnlockDisplay(dpy); return 0; } new_watcher->fn = callback; new_watcher->client_data = client_data; new_watcher->next = NULL; /* link new structure onto end of list */ for (wptr = &dpy->conn_watchers; *wptr; wptr = &(*wptr)->next) ; *wptr = new_watcher; dpy->watcher_count++; /* call new watcher on all currently registered fds */ for (info_list=dpy->im_fd_info; info_list; info_list=info_list->next) { (*callback) (dpy, client_data, info_list->fd, True, info_list->watch_data + dpy->watcher_count - 1); } UnlockDisplay(dpy); return 1; } /* XRemoveConnectionWatch * Unregister a callback registered by XAddConnectionWatch. * Both callback and client_data must match what was passed to * XAddConnectionWatch. */ void XRemoveConnectionWatch( Display* dpy, XConnectionWatchProc callback, XPointer client_data ) { struct _XConnWatchInfo *watch; struct _XConnWatchInfo *previous = NULL; struct _XConnectionInfo *conni; int counter = 0; #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "XRemoveConnectionWatch: Got called.\n"); #endif LockDisplay(dpy); for (watch=dpy->conn_watchers; watch; watch=watch->next) { if (watch->fn == callback && watch->client_data == client_data) { if (previous) previous->next = watch->next; else dpy->conn_watchers = watch->next; Xfree (watch); dpy->watcher_count--; /* remove our watch_data for each connection */ for (conni=dpy->im_fd_info; conni; conni=conni->next) { /* don't bother realloc'ing; these arrays are small anyway */ /* overlapping */ memmove(conni->watch_data+counter, conni->watch_data+counter+1, dpy->watcher_count - counter); } break; } previous = watch; counter++; } UnlockDisplay(dpy); } /* end of internal connections support */ /* Read and discard "n" 8-bit bytes of data */ void _XEatData( Display *dpy, register unsigned long n) { #define SCRATCHSIZE 2048 char buf[SCRATCHSIZE]; #if defined(NX_TRANS_SOCKET) && defined(NX_TRANS_DEBUG) fprintf(stderr, "_XEatData: Going to eat [%ld] bytes of data from descriptor [%d].\n", n, dpy->fd); #endif while (n > 0) { register long bytes_read = (n > SCRATCHSIZE) ? SCRATCHSIZE : n; (void) _XRead (dpy, buf, bytes_read); n -= bytes_read; } #undef SCRATCHSIZE } /* * _XEnq - Place event packets on the display's queue. * note that no squishing of move events in V11, since there * is pointer motion hints.... */ void _XEnq( register Display *dpy, register xEvent *event) { register _XQEvent *qelt; if ((qelt = dpy->qfree)) { /* If dpy->qfree is non-NULL do this, else malloc a new one. */ dpy->qfree = qelt->next; } else if ((qelt = (_XQEvent *) Xmalloc((unsigned)sizeof(_XQEvent))) == NULL) { /* Malloc call failed! */ ESET(ENOMEM); #ifdef NX_TRANS_SOCKET _XIOError(dpy); return; #else _XIOError(dpy); #endif } qelt->next = NULL; /* go call through display to find proper event reformatter */ if ((*dpy->event_vec[event->u.u.type & 0177])(dpy, &qelt->event, event)) { qelt->qserial_num = dpy->next_event_serial_num++; if (dpy->tail) dpy->tail->next = qelt; else dpy->head = qelt; dpy->tail = qelt; dpy->qlen++; } else { /* ignored, or stashed away for many-to-one compression */ qelt->next = dpy->qfree; dpy->qfree = qelt; } } /* * _XDeq - Remove event packet from the display's queue. */ void _XDeq( register Display *dpy, register _XQEvent *prev, /* element before qelt */ register _XQEvent *qelt) /* element to be unlinked */ { if (prev) { if ((prev->next = qelt->next) == NULL) dpy->tail = prev; } else { /* no prev, so removing first elt */ if ((dpy->head = qelt->next) == NULL) dpy->tail = NULL; } qelt->qserial_num = 0; qelt->next = dpy->qfree; dpy->qfree = qelt; dpy->qlen--; } /* * EventToWire in separate file in that often not needed. */ /*ARGSUSED*/ Bool _XUnknownWireEvent( register Display *dpy, /* pointer to display structure */ register XEvent *re, /* pointer to where event should be reformatted */ register xEvent *event) /* wire protocol event */ { #ifdef notdef (void) fprintf(stderr, "Xlib: unhandled wire event! event number = %d, display = %x\n.", event->u.u.type, dpy); #endif return(False); } /*ARGSUSED*/ Status _XUnknownNativeEvent( register Display *dpy, /* pointer to display structure */ register XEvent *re, /* pointer to where event should be reformatted */ register xEvent *event) /* wire protocol event */ { #ifdef notdef (void) fprintf(stderr, "Xlib: unhandled native event! event number = %d, display = %x\n.", re->type, dpy); #endif return(0); } /* * reformat a wire event into an XEvent structure of the right type. */ Bool _XWireToEvent( register Display *dpy, /* pointer to display structure */ register XEvent *re, /* pointer to where event should be reformatted */ register xEvent *event) /* wire protocol event */ { re->type = event->u.u.type & 0x7f; ((XAnyEvent *)re)->serial = _XSetLastRequestRead(dpy, (xGenericReply *)event); ((XAnyEvent *)re)->send_event = ((event->u.u.type & 0x80) != 0); ((XAnyEvent *)re)->display = dpy; /* Ignore the leading bit of the event type since it is set when a client sends an event rather than the server. */ switch (event-> u.u.type & 0177) { case KeyPress: case KeyRelease: { register XKeyEvent *ev = (XKeyEvent*) re; ev->root = event->u.keyButtonPointer.root; ev->window = event->u.keyButtonPointer.event; ev->subwindow = event->u.keyButtonPointer.child; ev->time = event->u.keyButtonPointer.time; ev->x = cvtINT16toInt(event->u.keyButtonPointer.eventX); ev->y = cvtINT16toInt(event->u.keyButtonPointer.eventY); ev->x_root = cvtINT16toInt(event->u.keyButtonPointer.rootX); ev->y_root = cvtINT16toInt(event->u.keyButtonPointer.rootY); ev->state = event->u.keyButtonPointer.state; ev->same_screen = event->u.keyButtonPointer.sameScreen; ev->keycode = event->u.u.detail; } break; case ButtonPress: case ButtonRelease: { register XButtonEvent *ev = (XButtonEvent *) re; ev->root = event->u.keyButtonPointer.root; ev->window = event->u.keyButtonPointer.event; ev->subwindow = event->u.keyButtonPointer.child; ev->time = event->u.keyButtonPointer.time; ev->x = cvtINT16toInt(event->u.keyButtonPointer.eventX); ev->y = cvtINT16toInt(event->u.keyButtonPointer.eventY); ev->x_root = cvtINT16toInt(event->u.keyButtonPointer.rootX); ev->y_root = cvtINT16toInt(event->u.keyButtonPointer.rootY); ev->state = event->u.keyButtonPointer.state; ev->same_screen = event->u.keyButtonPointer.sameScreen; ev->button = event->u.u.detail; } break; case MotionNotify: { register XMotionEvent *ev = (XMotionEvent *)re; ev->root = event->u.keyButtonPointer.root; ev->window = event->u.keyButtonPointer.event; ev->subwindow = event->u.keyButtonPointer.child; ev->time = event->u.keyButtonPointer.time; ev->x = cvtINT16toInt(event->u.keyButtonPointer.eventX); ev->y = cvtINT16toInt(event->u.keyButtonPointer.eventY); ev->x_root = cvtINT16toInt(event->u.keyButtonPointer.rootX); ev->y_root = cvtINT16toInt(event->u.keyButtonPointer.rootY); ev->state = event->u.keyButtonPointer.state; ev->same_screen = event->u.keyButtonPointer.sameScreen; ev->is_hint = event->u.u.detail; } break; case EnterNotify: case LeaveNotify: { register XCrossingEvent *ev = (XCrossingEvent *) re; ev->root = event->u.enterLeave.root; ev->window = event->u.enterLeave.event; ev->subwindow = event->u.enterLeave.child; ev->time = event->u.enterLeave.time; ev->x = cvtINT16toInt(event->u.enterLeave.eventX); ev->y = cvtINT16toInt(event->u.enterLeave.eventY); ev->x_root = cvtINT16toInt(event->u.enterLeave.rootX); ev->y_root = cvtINT16toInt(event->u.enterLeave.rootY); ev->state = event->u.enterLeave.state; ev->mode = event->u.enterLeave.mode; ev->same_screen = (event->u.enterLeave.flags & ELFlagSameScreen) && True; ev->focus = (event->u.enterLeave.flags & ELFlagFocus) && True; ev->detail = event->u.u.detail; } break; case FocusIn: case FocusOut: { register XFocusChangeEvent *ev = (XFocusChangeEvent *) re; ev->window = event->u.focus.window; ev->mode = event->u.focus.mode; ev->detail = event->u.u.detail; } break; case KeymapNotify: { register XKeymapEvent *ev = (XKeymapEvent *) re; ev->window = None; memcpy(&ev->key_vector[1], (char *)((xKeymapEvent *) event)->map, sizeof (((xKeymapEvent *) event)->map)); } break; case Expose: { register XExposeEvent *ev = (XExposeEvent *) re; ev->window = event->u.expose.window; ev->x = event->u.expose.x; ev->y = event->u.expose.y; ev->width = event->u.expose.width; ev->height = event->u.expose.height; ev->count = event->u.expose.count; } break; case GraphicsExpose: { register XGraphicsExposeEvent *ev = (XGraphicsExposeEvent *) re; ev->drawable = event->u.graphicsExposure.drawable; ev->x = event->u.graphicsExposure.x; ev->y = event->u.graphicsExposure.y; ev->width = event->u.graphicsExposure.width; ev->height = event->u.graphicsExposure.height; ev->count = event->u.graphicsExposure.count; ev->major_code = event->u.graphicsExposure.majorEvent; ev->minor_code = event->u.graphicsExposure.minorEvent; } break; case NoExpose: { register XNoExposeEvent *ev = (XNoExposeEvent *) re; ev->drawable = event->u.noExposure.drawable; ev->major_code = event->u.noExposure.majorEvent; ev->minor_code = event->u.noExposure.minorEvent; } break; case VisibilityNotify: { register XVisibilityEvent *ev = (XVisibilityEvent *) re; ev->window = event->u.visibility.window; ev->state = event->u.visibility.state; } break; case CreateNotify: { register XCreateWindowEvent *ev = (XCreateWindowEvent *) re; ev->window = event->u.createNotify.window; ev->parent = event->u.createNotify.parent; ev->x = cvtINT16toInt(event->u.createNotify.x); ev->y = cvtINT16toInt(event->u.createNotify.y); ev->width = event->u.createNotify.width; ev->height = event->u.createNotify.height; ev->border_width = event->u.createNotify.borderWidth; ev->override_redirect = event->u.createNotify.override; } break; case DestroyNotify: { register XDestroyWindowEvent *ev = (XDestroyWindowEvent *) re; ev->window = event->u.destroyNotify.window; ev->event = event->u.destroyNotify.event; } break; case UnmapNotify: { register XUnmapEvent *ev = (XUnmapEvent *) re; ev->window = event->u.unmapNotify.window; ev->event = event->u.unmapNotify.event; ev->from_configure = event->u.unmapNotify.fromConfigure; } break; case MapNotify: { register XMapEvent *ev = (XMapEvent *) re; ev->window = event->u.mapNotify.window; ev->event = event->u.mapNotify.event; ev->override_redirect = event->u.mapNotify.override; } break; case MapRequest: { register XMapRequestEvent *ev = (XMapRequestEvent *) re; ev->window = event->u.mapRequest.window; ev->parent = event->u.mapRequest.parent; } break; case ReparentNotify: { register XReparentEvent *ev = (XReparentEvent *) re; ev->event = event->u.reparent.event; ev->window = event->u.reparent.window; ev->parent = event->u.reparent.parent; ev->x = cvtINT16toInt(event->u.reparent.x); ev->y = cvtINT16toInt(event->u.reparent.y); ev->override_redirect = event->u.reparent.override; } break; case ConfigureNotify: { register XConfigureEvent *ev = (XConfigureEvent *) re; ev->event = event->u.configureNotify.event; ev->window = event->u.configureNotify.window; ev->above = event->u.configureNotify.aboveSibling; ev->x = cvtINT16toInt(event->u.configureNotify.x); ev->y = cvtINT16toInt(event->u.configureNotify.y); ev->width = event->u.configureNotify.width; ev->height = event->u.configureNotify.height; ev->border_width = event->u.configureNotify.borderWidth; ev->override_redirect = event->u.configureNotify.override; } break; case ConfigureRequest: { register XConfigureRequestEvent *ev = (XConfigureRequestEvent *) re; ev->window = event->u.configureRequest.window; ev->parent = event->u.configureRequest.parent; ev->above = event->u.configureRequest.sibling; ev->x = cvtINT16toInt(event->u.configureRequest.x); ev->y = cvtINT16toInt(event->u.configureRequest.y); ev->width = event->u.configureRequest.width; ev->height = event->u.configureRequest.height; ev->border_width = event->u.configureRequest.borderWidth; ev->value_mask = event->u.configureRequest.valueMask; ev->detail = event->u.u.detail; } break; case GravityNotify: { register XGravityEvent *ev = (XGravityEvent *) re; ev->window = event->u.gravity.window; ev->event = event->u.gravity.event; ev->x = cvtINT16toInt(event->u.gravity.x); ev->y = cvtINT16toInt(event->u.gravity.y); } break; case ResizeRequest: { register XResizeRequestEvent *ev = (XResizeRequestEvent *) re; ev->window = event->u.resizeRequest.window; ev->width = event->u.resizeRequest.width; ev->height = event->u.resizeRequest.height; } break; case CirculateNotify: { register XCirculateEvent *ev = (XCirculateEvent *) re; ev->window = event->u.circulate.window; ev->event = event->u.circulate.event; ev->place = event->u.circulate.place; } break; case CirculateRequest: { register XCirculateRequestEvent *ev = (XCirculateRequestEvent *) re; ev->window = event->u.circulate.window; ev->parent = event->u.circulate.event; ev->place = event->u.circulate.place; } break; case PropertyNotify: { register XPropertyEvent *ev = (XPropertyEvent *) re; ev->window = event->u.property.window; ev->atom = event->u.property.atom; ev->time = event->u.property.time; ev->state = event->u.property.state; } break; case SelectionClear: { register XSelectionClearEvent *ev = (XSelectionClearEvent *) re; ev->window = event->u.selectionClear.window; ev->selection = event->u.selectionClear.atom; ev->time = event->u.selectionClear.time; } break; case SelectionRequest: { register XSelectionRequestEvent *ev = (XSelectionRequestEvent *) re; ev->owner = event->u.selectionRequest.owner; ev->requestor = event->u.selectionRequest.requestor; ev->selection = event->u.selectionRequest.selection; ev->target = event->u.selectionRequest.target; ev->property = event->u.selectionRequest.property; ev->time = event->u.selectionRequest.time; } break; case SelectionNotify: { register XSelectionEvent *ev = (XSelectionEvent *) re; ev->requestor = event->u.selectionNotify.requestor; ev->selection = event->u.selectionNotify.selection; ev->target = event->u.selectionNotify.target; ev->property = event->u.selectionNotify.property; ev->time = event->u.selectionNotify.time; } break; case ColormapNotify: { register XColormapEvent *ev = (XColormapEvent *) re; ev->window = event->u.colormap.window; ev->colormap = event->u.colormap.colormap; ev->new = event->u.colormap.new; ev->state = event->u.colormap.state; } break; case ClientMessage: { register int i; register XClientMessageEvent *ev = (XClientMessageEvent *) re; ev->window = event->u.clientMessage.window; ev->format = event->u.u.detail; switch (ev->format) { case 8: ev->message_type = event->u.clientMessage.u.b.type; for (i = 0; i < 20; i++) ev->data.b[i] = event->u.clientMessage.u.b.bytes[i]; break; case 16: ev->message_type = event->u.clientMessage.u.s.type; ev->data.s[0] = cvtINT16toShort(event->u.clientMessage.u.s.shorts0); ev->data.s[1] = cvtINT16toShort(event->u.clientMessage.u.s.shorts1); ev->data.s[2] = cvtINT16toShort(event->u.clientMessage.u.s.shorts2); ev->data.s[3] = cvtINT16toShort(event->u.clientMessage.u.s.shorts3); ev->data.s[4] = cvtINT16toShort(event->u.clientMessage.u.s.shorts4); ev->data.s[5] = cvtINT16toShort(event->u.clientMessage.u.s.shorts5); ev->data.s[6] = cvtINT16toShort(event->u.clientMessage.u.s.shorts6); ev->data.s[7] = cvtINT16toShort(event->u.clientMessage.u.s.shorts7); ev->data.s[8] = cvtINT16toShort(event->u.clientMessage.u.s.shorts8); ev->data.s[9] = cvtINT16toShort(event->u.clientMessage.u.s.shorts9); break; case 32: ev->message_type = event->u.clientMessage.u.l.type; ev->data.l[0] = cvtINT32toLong(event->u.clientMessage.u.l.longs0); ev->data.l[1] = cvtINT32toLong(event->u.clientMessage.u.l.longs1); ev->data.l[2] = cvtINT32toLong(event->u.clientMessage.u.l.longs2); ev->data.l[3] = cvtINT32toLong(event->u.clientMessage.u.l.longs3); ev->data.l[4] = cvtINT32toLong(event->u.clientMessage.u.l.longs4); break; default: /* XXX should never occur */ break; } } break; case MappingNotify: { register XMappingEvent *ev = (XMappingEvent *)re; ev->window = 0; ev->first_keycode = event->u.mappingNotify.firstKeyCode; ev->request = event->u.mappingNotify.request; ev->count = event->u.mappingNotify.count; } break; default: return(_XUnknownWireEvent(dpy, re, event)); } return(True); } /* * _XDefaultIOError - Default fatal system error reporting routine. Called * when an X internal system error is encountered. */ int _XDefaultIOError( Display *dpy) { if (ECHECK(EPIPE)) { (void) fprintf (stderr, "X connection to %s broken (explicit kill or server shutdown).\r\n", DisplayString (dpy)); } else { (void) fprintf (stderr, "XIO: fatal IO error %d (%s) on X server \"%s\"\r\n", #ifdef WIN32 WSAGetLastError(), strerror(WSAGetLastError()), #else errno, strerror (errno), #endif DisplayString (dpy)); (void) fprintf (stderr, " after %lu requests (%lu known processed) with %d events remaining.\r\n", NextRequest(dpy) - 1, LastKnownRequestProcessed(dpy), QLength(dpy)); } #ifdef NX_TRANS_SOCKET if (_NXHandleDisplayError == 1) { #ifdef NX_TRANS_TEST fprintf(stderr, "_XDefaultIOError: Going to return from the error handler.\n"); #endif return 0; } else { #ifdef NX_TRANS_TEST fprintf(stderr, "_XDefaultIOError: Going to exit from the program.\n"); #endif #ifdef NX_TRANS_EXIT NXTransExit(1); #else exit(1); #endif } #else exit(1); #endif /* #ifdef NX_TRANS_SOCKET */ return(0); /* dummy - function should never return */ } static int _XPrintDefaultError( Display *dpy, XErrorEvent *event, FILE *fp) { char buffer[BUFSIZ]; char mesg[BUFSIZ]; char number[32]; char *mtype = "XlibMessage"; register _XExtension *ext = (_XExtension *)NULL; _XExtension *bext = (_XExtension *)NULL; XGetErrorText(dpy, event->error_code, buffer, BUFSIZ); XGetErrorDatabaseText(dpy, mtype, "XError", "X Error", mesg, BUFSIZ); (void) fprintf(fp, "%s: %s\n ", mesg, buffer); XGetErrorDatabaseText(dpy, mtype, "MajorCode", "Request Major code %d", mesg, BUFSIZ); (void) fprintf(fp, mesg, event->request_code); if (event->request_code < 128) { sprintf(number, "%d", event->request_code); XGetErrorDatabaseText(dpy, "XRequest", number, "", buffer, BUFSIZ); } else { for (ext = dpy->ext_procs; ext && (ext->codes.major_opcode != event->request_code); ext = ext->next) ; if (ext) strcpy(buffer, ext->name); else buffer[0] = '\0'; } (void) fprintf(fp, " (%s)\n", buffer); if (event->request_code >= 128) { XGetErrorDatabaseText(dpy, mtype, "MinorCode", "Request Minor code %d", mesg, BUFSIZ); fputs(" ", fp); (void) fprintf(fp, mesg, event->minor_code); if (ext) { sprintf(mesg, "%s.%d", ext->name, event->minor_code); XGetErrorDatabaseText(dpy, "XRequest", mesg, "", buffer, BUFSIZ); (void) fprintf(fp, " (%s)", buffer); } fputs("\n", fp); } if (event->error_code >= 128) { /* kludge, try to find the extension that caused it */ buffer[0] = '\0'; for (ext = dpy->ext_procs; ext; ext = ext->next) { if (ext->error_string) (*ext->error_string)(dpy, event->error_code, &ext->codes, buffer, BUFSIZ); if (buffer[0]) { bext = ext; break; } if (ext->codes.first_error && ext->codes.first_error < (int)event->error_code && (!bext || ext->codes.first_error > bext->codes.first_error)) bext = ext; } if (bext) sprintf(buffer, "%s.%d", bext->name, event->error_code - bext->codes.first_error); else strcpy(buffer, "Value"); XGetErrorDatabaseText(dpy, mtype, buffer, "", mesg, BUFSIZ); if (mesg[0]) { fputs(" ", fp); (void) fprintf(fp, mesg, event->resourceid); fputs("\n", fp); } /* let extensions try to print the values */ for (ext = dpy->ext_procs; ext; ext = ext->next) { if (ext->error_values) (*ext->error_values)(dpy, event, fp); } } else if ((event->error_code == BadWindow) || (event->error_code == BadPixmap) || (event->error_code == BadCursor) || (event->error_code == BadFont) || (event->error_code == BadDrawable) || (event->error_code == BadColor) || (event->error_code == BadGC) || (event->error_code == BadIDChoice) || (event->error_code == BadValue) || (event->error_code == BadAtom)) { if (event->error_code == BadValue) XGetErrorDatabaseText(dpy, mtype, "Value", "Value 0x%x", mesg, BUFSIZ); else if (event->error_code == BadAtom) XGetErrorDatabaseText(dpy, mtype, "AtomID", "AtomID 0x%x", mesg, BUFSIZ); else XGetErrorDatabaseText(dpy, mtype, "ResourceID", "ResourceID 0x%x", mesg, BUFSIZ); fputs(" ", fp); (void) fprintf(fp, mesg, event->resourceid); fputs("\n", fp); } XGetErrorDatabaseText(dpy, mtype, "ErrorSerial", "Error Serial #%d", mesg, BUFSIZ); fputs(" ", fp); (void) fprintf(fp, mesg, event->serial); XGetErrorDatabaseText(dpy, mtype, "CurrentSerial", "Current Serial #%d", mesg, BUFSIZ); fputs("\n ", fp); (void) fprintf(fp, mesg, dpy->request); fputs("\n", fp); if (event->error_code == BadImplementation) return 0; return 1; } int _XDefaultError( Display *dpy, XErrorEvent *event) { if (_XPrintDefaultError (dpy, event, stderr) == 0) return 0; exit(1); /*NOTREACHED*/ } /*ARGSUSED*/ Bool _XDefaultWireError(display, he, we) Display *display; XErrorEvent *he; xError *we; { return True; } /* * _XError - upcall internal or user protocol error handler */ int _XError ( Display *dpy, register xError *rep) { /* * X_Error packet encountered! We need to unpack the error before * giving it to the user. */ XEvent event; /* make it a large event */ register _XAsyncHandler *async, *next; event.xerror.serial = _XSetLastRequestRead(dpy, (xGenericReply *)rep); for (async = dpy->async_handlers; async; async = next) { next = async->next; if ((*async->handler)(dpy, (xReply *)rep, (char *)rep, SIZEOF(xError), async->data)) return 0; } event.xerror.display = dpy; event.xerror.type = X_Error; event.xerror.resourceid = rep->resourceID; event.xerror.error_code = rep->errorCode; event.xerror.request_code = rep->majorCode; event.xerror.minor_code = rep->minorCode; if (dpy->error_vec && !(*dpy->error_vec[rep->errorCode])(dpy, &event.xerror, rep)) return 0; if (_XErrorFunction != NULL) { int rtn_val; #ifdef XTHREADS if (dpy->lock) (*dpy->lock->user_lock_display)(dpy); UnlockDisplay(dpy); #endif /* XTHREADS */ rtn_val = (*_XErrorFunction)(dpy, (XErrorEvent *)&event); /* upcall */ #ifdef XTHREADS LockDisplay(dpy); if (dpy->lock) (*dpy->lock->user_unlock_display)(dpy); #endif /* XTHREADS */ return rtn_val; } else { return _XDefaultError(dpy, (XErrorEvent *)&event); } } /* * _XIOError - call user connection error handler and exit */ int _XIOError ( Display *dpy) { dpy->flags |= XlibDisplayIOError; #ifdef WIN32 errno = WSAGetLastError(); #endif if (_XIOErrorFunction != NULL) (*_XIOErrorFunction)(dpy); else _XDefaultIOError(dpy); #ifdef NX_TRANS_SOCKET /* * Check if we are supposed to return in the case * of a display failure. The client which originated * the X operation will have to check the value of * the XlibDisplayIOError flag and handle appropria- * tely the display disconnection. */ if (_NXHandleDisplayError == 0) { #ifdef NX_TRANS_EXIT NXTransExit(1); #else exit(1); #endif } /* * We are going to return. Reset the display * buffers. Further writes will be discarded. */ #ifdef NX_TRANS_TEST fprintf(stderr, "_XIOError: Resetting the display buffer.\n"); #endif dpy->bufptr = dpy->buffer; dpy->last_req = (char *) &_dummy_request; #ifdef NX_TRANS_TEST fprintf(stderr, "_XIOError: Resetting the display flags.\n"); #endif dpy->flags &= ~XlibDisplayProcConni; dpy->flags &= ~XlibDisplayPrivSync; dpy->flags &= ~XlibDisplayReadEvents; dpy->flags &= ~XlibDisplayWriting; dpy->flags &= ~XlibDisplayReply; #else exit (1); #endif return 0; } /* * This routine can be used to (cheaply) get some memory within a single * Xlib routine for scratch space. A single buffer is reused each time * if possible. To be MT safe, you can only call this between a call to * GetReq* and a call to Data* or _XSend*, or in a context when the thread * is guaranteed to not unlock the display. */ char *_XAllocScratch( register Display *dpy, unsigned long nbytes) { if (nbytes > dpy->scratch_length) { if (dpy->scratch_buffer) Xfree (dpy->scratch_buffer); if ((dpy->scratch_buffer = Xmalloc((unsigned) nbytes))) dpy->scratch_length = nbytes; else dpy->scratch_length = 0; } return (dpy->scratch_buffer); } /* * Scratch space allocator you can call any time, multiple times, and be * MT safe, but you must hand the buffer back with _XFreeTemp. */ char *_XAllocTemp( register Display *dpy, unsigned long nbytes) { char *buf; buf = _XAllocScratch(dpy, nbytes); dpy->scratch_buffer = NULL; dpy->scratch_length = 0; return buf; } void _XFreeTemp( register Display *dpy, char *buf, unsigned long nbytes) { if (dpy->scratch_buffer) Xfree(dpy->scratch_buffer); dpy->scratch_buffer = buf; dpy->scratch_length = nbytes; } /* * Given a visual id, find the visual structure for this id on this display. */ Visual *_XVIDtoVisual( Display *dpy, VisualID id) { register int i, j, k; register Screen *sp; register Depth *dp; register Visual *vp; for (i = 0; i < dpy->nscreens; i++) { sp = &dpy->screens[i]; for (j = 0; j < sp->ndepths; j++) { dp = &sp->depths[j]; /* if nvisuals == 0 then visuals will be NULL */ for (k = 0; k < dp->nvisuals; k++) { vp = &dp->visuals[k]; if (vp->visualid == id) return (vp); } } } return (NULL); } int XFree (void *data) { Xfree (data); return 1; } #ifdef _XNEEDBCOPYFUNC void _Xbcopy(b1, b2, length) register char *b1, *b2; register length; { if (b1 < b2) { b2 += length; b1 += length; while (length--) *--b2 = *--b1; } else { while (length--) *b2++ = *b1++; } } #endif #ifdef DataRoutineIsProcedure void Data( Display *dpy, char *data, long len) { if (dpy->bufptr + (len) <= dpy->bufmax) { memcpy(dpy->bufptr, data, (int)len); dpy->bufptr += ((len) + 3) & ~3; } else { _XSend(dpy, data, len); } } #endif /* DataRoutineIsProcedure */ #ifdef LONG64 int _XData32( Display *dpy, register long *data, unsigned len) { register int *buf; register long i; while (len) { buf = (int *)dpy->bufptr; i = dpy->bufmax - (char *)buf; if (!i) { _XFlush(dpy); continue; } if (len < i) i = len; dpy->bufptr = (char *)buf + i; len -= i; i >>= 2; while (--i >= 0) *buf++ = *data++; } return 0; } #endif /* LONG64 */ #ifdef WORD64 /* * XXX This is a *really* stupid way of doing this. It should just use * dpy->bufptr directly, taking into account where in the word it is. */ /* * Data16 - Place 16 bit data in the buffer. * * "dpy" is a pointer to a Display. * "data" is a pointer to the data. * "len" is the length in bytes of the data. */ static doData16( register Display *dpy, short *data, unsigned len, char *packbuffer) { long *lp,*lpack; long i, nwords,bits; long mask16 = 0x000000000000ffff; lp = (long *)data; lpack = (long *)packbuffer; /* nwords is the number of 16 bit values to be packed, * the low order 16 bits of each word will be packed * into 64 bit words */ nwords = len >> 1; bits = 48; for(i=0;i<nwords;i++){ if (bits == 48) *lpack = 0; *lpack ^= (*lp & mask16) << bits; bits -= 16 ; lp++; if(bits < 0){ lpack++; bits = 48; } } Data(dpy, packbuffer, len); } _XData16 ( Display *dpy, short *data, unsigned len) { char packbuffer[PACKBUFFERSIZE]; unsigned nunits = PACKBUFFERSIZE >> 1; for (; len > PACKBUFFERSIZE; len -= PACKBUFFERSIZE, data += nunits) { doData16 (dpy, data, PACKBUFFERSIZE, packbuffer); } if (len) doData16 (dpy, data, len, packbuffer); } /* * Data32 - Place 32 bit data in the buffer. * * "dpy" is a pointer to a Display. * "data" is a pointer to the data. * "len" is the length in bytes of the data. */ static doData32( register Display *dpy long *data, unsigned len, char *packbuffer) { long *lp,*lpack; long i,bits,nwords; long mask32 = 0x00000000ffffffff; lpack = (long *) packbuffer; lp = data; /* nwords is the number of 32 bit values to be packed * the low order 32 bits of each word will be packed * into 64 bit words */ nwords = len >> 2; bits = 32; for(i=0;i<nwords;i++){ if (bits == 32) *lpack = 0; *lpack ^= (*lp & mask32) << bits; bits = bits ^32; lp++; if(bits) lpack++; } Data(dpy, packbuffer, len); } void _XData32( Display *dpy, long *data, unsigned len, { char packbuffer[PACKBUFFERSIZE]; unsigned nunits = PACKBUFFERSIZE >> 2; for (; len > PACKBUFFERSIZE; len -= PACKBUFFERSIZE, data += nunits) { doData32 (dpy, data, PACKBUFFERSIZE, packbuffer); } if (len) doData32 (dpy, data, len, packbuffer); } #endif /* WORD64 */ /* Make sure this produces the same string as DefineLocal/DefineSelf in xdm. * Otherwise, Xau will not be able to find your cookies in the Xauthority file. * * Note: POSIX says that the ``nodename'' member of utsname does _not_ have * to have sufficient information for interfacing to the network, * and so, you may be better off using gethostname (if it exists). */ #if (defined(_POSIX_SOURCE) && !defined(AIXV3) && !defined(__QNX__)) || defined(hpux) || defined(USG) || defined(SVR4) #define NEED_UTSNAME #include <sys/utsname.h> #endif /* * _XGetHostname - similar to gethostname but allows special processing. */ int _XGetHostname ( char *buf, int maxlen) { int len; #ifdef NEED_UTSNAME struct utsname name; if (maxlen <= 0 || buf == NULL) return 0; uname (&name); len = strlen (name.nodename); if (len >= maxlen) len = maxlen - 1; strncpy (buf, name.nodename, len); buf[len] = '\0'; #else if (maxlen <= 0 || buf == NULL) return 0; buf[0] = '\0'; (void) gethostname (buf, maxlen); buf [maxlen - 1] = '\0'; len = strlen(buf); #endif /* NEED_UTSNAME */ return len; } /* * _XScreenOfWindow - get the Screen of a given window */ Screen *_XScreenOfWindow (dpy, w) Display *dpy; Window w; { register int i; Window root; int x, y; /* dummy variables */ unsigned int width, height, bw, depth; /* dummy variables */ if (XGetGeometry (dpy, w, &root, &x, &y, &width, &height, &bw, &depth) == False) { return None; } for (i = 0; i < ScreenCount (dpy); i++) { /* find root from list */ if (root == RootWindow (dpy, i)) { return ScreenOfDisplay (dpy, i); } } return NULL; } #if defined(WIN32) /* * These functions are intended to be used internally to Xlib only. * These functions will always prefix the path with a DOS drive in the * form "<drive-letter>:". As such, these functions are only suitable * for use by Xlib function that supply a root-based path to some * particular file, e.g. <ProjectRoot>/lib/X11/locale/locale.dir will * be converted to "C:/usr/X11R6.3/lib/X11/locale/locale.dir". */ static int access_file (path, pathbuf, len_pathbuf, pathret) char* path; char* pathbuf; int len_pathbuf; char** pathret; { if (access (path, F_OK) == 0) { if (strlen (path) < len_pathbuf) *pathret = pathbuf; else *pathret = Xmalloc (strlen (path) + 1); if (*pathret) { strcpy (*pathret, path); return 1; } } return 0; } static int AccessFile (path, pathbuf, len_pathbuf, pathret) char* path; char* pathbuf; int len_pathbuf; char** pathret; { unsigned long drives; int i, len; char* drive; char buf[MAX_PATH]; char* bufp; /* just try the "raw" name first and see if it works */ if (access_file (path, pathbuf, len_pathbuf, pathret)) return 1; /* try the places set in the environment */ drive = getenv ("_XBASEDRIVE"); #ifdef __UNIXOS2__ if (!drive) drive = getenv ("X11ROOT"); #endif if (!drive) drive = "C:"; len = strlen (drive) + strlen (path); if (len < MAX_PATH) bufp = buf; else bufp = Xmalloc (len + 1); strcpy (bufp, drive); strcat (bufp, path); if (access_file (bufp, pathbuf, len_pathbuf, pathret)) { if (bufp != buf) Xfree (bufp); return 1; } #ifndef __UNIXOS2__ /* one last place to look */ drive = getenv ("HOMEDRIVE"); if (drive) { len = strlen (drive) + strlen (path); if (len < MAX_PATH) bufp = buf; else bufp = Xmalloc (len + 1); strcpy (bufp, drive); strcat (bufp, path); if (access_file (bufp, pathbuf, len_pathbuf, pathret)) { if (bufp != buf) Xfree (bufp); return 1; } } /* tried everywhere else, go fishing */ #define C_DRIVE ('C' - 'A') #define Z_DRIVE ('Z' - 'A') /* does OS/2 (with or with gcc-emx) have getdrives? */ drives = _getdrives (); for (i = C_DRIVE; i <= Z_DRIVE; i++) { /* don't check on A: or B: */ if ((1 << i) & drives) { len = 2 + strlen (path); if (len < MAX_PATH) bufp = buf; else bufp = Xmalloc (len + 1); *bufp = 'A' + i; *(bufp + 1) = ':'; *(bufp + 2) = '\0'; strcat (bufp, path); if (access_file (bufp, pathbuf, len_pathbuf, pathret)) { if (bufp != buf) Xfree (bufp); return 1; } } } #endif return 0; } int _XOpenFile(path, flags) _Xconst char* path; int flags; { char buf[MAX_PATH]; char* bufp = NULL; int ret = -1; UINT olderror = SetErrorMode (SEM_FAILCRITICALERRORS); if (AccessFile (path, buf, MAX_PATH, &bufp)) ret = open (bufp, flags); (void) SetErrorMode (olderror); if (bufp != buf) Xfree (bufp); return ret; } void* _XFopenFile(path, mode) _Xconst char* path; _Xconst char* mode; { char buf[MAX_PATH]; char* bufp = NULL; void* ret = NULL; UINT olderror = SetErrorMode (SEM_FAILCRITICALERRORS); if (AccessFile (path, buf, MAX_PATH, &bufp)) ret = fopen (bufp, mode); (void) SetErrorMode (olderror); if (bufp != buf) Xfree (bufp); return ret; } int _XAccessFile(path) _Xconst char* path; { char buf[MAX_PATH]; char* bufp; int ret = -1; UINT olderror = SetErrorMode (SEM_FAILCRITICALERRORS); ret = AccessFile (path, buf, MAX_PATH, &bufp); (void) SetErrorMode (olderror); if (bufp != buf) Xfree (bufp); return ret; } #endif #ifdef WIN32 #undef _Xdebug int _Xdebug = 0; int *_Xdebug_p = &_Xdebug; void (**_XCreateMutex_fn_p)(LockInfoPtr) = &_XCreateMutex_fn; void (**_XFreeMutex_fn_p)(LockInfoPtr) = &_XFreeMutex_fn; void (**_XLockMutex_fn_p)(LockInfoPtr #if defined(XTHREADS_WARN) || defined(XTHREADS_FILE_LINE) , char * /* file */ , int /* line */ #endif ) = &_XLockMutex_fn; void (**_XUnlockMutex_fn_p)(LockInfoPtr #if defined(XTHREADS_WARN) || defined(XTHREADS_FILE_LINE) , char * /* file */ , int /* line */ #endif ) = &_XUnlockMutex_fn; LockInfoPtr *_Xglobal_lock_p = &_Xglobal_lock; #endif