aboutsummaryrefslogtreecommitdiff
path: root/nx-X11/extras/Mesa/src/mesa/math/m_matrix.h
blob: e8303f3ac5cd2bc59414a26d4333022c1d8e38eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
 * Mesa 3-D graphics library
 * Version:  6.3
 *
 * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */


/**
 * \file math/m_matrix.h
 * Defines basic structures for matrix-handling.
 */

#ifndef _M_MATRIX_H
#define _M_MATRIX_H



/**
 * \name Symbolic names to some of the entries in the matrix
 *
 * These are handy for the viewport mapping, which is expressed as a matrix.
 */
/*@{*/
#define MAT_SX 0
#define MAT_SY 5
#define MAT_SZ 10
#define MAT_TX 12
#define MAT_TY 13
#define MAT_TZ 14
/*@}*/


/**
 * Different kinds of 4x4 transformation matrices.
 * We use these to select specific optimized vertex transformation routines.
 */
enum GLmatrixtype {
   MATRIX_GENERAL,	/**< general 4x4 matrix */
   MATRIX_IDENTITY,	/**< identity matrix */
   MATRIX_3D_NO_ROT,	/**< orthogonal projection and others... */
   MATRIX_PERSPECTIVE,	/**< perspective projection matrix */
   MATRIX_2D,		/**< 2-D transformation */
   MATRIX_2D_NO_ROT,	/**< 2-D scale & translate only */
   MATRIX_3D		/**< 3-D transformation */
} ;

/**
 * Matrix type to represent 4x4 transformation matrices.
 */
typedef struct {
   GLfloat *m;		/**< 16 matrix elements (16-byte aligned) */
   GLfloat *inv;	/**< optional 16-element inverse (16-byte aligned) */
   GLuint flags;        /**< possible values determined by (of \link
                         * MatFlags MAT_FLAG_* flags\endlink)
                         */
   enum GLmatrixtype type;
} GLmatrix;




extern void
_math_matrix_ctr( GLmatrix *m );

extern void
_math_matrix_dtr( GLmatrix *m );

extern void
_math_matrix_alloc_inv( GLmatrix *m );

extern void
_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b );

extern void
_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *b );

extern void
_math_matrix_loadf( GLmatrix *mat, const GLfloat *m );

extern void
_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z );

extern void
_math_matrix_rotate( GLmatrix *m, GLfloat angle,
		     GLfloat x, GLfloat y, GLfloat z );

extern void
_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z );

extern void
_math_matrix_ortho( GLmatrix *mat,
		    GLfloat left, GLfloat right,
		    GLfloat bottom, GLfloat top,
		    GLfloat nearval, GLfloat farval );

extern void
_math_matrix_frustum( GLmatrix *mat,
		      GLfloat left, GLfloat right,
		      GLfloat bottom, GLfloat top,
		      GLfloat nearval, GLfloat farval );

extern void
_math_matrix_viewport(GLmatrix *m, GLint x, GLint y, GLint width, GLint height,
                      GLfloat zNear, GLfloat zFar, GLfloat depthMax);

extern void
_math_matrix_set_identity( GLmatrix *dest );

extern void
_math_matrix_copy( GLmatrix *to, const GLmatrix *from );

extern void
_math_matrix_analyse( GLmatrix *mat );

extern void
_math_matrix_print( const GLmatrix *m );

extern GLboolean
_math_matrix_is_length_preserving( const GLmatrix *m );

extern GLboolean
_math_matrix_has_rotation( const GLmatrix *m );

extern GLboolean
_math_matrix_is_general_scale( const GLmatrix *m );

extern GLboolean
_math_matrix_is_dirty( const GLmatrix *m );


/**
 * \name Related functions that don't actually operate on GLmatrix structs
 */
/*@{*/

extern void
_math_transposef( GLfloat to[16], const GLfloat from[16] );

extern void
_math_transposed( GLdouble to[16], const GLdouble from[16] );

extern void
_math_transposefd( GLfloat to[16], const GLdouble from[16] );


/*
 * Transform a point (column vector) by a matrix:   Q = M * P
 */
#define TRANSFORM_POINT( Q, M, P )					\
   Q[0] = M[0] * P[0] + M[4] * P[1] + M[8] *  P[2] + M[12] * P[3];	\
   Q[1] = M[1] * P[0] + M[5] * P[1] + M[9] *  P[2] + M[13] * P[3];	\
   Q[2] = M[2] * P[0] + M[6] * P[1] + M[10] * P[2] + M[14] * P[3];	\
   Q[3] = M[3] * P[0] + M[7] * P[1] + M[11] * P[2] + M[15] * P[3];


#define TRANSFORM_POINT3( Q, M, P )				\
   Q[0] = M[0] * P[0] + M[4] * P[1] + M[8] *  P[2] + M[12];	\
   Q[1] = M[1] * P[0] + M[5] * P[1] + M[9] *  P[2] + M[13];	\
   Q[2] = M[2] * P[0] + M[6] * P[1] + M[10] * P[2] + M[14];	\
   Q[3] = M[3] * P[0] + M[7] * P[1] + M[11] * P[2] + M[15];


/*
 * Transform a normal (row vector) by a matrix:  [NX NY NZ] = N * MAT
 */
#define TRANSFORM_NORMAL( TO, N, MAT )				\
do {								\
   TO[0] = N[0] * MAT[0] + N[1] * MAT[1] + N[2] * MAT[2];	\
   TO[1] = N[0] * MAT[4] + N[1] * MAT[5] + N[2] * MAT[6];	\
   TO[2] = N[0] * MAT[8] + N[1] * MAT[9] + N[2] * MAT[10];	\
} while (0)


/*@}*/


#endif