aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/glsl/ast_function.cpp
diff options
context:
space:
mode:
authormarha <marha@users.sourceforge.net>2010-11-22 19:42:40 +0000
committermarha <marha@users.sourceforge.net>2010-11-22 19:42:40 +0000
commit85ef9930f56bf15181f9a0b238f03d55303cf411 (patch)
tree63b43286956ebd1c35c96e9b3d5305aabdf71a0f /mesalib/src/glsl/ast_function.cpp
parent94810d19989336862251dbf69c3f3acb18a9b06d (diff)
downloadvcxsrv-85ef9930f56bf15181f9a0b238f03d55303cf411.tar.gz
vcxsrv-85ef9930f56bf15181f9a0b238f03d55303cf411.tar.bz2
vcxsrv-85ef9930f56bf15181f9a0b238f03d55303cf411.zip
Updated to mesalib 7.9
Diffstat (limited to 'mesalib/src/glsl/ast_function.cpp')
-rw-r--r--mesalib/src/glsl/ast_function.cpp1241
1 files changed, 1241 insertions, 0 deletions
diff --git a/mesalib/src/glsl/ast_function.cpp b/mesalib/src/glsl/ast_function.cpp
new file mode 100644
index 000000000..20448f5a9
--- /dev/null
+++ b/mesalib/src/glsl/ast_function.cpp
@@ -0,0 +1,1241 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+#include "glsl_symbol_table.h"
+#include "ast.h"
+#include "glsl_types.h"
+#include "ir.h"
+#include "main/core.h" /* for MIN2 */
+
+static ir_rvalue *
+convert_component(ir_rvalue *src, const glsl_type *desired_type);
+
+bool
+apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
+ struct _mesa_glsl_parse_state *state);
+
+static unsigned
+process_parameters(exec_list *instructions, exec_list *actual_parameters,
+ exec_list *parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ unsigned count = 0;
+
+ foreach_list (n, parameters) {
+ ast_node *const ast = exec_node_data(ast_node, n, link);
+ ir_rvalue *result = ast->hir(instructions, state);
+
+ ir_constant *const constant = result->constant_expression_value();
+ if (constant != NULL)
+ result = constant;
+
+ actual_parameters->push_tail(result);
+ count++;
+ }
+
+ return count;
+}
+
+
+/**
+ * Generate a source prototype for a function signature
+ *
+ * \param return_type Return type of the function. May be \c NULL.
+ * \param name Name of the function.
+ * \param parameters Parameter list for the function. This may be either a
+ * formal or actual parameter list. Only the type is used.
+ *
+ * \return
+ * A talloced string representing the prototype of the function.
+ */
+char *
+prototype_string(const glsl_type *return_type, const char *name,
+ exec_list *parameters)
+{
+ char *str = NULL;
+
+ if (return_type != NULL)
+ str = talloc_asprintf(str, "%s ", return_type->name);
+
+ str = talloc_asprintf_append(str, "%s(", name);
+
+ const char *comma = "";
+ foreach_list(node, parameters) {
+ const ir_instruction *const param = (ir_instruction *) node;
+
+ str = talloc_asprintf_append(str, "%s%s", comma, param->type->name);
+ comma = ", ";
+ }
+
+ str = talloc_strdup_append(str, ")");
+ return str;
+}
+
+
+static ir_rvalue *
+process_call(exec_list *instructions, ir_function *f,
+ YYLTYPE *loc, exec_list *actual_parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+
+ ir_function_signature *sig = f->matching_signature(actual_parameters);
+
+ /* The instructions param will be used when the FINISHMEs below are done */
+ (void) instructions;
+
+ if (sig != NULL) {
+ /* Verify that 'out' and 'inout' actual parameters are lvalues. This
+ * isn't done in ir_function::matching_signature because that function
+ * cannot generate the necessary diagnostics.
+ */
+ exec_list_iterator actual_iter = actual_parameters->iterator();
+ exec_list_iterator formal_iter = sig->parameters.iterator();
+
+ while (actual_iter.has_next()) {
+ ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
+ ir_variable *formal = (ir_variable *) formal_iter.get();
+
+ assert(actual != NULL);
+ assert(formal != NULL);
+
+ if ((formal->mode == ir_var_out)
+ || (formal->mode == ir_var_inout)) {
+ if (! actual->is_lvalue()) {
+ /* FINISHME: Log a better diagnostic here. There is no way
+ * FINISHME: to tell the user which parameter is invalid.
+ */
+ _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
+ (formal->mode == ir_var_out) ? "out" : "inout");
+ }
+ }
+
+ if (formal->type->is_numeric() || formal->type->is_boolean()) {
+ ir_rvalue *converted = convert_component(actual, formal->type);
+ actual->replace_with(converted);
+ }
+
+ actual_iter.next();
+ formal_iter.next();
+ }
+
+ /* Always insert the call in the instruction stream, and return a deref
+ * of its return val if it returns a value, since we don't know if
+ * the rvalue is going to be assigned to anything or not.
+ */
+ ir_call *call = new(ctx) ir_call(sig, actual_parameters);
+ if (!sig->return_type->is_void()) {
+ ir_variable *var;
+ ir_dereference_variable *deref;
+
+ var = new(ctx) ir_variable(sig->return_type,
+ talloc_asprintf(ctx, "%s_retval",
+ sig->function_name()),
+ ir_var_temporary);
+ instructions->push_tail(var);
+
+ deref = new(ctx) ir_dereference_variable(var);
+ ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
+ instructions->push_tail(assign);
+ if (state->language_version >= 120)
+ var->constant_value = call->constant_expression_value();
+
+ deref = new(ctx) ir_dereference_variable(var);
+ return deref;
+ } else {
+ instructions->push_tail(call);
+ return NULL;
+ }
+ } else {
+ char *str = prototype_string(NULL, f->name, actual_parameters);
+
+ _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
+ str);
+ talloc_free(str);
+
+ const char *prefix = "candidates are: ";
+ foreach_list (node, &f->signatures) {
+ ir_function_signature *sig = (ir_function_signature *) node;
+
+ str = prototype_string(sig->return_type, f->name, &sig->parameters);
+ _mesa_glsl_error(loc, state, "%s%s\n", prefix, str);
+ talloc_free(str);
+
+ prefix = " ";
+ }
+
+ return ir_call::get_error_instruction(ctx);
+ }
+}
+
+
+static ir_rvalue *
+match_function_by_name(exec_list *instructions, const char *name,
+ YYLTYPE *loc, exec_list *actual_parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ ir_function *f = state->symbols->get_function(name);
+
+ if (f == NULL) {
+ _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ /* Once we've determined that the function being called might exist, try
+ * to find an overload of the function that matches the parameters.
+ */
+ return process_call(instructions, f, loc, actual_parameters, state);
+}
+
+
+/**
+ * Perform automatic type conversion of constructor parameters
+ *
+ * This implements the rules in the "Conversion and Scalar Constructors"
+ * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
+ */
+static ir_rvalue *
+convert_component(ir_rvalue *src, const glsl_type *desired_type)
+{
+ void *ctx = talloc_parent(src);
+ const unsigned a = desired_type->base_type;
+ const unsigned b = src->type->base_type;
+ ir_expression *result = NULL;
+
+ if (src->type->is_error())
+ return src;
+
+ assert(a <= GLSL_TYPE_BOOL);
+ assert(b <= GLSL_TYPE_BOOL);
+
+ if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
+ return src;
+
+ switch (a) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ if (b == GLSL_TYPE_FLOAT)
+ result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
+ else {
+ assert(b == GLSL_TYPE_BOOL);
+ result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
+ }
+ break;
+ case GLSL_TYPE_FLOAT:
+ switch (b) {
+ case GLSL_TYPE_UINT:
+ result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
+ break;
+ case GLSL_TYPE_INT:
+ result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
+ break;
+ case GLSL_TYPE_BOOL:
+ result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
+ break;
+ }
+ break;
+ case GLSL_TYPE_BOOL:
+ switch (b) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
+ break;
+ case GLSL_TYPE_FLOAT:
+ result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
+ break;
+ }
+ break;
+ }
+
+ assert(result != NULL);
+
+ /* Try constant folding; it may fold in the conversion we just added. */
+ ir_constant *const constant = result->constant_expression_value();
+ return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
+}
+
+/**
+ * Dereference a specific component from a scalar, vector, or matrix
+ */
+static ir_rvalue *
+dereference_component(ir_rvalue *src, unsigned component)
+{
+ void *ctx = talloc_parent(src);
+ assert(component < src->type->components());
+
+ /* If the source is a constant, just create a new constant instead of a
+ * dereference of the existing constant.
+ */
+ ir_constant *constant = src->as_constant();
+ if (constant)
+ return new(ctx) ir_constant(constant, component);
+
+ if (src->type->is_scalar()) {
+ return src;
+ } else if (src->type->is_vector()) {
+ return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
+ } else {
+ assert(src->type->is_matrix());
+
+ /* Dereference a row of the matrix, then call this function again to get
+ * a specific element from that row.
+ */
+ const int c = component / src->type->column_type()->vector_elements;
+ const int r = component % src->type->column_type()->vector_elements;
+ ir_constant *const col_index = new(ctx) ir_constant(c);
+ ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
+
+ col->type = src->type->column_type();
+
+ return dereference_component(col, r);
+ }
+
+ assert(!"Should not get here.");
+ return NULL;
+}
+
+
+static ir_rvalue *
+process_array_constructor(exec_list *instructions,
+ const glsl_type *constructor_type,
+ YYLTYPE *loc, exec_list *parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ /* Array constructors come in two forms: sized and unsized. Sized array
+ * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
+ * variables. In this case the number of parameters must exactly match the
+ * specified size of the array.
+ *
+ * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
+ * are vec4 variables. In this case the size of the array being constructed
+ * is determined by the number of parameters.
+ *
+ * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "There must be exactly the same number of arguments as the size of
+ * the array being constructed. If no size is present in the
+ * constructor, then the array is explicitly sized to the number of
+ * arguments provided. The arguments are assigned in order, starting at
+ * element 0, to the elements of the constructed array. Each argument
+ * must be the same type as the element type of the array, or be a type
+ * that can be converted to the element type of the array according to
+ * Section 4.1.10 "Implicit Conversions.""
+ */
+ exec_list actual_parameters;
+ const unsigned parameter_count =
+ process_parameters(instructions, &actual_parameters, parameters, state);
+
+ if ((parameter_count == 0)
+ || ((constructor_type->length != 0)
+ && (constructor_type->length != parameter_count))) {
+ const unsigned min_param = (constructor_type->length == 0)
+ ? 1 : constructor_type->length;
+
+ _mesa_glsl_error(loc, state, "array constructor must have %s %u "
+ "parameter%s",
+ (constructor_type->length != 0) ? "at least" : "exactly",
+ min_param, (min_param <= 1) ? "" : "s");
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ if (constructor_type->length == 0) {
+ constructor_type =
+ glsl_type::get_array_instance(constructor_type->element_type(),
+ parameter_count);
+ assert(constructor_type != NULL);
+ assert(constructor_type->length == parameter_count);
+ }
+
+ bool all_parameters_are_constant = true;
+
+ /* Type cast each parameter and, if possible, fold constants. */
+ foreach_list_safe(n, &actual_parameters) {
+ ir_rvalue *ir = (ir_rvalue *) n;
+ ir_rvalue *result = ir;
+
+ /* Apply implicit conversions (not the scalar constructor rules!) */
+ if (constructor_type->element_type()->is_float()) {
+ const glsl_type *desired_type =
+ glsl_type::get_instance(GLSL_TYPE_FLOAT,
+ ir->type->vector_elements,
+ ir->type->matrix_columns);
+ result = convert_component(ir, desired_type);
+ }
+
+ if (result->type != constructor_type->element_type()) {
+ _mesa_glsl_error(loc, state, "type error in array constructor: "
+ "expected: %s, found %s",
+ constructor_type->element_type()->name,
+ result->type->name);
+ }
+
+ /* Attempt to convert the parameter to a constant valued expression.
+ * After doing so, track whether or not all the parameters to the
+ * constructor are trivially constant valued expressions.
+ */
+ ir_rvalue *const constant = result->constant_expression_value();
+
+ if (constant != NULL)
+ result = constant;
+ else
+ all_parameters_are_constant = false;
+
+ ir->replace_with(result);
+ }
+
+ if (all_parameters_are_constant)
+ return new(ctx) ir_constant(constructor_type, &actual_parameters);
+
+ ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
+ ir_var_temporary);
+ instructions->push_tail(var);
+
+ int i = 0;
+ foreach_list(node, &actual_parameters) {
+ ir_rvalue *rhs = (ir_rvalue *) node;
+ ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
+ new(ctx) ir_constant(i));
+
+ ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
+ instructions->push_tail(assignment);
+
+ i++;
+ }
+
+ return new(ctx) ir_dereference_variable(var);
+}
+
+
+/**
+ * Try to convert a record constructor to a constant expression
+ */
+static ir_constant *
+constant_record_constructor(const glsl_type *constructor_type,
+ exec_list *parameters, void *mem_ctx)
+{
+ foreach_list(node, parameters) {
+ ir_constant *constant = ((ir_instruction *) node)->as_constant();
+ if (constant == NULL)
+ return NULL;
+ node->replace_with(constant);
+ }
+
+ return new(mem_ctx) ir_constant(constructor_type, parameters);
+}
+
+
+/**
+ * Determine if a list consists of a single scalar r-value
+ */
+bool
+single_scalar_parameter(exec_list *parameters)
+{
+ const ir_rvalue *const p = (ir_rvalue *) parameters->head;
+ assert(((ir_rvalue *)p)->as_rvalue() != NULL);
+
+ return (p->type->is_scalar() && p->next->is_tail_sentinel());
+}
+
+
+/**
+ * Generate inline code for a vector constructor
+ *
+ * The generated constructor code will consist of a temporary variable
+ * declaration of the same type as the constructor. A sequence of assignments
+ * from constructor parameters to the temporary will follow.
+ *
+ * \return
+ * An \c ir_dereference_variable of the temprorary generated in the constructor
+ * body.
+ */
+ir_rvalue *
+emit_inline_vector_constructor(const glsl_type *type,
+ exec_list *instructions,
+ exec_list *parameters,
+ void *ctx)
+{
+ assert(!parameters->is_empty());
+
+ ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
+ instructions->push_tail(var);
+
+ /* There are two kinds of vector constructors.
+ *
+ * - Construct a vector from a single scalar by replicating that scalar to
+ * all components of the vector.
+ *
+ * - Construct a vector from an arbirary combination of vectors and
+ * scalars. The components of the constructor parameters are assigned
+ * to the vector in order until the vector is full.
+ */
+ const unsigned lhs_components = type->components();
+ if (single_scalar_parameter(parameters)) {
+ ir_rvalue *first_param = (ir_rvalue *)parameters->head;
+ ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
+ lhs_components);
+ ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
+ const unsigned mask = (1U << lhs_components) - 1;
+
+ assert(rhs->type == lhs->type);
+
+ ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
+ instructions->push_tail(inst);
+ } else {
+ unsigned base_component = 0;
+ unsigned base_lhs_component = 0;
+ ir_constant_data data;
+ unsigned constant_mask = 0, constant_components = 0;
+
+ memset(&data, 0, sizeof(data));
+
+ foreach_list(node, parameters) {
+ ir_rvalue *param = (ir_rvalue *) node;
+ unsigned rhs_components = param->type->components();
+
+ /* Do not try to assign more components to the vector than it has!
+ */
+ if ((rhs_components + base_lhs_component) > lhs_components) {
+ rhs_components = lhs_components - base_lhs_component;
+ }
+
+ const ir_constant *const c = param->as_constant();
+ if (c != NULL) {
+ for (unsigned i = 0; i < rhs_components; i++) {
+ switch (c->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[i + base_component] = c->get_uint_component(i);
+ break;
+ case GLSL_TYPE_INT:
+ data.i[i + base_component] = c->get_int_component(i);
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[i + base_component] = c->get_float_component(i);
+ break;
+ case GLSL_TYPE_BOOL:
+ data.b[i + base_component] = c->get_bool_component(i);
+ break;
+ default:
+ assert(!"Should not get here.");
+ break;
+ }
+ }
+
+ /* Mask of fields to be written in the assignment.
+ */
+ constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
+ constant_components++;
+
+ base_component += rhs_components;
+ }
+ /* Advance the component index by the number of components
+ * that were just assigned.
+ */
+ base_lhs_component += rhs_components;
+ }
+
+ if (constant_mask != 0) {
+ ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
+ const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
+ constant_components,
+ 1);
+ ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
+
+ ir_instruction *inst =
+ new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
+ instructions->push_tail(inst);
+ }
+
+ base_component = 0;
+ foreach_list(node, parameters) {
+ ir_rvalue *param = (ir_rvalue *) node;
+ unsigned rhs_components = param->type->components();
+
+ /* Do not try to assign more components to the vector than it has!
+ */
+ if ((rhs_components + base_component) > lhs_components) {
+ rhs_components = lhs_components - base_component;
+ }
+
+ const ir_constant *const c = param->as_constant();
+ if (c == NULL) {
+ /* Generate a swizzle in case rhs_components != rhs->type->vector_elements. */
+ unsigned swiz[4] = { 0, 0, 0, 0 };
+ for (unsigned i = 0; i < rhs_components; i++)
+ swiz[i] = i;
+
+ /* Mask of fields to be written in the assignment.
+ */
+ const unsigned write_mask = ((1U << rhs_components) - 1)
+ << base_component;
+
+ ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
+ ir_rvalue *rhs = new(ctx) ir_swizzle(param, swiz, rhs_components);
+
+ ir_instruction *inst =
+ new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
+ instructions->push_tail(inst);
+ }
+
+ /* Advance the component index by the number of components that were
+ * just assigned.
+ */
+ base_component += rhs_components;
+ }
+ }
+ return new(ctx) ir_dereference_variable(var);
+}
+
+
+/**
+ * Generate assignment of a portion of a vector to a portion of a matrix column
+ *
+ * \param src_base First component of the source to be used in assignment
+ * \param column Column of destination to be assiged
+ * \param row_base First component of the destination column to be assigned
+ * \param count Number of components to be assigned
+ *
+ * \note
+ * \c src_base + \c count must be less than or equal to the number of components
+ * in the source vector.
+ */
+ir_instruction *
+assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
+ ir_rvalue *src, unsigned src_base, unsigned count,
+ void *mem_ctx)
+{
+ ir_constant *col_idx = new(mem_ctx) ir_constant(column);
+ ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
+
+ assert(column_ref->type->components() >= (row_base + count));
+ assert(src->type->components() >= (src_base + count));
+
+ /* Generate a swizzle that puts the first element of the source at the
+ * location of the first element of the destination.
+ */
+ unsigned swiz[4] = { src_base, src_base, src_base, src_base };
+ for (unsigned i = 0; i < count; i++)
+ swiz[i + row_base] = i;
+
+ ir_rvalue *const rhs =
+ new(mem_ctx) ir_swizzle(src, swiz, count);
+
+ /* Mask of fields to be written in the assignment.
+ */
+ const unsigned write_mask = ((1U << count) - 1) << row_base;
+
+ return new(mem_ctx) ir_assignment(column_ref, rhs, NULL, write_mask);
+}
+
+
+/**
+ * Generate inline code for a matrix constructor
+ *
+ * The generated constructor code will consist of a temporary variable
+ * declaration of the same type as the constructor. A sequence of assignments
+ * from constructor parameters to the temporary will follow.
+ *
+ * \return
+ * An \c ir_dereference_variable of the temprorary generated in the constructor
+ * body.
+ */
+ir_rvalue *
+emit_inline_matrix_constructor(const glsl_type *type,
+ exec_list *instructions,
+ exec_list *parameters,
+ void *ctx)
+{
+ assert(!parameters->is_empty());
+
+ ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
+ instructions->push_tail(var);
+
+ /* There are three kinds of matrix constructors.
+ *
+ * - Construct a matrix from a single scalar by replicating that scalar to
+ * along the diagonal of the matrix and setting all other components to
+ * zero.
+ *
+ * - Construct a matrix from an arbirary combination of vectors and
+ * scalars. The components of the constructor parameters are assigned
+ * to the matrix in colum-major order until the matrix is full.
+ *
+ * - Construct a matrix from a single matrix. The source matrix is copied
+ * to the upper left portion of the constructed matrix, and the remaining
+ * elements take values from the identity matrix.
+ */
+ ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
+ if (single_scalar_parameter(parameters)) {
+ /* Assign the scalar to the X component of a vec4, and fill the remaining
+ * components with zero.
+ */
+ ir_variable *rhs_var =
+ new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
+ ir_var_temporary);
+ instructions->push_tail(rhs_var);
+
+ ir_constant_data zero;
+ zero.f[0] = 0.0;
+ zero.f[1] = 0.0;
+ zero.f[2] = 0.0;
+ zero.f[3] = 0.0;
+
+ ir_instruction *inst =
+ new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
+ new(ctx) ir_constant(rhs_var->type, &zero),
+ NULL);
+ instructions->push_tail(inst);
+
+ ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
+
+ inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
+ instructions->push_tail(inst);
+
+ /* Assign the temporary vector to each column of the destination matrix
+ * with a swizzle that puts the X component on the diagonal of the
+ * matrix. In some cases this may mean that the X component does not
+ * get assigned into the column at all (i.e., when the matrix has more
+ * columns than rows).
+ */
+ static const unsigned rhs_swiz[4][4] = {
+ { 0, 1, 1, 1 },
+ { 1, 0, 1, 1 },
+ { 1, 1, 0, 1 },
+ { 1, 1, 1, 0 }
+ };
+
+ const unsigned cols_to_init = MIN2(type->matrix_columns,
+ type->vector_elements);
+ for (unsigned i = 0; i < cols_to_init; i++) {
+ ir_constant *const col_idx = new(ctx) ir_constant(i);
+ ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
+
+ ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
+ ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
+ type->vector_elements);
+
+ inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
+ instructions->push_tail(inst);
+ }
+
+ for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
+ ir_constant *const col_idx = new(ctx) ir_constant(i);
+ ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
+
+ ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
+ ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
+ type->vector_elements);
+
+ inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
+ instructions->push_tail(inst);
+ }
+ } else if (first_param->type->is_matrix()) {
+ /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "If a matrix is constructed from a matrix, then each component
+ * (column i, row j) in the result that has a corresponding
+ * component (column i, row j) in the argument will be initialized
+ * from there. All other components will be initialized to the
+ * identity matrix. If a matrix argument is given to a matrix
+ * constructor, it is an error to have any other arguments."
+ */
+ assert(first_param->next->is_tail_sentinel());
+ ir_rvalue *const src_matrix = first_param;
+
+ /* If the source matrix is smaller, pre-initialize the relavent parts of
+ * the destination matrix to the identity matrix.
+ */
+ if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
+ || (src_matrix->type->vector_elements < var->type->vector_elements)) {
+
+ /* If the source matrix has fewer rows, every column of the destination
+ * must be initialized. Otherwise only the columns in the destination
+ * that do not exist in the source must be initialized.
+ */
+ unsigned col =
+ (src_matrix->type->vector_elements < var->type->vector_elements)
+ ? 0 : src_matrix->type->matrix_columns;
+
+ const glsl_type *const col_type = var->type->column_type();
+ for (/* empty */; col < var->type->matrix_columns; col++) {
+ ir_constant_data ident;
+
+ ident.f[0] = 0.0;
+ ident.f[1] = 0.0;
+ ident.f[2] = 0.0;
+ ident.f[3] = 0.0;
+
+ ident.f[col] = 1.0;
+
+ ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
+
+ ir_rvalue *const lhs =
+ new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
+
+ ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
+ instructions->push_tail(inst);
+ }
+ }
+
+ /* Assign columns from the source matrix to the destination matrix.
+ *
+ * Since the parameter will be used in the RHS of multiple assignments,
+ * generate a temporary and copy the paramter there.
+ */
+ ir_variable *const rhs_var =
+ new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
+ ir_var_temporary);
+ instructions->push_tail(rhs_var);
+
+ ir_dereference *const rhs_var_ref =
+ new(ctx) ir_dereference_variable(rhs_var);
+ ir_instruction *const inst =
+ new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
+ instructions->push_tail(inst);
+
+ const unsigned last_row = MIN2(src_matrix->type->vector_elements,
+ var->type->vector_elements);
+ const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
+ var->type->matrix_columns);
+
+ unsigned swiz[4] = { 0, 0, 0, 0 };
+ for (unsigned i = 1; i < last_row; i++)
+ swiz[i] = i;
+
+ const unsigned write_mask = (1U << last_row) - 1;
+
+ for (unsigned i = 0; i < last_col; i++) {
+ ir_dereference *const lhs =
+ new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
+ ir_rvalue *const rhs_col =
+ new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
+
+ /* If one matrix has columns that are smaller than the columns of the
+ * other matrix, wrap the column access of the larger with a swizzle
+ * so that the LHS and RHS of the assignment have the same size (and
+ * therefore have the same type).
+ *
+ * It would be perfectly valid to unconditionally generate the
+ * swizzles, this this will typically result in a more compact IR tree.
+ */
+ ir_rvalue *rhs;
+ if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
+ rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
+ } else {
+ rhs = rhs_col;
+ }
+
+ ir_instruction *inst =
+ new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
+ instructions->push_tail(inst);
+ }
+ } else {
+ const unsigned cols = type->matrix_columns;
+ const unsigned rows = type->vector_elements;
+ unsigned col_idx = 0;
+ unsigned row_idx = 0;
+
+ foreach_list (node, parameters) {
+ ir_rvalue *const rhs = (ir_rvalue *) node;
+ const unsigned components_remaining_this_column = rows - row_idx;
+ unsigned rhs_components = rhs->type->components();
+ unsigned rhs_base = 0;
+
+ /* Since the parameter might be used in the RHS of two assignments,
+ * generate a temporary and copy the paramter there.
+ */
+ ir_variable *rhs_var =
+ new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
+ instructions->push_tail(rhs_var);
+
+ ir_dereference *rhs_var_ref =
+ new(ctx) ir_dereference_variable(rhs_var);
+ ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
+ instructions->push_tail(inst);
+
+ /* Assign the current parameter to as many components of the matrix
+ * as it will fill.
+ *
+ * NOTE: A single vector parameter can span two matrix columns. A
+ * single vec4, for example, can completely fill a mat2.
+ */
+ if (rhs_components >= components_remaining_this_column) {
+ const unsigned count = MIN2(rhs_components,
+ components_remaining_this_column);
+
+ rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
+
+ ir_instruction *inst = assign_to_matrix_column(var, col_idx,
+ row_idx,
+ rhs_var_ref, 0,
+ count, ctx);
+ instructions->push_tail(inst);
+
+ rhs_base = count;
+
+ col_idx++;
+ row_idx = 0;
+ }
+
+ /* If there is data left in the parameter and components left to be
+ * set in the destination, emit another assignment. It is possible
+ * that the assignment could be of a vec4 to the last element of the
+ * matrix. In this case col_idx==cols, but there is still data
+ * left in the source parameter. Obviously, don't emit an assignment
+ * to data outside the destination matrix.
+ */
+ if ((col_idx < cols) && (rhs_base < rhs_components)) {
+ const unsigned count = rhs_components - rhs_base;
+
+ rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
+
+ ir_instruction *inst = assign_to_matrix_column(var, col_idx,
+ row_idx,
+ rhs_var_ref,
+ rhs_base,
+ count, ctx);
+ instructions->push_tail(inst);
+
+ row_idx += count;
+ }
+ }
+ }
+
+ return new(ctx) ir_dereference_variable(var);
+}
+
+
+ir_rvalue *
+emit_inline_record_constructor(const glsl_type *type,
+ exec_list *instructions,
+ exec_list *parameters,
+ void *mem_ctx)
+{
+ ir_variable *const var =
+ new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
+ ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
+
+ instructions->push_tail(var);
+
+ exec_node *node = parameters->head;
+ for (unsigned i = 0; i < type->length; i++) {
+ assert(!node->is_tail_sentinel());
+
+ ir_dereference *const lhs =
+ new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
+ type->fields.structure[i].name);
+
+ ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
+ assert(rhs != NULL);
+
+ ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
+
+ instructions->push_tail(assign);
+ node = node->next;
+ }
+
+ return d;
+}
+
+
+ir_rvalue *
+ast_function_expression::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ /* There are three sorts of function calls.
+ *
+ * 1. constructors - The first subexpression is an ast_type_specifier.
+ * 2. methods - Only the .length() method of array types.
+ * 3. functions - Calls to regular old functions.
+ *
+ * Method calls are actually detected when the ast_field_selection
+ * expression is handled.
+ */
+ if (is_constructor()) {
+ const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
+ YYLTYPE loc = type->get_location();
+ const char *name;
+
+ const glsl_type *const constructor_type = type->glsl_type(& name, state);
+
+
+ /* Constructors for samplers are illegal.
+ */
+ if (constructor_type->is_sampler()) {
+ _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ if (constructor_type->is_array()) {
+ if (state->language_version <= 110) {
+ _mesa_glsl_error(& loc, state,
+ "array constructors forbidden in GLSL 1.10");
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ return process_array_constructor(instructions, constructor_type,
+ & loc, &this->expressions, state);
+ }
+
+
+ /* There are two kinds of constructor call. Constructors for built-in
+ * language types, such as mat4 and vec2, are free form. The only
+ * requirement is that the parameters must provide enough values of the
+ * correct scalar type. Constructors for arrays and structures must
+ * have the exact number of parameters with matching types in the
+ * correct order. These constructors follow essentially the same type
+ * matching rules as functions.
+ */
+ if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
+ return ir_call::get_error_instruction(ctx);
+
+ /* Total number of components of the type being constructed. */
+ const unsigned type_components = constructor_type->components();
+
+ /* Number of components from parameters that have actually been
+ * consumed. This is used to perform several kinds of error checking.
+ */
+ unsigned components_used = 0;
+
+ unsigned matrix_parameters = 0;
+ unsigned nonmatrix_parameters = 0;
+ exec_list actual_parameters;
+
+ foreach_list (n, &this->expressions) {
+ ast_node *ast = exec_node_data(ast_node, n, link);
+ ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
+
+ /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "It is an error to provide extra arguments beyond this
+ * last used argument."
+ */
+ if (components_used >= type_components) {
+ _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
+ "constructor",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ if (!result->type->is_numeric() && !result->type->is_boolean()) {
+ _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
+ "non-numeric data type",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ /* Count the number of matrix and nonmatrix parameters. This
+ * is used below to enforce some of the constructor rules.
+ */
+ if (result->type->is_matrix())
+ matrix_parameters++;
+ else
+ nonmatrix_parameters++;
+
+ actual_parameters.push_tail(result);
+ components_used += result->type->components();
+ }
+
+ /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "It is an error to construct matrices from other matrices. This
+ * is reserved for future use."
+ */
+ if (state->language_version == 110 && matrix_parameters > 0
+ && constructor_type->is_matrix()) {
+ _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
+ "matrix in GLSL 1.10",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "If a matrix argument is given to a matrix constructor, it is
+ * an error to have any other arguments."
+ */
+ if ((matrix_parameters > 0)
+ && ((matrix_parameters + nonmatrix_parameters) > 1)
+ && constructor_type->is_matrix()) {
+ _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
+ "matrix must be only parameter",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "In these cases, there must be enough components provided in the
+ * arguments to provide an initializer for every component in the
+ * constructed value."
+ */
+ if (components_used < type_components && components_used != 1
+ && matrix_parameters == 0) {
+ _mesa_glsl_error(& loc, state, "too few components to construct "
+ "`%s'",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ /* Later, we cast each parameter to the same base type as the
+ * constructor. Since there are no non-floating point matrices, we
+ * need to break them up into a series of column vectors.
+ */
+ if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
+ foreach_list_safe(n, &actual_parameters) {
+ ir_rvalue *matrix = (ir_rvalue *) n;
+
+ if (!matrix->type->is_matrix())
+ continue;
+
+ /* Create a temporary containing the matrix. */
+ ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
+ ir_var_temporary);
+ instructions->push_tail(var);
+ instructions->push_tail(new(ctx) ir_assignment(new(ctx)
+ ir_dereference_variable(var), matrix, NULL));
+ var->constant_value = matrix->constant_expression_value();
+
+ /* Replace the matrix with dereferences of its columns. */
+ for (int i = 0; i < matrix->type->matrix_columns; i++) {
+ matrix->insert_before(new (ctx) ir_dereference_array(var,
+ new(ctx) ir_constant(i)));
+ }
+ matrix->remove();
+ }
+ }
+
+ bool all_parameters_are_constant = true;
+
+ /* Type cast each parameter and, if possible, fold constants.*/
+ foreach_list_safe(n, &actual_parameters) {
+ ir_rvalue *ir = (ir_rvalue *) n;
+
+ const glsl_type *desired_type =
+ glsl_type::get_instance(constructor_type->base_type,
+ ir->type->vector_elements,
+ ir->type->matrix_columns);
+ ir_rvalue *result = convert_component(ir, desired_type);
+
+ /* Attempt to convert the parameter to a constant valued expression.
+ * After doing so, track whether or not all the parameters to the
+ * constructor are trivially constant valued expressions.
+ */
+ ir_rvalue *const constant = result->constant_expression_value();
+
+ if (constant != NULL)
+ result = constant;
+ else
+ all_parameters_are_constant = false;
+
+ if (result != ir) {
+ ir->replace_with(result);
+ }
+ }
+
+ /* If all of the parameters are trivially constant, create a
+ * constant representing the complete collection of parameters.
+ */
+ if (all_parameters_are_constant) {
+ return new(ctx) ir_constant(constructor_type, &actual_parameters);
+ } else if (constructor_type->is_scalar()) {
+ return dereference_component((ir_rvalue *) actual_parameters.head,
+ 0);
+ } else if (constructor_type->is_vector()) {
+ return emit_inline_vector_constructor(constructor_type,
+ instructions,
+ &actual_parameters,
+ ctx);
+ } else {
+ assert(constructor_type->is_matrix());
+ return emit_inline_matrix_constructor(constructor_type,
+ instructions,
+ &actual_parameters,
+ ctx);
+ }
+ } else {
+ const ast_expression *id = subexpressions[0];
+ YYLTYPE loc = id->get_location();
+ exec_list actual_parameters;
+
+ process_parameters(instructions, &actual_parameters, &this->expressions,
+ state);
+
+ const glsl_type *const type =
+ state->symbols->get_type(id->primary_expression.identifier);
+
+ if ((type != NULL) && type->is_record()) {
+ exec_node *node = actual_parameters.head;
+ for (unsigned i = 0; i < type->length; i++) {
+ ir_rvalue *ir = (ir_rvalue *) node;
+
+ if (node->is_tail_sentinel()) {
+ _mesa_glsl_error(&loc, state,
+ "insufficient parameters to constructor "
+ "for `%s'",
+ type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ if (apply_implicit_conversion(type->fields.structure[i].type, ir,
+ state)) {
+ node->replace_with(ir);
+ } else {
+ _mesa_glsl_error(&loc, state,
+ "parameter type mismatch in constructor "
+ "for `%s.%s' (%s vs %s)",
+ type->name,
+ type->fields.structure[i].name,
+ ir->type->name,
+ type->fields.structure[i].type->name);
+ return ir_call::get_error_instruction(ctx);;
+ }
+
+ node = node->next;
+ }
+
+ if (!node->is_tail_sentinel()) {
+ _mesa_glsl_error(&loc, state, "too many parameters in constructor "
+ "for `%s'", type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ ir_rvalue *const constant =
+ constant_record_constructor(type, &actual_parameters, state);
+
+ return (constant != NULL)
+ ? constant
+ : emit_inline_record_constructor(type, instructions,
+ &actual_parameters, state);
+ }
+
+ return match_function_by_name(instructions,
+ id->primary_expression.identifier, & loc,
+ &actual_parameters, state);
+ }
+
+ return ir_call::get_error_instruction(ctx);
+}