diff options
author | marha <marha@users.sourceforge.net> | 2011-02-16 17:16:41 +0000 |
---|---|---|
committer | marha <marha@users.sourceforge.net> | 2011-02-16 17:16:41 +0000 |
commit | 41723858b0effb450ce946297e5a606bc7348be2 (patch) | |
tree | 8831ace435ad11e06f196e62f0fb4d63fa740deb /mesalib/src/glsl/ir_constant_expression.cpp | |
parent | 92fef6a3a6851ee123dd793788aac50c0831a964 (diff) | |
parent | 48d0dcbd5b7f80810ce259bc9ed6f57f99e27ca9 (diff) | |
download | vcxsrv-41723858b0effb450ce946297e5a606bc7348be2.tar.gz vcxsrv-41723858b0effb450ce946297e5a606bc7348be2.tar.bz2 vcxsrv-41723858b0effb450ce946297e5a606bc7348be2.zip |
svn merge ^/branches/released .
Diffstat (limited to 'mesalib/src/glsl/ir_constant_expression.cpp')
-rw-r--r-- | mesalib/src/glsl/ir_constant_expression.cpp | 2748 |
1 files changed, 1372 insertions, 1376 deletions
diff --git a/mesalib/src/glsl/ir_constant_expression.cpp b/mesalib/src/glsl/ir_constant_expression.cpp index 2841fb350..1d39e31fa 100644 --- a/mesalib/src/glsl/ir_constant_expression.cpp +++ b/mesalib/src/glsl/ir_constant_expression.cpp @@ -1,1376 +1,1372 @@ -/* - * Copyright © 2010 Intel Corporation - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice (including the next - * paragraph) shall be included in all copies or substantial portions of the - * Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING - * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - * DEALINGS IN THE SOFTWARE. - */ - -/** - * \file ir_constant_expression.cpp - * Evaluate and process constant valued expressions - * - * In GLSL, constant valued expressions are used in several places. These - * must be processed and evaluated very early in the compilation process. - * - * * Sizes of arrays - * * Initializers for uniforms - * * Initializers for \c const variables - */ - -#include <math.h> -#include "main/core.h" /* for MAX2, MIN2, CLAMP */ -#include "ir.h" -#include "ir_visitor.h" -#include "glsl_types.h" - -static float -dot(ir_constant *op0, ir_constant *op1) -{ - assert(op0->type->is_float() && op1->type->is_float()); - - float result = 0; - for (unsigned c = 0; c < op0->type->components(); c++) - result += op0->value.f[c] * op1->value.f[c]; - - return result; -} - -ir_constant * -ir_expression::constant_expression_value() -{ - if (this->type->is_error()) - return NULL; - - ir_constant *op[Elements(this->operands)] = { NULL, }; - ir_constant_data data; - - memset(&data, 0, sizeof(data)); - - for (unsigned operand = 0; operand < this->get_num_operands(); operand++) { - op[operand] = this->operands[operand]->constant_expression_value(); - if (!op[operand]) - return NULL; - } - - if (op[1] != NULL) - assert(op[0]->type->base_type == op[1]->type->base_type); - - bool op0_scalar = op[0]->type->is_scalar(); - bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar(); - - /* When iterating over a vector or matrix's components, we want to increase - * the loop counter. However, for scalars, we want to stay at 0. - */ - unsigned c0_inc = op0_scalar ? 0 : 1; - unsigned c1_inc = op1_scalar ? 0 : 1; - unsigned components; - if (op1_scalar || !op[1]) { - components = op[0]->type->components(); - } else { - components = op[1]->type->components(); - } - - void *ctx = ralloc_parent(this); - - /* Handle array operations here, rather than below. */ - if (op[0]->type->is_array()) { - assert(op[1] != NULL && op[1]->type->is_array()); - switch (this->operation) { - case ir_binop_all_equal: - return new(ctx) ir_constant(op[0]->has_value(op[1])); - case ir_binop_any_nequal: - return new(ctx) ir_constant(!op[0]->has_value(op[1])); - default: - break; - } - return NULL; - } - - switch (this->operation) { - case ir_unop_bit_not: - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - for (unsigned c = 0; c < components; c++) - data.i[c] = ~ op[0]->value.i[c]; - break; - case GLSL_TYPE_UINT: - for (unsigned c = 0; c < components; c++) - data.u[c] = ~ op[0]->value.u[c]; - break; - default: - assert(0); - } - break; - - case ir_unop_logic_not: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = !op[0]->value.b[c]; - break; - - case ir_unop_f2i: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = (int) op[0]->value.f[c]; - } - break; - case ir_unop_i2f: - assert(op[0]->type->base_type == GLSL_TYPE_INT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = (float) op[0]->value.i[c]; - } - break; - case ir_unop_u2f: - assert(op[0]->type->base_type == GLSL_TYPE_UINT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = (float) op[0]->value.u[c]; - } - break; - case ir_unop_b2f: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F; - } - break; - case ir_unop_f2b: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.b[c] = op[0]->value.f[c] != 0.0F ? true : false; - } - break; - case ir_unop_b2i: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.u[c] = op[0]->value.b[c] ? 1 : 0; - } - break; - case ir_unop_i2b: - assert(op[0]->type->is_integer()); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.b[c] = op[0]->value.u[c] ? true : false; - } - break; - - case ir_unop_any: - assert(op[0]->type->is_boolean()); - data.b[0] = false; - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->value.b[c]) - data.b[0] = true; - } - break; - - case ir_unop_trunc: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = truncf(op[0]->value.f[c]); - } - break; - - case ir_unop_ceil: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = ceilf(op[0]->value.f[c]); - } - break; - - case ir_unop_floor: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = floorf(op[0]->value.f[c]); - } - break; - - case ir_unop_fract: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = 0; - break; - case GLSL_TYPE_INT: - data.i[c] = 0; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]); - break; - default: - assert(0); - } - } - break; - - case ir_unop_sin: - case ir_unop_sin_reduced: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = sinf(op[0]->value.f[c]); - } - break; - - case ir_unop_cos: - case ir_unop_cos_reduced: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = cosf(op[0]->value.f[c]); - } - break; - - case ir_unop_neg: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = -((int) op[0]->value.u[c]); - break; - case GLSL_TYPE_INT: - data.i[c] = -op[0]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = -op[0]->value.f[c]; - break; - default: - assert(0); - } - } - break; - - case ir_unop_abs: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c]; - if (data.i[c] < 0) - data.i[c] = -data.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = fabs(op[0]->value.f[c]); - break; - default: - assert(0); - } - } - break; - - case ir_unop_sign: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.i[c] > 0; - break; - case GLSL_TYPE_INT: - data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0); - break; - case GLSL_TYPE_FLOAT: - data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0)); - break; - default: - assert(0); - } - } - break; - - case ir_unop_rcp: - /* FINISHME: Emit warning when division-by-zero is detected. */ - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_UINT: - if (op[0]->value.u[c] == 0.0) - return NULL; - data.u[c] = 1 / op[0]->value.u[c]; - break; - case GLSL_TYPE_INT: - if (op[0]->value.i[c] == 0.0) - return NULL; - data.i[c] = 1 / op[0]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - if (op[0]->value.f[c] == 0.0) - return NULL; - data.f[c] = 1.0F / op[0]->value.f[c]; - break; - default: - assert(0); - } - } - break; - - case ir_unop_rsq: - /* FINISHME: Emit warning when division-by-zero is detected. */ - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - float s = sqrtf(op[0]->value.f[c]); - if (s == 0) - return NULL; - data.f[c] = 1.0F / s; - } - break; - - case ir_unop_sqrt: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = sqrtf(op[0]->value.f[c]); - } - break; - - case ir_unop_exp: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = expf(op[0]->value.f[c]); - } - break; - - case ir_unop_exp2: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = exp2f(op[0]->value.f[c]); - } - break; - - case ir_unop_log: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = logf(op[0]->value.f[c]); - } - break; - - case ir_unop_log2: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = log2f(op[0]->value.f[c]); - } - break; - - case ir_unop_dFdx: - case ir_unop_dFdy: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = 0.0; - } - break; - - case ir_binop_pow: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]); - } - break; - - case ir_binop_dot: - data.f[0] = dot(op[0], op[1]); - break; - - case ir_binop_min: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]); - break; - case GLSL_TYPE_INT: - data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]); - break; - case GLSL_TYPE_FLOAT: - data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]); - break; - default: - assert(0); - } - } - - break; - case ir_binop_max: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]); - break; - case GLSL_TYPE_INT: - data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]); - break; - case GLSL_TYPE_FLOAT: - data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]); - break; - default: - assert(0); - } - } - break; - - case ir_binop_add: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1]; - break; - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1]; - break; - default: - assert(0); - } - } - - break; - case ir_binop_sub: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1]; - break; - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]; - break; - default: - assert(0); - } - } - - break; - case ir_binop_mul: - /* Check for equal types, or unequal types involving scalars */ - if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix()) - || op0_scalar || op1_scalar) { - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1]; - break; - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1]; - break; - default: - assert(0); - } - } - } else { - assert(op[0]->type->is_matrix() || op[1]->type->is_matrix()); - - /* Multiply an N-by-M matrix with an M-by-P matrix. Since either - * matrix can be a GLSL vector, either N or P can be 1. - * - * For vec*mat, the vector is treated as a row vector. This - * means the vector is a 1-row x M-column matrix. - * - * For mat*vec, the vector is treated as a column vector. Since - * matrix_columns is 1 for vectors, this just works. - */ - const unsigned n = op[0]->type->is_vector() - ? 1 : op[0]->type->vector_elements; - const unsigned m = op[1]->type->vector_elements; - const unsigned p = op[1]->type->matrix_columns; - for (unsigned j = 0; j < p; j++) { - for (unsigned i = 0; i < n; i++) { - for (unsigned k = 0; k < m; k++) { - data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j]; - } - } - } - } - - break; - case ir_binop_div: - /* FINISHME: Emit warning when division-by-zero is detected. */ - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - if (op[1]->value.u[c1] == 0) - return NULL; - data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1]; - break; - case GLSL_TYPE_INT: - if (op[1]->value.i[c1] == 0) - return NULL; - data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1]; - break; - case GLSL_TYPE_FLOAT: - if (op[1]->value.f[c1] == 0) - return NULL; - data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1]; - break; - default: - assert(0); - } - } - - break; - case ir_binop_mod: - /* FINISHME: Emit warning when division-by-zero is detected. */ - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - if (op[1]->value.u[c1] == 0) - return NULL; - data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1]; - break; - case GLSL_TYPE_INT: - if (op[1]->value.i[c1] == 0) - return NULL; - data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1]; - break; - case GLSL_TYPE_FLOAT: - if (op[1]->value.f[c1] == 0) - return NULL; - /* We don't use fmod because it rounds toward zero; GLSL specifies - * the use of floor. - */ - data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1] - * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]); - break; - default: - assert(0); - } - } - - break; - - case ir_binop_logic_and: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = op[0]->value.b[c] && op[1]->value.b[c]; - break; - case ir_binop_logic_xor: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c]; - break; - case ir_binop_logic_or: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = op[0]->value.b[c] || op[1]->value.b[c]; - break; - - case ir_binop_less: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[0] = op[0]->value.u[0] < op[1]->value.u[0]; - break; - case GLSL_TYPE_INT: - data.b[0] = op[0]->value.i[0] < op[1]->value.i[0]; - break; - case GLSL_TYPE_FLOAT: - data.b[0] = op[0]->value.f[0] < op[1]->value.f[0]; - break; - default: - assert(0); - } - } - break; - case ir_binop_greater: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] > op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] > op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] > op[1]->value.f[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_lequal: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[0] = op[0]->value.u[0] <= op[1]->value.u[0]; - break; - case GLSL_TYPE_INT: - data.b[0] = op[0]->value.i[0] <= op[1]->value.i[0]; - break; - case GLSL_TYPE_FLOAT: - data.b[0] = op[0]->value.f[0] <= op[1]->value.f[0]; - break; - default: - assert(0); - } - } - break; - case ir_binop_gequal: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[0] = op[0]->value.u[0] >= op[1]->value.u[0]; - break; - case GLSL_TYPE_INT: - data.b[0] = op[0]->value.i[0] >= op[1]->value.i[0]; - break; - case GLSL_TYPE_FLOAT: - data.b[0] = op[0]->value.f[0] >= op[1]->value.f[0]; - break; - default: - assert(0); - } - } - break; - case ir_binop_equal: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < components; c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] == op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] == op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] == op[1]->value.f[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_nequal: - assert(op[0]->type != op[1]->type); - for (unsigned c = 0; c < components; c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] != op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] != op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] != op[1]->value.f[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_all_equal: - data.b[0] = op[0]->has_value(op[1]); - break; - case ir_binop_any_nequal: - data.b[0] = !op[0]->has_value(op[1]); - break; - - case ir_binop_lshift: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1]; - } - } - break; - - case ir_binop_rshift: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1]; - } - } - break; - - case ir_binop_bit_and: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1]; - break; - default: - assert(0); - } - } - break; - - case ir_binop_bit_or: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1]; - break; - default: - assert(0); - } - } - break; - - case ir_binop_bit_xor: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1]; - break; - default: - assert(0); - } - } - break; - - case ir_quadop_vector: - for (unsigned c = 0; c < this->type->vector_elements; c++) { - switch (this->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[c]->value.i[0]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[c]->value.u[0]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[c]->value.f[0]; - break; - default: - assert(0); - } - } - break; - - default: - /* FINISHME: Should handle all expression types. */ - return NULL; - } - - return new(ctx) ir_constant(this->type, &data); -} - - -ir_constant * -ir_texture::constant_expression_value() -{ - /* texture lookups aren't constant expressions */ - return NULL; -} - - -ir_constant * -ir_swizzle::constant_expression_value() -{ - ir_constant *v = this->val->constant_expression_value(); - - if (v != NULL) { - ir_constant_data data = { { 0 } }; - - const unsigned swiz_idx[4] = { - this->mask.x, this->mask.y, this->mask.z, this->mask.w - }; - - for (unsigned i = 0; i < this->mask.num_components; i++) { - switch (v->type->base_type) { - case GLSL_TYPE_UINT: - case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break; - case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break; - case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break; - default: assert(!"Should not get here."); break; - } - } - - void *ctx = ralloc_parent(this); - return new(ctx) ir_constant(this->type, &data); - } - return NULL; -} - - -ir_constant * -ir_dereference_variable::constant_expression_value() -{ - /* This may occur during compile and var->type is glsl_type::error_type */ - if (!var) - return NULL; - - /* The constant_value of a uniform variable is its initializer, - * not the lifetime constant value of the uniform. - */ - if (var->mode == ir_var_uniform) - return NULL; - - if (!var->constant_value) - return NULL; - - return var->constant_value->clone(ralloc_parent(var), NULL); -} - - -ir_constant * -ir_dereference_array::constant_expression_value() -{ - ir_constant *array = this->array->constant_expression_value(); - ir_constant *idx = this->array_index->constant_expression_value(); - - if ((array != NULL) && (idx != NULL)) { - void *ctx = ralloc_parent(this); - if (array->type->is_matrix()) { - /* Array access of a matrix results in a vector. - */ - const unsigned column = idx->value.u[0]; - - const glsl_type *const column_type = array->type->column_type(); - - /* Offset in the constant matrix to the first element of the column - * to be extracted. - */ - const unsigned mat_idx = column * column_type->vector_elements; - - ir_constant_data data = { { 0 } }; - - switch (column_type->base_type) { - case GLSL_TYPE_UINT: - case GLSL_TYPE_INT: - for (unsigned i = 0; i < column_type->vector_elements; i++) - data.u[i] = array->value.u[mat_idx + i]; - - break; - - case GLSL_TYPE_FLOAT: - for (unsigned i = 0; i < column_type->vector_elements; i++) - data.f[i] = array->value.f[mat_idx + i]; - - break; - - default: - assert(!"Should not get here."); - break; - } - - return new(ctx) ir_constant(column_type, &data); - } else if (array->type->is_vector()) { - const unsigned component = idx->value.u[0]; - - return new(ctx) ir_constant(array, component); - } else { - const unsigned index = idx->value.u[0]; - return array->get_array_element(index)->clone(ctx, NULL); - } - } - return NULL; -} - - -ir_constant * -ir_dereference_record::constant_expression_value() -{ - ir_constant *v = this->record->constant_expression_value(); - - return (v != NULL) ? v->get_record_field(this->field) : NULL; -} - - -ir_constant * -ir_assignment::constant_expression_value() -{ - /* FINISHME: Handle CEs involving assignment (return RHS) */ - return NULL; -} - - -ir_constant * -ir_constant::constant_expression_value() -{ - return this; -} - - -ir_constant * -ir_call::constant_expression_value() -{ - if (this->type == glsl_type::error_type) - return NULL; - - /* From the GLSL 1.20 spec, page 23: - * "Function calls to user-defined functions (non-built-in functions) - * cannot be used to form constant expressions." - */ - if (!this->callee->is_builtin) - return NULL; - - unsigned num_parameters = 0; - - /* Check if all parameters are constant */ - ir_constant *op[3]; - foreach_list(n, &this->actual_parameters) { - ir_constant *constant = ((ir_rvalue *) n)->constant_expression_value(); - if (constant == NULL) - return NULL; - - op[num_parameters] = constant; - - assert(num_parameters < 3); - num_parameters++; - } - - /* Individual cases below can either: - * - Assign "expr" a new ir_expression to evaluate (for basic opcodes) - * - Fill "data" with appopriate constant data - * - Return an ir_constant directly. - */ - void *mem_ctx = ralloc_parent(this); - ir_expression *expr = NULL; - - ir_constant_data data; - memset(&data, 0, sizeof(data)); - - const char *callee = this->callee_name(); - if (strcmp(callee, "abs") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_abs, type, op[0], NULL); - } else if (strcmp(callee, "all") == 0) { - assert(op[0]->type->is_boolean()); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (!op[0]->value.b[c]) - return new(mem_ctx) ir_constant(false); - } - return new(mem_ctx) ir_constant(true); - } else if (strcmp(callee, "any") == 0) { - assert(op[0]->type->is_boolean()); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->value.b[c]) - return new(mem_ctx) ir_constant(true); - } - return new(mem_ctx) ir_constant(false); - } else if (strcmp(callee, "acos") == 0) { - assert(op[0]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = acosf(op[0]->value.f[c]); - } else if (strcmp(callee, "acosh") == 0) { - assert(op[0]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = acoshf(op[0]->value.f[c]); - } else if (strcmp(callee, "asin") == 0) { - assert(op[0]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = asinf(op[0]->value.f[c]); - } else if (strcmp(callee, "asinh") == 0) { - assert(op[0]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = asinhf(op[0]->value.f[c]); - } else if (strcmp(callee, "atan") == 0) { - assert(op[0]->type->is_float()); - if (num_parameters == 2) { - assert(op[1]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = atan2f(op[0]->value.f[c], op[1]->value.f[c]); - } else { - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = atanf(op[0]->value.f[c]); - } - } else if (strcmp(callee, "atanh") == 0) { - assert(op[0]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = atanhf(op[0]->value.f[c]); - } else if (strcmp(callee, "dFdx") == 0 || strcmp(callee, "dFdy") == 0) { - return ir_constant::zero(mem_ctx, this->type); - } else if (strcmp(callee, "ceil") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_ceil, type, op[0], NULL); - } else if (strcmp(callee, "clamp") == 0) { - assert(num_parameters == 3); - unsigned c1_inc = op[1]->type->is_scalar() ? 0 : 1; - unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1; - for (unsigned c = 0, c1 = 0, c2 = 0; - c < op[0]->type->components(); - c1 += c1_inc, c2 += c2_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = CLAMP(op[0]->value.u[c], op[1]->value.u[c1], - op[2]->value.u[c2]); - break; - case GLSL_TYPE_INT: - data.i[c] = CLAMP(op[0]->value.i[c], op[1]->value.i[c1], - op[2]->value.i[c2]); - break; - case GLSL_TYPE_FLOAT: - data.f[c] = CLAMP(op[0]->value.f[c], op[1]->value.f[c1], - op[2]->value.f[c2]); - break; - default: - assert(!"Should not get here."); - } - } - } else if (strcmp(callee, "cos") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_cos, type, op[0], NULL); - } else if (strcmp(callee, "cosh") == 0) { - assert(op[0]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = coshf(op[0]->value.f[c]); - } else if (strcmp(callee, "cross") == 0) { - assert(op[0]->type == glsl_type::vec3_type); - assert(op[1]->type == glsl_type::vec3_type); - data.f[0] = (op[0]->value.f[1] * op[1]->value.f[2] - - op[1]->value.f[1] * op[0]->value.f[2]); - data.f[1] = (op[0]->value.f[2] * op[1]->value.f[0] - - op[1]->value.f[2] * op[0]->value.f[0]); - data.f[2] = (op[0]->value.f[0] * op[1]->value.f[1] - - op[1]->value.f[0] * op[0]->value.f[1]); - } else if (strcmp(callee, "degrees") == 0) { - assert(op[0]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = 180.0F / M_PI * op[0]->value.f[c]; - } else if (strcmp(callee, "distance") == 0) { - assert(op[0]->type->is_float() && op[1]->type->is_float()); - float length_squared = 0.0; - for (unsigned c = 0; c < op[0]->type->components(); c++) { - float t = op[0]->value.f[c] - op[1]->value.f[c]; - length_squared += t * t; - } - return new(mem_ctx) ir_constant(sqrtf(length_squared)); - } else if (strcmp(callee, "dot") == 0) { - return new(mem_ctx) ir_constant(dot(op[0], op[1])); - } else if (strcmp(callee, "equal") == 0) { - assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector()); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] == op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] == op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] == op[1]->value.f[c]; - break; - case GLSL_TYPE_BOOL: - data.b[c] = op[0]->value.b[c] == op[1]->value.b[c]; - break; - default: - assert(!"Should not get here."); - } - } - } else if (strcmp(callee, "exp") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_exp, type, op[0], NULL); - } else if (strcmp(callee, "exp2") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_exp2, type, op[0], NULL); - } else if (strcmp(callee, "faceforward") == 0) { - if (dot(op[2], op[1]) < 0) - return op[0]; - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = -op[0]->value.f[c]; - } else if (strcmp(callee, "floor") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_floor, type, op[0], NULL); - } else if (strcmp(callee, "fract") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_fract, type, op[0], NULL); - } else if (strcmp(callee, "fwidth") == 0) { - return ir_constant::zero(mem_ctx, this->type); - } else if (strcmp(callee, "greaterThan") == 0) { - assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector()); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] > op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] > op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] > op[1]->value.f[c]; - break; - default: - assert(!"Should not get here."); - } - } - } else if (strcmp(callee, "greaterThanEqual") == 0) { - assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector()); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c]; - break; - default: - assert(!"Should not get here."); - } - } - } else if (strcmp(callee, "inversesqrt") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_rsq, type, op[0], NULL); - } else if (strcmp(callee, "length") == 0) { - return new(mem_ctx) ir_constant(sqrtf(dot(op[0], op[0]))); - } else if (strcmp(callee, "lessThan") == 0) { - assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector()); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] < op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] < op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] < op[1]->value.f[c]; - break; - default: - assert(!"Should not get here."); - } - } - } else if (strcmp(callee, "lessThanEqual") == 0) { - assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector()); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c]; - break; - default: - assert(!"Should not get here."); - } - } - } else if (strcmp(callee, "log") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_log, type, op[0], NULL); - } else if (strcmp(callee, "log2") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_log2, type, op[0], NULL); - } else if (strcmp(callee, "matrixCompMult") == 0) { - assert(op[0]->type->is_float() && op[1]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = op[0]->value.f[c] * op[1]->value.f[c]; - } else if (strcmp(callee, "max") == 0) { - expr = new(mem_ctx) ir_expression(ir_binop_max, type, op[0], op[1]); - } else if (strcmp(callee, "min") == 0) { - expr = new(mem_ctx) ir_expression(ir_binop_min, type, op[0], op[1]); - } else if (strcmp(callee, "mix") == 0) { - assert(op[0]->type->is_float() && op[1]->type->is_float()); - if (op[2]->type->is_float()) { - unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1; - unsigned components = op[0]->type->components(); - for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) { - data.f[c] = op[0]->value.f[c] * (1 - op[2]->value.f[c2]) + - op[1]->value.f[c] * op[2]->value.f[c2]; - } - } else { - assert(op[2]->type->is_boolean()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = op[op[2]->value.b[c] ? 1 : 0]->value.f[c]; - } - } else if (strcmp(callee, "mod") == 0) { - expr = new(mem_ctx) ir_expression(ir_binop_mod, type, op[0], op[1]); - } else if (strcmp(callee, "normalize") == 0) { - assert(op[0]->type->is_float()); - float length = sqrtf(dot(op[0], op[0])); - - if (length == 0) - return ir_constant::zero(mem_ctx, this->type); - - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = op[0]->value.f[c] / length; - } else if (strcmp(callee, "not") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_logic_not, type, op[0], NULL); - } else if (strcmp(callee, "notEqual") == 0) { - assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector()); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] != op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] != op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] != op[1]->value.f[c]; - break; - case GLSL_TYPE_BOOL: - data.b[c] = op[0]->value.b[c] != op[1]->value.b[c]; - break; - default: - assert(!"Should not get here."); - } - } - } else if (strcmp(callee, "outerProduct") == 0) { - assert(op[0]->type->is_vector() && op[1]->type->is_vector()); - const unsigned m = op[0]->type->vector_elements; - const unsigned n = op[1]->type->vector_elements; - for (unsigned j = 0; j < n; j++) { - for (unsigned i = 0; i < m; i++) { - data.f[i+m*j] = op[0]->value.f[i] * op[1]->value.f[j]; - } - } - } else if (strcmp(callee, "pow") == 0) { - expr = new(mem_ctx) ir_expression(ir_binop_pow, type, op[0], op[1]); - } else if (strcmp(callee, "radians") == 0) { - assert(op[0]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = M_PI / 180.0F * op[0]->value.f[c]; - } else if (strcmp(callee, "reflect") == 0) { - assert(op[0]->type->is_float()); - float dot_NI = dot(op[1], op[0]); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = op[0]->value.f[c] - 2 * dot_NI * op[1]->value.f[c]; - } else if (strcmp(callee, "refract") == 0) { - const float eta = op[2]->value.f[0]; - const float dot_NI = dot(op[1], op[0]); - const float k = 1.0F - eta * eta * (1.0F - dot_NI * dot_NI); - if (k < 0.0) { - return ir_constant::zero(mem_ctx, this->type); - } else { - for (unsigned c = 0; c < type->components(); c++) { - data.f[c] = eta * op[0]->value.f[c] - (eta * dot_NI + sqrtf(k)) - * op[1]->value.f[c]; - } - } - } else if (strcmp(callee, "sign") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_sign, type, op[0], NULL); - } else if (strcmp(callee, "sin") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_sin, type, op[0], NULL); - } else if (strcmp(callee, "sinh") == 0) { - assert(op[0]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = sinhf(op[0]->value.f[c]); - } else if (strcmp(callee, "smoothstep") == 0) { - assert(num_parameters == 3); - assert(op[1]->type == op[0]->type); - unsigned edge_inc = op[0]->type->is_scalar() ? 0 : 1; - for (unsigned c = 0, e = 0; c < type->components(); e += edge_inc, c++) { - const float edge0 = op[0]->value.f[e]; - const float edge1 = op[1]->value.f[e]; - if (edge0 == edge1) { - data.f[c] = 0.0; /* Avoid a crash - results are undefined anyway */ - } else { - const float numerator = op[2]->value.f[c] - edge0; - const float denominator = edge1 - edge0; - const float t = CLAMP(numerator/denominator, 0, 1); - data.f[c] = t * t * (3 - 2 * t); - } - } - } else if (strcmp(callee, "sqrt") == 0) { - expr = new(mem_ctx) ir_expression(ir_unop_sqrt, type, op[0], NULL); - } else if (strcmp(callee, "step") == 0) { - assert(op[0]->type->is_float() && op[1]->type->is_float()); - /* op[0] (edge) may be either a scalar or a vector */ - const unsigned c0_inc = op[0]->type->is_scalar() ? 0 : 1; - for (unsigned c = 0, c0 = 0; c < type->components(); c0 += c0_inc, c++) - data.f[c] = (op[1]->value.f[c] < op[0]->value.f[c0]) ? 0.0F : 1.0F; - } else if (strcmp(callee, "tan") == 0) { - assert(op[0]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = tanf(op[0]->value.f[c]); - } else if (strcmp(callee, "tanh") == 0) { - assert(op[0]->type->is_float()); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.f[c] = tanhf(op[0]->value.f[c]); - } else if (strcmp(callee, "transpose") == 0) { - assert(op[0]->type->is_matrix()); - const unsigned n = op[0]->type->vector_elements; - const unsigned m = op[0]->type->matrix_columns; - for (unsigned j = 0; j < m; j++) { - for (unsigned i = 0; i < n; i++) { - data.f[m*i+j] += op[0]->value.f[i+n*j]; - } - } - } else { - /* Unsupported builtin - some are not allowed in constant expressions. */ - return NULL; - } - - if (expr != NULL) - return expr->constant_expression_value(); - - return new(mem_ctx) ir_constant(this->type, &data); -} +/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file ir_constant_expression.cpp
+ * Evaluate and process constant valued expressions
+ *
+ * In GLSL, constant valued expressions are used in several places. These
+ * must be processed and evaluated very early in the compilation process.
+ *
+ * * Sizes of arrays
+ * * Initializers for uniforms
+ * * Initializers for \c const variables
+ */
+
+#include <math.h>
+#include "main/core.h" /* for MAX2, MIN2, CLAMP */
+#include "ir.h"
+#include "ir_visitor.h"
+#include "glsl_types.h"
+
+static float
+dot(ir_constant *op0, ir_constant *op1)
+{
+ assert(op0->type->is_float() && op1->type->is_float());
+
+ float result = 0;
+ for (unsigned c = 0; c < op0->type->components(); c++)
+ result += op0->value.f[c] * op1->value.f[c];
+
+ return result;
+}
+
+ir_constant *
+ir_expression::constant_expression_value()
+{
+ if (this->type->is_error())
+ return NULL;
+
+ ir_constant *op[Elements(this->operands)] = { NULL, };
+ ir_constant_data data;
+
+ memset(&data, 0, sizeof(data));
+
+ for (unsigned operand = 0; operand < this->get_num_operands(); operand++) {
+ op[operand] = this->operands[operand]->constant_expression_value();
+ if (!op[operand])
+ return NULL;
+ }
+
+ if (op[1] != NULL)
+ assert(op[0]->type->base_type == op[1]->type->base_type);
+
+ bool op0_scalar = op[0]->type->is_scalar();
+ bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar();
+
+ /* When iterating over a vector or matrix's components, we want to increase
+ * the loop counter. However, for scalars, we want to stay at 0.
+ */
+ unsigned c0_inc = op0_scalar ? 0 : 1;
+ unsigned c1_inc = op1_scalar ? 0 : 1;
+ unsigned components;
+ if (op1_scalar || !op[1]) {
+ components = op[0]->type->components();
+ } else {
+ components = op[1]->type->components();
+ }
+
+ void *ctx = ralloc_parent(this);
+
+ /* Handle array operations here, rather than below. */
+ if (op[0]->type->is_array()) {
+ assert(op[1] != NULL && op[1]->type->is_array());
+ switch (this->operation) {
+ case ir_binop_all_equal:
+ return new(ctx) ir_constant(op[0]->has_value(op[1]));
+ case ir_binop_any_nequal:
+ return new(ctx) ir_constant(!op[0]->has_value(op[1]));
+ default:
+ break;
+ }
+ return NULL;
+ }
+
+ switch (this->operation) {
+ case ir_unop_bit_not:
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_INT:
+ for (unsigned c = 0; c < components; c++)
+ data.i[c] = ~ op[0]->value.i[c];
+ break;
+ case GLSL_TYPE_UINT:
+ for (unsigned c = 0; c < components; c++)
+ data.u[c] = ~ op[0]->value.u[c];
+ break;
+ default:
+ assert(0);
+ }
+ break;
+
+ case ir_unop_logic_not:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.b[c] = !op[0]->value.b[c];
+ break;
+
+ case ir_unop_f2i:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.i[c] = (int) op[0]->value.f[c];
+ }
+ break;
+ case ir_unop_i2f:
+ assert(op[0]->type->base_type == GLSL_TYPE_INT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = (float) op[0]->value.i[c];
+ }
+ break;
+ case ir_unop_u2f:
+ assert(op[0]->type->base_type == GLSL_TYPE_UINT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = (float) op[0]->value.u[c];
+ }
+ break;
+ case ir_unop_b2f:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F;
+ }
+ break;
+ case ir_unop_f2b:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.b[c] = op[0]->value.f[c] != 0.0F ? true : false;
+ }
+ break;
+ case ir_unop_b2i:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.u[c] = op[0]->value.b[c] ? 1 : 0;
+ }
+ break;
+ case ir_unop_i2b:
+ assert(op[0]->type->is_integer());
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.b[c] = op[0]->value.u[c] ? true : false;
+ }
+ break;
+
+ case ir_unop_any:
+ assert(op[0]->type->is_boolean());
+ data.b[0] = false;
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ if (op[0]->value.b[c])
+ data.b[0] = true;
+ }
+ break;
+
+ case ir_unop_trunc:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = truncf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_ceil:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = ceilf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_floor:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = floorf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_fract:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = 0;
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = 0;
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]);
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_unop_sin:
+ case ir_unop_sin_reduced:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = sinf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_cos:
+ case ir_unop_cos_reduced:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = cosf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_neg:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = -((int) op[0]->value.u[c]);
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = -op[0]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = -op[0]->value.f[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_unop_abs:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c];
+ if (data.i[c] < 0)
+ data.i[c] = -data.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = fabs(op[0]->value.f[c]);
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_unop_sign:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.i[c] > 0;
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0);
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0));
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_unop_rcp:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_UINT:
+ if (op[0]->value.u[c] != 0.0)
+ data.u[c] = 1 / op[0]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ if (op[0]->value.i[c] != 0.0)
+ data.i[c] = 1 / op[0]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ if (op[0]->value.f[c] != 0.0)
+ data.f[c] = 1.0F / op[0]->value.f[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_unop_rsq:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_sqrt:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = sqrtf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_exp:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = expf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_exp2:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = exp2f(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_log:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = logf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_log2:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = log2f(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_dFdx:
+ case ir_unop_dFdy:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = 0.0;
+ }
+ break;
+
+ case ir_binop_pow:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]);
+ }
+ break;
+
+ case ir_binop_dot:
+ data.f[0] = dot(op[0], op[1]);
+ break;
+
+ case ir_binop_min:
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]);
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]);
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]);
+ break;
+ default:
+ assert(0);
+ }
+ }
+
+ break;
+ case ir_binop_max:
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]);
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]);
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]);
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_binop_add:
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1];
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+
+ break;
+ case ir_binop_sub:
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1];
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+
+ break;
+ case ir_binop_mul:
+ /* Check for equal types, or unequal types involving scalars */
+ if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix())
+ || op0_scalar || op1_scalar) {
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1];
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ } else {
+ assert(op[0]->type->is_matrix() || op[1]->type->is_matrix());
+
+ /* Multiply an N-by-M matrix with an M-by-P matrix. Since either
+ * matrix can be a GLSL vector, either N or P can be 1.
+ *
+ * For vec*mat, the vector is treated as a row vector. This
+ * means the vector is a 1-row x M-column matrix.
+ *
+ * For mat*vec, the vector is treated as a column vector. Since
+ * matrix_columns is 1 for vectors, this just works.
+ */
+ const unsigned n = op[0]->type->is_vector()
+ ? 1 : op[0]->type->vector_elements;
+ const unsigned m = op[1]->type->vector_elements;
+ const unsigned p = op[1]->type->matrix_columns;
+ for (unsigned j = 0; j < p; j++) {
+ for (unsigned i = 0; i < n; i++) {
+ for (unsigned k = 0; k < m; k++) {
+ data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j];
+ }
+ }
+ }
+ }
+
+ break;
+ case ir_binop_div:
+ /* FINISHME: Emit warning when division-by-zero is detected. */
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ if (op[1]->value.u[c1] == 0) {
+ data.u[c] = 0;
+ } else {
+ data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1];
+ }
+ break;
+ case GLSL_TYPE_INT:
+ if (op[1]->value.i[c1] == 0) {
+ data.i[c] = 0;
+ } else {
+ data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1];
+ }
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+
+ break;
+ case ir_binop_mod:
+ /* FINISHME: Emit warning when division-by-zero is detected. */
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ if (op[1]->value.u[c1] == 0) {
+ data.u[c] = 0;
+ } else {
+ data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1];
+ }
+ break;
+ case GLSL_TYPE_INT:
+ if (op[1]->value.i[c1] == 0) {
+ data.i[c] = 0;
+ } else {
+ data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1];
+ }
+ break;
+ case GLSL_TYPE_FLOAT:
+ /* We don't use fmod because it rounds toward zero; GLSL specifies
+ * the use of floor.
+ */
+ data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]
+ * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]);
+ break;
+ default:
+ assert(0);
+ }
+ }
+
+ break;
+
+ case ir_binop_logic_and:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.b[c] = op[0]->value.b[c] && op[1]->value.b[c];
+ break;
+ case ir_binop_logic_xor:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c];
+ break;
+ case ir_binop_logic_or:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.b[c] = op[0]->value.b[c] || op[1]->value.b[c];
+ break;
+
+ case ir_binop_less:
+ assert(op[0]->type == op[1]->type);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[0] = op[0]->value.u[0] < op[1]->value.u[0];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[0] = op[0]->value.i[0] < op[1]->value.i[0];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[0] = op[0]->value.f[0] < op[1]->value.f[0];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_greater:
+ assert(op[0]->type == op[1]->type);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] > op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] > op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] > op[1]->value.f[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_lequal:
+ assert(op[0]->type == op[1]->type);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[0] = op[0]->value.u[0] <= op[1]->value.u[0];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[0] = op[0]->value.i[0] <= op[1]->value.i[0];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[0] = op[0]->value.f[0] <= op[1]->value.f[0];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_gequal:
+ assert(op[0]->type == op[1]->type);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[0] = op[0]->value.u[0] >= op[1]->value.u[0];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[0] = op[0]->value.i[0] >= op[1]->value.i[0];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[0] = op[0]->value.f[0] >= op[1]->value.f[0];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_equal:
+ assert(op[0]->type == op[1]->type);
+ for (unsigned c = 0; c < components; c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] == op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] == op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] == op[1]->value.f[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_nequal:
+ assert(op[0]->type != op[1]->type);
+ for (unsigned c = 0; c < components; c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] != op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] != op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] != op[1]->value.f[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_all_equal:
+ data.b[0] = op[0]->has_value(op[1]);
+ break;
+ case ir_binop_any_nequal:
+ data.b[0] = !op[0]->has_value(op[1]);
+ break;
+
+ case ir_binop_lshift:
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ if (op[0]->type->base_type == GLSL_TYPE_INT &&
+ op[1]->type->base_type == GLSL_TYPE_INT) {
+ data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_INT &&
+ op[1]->type->base_type == GLSL_TYPE_UINT) {
+ data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
+ op[1]->type->base_type == GLSL_TYPE_INT) {
+ data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
+ op[1]->type->base_type == GLSL_TYPE_UINT) {
+ data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1];
+ }
+ }
+ break;
+
+ case ir_binop_rshift:
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ if (op[0]->type->base_type == GLSL_TYPE_INT &&
+ op[1]->type->base_type == GLSL_TYPE_INT) {
+ data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_INT &&
+ op[1]->type->base_type == GLSL_TYPE_UINT) {
+ data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
+ op[1]->type->base_type == GLSL_TYPE_INT) {
+ data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
+ op[1]->type->base_type == GLSL_TYPE_UINT) {
+ data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1];
+ }
+ }
+ break;
+
+ case ir_binop_bit_and:
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_binop_bit_or:
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_binop_bit_xor:
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_quadop_vector:
+ for (unsigned c = 0; c < this->type->vector_elements; c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_INT:
+ data.i[c] = op[c]->value.i[0];
+ break;
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[c]->value.u[0];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[c]->value.f[0];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ default:
+ /* FINISHME: Should handle all expression types. */
+ return NULL;
+ }
+
+ return new(ctx) ir_constant(this->type, &data);
+}
+
+
+ir_constant *
+ir_texture::constant_expression_value()
+{
+ /* texture lookups aren't constant expressions */
+ return NULL;
+}
+
+
+ir_constant *
+ir_swizzle::constant_expression_value()
+{
+ ir_constant *v = this->val->constant_expression_value();
+
+ if (v != NULL) {
+ ir_constant_data data = { { 0 } };
+
+ const unsigned swiz_idx[4] = {
+ this->mask.x, this->mask.y, this->mask.z, this->mask.w
+ };
+
+ for (unsigned i = 0; i < this->mask.num_components; i++) {
+ switch (v->type->base_type) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break;
+ case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break;
+ case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break;
+ default: assert(!"Should not get here."); break;
+ }
+ }
+
+ void *ctx = ralloc_parent(this);
+ return new(ctx) ir_constant(this->type, &data);
+ }
+ return NULL;
+}
+
+
+ir_constant *
+ir_dereference_variable::constant_expression_value()
+{
+ /* This may occur during compile and var->type is glsl_type::error_type */
+ if (!var)
+ return NULL;
+
+ /* The constant_value of a uniform variable is its initializer,
+ * not the lifetime constant value of the uniform.
+ */
+ if (var->mode == ir_var_uniform)
+ return NULL;
+
+ if (!var->constant_value)
+ return NULL;
+
+ return var->constant_value->clone(ralloc_parent(var), NULL);
+}
+
+
+ir_constant *
+ir_dereference_array::constant_expression_value()
+{
+ ir_constant *array = this->array->constant_expression_value();
+ ir_constant *idx = this->array_index->constant_expression_value();
+
+ if ((array != NULL) && (idx != NULL)) {
+ void *ctx = ralloc_parent(this);
+ if (array->type->is_matrix()) {
+ /* Array access of a matrix results in a vector.
+ */
+ const unsigned column = idx->value.u[0];
+
+ const glsl_type *const column_type = array->type->column_type();
+
+ /* Offset in the constant matrix to the first element of the column
+ * to be extracted.
+ */
+ const unsigned mat_idx = column * column_type->vector_elements;
+
+ ir_constant_data data = { { 0 } };
+
+ switch (column_type->base_type) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ for (unsigned i = 0; i < column_type->vector_elements; i++)
+ data.u[i] = array->value.u[mat_idx + i];
+
+ break;
+
+ case GLSL_TYPE_FLOAT:
+ for (unsigned i = 0; i < column_type->vector_elements; i++)
+ data.f[i] = array->value.f[mat_idx + i];
+
+ break;
+
+ default:
+ assert(!"Should not get here.");
+ break;
+ }
+
+ return new(ctx) ir_constant(column_type, &data);
+ } else if (array->type->is_vector()) {
+ const unsigned component = idx->value.u[0];
+
+ return new(ctx) ir_constant(array, component);
+ } else {
+ const unsigned index = idx->value.u[0];
+ return array->get_array_element(index)->clone(ctx, NULL);
+ }
+ }
+ return NULL;
+}
+
+
+ir_constant *
+ir_dereference_record::constant_expression_value()
+{
+ ir_constant *v = this->record->constant_expression_value();
+
+ return (v != NULL) ? v->get_record_field(this->field) : NULL;
+}
+
+
+ir_constant *
+ir_assignment::constant_expression_value()
+{
+ /* FINISHME: Handle CEs involving assignment (return RHS) */
+ return NULL;
+}
+
+
+ir_constant *
+ir_constant::constant_expression_value()
+{
+ return this;
+}
+
+
+ir_constant *
+ir_call::constant_expression_value()
+{
+ if (this->type == glsl_type::error_type)
+ return NULL;
+
+ /* From the GLSL 1.20 spec, page 23:
+ * "Function calls to user-defined functions (non-built-in functions)
+ * cannot be used to form constant expressions."
+ */
+ if (!this->callee->is_builtin)
+ return NULL;
+
+ unsigned num_parameters = 0;
+
+ /* Check if all parameters are constant */
+ ir_constant *op[3];
+ foreach_list(n, &this->actual_parameters) {
+ ir_constant *constant = ((ir_rvalue *) n)->constant_expression_value();
+ if (constant == NULL)
+ return NULL;
+
+ op[num_parameters] = constant;
+
+ assert(num_parameters < 3);
+ num_parameters++;
+ }
+
+ /* Individual cases below can either:
+ * - Assign "expr" a new ir_expression to evaluate (for basic opcodes)
+ * - Fill "data" with appopriate constant data
+ * - Return an ir_constant directly.
+ */
+ void *mem_ctx = ralloc_parent(this);
+ ir_expression *expr = NULL;
+
+ ir_constant_data data;
+ memset(&data, 0, sizeof(data));
+
+ const char *callee = this->callee_name();
+ if (strcmp(callee, "abs") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_abs, type, op[0], NULL);
+ } else if (strcmp(callee, "all") == 0) {
+ assert(op[0]->type->is_boolean());
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ if (!op[0]->value.b[c])
+ return new(mem_ctx) ir_constant(false);
+ }
+ return new(mem_ctx) ir_constant(true);
+ } else if (strcmp(callee, "any") == 0) {
+ assert(op[0]->type->is_boolean());
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ if (op[0]->value.b[c])
+ return new(mem_ctx) ir_constant(true);
+ }
+ return new(mem_ctx) ir_constant(false);
+ } else if (strcmp(callee, "acos") == 0) {
+ assert(op[0]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = acosf(op[0]->value.f[c]);
+ } else if (strcmp(callee, "acosh") == 0) {
+ assert(op[0]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = acoshf(op[0]->value.f[c]);
+ } else if (strcmp(callee, "asin") == 0) {
+ assert(op[0]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = asinf(op[0]->value.f[c]);
+ } else if (strcmp(callee, "asinh") == 0) {
+ assert(op[0]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = asinhf(op[0]->value.f[c]);
+ } else if (strcmp(callee, "atan") == 0) {
+ assert(op[0]->type->is_float());
+ if (num_parameters == 2) {
+ assert(op[1]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = atan2f(op[0]->value.f[c], op[1]->value.f[c]);
+ } else {
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = atanf(op[0]->value.f[c]);
+ }
+ } else if (strcmp(callee, "atanh") == 0) {
+ assert(op[0]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = atanhf(op[0]->value.f[c]);
+ } else if (strcmp(callee, "dFdx") == 0 || strcmp(callee, "dFdy") == 0) {
+ return ir_constant::zero(mem_ctx, this->type);
+ } else if (strcmp(callee, "ceil") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_ceil, type, op[0], NULL);
+ } else if (strcmp(callee, "clamp") == 0) {
+ assert(num_parameters == 3);
+ unsigned c1_inc = op[1]->type->is_scalar() ? 0 : 1;
+ unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
+ for (unsigned c = 0, c1 = 0, c2 = 0;
+ c < op[0]->type->components();
+ c1 += c1_inc, c2 += c2_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = CLAMP(op[0]->value.u[c], op[1]->value.u[c1],
+ op[2]->value.u[c2]);
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = CLAMP(op[0]->value.i[c], op[1]->value.i[c1],
+ op[2]->value.i[c2]);
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = CLAMP(op[0]->value.f[c], op[1]->value.f[c1],
+ op[2]->value.f[c2]);
+ break;
+ default:
+ assert(!"Should not get here.");
+ }
+ }
+ } else if (strcmp(callee, "cos") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_cos, type, op[0], NULL);
+ } else if (strcmp(callee, "cosh") == 0) {
+ assert(op[0]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = coshf(op[0]->value.f[c]);
+ } else if (strcmp(callee, "cross") == 0) {
+ assert(op[0]->type == glsl_type::vec3_type);
+ assert(op[1]->type == glsl_type::vec3_type);
+ data.f[0] = (op[0]->value.f[1] * op[1]->value.f[2] -
+ op[1]->value.f[1] * op[0]->value.f[2]);
+ data.f[1] = (op[0]->value.f[2] * op[1]->value.f[0] -
+ op[1]->value.f[2] * op[0]->value.f[0]);
+ data.f[2] = (op[0]->value.f[0] * op[1]->value.f[1] -
+ op[1]->value.f[0] * op[0]->value.f[1]);
+ } else if (strcmp(callee, "degrees") == 0) {
+ assert(op[0]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = 180.0F / M_PI * op[0]->value.f[c];
+ } else if (strcmp(callee, "distance") == 0) {
+ assert(op[0]->type->is_float() && op[1]->type->is_float());
+ float length_squared = 0.0;
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ float t = op[0]->value.f[c] - op[1]->value.f[c];
+ length_squared += t * t;
+ }
+ return new(mem_ctx) ir_constant(sqrtf(length_squared));
+ } else if (strcmp(callee, "dot") == 0) {
+ return new(mem_ctx) ir_constant(dot(op[0], op[1]));
+ } else if (strcmp(callee, "equal") == 0) {
+ assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] == op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] == op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] == op[1]->value.f[c];
+ break;
+ case GLSL_TYPE_BOOL:
+ data.b[c] = op[0]->value.b[c] == op[1]->value.b[c];
+ break;
+ default:
+ assert(!"Should not get here.");
+ }
+ }
+ } else if (strcmp(callee, "exp") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_exp, type, op[0], NULL);
+ } else if (strcmp(callee, "exp2") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_exp2, type, op[0], NULL);
+ } else if (strcmp(callee, "faceforward") == 0) {
+ if (dot(op[2], op[1]) < 0)
+ return op[0];
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = -op[0]->value.f[c];
+ } else if (strcmp(callee, "floor") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_floor, type, op[0], NULL);
+ } else if (strcmp(callee, "fract") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_fract, type, op[0], NULL);
+ } else if (strcmp(callee, "fwidth") == 0) {
+ return ir_constant::zero(mem_ctx, this->type);
+ } else if (strcmp(callee, "greaterThan") == 0) {
+ assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] > op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] > op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] > op[1]->value.f[c];
+ break;
+ default:
+ assert(!"Should not get here.");
+ }
+ }
+ } else if (strcmp(callee, "greaterThanEqual") == 0) {
+ assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c];
+ break;
+ default:
+ assert(!"Should not get here.");
+ }
+ }
+ } else if (strcmp(callee, "inversesqrt") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_rsq, type, op[0], NULL);
+ } else if (strcmp(callee, "length") == 0) {
+ return new(mem_ctx) ir_constant(sqrtf(dot(op[0], op[0])));
+ } else if (strcmp(callee, "lessThan") == 0) {
+ assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] < op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] < op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] < op[1]->value.f[c];
+ break;
+ default:
+ assert(!"Should not get here.");
+ }
+ }
+ } else if (strcmp(callee, "lessThanEqual") == 0) {
+ assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c];
+ break;
+ default:
+ assert(!"Should not get here.");
+ }
+ }
+ } else if (strcmp(callee, "log") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_log, type, op[0], NULL);
+ } else if (strcmp(callee, "log2") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_log2, type, op[0], NULL);
+ } else if (strcmp(callee, "matrixCompMult") == 0) {
+ assert(op[0]->type->is_float() && op[1]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = op[0]->value.f[c] * op[1]->value.f[c];
+ } else if (strcmp(callee, "max") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_binop_max, type, op[0], op[1]);
+ } else if (strcmp(callee, "min") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_binop_min, type, op[0], op[1]);
+ } else if (strcmp(callee, "mix") == 0) {
+ assert(op[0]->type->is_float() && op[1]->type->is_float());
+ if (op[2]->type->is_float()) {
+ unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
+ unsigned components = op[0]->type->components();
+ for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) {
+ data.f[c] = op[0]->value.f[c] * (1 - op[2]->value.f[c2]) +
+ op[1]->value.f[c] * op[2]->value.f[c2];
+ }
+ } else {
+ assert(op[2]->type->is_boolean());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = op[op[2]->value.b[c] ? 1 : 0]->value.f[c];
+ }
+ } else if (strcmp(callee, "mod") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_binop_mod, type, op[0], op[1]);
+ } else if (strcmp(callee, "normalize") == 0) {
+ assert(op[0]->type->is_float());
+ float length = sqrtf(dot(op[0], op[0]));
+
+ if (length == 0)
+ return ir_constant::zero(mem_ctx, this->type);
+
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = op[0]->value.f[c] / length;
+ } else if (strcmp(callee, "not") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_logic_not, type, op[0], NULL);
+ } else if (strcmp(callee, "notEqual") == 0) {
+ assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] != op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] != op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] != op[1]->value.f[c];
+ break;
+ case GLSL_TYPE_BOOL:
+ data.b[c] = op[0]->value.b[c] != op[1]->value.b[c];
+ break;
+ default:
+ assert(!"Should not get here.");
+ }
+ }
+ } else if (strcmp(callee, "outerProduct") == 0) {
+ assert(op[0]->type->is_vector() && op[1]->type->is_vector());
+ const unsigned m = op[0]->type->vector_elements;
+ const unsigned n = op[1]->type->vector_elements;
+ for (unsigned j = 0; j < n; j++) {
+ for (unsigned i = 0; i < m; i++) {
+ data.f[i+m*j] = op[0]->value.f[i] * op[1]->value.f[j];
+ }
+ }
+ } else if (strcmp(callee, "pow") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_binop_pow, type, op[0], op[1]);
+ } else if (strcmp(callee, "radians") == 0) {
+ assert(op[0]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = M_PI / 180.0F * op[0]->value.f[c];
+ } else if (strcmp(callee, "reflect") == 0) {
+ assert(op[0]->type->is_float());
+ float dot_NI = dot(op[1], op[0]);
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = op[0]->value.f[c] - 2 * dot_NI * op[1]->value.f[c];
+ } else if (strcmp(callee, "refract") == 0) {
+ const float eta = op[2]->value.f[0];
+ const float dot_NI = dot(op[1], op[0]);
+ const float k = 1.0F - eta * eta * (1.0F - dot_NI * dot_NI);
+ if (k < 0.0) {
+ return ir_constant::zero(mem_ctx, this->type);
+ } else {
+ for (unsigned c = 0; c < type->components(); c++) {
+ data.f[c] = eta * op[0]->value.f[c] - (eta * dot_NI + sqrtf(k))
+ * op[1]->value.f[c];
+ }
+ }
+ } else if (strcmp(callee, "sign") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_sign, type, op[0], NULL);
+ } else if (strcmp(callee, "sin") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_sin, type, op[0], NULL);
+ } else if (strcmp(callee, "sinh") == 0) {
+ assert(op[0]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = sinhf(op[0]->value.f[c]);
+ } else if (strcmp(callee, "smoothstep") == 0) {
+ assert(num_parameters == 3);
+ assert(op[1]->type == op[0]->type);
+ unsigned edge_inc = op[0]->type->is_scalar() ? 0 : 1;
+ for (unsigned c = 0, e = 0; c < type->components(); e += edge_inc, c++) {
+ const float edge0 = op[0]->value.f[e];
+ const float edge1 = op[1]->value.f[e];
+ if (edge0 == edge1) {
+ data.f[c] = 0.0; /* Avoid a crash - results are undefined anyway */
+ } else {
+ const float numerator = op[2]->value.f[c] - edge0;
+ const float denominator = edge1 - edge0;
+ const float t = CLAMP(numerator/denominator, 0, 1);
+ data.f[c] = t * t * (3 - 2 * t);
+ }
+ }
+ } else if (strcmp(callee, "sqrt") == 0) {
+ expr = new(mem_ctx) ir_expression(ir_unop_sqrt, type, op[0], NULL);
+ } else if (strcmp(callee, "step") == 0) {
+ assert(op[0]->type->is_float() && op[1]->type->is_float());
+ /* op[0] (edge) may be either a scalar or a vector */
+ const unsigned c0_inc = op[0]->type->is_scalar() ? 0 : 1;
+ for (unsigned c = 0, c0 = 0; c < type->components(); c0 += c0_inc, c++)
+ data.f[c] = (op[1]->value.f[c] < op[0]->value.f[c0]) ? 0.0F : 1.0F;
+ } else if (strcmp(callee, "tan") == 0) {
+ assert(op[0]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = tanf(op[0]->value.f[c]);
+ } else if (strcmp(callee, "tanh") == 0) {
+ assert(op[0]->type->is_float());
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.f[c] = tanhf(op[0]->value.f[c]);
+ } else if (strcmp(callee, "transpose") == 0) {
+ assert(op[0]->type->is_matrix());
+ const unsigned n = op[0]->type->vector_elements;
+ const unsigned m = op[0]->type->matrix_columns;
+ for (unsigned j = 0; j < m; j++) {
+ for (unsigned i = 0; i < n; i++) {
+ data.f[m*i+j] += op[0]->value.f[i+n*j];
+ }
+ }
+ } else {
+ /* Unsupported builtin - some are not allowed in constant expressions. */
+ return NULL;
+ }
+
+ if (expr != NULL)
+ return expr->constant_expression_value();
+
+ return new(mem_ctx) ir_constant(this->type, &data);
+}
|