aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/glsl/lower_mat_op_to_vec.cpp
diff options
context:
space:
mode:
authormarha <marha@users.sourceforge.net>2011-02-01 10:46:14 +0000
committermarha <marha@users.sourceforge.net>2011-02-01 10:46:14 +0000
commitd4a8565009962e162d86a9c4ae24062a3fa12025 (patch)
treebcd249c3c523b23a6350b1d6b5a2cff7518cdb0e /mesalib/src/glsl/lower_mat_op_to_vec.cpp
parent6751d9898be671d253d6f7b0806cd4b10daaaf85 (diff)
parent0bf07d32cbd460220c67d726900772cf3692746d (diff)
downloadvcxsrv-d4a8565009962e162d86a9c4ae24062a3fa12025.tar.gz
vcxsrv-d4a8565009962e162d86a9c4ae24062a3fa12025.tar.bz2
vcxsrv-d4a8565009962e162d86a9c4ae24062a3fa12025.zip
svn merge ^/branches/released .
Diffstat (limited to 'mesalib/src/glsl/lower_mat_op_to_vec.cpp')
-rw-r--r--mesalib/src/glsl/lower_mat_op_to_vec.cpp980
1 files changed, 490 insertions, 490 deletions
diff --git a/mesalib/src/glsl/lower_mat_op_to_vec.cpp b/mesalib/src/glsl/lower_mat_op_to_vec.cpp
index d61d94443..8cbbfa713 100644
--- a/mesalib/src/glsl/lower_mat_op_to_vec.cpp
+++ b/mesalib/src/glsl/lower_mat_op_to_vec.cpp
@@ -1,490 +1,490 @@
-/*
- * Copyright © 2010 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
-
-/**
- * \file lower_mat_op_to_vec.cpp
- *
- * Breaks matrix operation expressions down to a series of vector operations.
- *
- * Generally this is how we have to codegen matrix operations for a
- * GPU, so this gives us the chance to constant fold operations on a
- * column or row.
- */
-
-#include "ir.h"
-#include "ir_expression_flattening.h"
-#include "glsl_types.h"
-
-class ir_mat_op_to_vec_visitor : public ir_hierarchical_visitor {
-public:
- ir_mat_op_to_vec_visitor()
- {
- this->made_progress = false;
- this->mem_ctx = NULL;
- }
-
- ir_visitor_status visit_leave(ir_assignment *);
-
- ir_dereference *get_column(ir_variable *var, int col);
- ir_rvalue *get_element(ir_variable *var, int col, int row);
-
- void do_mul_mat_mat(ir_variable *result_var,
- ir_variable *a_var, ir_variable *b_var);
- void do_mul_mat_vec(ir_variable *result_var,
- ir_variable *a_var, ir_variable *b_var);
- void do_mul_vec_mat(ir_variable *result_var,
- ir_variable *a_var, ir_variable *b_var);
- void do_mul_mat_scalar(ir_variable *result_var,
- ir_variable *a_var, ir_variable *b_var);
- void do_equal_mat_mat(ir_variable *result_var, ir_variable *a_var,
- ir_variable *b_var, bool test_equal);
-
- void *mem_ctx;
- bool made_progress;
-};
-
-static bool
-mat_op_to_vec_predicate(ir_instruction *ir)
-{
- ir_expression *expr = ir->as_expression();
- unsigned int i;
-
- if (!expr)
- return false;
-
- for (i = 0; i < expr->get_num_operands(); i++) {
- if (expr->operands[i]->type->is_matrix())
- return true;
- }
-
- return false;
-}
-
-bool
-do_mat_op_to_vec(exec_list *instructions)
-{
- ir_mat_op_to_vec_visitor v;
-
- /* Pull out any matrix expression to a separate assignment to a
- * temp. This will make our handling of the breakdown to
- * operations on the matrix's vector components much easier.
- */
- do_expression_flattening(instructions, mat_op_to_vec_predicate);
-
- visit_list_elements(&v, instructions);
-
- return v.made_progress;
-}
-
-ir_rvalue *
-ir_mat_op_to_vec_visitor::get_element(ir_variable *var, int col, int row)
-{
- ir_dereference *deref;
-
- deref = new(mem_ctx) ir_dereference_variable(var);
-
- if (var->type->is_matrix()) {
- deref = new(mem_ctx) ir_dereference_array(var,
- new(mem_ctx) ir_constant(col));
- } else {
- assert(col == 0);
- }
-
- return new(mem_ctx) ir_swizzle(deref, row, 0, 0, 0, 1);
-}
-
-ir_dereference *
-ir_mat_op_to_vec_visitor::get_column(ir_variable *var, int row)
-{
- ir_dereference *deref;
-
- if (!var->type->is_matrix()) {
- deref = new(mem_ctx) ir_dereference_variable(var);
- } else {
- deref = new(mem_ctx) ir_dereference_variable(var);
- deref = new(mem_ctx) ir_dereference_array(deref,
- new(mem_ctx) ir_constant(row));
- }
-
- return deref;
-}
-
-void
-ir_mat_op_to_vec_visitor::do_mul_mat_mat(ir_variable *result_var,
- ir_variable *a_var,
- ir_variable *b_var)
-{
- int b_col, i;
- ir_assignment *assign;
- ir_expression *expr;
-
- for (b_col = 0; b_col < b_var->type->matrix_columns; b_col++) {
- ir_rvalue *a = get_column(a_var, 0);
- ir_rvalue *b = get_element(b_var, b_col, 0);
-
- /* first column */
- expr = new(mem_ctx) ir_expression(ir_binop_mul,
- a->type,
- a,
- b);
-
- /* following columns */
- for (i = 1; i < a_var->type->matrix_columns; i++) {
- ir_expression *mul_expr;
-
- a = get_column(a_var, i);
- b = get_element(b_var, b_col, i);
-
- mul_expr = new(mem_ctx) ir_expression(ir_binop_mul,
- a->type,
- a,
- b);
- expr = new(mem_ctx) ir_expression(ir_binop_add,
- a->type,
- expr,
- mul_expr);
- }
-
- ir_rvalue *result = get_column(result_var, b_col);
- assign = new(mem_ctx) ir_assignment(result,
- expr,
- NULL);
- base_ir->insert_before(assign);
- }
-}
-
-void
-ir_mat_op_to_vec_visitor::do_mul_mat_vec(ir_variable *result_var,
- ir_variable *a_var,
- ir_variable *b_var)
-{
- int i;
- ir_rvalue *a = get_column(a_var, 0);
- ir_rvalue *b = get_element(b_var, 0, 0);
- ir_assignment *assign;
- ir_expression *expr;
-
- /* first column */
- expr = new(mem_ctx) ir_expression(ir_binop_mul,
- result_var->type,
- a,
- b);
-
- /* following columns */
- for (i = 1; i < a_var->type->matrix_columns; i++) {
- ir_expression *mul_expr;
-
- a = get_column(a_var, i);
- b = get_element(b_var, 0, i);
-
- mul_expr = new(mem_ctx) ir_expression(ir_binop_mul,
- result_var->type,
- a,
- b);
- expr = new(mem_ctx) ir_expression(ir_binop_add,
- result_var->type,
- expr,
- mul_expr);
- }
-
- ir_rvalue *result = new(mem_ctx) ir_dereference_variable(result_var);
- assign = new(mem_ctx) ir_assignment(result,
- expr,
- NULL);
- base_ir->insert_before(assign);
-}
-
-void
-ir_mat_op_to_vec_visitor::do_mul_vec_mat(ir_variable *result_var,
- ir_variable *a_var,
- ir_variable *b_var)
-{
- int i;
-
- for (i = 0; i < b_var->type->matrix_columns; i++) {
- ir_rvalue *a = new(mem_ctx) ir_dereference_variable(a_var);
- ir_rvalue *b = get_column(b_var, i);
- ir_rvalue *result;
- ir_expression *column_expr;
- ir_assignment *column_assign;
-
- result = new(mem_ctx) ir_dereference_variable(result_var);
- result = new(mem_ctx) ir_swizzle(result, i, 0, 0, 0, 1);
-
- column_expr = new(mem_ctx) ir_expression(ir_binop_dot,
- result->type,
- a,
- b);
-
- column_assign = new(mem_ctx) ir_assignment(result,
- column_expr,
- NULL);
- base_ir->insert_before(column_assign);
- }
-}
-
-void
-ir_mat_op_to_vec_visitor::do_mul_mat_scalar(ir_variable *result_var,
- ir_variable *a_var,
- ir_variable *b_var)
-{
- int i;
-
- for (i = 0; i < a_var->type->matrix_columns; i++) {
- ir_rvalue *a = get_column(a_var, i);
- ir_rvalue *b = new(mem_ctx) ir_dereference_variable(b_var);
- ir_rvalue *result = get_column(result_var, i);
- ir_expression *column_expr;
- ir_assignment *column_assign;
-
- column_expr = new(mem_ctx) ir_expression(ir_binop_mul,
- result->type,
- a,
- b);
-
- column_assign = new(mem_ctx) ir_assignment(result,
- column_expr,
- NULL);
- base_ir->insert_before(column_assign);
- }
-}
-
-void
-ir_mat_op_to_vec_visitor::do_equal_mat_mat(ir_variable *result_var,
- ir_variable *a_var,
- ir_variable *b_var,
- bool test_equal)
-{
- /* This essentially implements the following GLSL:
- *
- * bool equal(mat4 a, mat4 b)
- * {
- * return !any(bvec4(a[0] != b[0],
- * a[1] != b[1],
- * a[2] != b[2],
- * a[3] != b[3]);
- * }
- *
- * bool nequal(mat4 a, mat4 b)
- * {
- * return any(bvec4(a[0] != b[0],
- * a[1] != b[1],
- * a[2] != b[2],
- * a[3] != b[3]);
- * }
- */
- const unsigned columns = a_var->type->matrix_columns;
- const glsl_type *const bvec_type =
- glsl_type::get_instance(GLSL_TYPE_BOOL, columns, 1);
-
- ir_variable *const tmp_bvec =
- new(this->mem_ctx) ir_variable(bvec_type, "mat_cmp_bvec",
- ir_var_temporary);
- this->base_ir->insert_before(tmp_bvec);
-
- for (unsigned i = 0; i < columns; i++) {
- ir_dereference *const op0 = get_column(a_var, i);
- ir_dereference *const op1 = get_column(b_var, i);
-
- ir_expression *const cmp =
- new(this->mem_ctx) ir_expression(ir_binop_any_nequal,
- glsl_type::bool_type, op0, op1);
-
- ir_dereference *const lhs =
- new(this->mem_ctx) ir_dereference_variable(tmp_bvec);
-
- ir_assignment *const assign =
- new(this->mem_ctx) ir_assignment(lhs, cmp, NULL, (1U << i));
-
- this->base_ir->insert_before(assign);
- }
-
- ir_rvalue *const val =
- new(this->mem_ctx) ir_dereference_variable(tmp_bvec);
-
- ir_expression *any =
- new(this->mem_ctx) ir_expression(ir_unop_any, glsl_type::bool_type,
- val, NULL);
-
- if (test_equal)
- any = new(this->mem_ctx) ir_expression(ir_unop_logic_not,
- glsl_type::bool_type,
- any, NULL);
-
- ir_rvalue *const result =
- new(this->mem_ctx) ir_dereference_variable(result_var);
-
- ir_assignment *const assign =
- new(mem_ctx) ir_assignment(result, any, NULL);
- base_ir->insert_before(assign);
-}
-
-static bool
-has_matrix_operand(const ir_expression *expr, unsigned &columns)
-{
- for (unsigned i = 0; i < expr->get_num_operands(); i++) {
- if (expr->operands[i]->type->is_matrix()) {
- columns = expr->operands[i]->type->matrix_columns;
- return true;
- }
- }
-
- return false;
-}
-
-
-ir_visitor_status
-ir_mat_op_to_vec_visitor::visit_leave(ir_assignment *orig_assign)
-{
- ir_expression *orig_expr = orig_assign->rhs->as_expression();
- unsigned int i, matrix_columns = 1;
- ir_variable *op_var[2];
-
- if (!orig_expr)
- return visit_continue;
-
- if (!has_matrix_operand(orig_expr, matrix_columns))
- return visit_continue;
-
- assert(orig_expr->get_num_operands() <= 2);
-
- mem_ctx = talloc_parent(orig_assign);
-
- ir_dereference_variable *lhs_deref =
- orig_assign->lhs->as_dereference_variable();
- assert(lhs_deref);
-
- ir_variable *result_var = lhs_deref->var;
-
- /* Store the expression operands in temps so we can use them
- * multiple times.
- */
- for (i = 0; i < orig_expr->get_num_operands(); i++) {
- ir_assignment *assign;
-
- op_var[i] = new(mem_ctx) ir_variable(orig_expr->operands[i]->type,
- "mat_op_to_vec",
- ir_var_temporary);
- base_ir->insert_before(op_var[i]);
-
- lhs_deref = new(mem_ctx) ir_dereference_variable(op_var[i]);
- assign = new(mem_ctx) ir_assignment(lhs_deref,
- orig_expr->operands[i],
- NULL);
- base_ir->insert_before(assign);
- }
-
- /* OK, time to break down this matrix operation. */
- switch (orig_expr->operation) {
- case ir_unop_neg: {
- const unsigned mask = (1U << result_var->type->vector_elements) - 1;
-
- /* Apply the operation to each column.*/
- for (i = 0; i < matrix_columns; i++) {
- ir_rvalue *op0 = get_column(op_var[0], i);
- ir_dereference *result = get_column(result_var, i);
- ir_expression *column_expr;
- ir_assignment *column_assign;
-
- column_expr = new(mem_ctx) ir_expression(orig_expr->operation,
- result->type,
- op0,
- NULL);
-
- column_assign = new(mem_ctx) ir_assignment(result,
- column_expr,
- NULL,
- mask);
- assert(column_assign->write_mask != 0);
- base_ir->insert_before(column_assign);
- }
- break;
- }
- case ir_binop_add:
- case ir_binop_sub:
- case ir_binop_div:
- case ir_binop_mod: {
- const unsigned mask = (1U << result_var->type->vector_elements) - 1;
-
- /* For most operations, the matrix version is just going
- * column-wise through and applying the operation to each column
- * if available.
- */
- for (i = 0; i < matrix_columns; i++) {
- ir_rvalue *op0 = get_column(op_var[0], i);
- ir_rvalue *op1 = get_column(op_var[1], i);
- ir_dereference *result = get_column(result_var, i);
- ir_expression *column_expr;
- ir_assignment *column_assign;
-
- column_expr = new(mem_ctx) ir_expression(orig_expr->operation,
- result->type,
- op0,
- op1);
-
- column_assign = new(mem_ctx) ir_assignment(result,
- column_expr,
- NULL,
- mask);
- assert(column_assign->write_mask != 0);
- base_ir->insert_before(column_assign);
- }
- break;
- }
- case ir_binop_mul:
- if (op_var[0]->type->is_matrix()) {
- if (op_var[1]->type->is_matrix()) {
- do_mul_mat_mat(result_var, op_var[0], op_var[1]);
- } else if (op_var[1]->type->is_vector()) {
- do_mul_mat_vec(result_var, op_var[0], op_var[1]);
- } else {
- assert(op_var[1]->type->is_scalar());
- do_mul_mat_scalar(result_var, op_var[0], op_var[1]);
- }
- } else {
- assert(op_var[1]->type->is_matrix());
- if (op_var[0]->type->is_vector()) {
- do_mul_vec_mat(result_var, op_var[0], op_var[1]);
- } else {
- assert(op_var[0]->type->is_scalar());
- do_mul_mat_scalar(result_var, op_var[1], op_var[0]);
- }
- }
- break;
-
- case ir_binop_all_equal:
- case ir_binop_any_nequal:
- do_equal_mat_mat(result_var, op_var[1], op_var[0],
- (orig_expr->operation == ir_binop_all_equal));
- break;
-
- default:
- printf("FINISHME: Handle matrix operation for %s\n",
- orig_expr->operator_string());
- abort();
- }
- orig_assign->remove();
- this->made_progress = true;
-
- return visit_continue;
-}
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file lower_mat_op_to_vec.cpp
+ *
+ * Breaks matrix operation expressions down to a series of vector operations.
+ *
+ * Generally this is how we have to codegen matrix operations for a
+ * GPU, so this gives us the chance to constant fold operations on a
+ * column or row.
+ */
+
+#include "ir.h"
+#include "ir_expression_flattening.h"
+#include "glsl_types.h"
+
+class ir_mat_op_to_vec_visitor : public ir_hierarchical_visitor {
+public:
+ ir_mat_op_to_vec_visitor()
+ {
+ this->made_progress = false;
+ this->mem_ctx = NULL;
+ }
+
+ ir_visitor_status visit_leave(ir_assignment *);
+
+ ir_dereference *get_column(ir_variable *var, int col);
+ ir_rvalue *get_element(ir_variable *var, int col, int row);
+
+ void do_mul_mat_mat(ir_variable *result_var,
+ ir_variable *a_var, ir_variable *b_var);
+ void do_mul_mat_vec(ir_variable *result_var,
+ ir_variable *a_var, ir_variable *b_var);
+ void do_mul_vec_mat(ir_variable *result_var,
+ ir_variable *a_var, ir_variable *b_var);
+ void do_mul_mat_scalar(ir_variable *result_var,
+ ir_variable *a_var, ir_variable *b_var);
+ void do_equal_mat_mat(ir_variable *result_var, ir_variable *a_var,
+ ir_variable *b_var, bool test_equal);
+
+ void *mem_ctx;
+ bool made_progress;
+};
+
+static bool
+mat_op_to_vec_predicate(ir_instruction *ir)
+{
+ ir_expression *expr = ir->as_expression();
+ unsigned int i;
+
+ if (!expr)
+ return false;
+
+ for (i = 0; i < expr->get_num_operands(); i++) {
+ if (expr->operands[i]->type->is_matrix())
+ return true;
+ }
+
+ return false;
+}
+
+bool
+do_mat_op_to_vec(exec_list *instructions)
+{
+ ir_mat_op_to_vec_visitor v;
+
+ /* Pull out any matrix expression to a separate assignment to a
+ * temp. This will make our handling of the breakdown to
+ * operations on the matrix's vector components much easier.
+ */
+ do_expression_flattening(instructions, mat_op_to_vec_predicate);
+
+ visit_list_elements(&v, instructions);
+
+ return v.made_progress;
+}
+
+ir_rvalue *
+ir_mat_op_to_vec_visitor::get_element(ir_variable *var, int col, int row)
+{
+ ir_dereference *deref;
+
+ deref = new(mem_ctx) ir_dereference_variable(var);
+
+ if (var->type->is_matrix()) {
+ deref = new(mem_ctx) ir_dereference_array(var,
+ new(mem_ctx) ir_constant(col));
+ } else {
+ assert(col == 0);
+ }
+
+ return new(mem_ctx) ir_swizzle(deref, row, 0, 0, 0, 1);
+}
+
+ir_dereference *
+ir_mat_op_to_vec_visitor::get_column(ir_variable *var, int row)
+{
+ ir_dereference *deref;
+
+ if (!var->type->is_matrix()) {
+ deref = new(mem_ctx) ir_dereference_variable(var);
+ } else {
+ deref = new(mem_ctx) ir_dereference_variable(var);
+ deref = new(mem_ctx) ir_dereference_array(deref,
+ new(mem_ctx) ir_constant(row));
+ }
+
+ return deref;
+}
+
+void
+ir_mat_op_to_vec_visitor::do_mul_mat_mat(ir_variable *result_var,
+ ir_variable *a_var,
+ ir_variable *b_var)
+{
+ int b_col, i;
+ ir_assignment *assign;
+ ir_expression *expr;
+
+ for (b_col = 0; b_col < b_var->type->matrix_columns; b_col++) {
+ ir_rvalue *a = get_column(a_var, 0);
+ ir_rvalue *b = get_element(b_var, b_col, 0);
+
+ /* first column */
+ expr = new(mem_ctx) ir_expression(ir_binop_mul,
+ a->type,
+ a,
+ b);
+
+ /* following columns */
+ for (i = 1; i < a_var->type->matrix_columns; i++) {
+ ir_expression *mul_expr;
+
+ a = get_column(a_var, i);
+ b = get_element(b_var, b_col, i);
+
+ mul_expr = new(mem_ctx) ir_expression(ir_binop_mul,
+ a->type,
+ a,
+ b);
+ expr = new(mem_ctx) ir_expression(ir_binop_add,
+ a->type,
+ expr,
+ mul_expr);
+ }
+
+ ir_rvalue *result = get_column(result_var, b_col);
+ assign = new(mem_ctx) ir_assignment(result,
+ expr,
+ NULL);
+ base_ir->insert_before(assign);
+ }
+}
+
+void
+ir_mat_op_to_vec_visitor::do_mul_mat_vec(ir_variable *result_var,
+ ir_variable *a_var,
+ ir_variable *b_var)
+{
+ int i;
+ ir_rvalue *a = get_column(a_var, 0);
+ ir_rvalue *b = get_element(b_var, 0, 0);
+ ir_assignment *assign;
+ ir_expression *expr;
+
+ /* first column */
+ expr = new(mem_ctx) ir_expression(ir_binop_mul,
+ result_var->type,
+ a,
+ b);
+
+ /* following columns */
+ for (i = 1; i < a_var->type->matrix_columns; i++) {
+ ir_expression *mul_expr;
+
+ a = get_column(a_var, i);
+ b = get_element(b_var, 0, i);
+
+ mul_expr = new(mem_ctx) ir_expression(ir_binop_mul,
+ result_var->type,
+ a,
+ b);
+ expr = new(mem_ctx) ir_expression(ir_binop_add,
+ result_var->type,
+ expr,
+ mul_expr);
+ }
+
+ ir_rvalue *result = new(mem_ctx) ir_dereference_variable(result_var);
+ assign = new(mem_ctx) ir_assignment(result,
+ expr,
+ NULL);
+ base_ir->insert_before(assign);
+}
+
+void
+ir_mat_op_to_vec_visitor::do_mul_vec_mat(ir_variable *result_var,
+ ir_variable *a_var,
+ ir_variable *b_var)
+{
+ int i;
+
+ for (i = 0; i < b_var->type->matrix_columns; i++) {
+ ir_rvalue *a = new(mem_ctx) ir_dereference_variable(a_var);
+ ir_rvalue *b = get_column(b_var, i);
+ ir_rvalue *result;
+ ir_expression *column_expr;
+ ir_assignment *column_assign;
+
+ result = new(mem_ctx) ir_dereference_variable(result_var);
+ result = new(mem_ctx) ir_swizzle(result, i, 0, 0, 0, 1);
+
+ column_expr = new(mem_ctx) ir_expression(ir_binop_dot,
+ result->type,
+ a,
+ b);
+
+ column_assign = new(mem_ctx) ir_assignment(result,
+ column_expr,
+ NULL);
+ base_ir->insert_before(column_assign);
+ }
+}
+
+void
+ir_mat_op_to_vec_visitor::do_mul_mat_scalar(ir_variable *result_var,
+ ir_variable *a_var,
+ ir_variable *b_var)
+{
+ int i;
+
+ for (i = 0; i < a_var->type->matrix_columns; i++) {
+ ir_rvalue *a = get_column(a_var, i);
+ ir_rvalue *b = new(mem_ctx) ir_dereference_variable(b_var);
+ ir_rvalue *result = get_column(result_var, i);
+ ir_expression *column_expr;
+ ir_assignment *column_assign;
+
+ column_expr = new(mem_ctx) ir_expression(ir_binop_mul,
+ result->type,
+ a,
+ b);
+
+ column_assign = new(mem_ctx) ir_assignment(result,
+ column_expr,
+ NULL);
+ base_ir->insert_before(column_assign);
+ }
+}
+
+void
+ir_mat_op_to_vec_visitor::do_equal_mat_mat(ir_variable *result_var,
+ ir_variable *a_var,
+ ir_variable *b_var,
+ bool test_equal)
+{
+ /* This essentially implements the following GLSL:
+ *
+ * bool equal(mat4 a, mat4 b)
+ * {
+ * return !any(bvec4(a[0] != b[0],
+ * a[1] != b[1],
+ * a[2] != b[2],
+ * a[3] != b[3]);
+ * }
+ *
+ * bool nequal(mat4 a, mat4 b)
+ * {
+ * return any(bvec4(a[0] != b[0],
+ * a[1] != b[1],
+ * a[2] != b[2],
+ * a[3] != b[3]);
+ * }
+ */
+ const unsigned columns = a_var->type->matrix_columns;
+ const glsl_type *const bvec_type =
+ glsl_type::get_instance(GLSL_TYPE_BOOL, columns, 1);
+
+ ir_variable *const tmp_bvec =
+ new(this->mem_ctx) ir_variable(bvec_type, "mat_cmp_bvec",
+ ir_var_temporary);
+ this->base_ir->insert_before(tmp_bvec);
+
+ for (unsigned i = 0; i < columns; i++) {
+ ir_dereference *const op0 = get_column(a_var, i);
+ ir_dereference *const op1 = get_column(b_var, i);
+
+ ir_expression *const cmp =
+ new(this->mem_ctx) ir_expression(ir_binop_any_nequal,
+ glsl_type::bool_type, op0, op1);
+
+ ir_dereference *const lhs =
+ new(this->mem_ctx) ir_dereference_variable(tmp_bvec);
+
+ ir_assignment *const assign =
+ new(this->mem_ctx) ir_assignment(lhs, cmp, NULL, (1U << i));
+
+ this->base_ir->insert_before(assign);
+ }
+
+ ir_rvalue *const val =
+ new(this->mem_ctx) ir_dereference_variable(tmp_bvec);
+
+ ir_expression *any =
+ new(this->mem_ctx) ir_expression(ir_unop_any, glsl_type::bool_type,
+ val, NULL);
+
+ if (test_equal)
+ any = new(this->mem_ctx) ir_expression(ir_unop_logic_not,
+ glsl_type::bool_type,
+ any, NULL);
+
+ ir_rvalue *const result =
+ new(this->mem_ctx) ir_dereference_variable(result_var);
+
+ ir_assignment *const assign =
+ new(mem_ctx) ir_assignment(result, any, NULL);
+ base_ir->insert_before(assign);
+}
+
+static bool
+has_matrix_operand(const ir_expression *expr, unsigned &columns)
+{
+ for (unsigned i = 0; i < expr->get_num_operands(); i++) {
+ if (expr->operands[i]->type->is_matrix()) {
+ columns = expr->operands[i]->type->matrix_columns;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+ir_visitor_status
+ir_mat_op_to_vec_visitor::visit_leave(ir_assignment *orig_assign)
+{
+ ir_expression *orig_expr = orig_assign->rhs->as_expression();
+ unsigned int i, matrix_columns = 1;
+ ir_variable *op_var[2];
+
+ if (!orig_expr)
+ return visit_continue;
+
+ if (!has_matrix_operand(orig_expr, matrix_columns))
+ return visit_continue;
+
+ assert(orig_expr->get_num_operands() <= 2);
+
+ mem_ctx = ralloc_parent(orig_assign);
+
+ ir_dereference_variable *lhs_deref =
+ orig_assign->lhs->as_dereference_variable();
+ assert(lhs_deref);
+
+ ir_variable *result_var = lhs_deref->var;
+
+ /* Store the expression operands in temps so we can use them
+ * multiple times.
+ */
+ for (i = 0; i < orig_expr->get_num_operands(); i++) {
+ ir_assignment *assign;
+
+ op_var[i] = new(mem_ctx) ir_variable(orig_expr->operands[i]->type,
+ "mat_op_to_vec",
+ ir_var_temporary);
+ base_ir->insert_before(op_var[i]);
+
+ lhs_deref = new(mem_ctx) ir_dereference_variable(op_var[i]);
+ assign = new(mem_ctx) ir_assignment(lhs_deref,
+ orig_expr->operands[i],
+ NULL);
+ base_ir->insert_before(assign);
+ }
+
+ /* OK, time to break down this matrix operation. */
+ switch (orig_expr->operation) {
+ case ir_unop_neg: {
+ const unsigned mask = (1U << result_var->type->vector_elements) - 1;
+
+ /* Apply the operation to each column.*/
+ for (i = 0; i < matrix_columns; i++) {
+ ir_rvalue *op0 = get_column(op_var[0], i);
+ ir_dereference *result = get_column(result_var, i);
+ ir_expression *column_expr;
+ ir_assignment *column_assign;
+
+ column_expr = new(mem_ctx) ir_expression(orig_expr->operation,
+ result->type,
+ op0,
+ NULL);
+
+ column_assign = new(mem_ctx) ir_assignment(result,
+ column_expr,
+ NULL,
+ mask);
+ assert(column_assign->write_mask != 0);
+ base_ir->insert_before(column_assign);
+ }
+ break;
+ }
+ case ir_binop_add:
+ case ir_binop_sub:
+ case ir_binop_div:
+ case ir_binop_mod: {
+ const unsigned mask = (1U << result_var->type->vector_elements) - 1;
+
+ /* For most operations, the matrix version is just going
+ * column-wise through and applying the operation to each column
+ * if available.
+ */
+ for (i = 0; i < matrix_columns; i++) {
+ ir_rvalue *op0 = get_column(op_var[0], i);
+ ir_rvalue *op1 = get_column(op_var[1], i);
+ ir_dereference *result = get_column(result_var, i);
+ ir_expression *column_expr;
+ ir_assignment *column_assign;
+
+ column_expr = new(mem_ctx) ir_expression(orig_expr->operation,
+ result->type,
+ op0,
+ op1);
+
+ column_assign = new(mem_ctx) ir_assignment(result,
+ column_expr,
+ NULL,
+ mask);
+ assert(column_assign->write_mask != 0);
+ base_ir->insert_before(column_assign);
+ }
+ break;
+ }
+ case ir_binop_mul:
+ if (op_var[0]->type->is_matrix()) {
+ if (op_var[1]->type->is_matrix()) {
+ do_mul_mat_mat(result_var, op_var[0], op_var[1]);
+ } else if (op_var[1]->type->is_vector()) {
+ do_mul_mat_vec(result_var, op_var[0], op_var[1]);
+ } else {
+ assert(op_var[1]->type->is_scalar());
+ do_mul_mat_scalar(result_var, op_var[0], op_var[1]);
+ }
+ } else {
+ assert(op_var[1]->type->is_matrix());
+ if (op_var[0]->type->is_vector()) {
+ do_mul_vec_mat(result_var, op_var[0], op_var[1]);
+ } else {
+ assert(op_var[0]->type->is_scalar());
+ do_mul_mat_scalar(result_var, op_var[1], op_var[0]);
+ }
+ }
+ break;
+
+ case ir_binop_all_equal:
+ case ir_binop_any_nequal:
+ do_equal_mat_mat(result_var, op_var[1], op_var[0],
+ (orig_expr->operation == ir_binop_all_equal));
+ break;
+
+ default:
+ printf("FINISHME: Handle matrix operation for %s\n",
+ orig_expr->operator_string());
+ abort();
+ }
+ orig_assign->remove();
+ this->made_progress = true;
+
+ return visit_continue;
+}