aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/glsl/opt_algebraic.cpp
diff options
context:
space:
mode:
authormarha <marha@users.sourceforge.net>2011-02-01 10:46:14 +0000
committermarha <marha@users.sourceforge.net>2011-02-01 10:46:14 +0000
commitd4a8565009962e162d86a9c4ae24062a3fa12025 (patch)
treebcd249c3c523b23a6350b1d6b5a2cff7518cdb0e /mesalib/src/glsl/opt_algebraic.cpp
parent6751d9898be671d253d6f7b0806cd4b10daaaf85 (diff)
parent0bf07d32cbd460220c67d726900772cf3692746d (diff)
downloadvcxsrv-d4a8565009962e162d86a9c4ae24062a3fa12025.tar.gz
vcxsrv-d4a8565009962e162d86a9c4ae24062a3fa12025.tar.bz2
vcxsrv-d4a8565009962e162d86a9c4ae24062a3fa12025.zip
svn merge ^/branches/released .
Diffstat (limited to 'mesalib/src/glsl/opt_algebraic.cpp')
-rw-r--r--mesalib/src/glsl/opt_algebraic.cpp822
1 files changed, 411 insertions, 411 deletions
diff --git a/mesalib/src/glsl/opt_algebraic.cpp b/mesalib/src/glsl/opt_algebraic.cpp
index 82f90197d..cade9611d 100644
--- a/mesalib/src/glsl/opt_algebraic.cpp
+++ b/mesalib/src/glsl/opt_algebraic.cpp
@@ -1,411 +1,411 @@
-/*
- * Copyright © 2010 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
-
-/**
- * \file opt_algebraic.cpp
- *
- * Takes advantage of association, commutivity, and other algebraic
- * properties to simplify expressions.
- */
-
-#include "ir.h"
-#include "ir_visitor.h"
-#include "ir_rvalue_visitor.h"
-#include "ir_optimization.h"
-#include "glsl_types.h"
-
-/**
- * Visitor class for replacing expressions with ir_constant values.
- */
-
-class ir_algebraic_visitor : public ir_rvalue_visitor {
-public:
- ir_algebraic_visitor()
- {
- this->progress = false;
- this->mem_ctx = NULL;
- }
-
- virtual ~ir_algebraic_visitor()
- {
- }
-
- ir_rvalue *handle_expression(ir_expression *ir);
- void handle_rvalue(ir_rvalue **rvalue);
- bool reassociate_constant(ir_expression *ir1,
- int const_index,
- ir_constant *constant,
- ir_expression *ir2);
- void reassociate_operands(ir_expression *ir1,
- int op1,
- ir_expression *ir2,
- int op2);
- ir_rvalue *swizzle_if_required(ir_expression *expr,
- ir_rvalue *operand);
-
- void *mem_ctx;
-
- bool progress;
-};
-
-static inline bool
-is_vec_zero(ir_constant *ir)
-{
- return (ir == NULL) ? false : ir->is_zero();
-}
-
-static inline bool
-is_vec_one(ir_constant *ir)
-{
- return (ir == NULL) ? false : ir->is_one();
-}
-
-static void
-update_type(ir_expression *ir)
-{
- if (ir->operands[0]->type->is_vector())
- ir->type = ir->operands[0]->type;
- else
- ir->type = ir->operands[1]->type;
-}
-
-void
-ir_algebraic_visitor::reassociate_operands(ir_expression *ir1,
- int op1,
- ir_expression *ir2,
- int op2)
-{
- ir_rvalue *temp = ir2->operands[op2];
- ir2->operands[op2] = ir1->operands[op1];
- ir1->operands[op1] = temp;
-
- /* Update the type of ir2. The type of ir1 won't have changed --
- * base types matched, and at least one of the operands of the 2
- * binops is still a vector if any of them were.
- */
- update_type(ir2);
-
- this->progress = true;
-}
-
-/**
- * Reassociates a constant down a tree of adds or multiplies.
- *
- * Consider (2 * (a * (b * 0.5))). We want to send up with a * b.
- */
-bool
-ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index,
- ir_constant *constant,
- ir_expression *ir2)
-{
- if (!ir2 || ir1->operation != ir2->operation)
- return false;
-
- /* Don't want to even think about matrices. */
- if (ir1->operands[0]->type->is_matrix() ||
- ir1->operands[1]->type->is_matrix() ||
- ir2->operands[0]->type->is_matrix() ||
- ir2->operands[1]->type->is_matrix())
- return false;
-
- ir_constant *ir2_const[2];
- ir2_const[0] = ir2->operands[0]->constant_expression_value();
- ir2_const[1] = ir2->operands[1]->constant_expression_value();
-
- if (ir2_const[0] && ir2_const[1])
- return false;
-
- if (ir2_const[0]) {
- reassociate_operands(ir1, const_index, ir2, 1);
- return true;
- } else if (ir2_const[1]) {
- reassociate_operands(ir1, const_index, ir2, 0);
- return true;
- }
-
- if (reassociate_constant(ir1, const_index, constant,
- ir2->operands[0]->as_expression())) {
- update_type(ir2);
- return true;
- }
-
- if (reassociate_constant(ir1, const_index, constant,
- ir2->operands[1]->as_expression())) {
- update_type(ir2);
- return true;
- }
-
- return false;
-}
-
-/* When eliminating an expression and just returning one of its operands,
- * we may need to swizzle that operand out to a vector if the expression was
- * vector type.
- */
-ir_rvalue *
-ir_algebraic_visitor::swizzle_if_required(ir_expression *expr,
- ir_rvalue *operand)
-{
- if (expr->type->is_vector() && operand->type->is_scalar()) {
- return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0,
- expr->type->vector_elements);
- } else
- return operand;
-}
-
-ir_rvalue *
-ir_algebraic_visitor::handle_expression(ir_expression *ir)
-{
- ir_constant *op_const[2] = {NULL, NULL};
- ir_expression *op_expr[2] = {NULL, NULL};
- ir_expression *temp;
- unsigned int i;
-
- assert(ir->get_num_operands() <= 2);
- for (i = 0; i < ir->get_num_operands(); i++) {
- if (ir->operands[i]->type->is_matrix())
- return ir;
-
- op_const[i] = ir->operands[i]->constant_expression_value();
- op_expr[i] = ir->operands[i]->as_expression();
- }
-
- if (this->mem_ctx == NULL)
- this->mem_ctx = talloc_parent(ir);
-
- switch (ir->operation) {
- case ir_unop_logic_not: {
- enum ir_expression_operation new_op = ir_unop_logic_not;
-
- if (op_expr[0] == NULL)
- break;
-
- switch (op_expr[0]->operation) {
- case ir_binop_less: new_op = ir_binop_gequal; break;
- case ir_binop_greater: new_op = ir_binop_lequal; break;
- case ir_binop_lequal: new_op = ir_binop_greater; break;
- case ir_binop_gequal: new_op = ir_binop_less; break;
- case ir_binop_equal: new_op = ir_binop_nequal; break;
- case ir_binop_nequal: new_op = ir_binop_equal; break;
- case ir_binop_all_equal: new_op = ir_binop_any_nequal; break;
- case ir_binop_any_nequal: new_op = ir_binop_all_equal; break;
-
- default:
- /* The default case handler is here to silence a warning from GCC.
- */
- break;
- }
-
- if (new_op != ir_unop_logic_not) {
- this->progress = true;
- return new(mem_ctx) ir_expression(new_op,
- ir->type,
- op_expr[0]->operands[0],
- op_expr[0]->operands[1]);
- }
-
- break;
- }
-
- case ir_binop_add:
- if (is_vec_zero(op_const[0])) {
- this->progress = true;
- return swizzle_if_required(ir, ir->operands[1]);
- }
- if (is_vec_zero(op_const[1])) {
- this->progress = true;
- return swizzle_if_required(ir, ir->operands[0]);
- }
-
- /* Reassociate addition of constants so that we can do constant
- * folding.
- */
- if (op_const[0] && !op_const[1])
- reassociate_constant(ir, 0, op_const[0],
- ir->operands[1]->as_expression());
- if (op_const[1] && !op_const[0])
- reassociate_constant(ir, 1, op_const[1],
- ir->operands[0]->as_expression());
- break;
-
- case ir_binop_sub:
- if (is_vec_zero(op_const[0])) {
- this->progress = true;
- temp = new(mem_ctx) ir_expression(ir_unop_neg,
- ir->operands[1]->type,
- ir->operands[1],
- NULL);
- return swizzle_if_required(ir, temp);
- }
- if (is_vec_zero(op_const[1])) {
- this->progress = true;
- return swizzle_if_required(ir, ir->operands[0]);
- }
- break;
-
- case ir_binop_mul:
- if (is_vec_one(op_const[0])) {
- this->progress = true;
- return swizzle_if_required(ir, ir->operands[1]);
- }
- if (is_vec_one(op_const[1])) {
- this->progress = true;
- return swizzle_if_required(ir, ir->operands[0]);
- }
-
- if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
- this->progress = true;
- return ir_constant::zero(ir, ir->type);
- }
-
- /* Reassociate multiplication of constants so that we can do
- * constant folding.
- */
- if (op_const[0] && !op_const[1])
- reassociate_constant(ir, 0, op_const[0],
- ir->operands[1]->as_expression());
- if (op_const[1] && !op_const[0])
- reassociate_constant(ir, 1, op_const[1],
- ir->operands[0]->as_expression());
-
- break;
-
- case ir_binop_div:
- if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) {
- this->progress = true;
- temp = new(mem_ctx) ir_expression(ir_unop_rcp,
- ir->operands[1]->type,
- ir->operands[1],
- NULL);
- return swizzle_if_required(ir, temp);
- }
- if (is_vec_one(op_const[1])) {
- this->progress = true;
- return swizzle_if_required(ir, ir->operands[0]);
- }
- break;
-
- case ir_binop_logic_and:
- /* FINISHME: Also simplify (a && a) to (a). */
- if (is_vec_one(op_const[0])) {
- this->progress = true;
- return ir->operands[1];
- } else if (is_vec_one(op_const[1])) {
- this->progress = true;
- return ir->operands[0];
- } else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
- this->progress = true;
- return ir_constant::zero(mem_ctx, ir->type);
- }
- break;
-
- case ir_binop_logic_xor:
- /* FINISHME: Also simplify (a ^^ a) to (false). */
- if (is_vec_zero(op_const[0])) {
- this->progress = true;
- return ir->operands[1];
- } else if (is_vec_zero(op_const[1])) {
- this->progress = true;
- return ir->operands[0];
- } else if (is_vec_one(op_const[0])) {
- this->progress = true;
- return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
- ir->operands[1], NULL);
- } else if (is_vec_one(op_const[1])) {
- this->progress = true;
- return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
- ir->operands[0], NULL);
- }
- break;
-
- case ir_binop_logic_or:
- /* FINISHME: Also simplify (a || a) to (a). */
- if (is_vec_zero(op_const[0])) {
- this->progress = true;
- return ir->operands[1];
- } else if (is_vec_zero(op_const[1])) {
- this->progress = true;
- return ir->operands[0];
- } else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) {
- ir_constant_data data;
-
- for (unsigned i = 0; i < 16; i++)
- data.b[i] = true;
-
- this->progress = true;
- return new(mem_ctx) ir_constant(ir->type, &data);
- }
- break;
-
- case ir_unop_rcp:
- if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) {
- this->progress = true;
- return op_expr[0]->operands[0];
- }
-
- /* FINISHME: We should do rcp(rsq(x)) -> sqrt(x) for some
- * backends, except that some backends will have done sqrt ->
- * rcp(rsq(x)) and we don't want to undo it for them.
- */
-
- /* As far as we know, all backends are OK with rsq. */
- if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) {
- this->progress = true;
- temp = new(mem_ctx) ir_expression(ir_unop_rsq,
- op_expr[0]->operands[0]->type,
- op_expr[0]->operands[0],
- NULL);
- return swizzle_if_required(ir, temp);
- }
-
- break;
-
- default:
- break;
- }
-
- return ir;
-}
-
-void
-ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue)
-{
- if (!*rvalue)
- return;
-
- ir_expression *expr = (*rvalue)->as_expression();
- if (!expr || expr->operation == ir_quadop_vector)
- return;
-
- *rvalue = handle_expression(expr);
-}
-
-bool
-do_algebraic(exec_list *instructions)
-{
- ir_algebraic_visitor v;
-
- visit_list_elements(&v, instructions);
-
- return v.progress;
-}
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file opt_algebraic.cpp
+ *
+ * Takes advantage of association, commutivity, and other algebraic
+ * properties to simplify expressions.
+ */
+
+#include "ir.h"
+#include "ir_visitor.h"
+#include "ir_rvalue_visitor.h"
+#include "ir_optimization.h"
+#include "glsl_types.h"
+
+/**
+ * Visitor class for replacing expressions with ir_constant values.
+ */
+
+class ir_algebraic_visitor : public ir_rvalue_visitor {
+public:
+ ir_algebraic_visitor()
+ {
+ this->progress = false;
+ this->mem_ctx = NULL;
+ }
+
+ virtual ~ir_algebraic_visitor()
+ {
+ }
+
+ ir_rvalue *handle_expression(ir_expression *ir);
+ void handle_rvalue(ir_rvalue **rvalue);
+ bool reassociate_constant(ir_expression *ir1,
+ int const_index,
+ ir_constant *constant,
+ ir_expression *ir2);
+ void reassociate_operands(ir_expression *ir1,
+ int op1,
+ ir_expression *ir2,
+ int op2);
+ ir_rvalue *swizzle_if_required(ir_expression *expr,
+ ir_rvalue *operand);
+
+ void *mem_ctx;
+
+ bool progress;
+};
+
+static inline bool
+is_vec_zero(ir_constant *ir)
+{
+ return (ir == NULL) ? false : ir->is_zero();
+}
+
+static inline bool
+is_vec_one(ir_constant *ir)
+{
+ return (ir == NULL) ? false : ir->is_one();
+}
+
+static void
+update_type(ir_expression *ir)
+{
+ if (ir->operands[0]->type->is_vector())
+ ir->type = ir->operands[0]->type;
+ else
+ ir->type = ir->operands[1]->type;
+}
+
+void
+ir_algebraic_visitor::reassociate_operands(ir_expression *ir1,
+ int op1,
+ ir_expression *ir2,
+ int op2)
+{
+ ir_rvalue *temp = ir2->operands[op2];
+ ir2->operands[op2] = ir1->operands[op1];
+ ir1->operands[op1] = temp;
+
+ /* Update the type of ir2. The type of ir1 won't have changed --
+ * base types matched, and at least one of the operands of the 2
+ * binops is still a vector if any of them were.
+ */
+ update_type(ir2);
+
+ this->progress = true;
+}
+
+/**
+ * Reassociates a constant down a tree of adds or multiplies.
+ *
+ * Consider (2 * (a * (b * 0.5))). We want to send up with a * b.
+ */
+bool
+ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index,
+ ir_constant *constant,
+ ir_expression *ir2)
+{
+ if (!ir2 || ir1->operation != ir2->operation)
+ return false;
+
+ /* Don't want to even think about matrices. */
+ if (ir1->operands[0]->type->is_matrix() ||
+ ir1->operands[1]->type->is_matrix() ||
+ ir2->operands[0]->type->is_matrix() ||
+ ir2->operands[1]->type->is_matrix())
+ return false;
+
+ ir_constant *ir2_const[2];
+ ir2_const[0] = ir2->operands[0]->constant_expression_value();
+ ir2_const[1] = ir2->operands[1]->constant_expression_value();
+
+ if (ir2_const[0] && ir2_const[1])
+ return false;
+
+ if (ir2_const[0]) {
+ reassociate_operands(ir1, const_index, ir2, 1);
+ return true;
+ } else if (ir2_const[1]) {
+ reassociate_operands(ir1, const_index, ir2, 0);
+ return true;
+ }
+
+ if (reassociate_constant(ir1, const_index, constant,
+ ir2->operands[0]->as_expression())) {
+ update_type(ir2);
+ return true;
+ }
+
+ if (reassociate_constant(ir1, const_index, constant,
+ ir2->operands[1]->as_expression())) {
+ update_type(ir2);
+ return true;
+ }
+
+ return false;
+}
+
+/* When eliminating an expression and just returning one of its operands,
+ * we may need to swizzle that operand out to a vector if the expression was
+ * vector type.
+ */
+ir_rvalue *
+ir_algebraic_visitor::swizzle_if_required(ir_expression *expr,
+ ir_rvalue *operand)
+{
+ if (expr->type->is_vector() && operand->type->is_scalar()) {
+ return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0,
+ expr->type->vector_elements);
+ } else
+ return operand;
+}
+
+ir_rvalue *
+ir_algebraic_visitor::handle_expression(ir_expression *ir)
+{
+ ir_constant *op_const[2] = {NULL, NULL};
+ ir_expression *op_expr[2] = {NULL, NULL};
+ ir_expression *temp;
+ unsigned int i;
+
+ assert(ir->get_num_operands() <= 2);
+ for (i = 0; i < ir->get_num_operands(); i++) {
+ if (ir->operands[i]->type->is_matrix())
+ return ir;
+
+ op_const[i] = ir->operands[i]->constant_expression_value();
+ op_expr[i] = ir->operands[i]->as_expression();
+ }
+
+ if (this->mem_ctx == NULL)
+ this->mem_ctx = ralloc_parent(ir);
+
+ switch (ir->operation) {
+ case ir_unop_logic_not: {
+ enum ir_expression_operation new_op = ir_unop_logic_not;
+
+ if (op_expr[0] == NULL)
+ break;
+
+ switch (op_expr[0]->operation) {
+ case ir_binop_less: new_op = ir_binop_gequal; break;
+ case ir_binop_greater: new_op = ir_binop_lequal; break;
+ case ir_binop_lequal: new_op = ir_binop_greater; break;
+ case ir_binop_gequal: new_op = ir_binop_less; break;
+ case ir_binop_equal: new_op = ir_binop_nequal; break;
+ case ir_binop_nequal: new_op = ir_binop_equal; break;
+ case ir_binop_all_equal: new_op = ir_binop_any_nequal; break;
+ case ir_binop_any_nequal: new_op = ir_binop_all_equal; break;
+
+ default:
+ /* The default case handler is here to silence a warning from GCC.
+ */
+ break;
+ }
+
+ if (new_op != ir_unop_logic_not) {
+ this->progress = true;
+ return new(mem_ctx) ir_expression(new_op,
+ ir->type,
+ op_expr[0]->operands[0],
+ op_expr[0]->operands[1]);
+ }
+
+ break;
+ }
+
+ case ir_binop_add:
+ if (is_vec_zero(op_const[0])) {
+ this->progress = true;
+ return swizzle_if_required(ir, ir->operands[1]);
+ }
+ if (is_vec_zero(op_const[1])) {
+ this->progress = true;
+ return swizzle_if_required(ir, ir->operands[0]);
+ }
+
+ /* Reassociate addition of constants so that we can do constant
+ * folding.
+ */
+ if (op_const[0] && !op_const[1])
+ reassociate_constant(ir, 0, op_const[0],
+ ir->operands[1]->as_expression());
+ if (op_const[1] && !op_const[0])
+ reassociate_constant(ir, 1, op_const[1],
+ ir->operands[0]->as_expression());
+ break;
+
+ case ir_binop_sub:
+ if (is_vec_zero(op_const[0])) {
+ this->progress = true;
+ temp = new(mem_ctx) ir_expression(ir_unop_neg,
+ ir->operands[1]->type,
+ ir->operands[1],
+ NULL);
+ return swizzle_if_required(ir, temp);
+ }
+ if (is_vec_zero(op_const[1])) {
+ this->progress = true;
+ return swizzle_if_required(ir, ir->operands[0]);
+ }
+ break;
+
+ case ir_binop_mul:
+ if (is_vec_one(op_const[0])) {
+ this->progress = true;
+ return swizzle_if_required(ir, ir->operands[1]);
+ }
+ if (is_vec_one(op_const[1])) {
+ this->progress = true;
+ return swizzle_if_required(ir, ir->operands[0]);
+ }
+
+ if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
+ this->progress = true;
+ return ir_constant::zero(ir, ir->type);
+ }
+
+ /* Reassociate multiplication of constants so that we can do
+ * constant folding.
+ */
+ if (op_const[0] && !op_const[1])
+ reassociate_constant(ir, 0, op_const[0],
+ ir->operands[1]->as_expression());
+ if (op_const[1] && !op_const[0])
+ reassociate_constant(ir, 1, op_const[1],
+ ir->operands[0]->as_expression());
+
+ break;
+
+ case ir_binop_div:
+ if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) {
+ this->progress = true;
+ temp = new(mem_ctx) ir_expression(ir_unop_rcp,
+ ir->operands[1]->type,
+ ir->operands[1],
+ NULL);
+ return swizzle_if_required(ir, temp);
+ }
+ if (is_vec_one(op_const[1])) {
+ this->progress = true;
+ return swizzle_if_required(ir, ir->operands[0]);
+ }
+ break;
+
+ case ir_binop_logic_and:
+ /* FINISHME: Also simplify (a && a) to (a). */
+ if (is_vec_one(op_const[0])) {
+ this->progress = true;
+ return ir->operands[1];
+ } else if (is_vec_one(op_const[1])) {
+ this->progress = true;
+ return ir->operands[0];
+ } else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
+ this->progress = true;
+ return ir_constant::zero(mem_ctx, ir->type);
+ }
+ break;
+
+ case ir_binop_logic_xor:
+ /* FINISHME: Also simplify (a ^^ a) to (false). */
+ if (is_vec_zero(op_const[0])) {
+ this->progress = true;
+ return ir->operands[1];
+ } else if (is_vec_zero(op_const[1])) {
+ this->progress = true;
+ return ir->operands[0];
+ } else if (is_vec_one(op_const[0])) {
+ this->progress = true;
+ return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
+ ir->operands[1], NULL);
+ } else if (is_vec_one(op_const[1])) {
+ this->progress = true;
+ return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
+ ir->operands[0], NULL);
+ }
+ break;
+
+ case ir_binop_logic_or:
+ /* FINISHME: Also simplify (a || a) to (a). */
+ if (is_vec_zero(op_const[0])) {
+ this->progress = true;
+ return ir->operands[1];
+ } else if (is_vec_zero(op_const[1])) {
+ this->progress = true;
+ return ir->operands[0];
+ } else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) {
+ ir_constant_data data;
+
+ for (unsigned i = 0; i < 16; i++)
+ data.b[i] = true;
+
+ this->progress = true;
+ return new(mem_ctx) ir_constant(ir->type, &data);
+ }
+ break;
+
+ case ir_unop_rcp:
+ if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) {
+ this->progress = true;
+ return op_expr[0]->operands[0];
+ }
+
+ /* FINISHME: We should do rcp(rsq(x)) -> sqrt(x) for some
+ * backends, except that some backends will have done sqrt ->
+ * rcp(rsq(x)) and we don't want to undo it for them.
+ */
+
+ /* As far as we know, all backends are OK with rsq. */
+ if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) {
+ this->progress = true;
+ temp = new(mem_ctx) ir_expression(ir_unop_rsq,
+ op_expr[0]->operands[0]->type,
+ op_expr[0]->operands[0],
+ NULL);
+ return swizzle_if_required(ir, temp);
+ }
+
+ break;
+
+ default:
+ break;
+ }
+
+ return ir;
+}
+
+void
+ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue)
+{
+ if (!*rvalue)
+ return;
+
+ ir_expression *expr = (*rvalue)->as_expression();
+ if (!expr || expr->operation == ir_quadop_vector)
+ return;
+
+ *rvalue = handle_expression(expr);
+}
+
+bool
+do_algebraic(exec_list *instructions)
+{
+ ir_algebraic_visitor v;
+
+ visit_list_elements(&v, instructions);
+
+ return v.progress;
+}