diff options
author | marha <marha@users.sourceforge.net> | 2011-09-19 13:23:24 +0200 |
---|---|---|
committer | marha <marha@users.sourceforge.net> | 2011-09-19 13:23:24 +0200 |
commit | b2c925e360e2c366526de15b44603f855f94139c (patch) | |
tree | 2a963073645913b7c6d43fa04dc0aa13bda57b80 /mesalib/src/mesa/main/texcompress_fxt1.c | |
parent | 18ae1470a8dbcfe369ddf0d7e17e0ea665251ccd (diff) | |
download | vcxsrv-b2c925e360e2c366526de15b44603f855f94139c.tar.gz vcxsrv-b2c925e360e2c366526de15b44603f855f94139c.tar.bz2 vcxsrv-b2c925e360e2c366526de15b44603f855f94139c.zip |
xtrans libX11 libXext libXdmcp libXau libXft libXinerama libXmu libfontenc
mesa git update 19 sept 2011
Diffstat (limited to 'mesalib/src/mesa/main/texcompress_fxt1.c')
-rw-r--r-- | mesalib/src/mesa/main/texcompress_fxt1.c | 3303 |
1 files changed, 1652 insertions, 1651 deletions
diff --git a/mesalib/src/mesa/main/texcompress_fxt1.c b/mesalib/src/mesa/main/texcompress_fxt1.c index 261014d63..a75487ce2 100644 --- a/mesalib/src/mesa/main/texcompress_fxt1.c +++ b/mesalib/src/mesa/main/texcompress_fxt1.c @@ -1,1651 +1,1652 @@ -/*
- * Mesa 3-D graphics library
- * Version: 7.1
- *
- * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-
-/**
- * \file texcompress_fxt1.c
- * GL_3DFX_texture_compression_FXT1 support.
- */
-
-
-#include "glheader.h"
-#include "imports.h"
-#include "colormac.h"
-#include "image.h"
-#include "macros.h"
-#include "mfeatures.h"
-#include "mipmap.h"
-#include "texcompress.h"
-#include "texcompress_fxt1.h"
-#include "texstore.h"
-
-
-#if FEATURE_texture_fxt1
-
-
-static void
-fxt1_encode (GLuint width, GLuint height, GLint comps,
- const void *source, GLint srcRowStride,
- void *dest, GLint destRowStride);
-
-void
-fxt1_decode_1 (const void *texture, GLint stride,
- GLint i, GLint j, GLchan *rgba);
-
-
-/**
- * Store user's image in rgb_fxt1 format.
- */
-GLboolean
-_mesa_texstore_rgb_fxt1(TEXSTORE_PARAMS)
-{
- const GLchan *pixels;
- GLint srcRowStride;
- GLubyte *dst;
- const GLint texWidth = dstRowStride * 8 / 16; /* a bit of a hack */
- const GLchan *tempImage = NULL;
-
- ASSERT(dstFormat == MESA_FORMAT_RGB_FXT1);
- ASSERT(dstXoffset % 8 == 0);
- ASSERT(dstYoffset % 4 == 0);
- ASSERT(dstZoffset == 0);
- (void) dstZoffset;
- (void) dstImageOffsets;
-
- if (srcFormat != GL_RGB ||
- srcType != CHAN_TYPE ||
- ctx->_ImageTransferState ||
- srcPacking->SwapBytes) {
- /* convert image to RGB/GLchan */
- tempImage = _mesa_make_temp_chan_image(ctx, dims,
- baseInternalFormat,
- _mesa_get_format_base_format(dstFormat),
- srcWidth, srcHeight, srcDepth,
- srcFormat, srcType, srcAddr,
- srcPacking);
- if (!tempImage)
- return GL_FALSE; /* out of memory */
- pixels = tempImage;
- srcRowStride = 3 * srcWidth;
- srcFormat = GL_RGB;
- }
- else {
- pixels = (const GLchan *) srcAddr;
- srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat,
- srcType) / sizeof(GLchan);
- }
-
- dst = _mesa_compressed_image_address(dstXoffset, dstYoffset, 0,
- dstFormat,
- texWidth, (GLubyte *) dstAddr);
-
- fxt1_encode(srcWidth, srcHeight, 3, pixels, srcRowStride,
- dst, dstRowStride);
-
- if (tempImage)
- free((void*) tempImage);
-
- return GL_TRUE;
-}
-
-
-/**
- * Store user's image in rgba_fxt1 format.
- */
-GLboolean
-_mesa_texstore_rgba_fxt1(TEXSTORE_PARAMS)
-{
- const GLchan *pixels;
- GLint srcRowStride;
- GLubyte *dst;
- GLint texWidth = dstRowStride * 8 / 16; /* a bit of a hack */
- const GLchan *tempImage = NULL;
-
- ASSERT(dstFormat == MESA_FORMAT_RGBA_FXT1);
- ASSERT(dstXoffset % 8 == 0);
- ASSERT(dstYoffset % 4 == 0);
- ASSERT(dstZoffset == 0);
- (void) dstZoffset;
- (void) dstImageOffsets;
-
- if (srcFormat != GL_RGBA ||
- srcType != CHAN_TYPE ||
- ctx->_ImageTransferState ||
- srcPacking->SwapBytes) {
- /* convert image to RGBA/GLchan */
- tempImage = _mesa_make_temp_chan_image(ctx, dims,
- baseInternalFormat,
- _mesa_get_format_base_format(dstFormat),
- srcWidth, srcHeight, srcDepth,
- srcFormat, srcType, srcAddr,
- srcPacking);
- if (!tempImage)
- return GL_FALSE; /* out of memory */
- pixels = tempImage;
- srcRowStride = 4 * srcWidth;
- srcFormat = GL_RGBA;
- }
- else {
- pixels = (const GLchan *) srcAddr;
- srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat,
- srcType) / sizeof(GLchan);
- }
-
- dst = _mesa_compressed_image_address(dstXoffset, dstYoffset, 0,
- dstFormat,
- texWidth, (GLubyte *) dstAddr);
-
- fxt1_encode(srcWidth, srcHeight, 4, pixels, srcRowStride,
- dst, dstRowStride);
-
- if (tempImage)
- free((void*) tempImage);
-
- return GL_TRUE;
-}
-
-
-void
-_mesa_fetch_texel_2d_f_rgba_fxt1( const struct gl_texture_image *texImage,
- GLint i, GLint j, GLint k, GLfloat *texel )
-{
- /* just sample as GLchan and convert to float here */
- GLchan rgba[4];
- (void) k;
- fxt1_decode_1(texImage->Data, texImage->RowStride, i, j, rgba);
- texel[RCOMP] = CHAN_TO_FLOAT(rgba[RCOMP]);
- texel[GCOMP] = CHAN_TO_FLOAT(rgba[GCOMP]);
- texel[BCOMP] = CHAN_TO_FLOAT(rgba[BCOMP]);
- texel[ACOMP] = CHAN_TO_FLOAT(rgba[ACOMP]);
-}
-
-
-void
-_mesa_fetch_texel_2d_f_rgb_fxt1( const struct gl_texture_image *texImage,
- GLint i, GLint j, GLint k, GLfloat *texel )
-{
- /* just sample as GLchan and convert to float here */
- GLchan rgba[4];
- (void) k;
- fxt1_decode_1(texImage->Data, texImage->RowStride, i, j, rgba);
- texel[RCOMP] = CHAN_TO_FLOAT(rgba[RCOMP]);
- texel[GCOMP] = CHAN_TO_FLOAT(rgba[GCOMP]);
- texel[BCOMP] = CHAN_TO_FLOAT(rgba[BCOMP]);
- texel[ACOMP] = 1.0F;
-}
-
-
-
-/***************************************************************************\
- * FXT1 encoder
- *
- * The encoder was built by reversing the decoder,
- * and is vaguely based on Texus2 by 3dfx. Note that this code
- * is merely a proof of concept, since it is highly UNoptimized;
- * moreover, it is sub-optimal due to initial conditions passed
- * to Lloyd's algorithm (the interpolation modes are even worse).
-\***************************************************************************/
-
-
-#define MAX_COMP 4 /* ever needed maximum number of components in texel */
-#define MAX_VECT 4 /* ever needed maximum number of base vectors to find */
-#define N_TEXELS 32 /* number of texels in a block (always 32) */
-#define LL_N_REP 50 /* number of iterations in lloyd's vq */
-#define LL_RMS_D 10 /* fault tolerance (maximum delta) */
-#define LL_RMS_E 255 /* fault tolerance (maximum error) */
-#define ALPHA_TS 2 /* alpha threshold: (255 - ALPHA_TS) deemed opaque */
-#define ISTBLACK(v) (*((GLuint *)(v)) == 0)
-
-
-/*
- * Define a 64-bit unsigned integer type and macros
- */
-#if 1
-
-#define FX64_NATIVE 1
-
-typedef uint64_t Fx64;
-
-#define FX64_MOV32(a, b) a = b
-#define FX64_OR32(a, b) a |= b
-#define FX64_SHL(a, c) a <<= c
-
-#else
-
-#define FX64_NATIVE 0
-
-typedef struct {
- GLuint lo, hi;
-} Fx64;
-
-#define FX64_MOV32(a, b) a.lo = b
-#define FX64_OR32(a, b) a.lo |= b
-
-#define FX64_SHL(a, c) \
- do { \
- if ((c) >= 32) { \
- a.hi = a.lo << ((c) - 32); \
- a.lo = 0; \
- } else { \
- a.hi = (a.hi << (c)) | (a.lo >> (32 - (c))); \
- a.lo <<= (c); \
- } \
- } while (0)
-
-#endif
-
-
-#define F(i) (GLfloat)1 /* can be used to obtain an oblong metric: 0.30 / 0.59 / 0.11 */
-#define SAFECDOT 1 /* for paranoids */
-
-#define MAKEIVEC(NV, NC, IV, B, V0, V1) \
- do { \
- /* compute interpolation vector */ \
- GLfloat d2 = 0.0F; \
- GLfloat rd2; \
- \
- for (i = 0; i < NC; i++) { \
- IV[i] = (V1[i] - V0[i]) * F(i); \
- d2 += IV[i] * IV[i]; \
- } \
- rd2 = (GLfloat)NV / d2; \
- B = 0; \
- for (i = 0; i < NC; i++) { \
- IV[i] *= F(i); \
- B -= IV[i] * V0[i]; \
- IV[i] *= rd2; \
- } \
- B = B * rd2 + 0.5f; \
- } while (0)
-
-#define CALCCDOT(TEXEL, NV, NC, IV, B, V)\
- do { \
- GLfloat dot = 0.0F; \
- for (i = 0; i < NC; i++) { \
- dot += V[i] * IV[i]; \
- } \
- TEXEL = (GLint)(dot + B); \
- if (SAFECDOT) { \
- if (TEXEL < 0) { \
- TEXEL = 0; \
- } else if (TEXEL > NV) { \
- TEXEL = NV; \
- } \
- } \
- } while (0)
-
-
-static GLint
-fxt1_bestcol (GLfloat vec[][MAX_COMP], GLint nv,
- GLubyte input[MAX_COMP], GLint nc)
-{
- GLint i, j, best = -1;
- GLfloat err = 1e9; /* big enough */
-
- for (j = 0; j < nv; j++) {
- GLfloat e = 0.0F;
- for (i = 0; i < nc; i++) {
- e += (vec[j][i] - input[i]) * (vec[j][i] - input[i]);
- }
- if (e < err) {
- err = e;
- best = j;
- }
- }
-
- return best;
-}
-
-
-static GLint
-fxt1_worst (GLfloat vec[MAX_COMP],
- GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n)
-{
- GLint i, k, worst = -1;
- GLfloat err = -1.0F; /* small enough */
-
- for (k = 0; k < n; k++) {
- GLfloat e = 0.0F;
- for (i = 0; i < nc; i++) {
- e += (vec[i] - input[k][i]) * (vec[i] - input[k][i]);
- }
- if (e > err) {
- err = e;
- worst = k;
- }
- }
-
- return worst;
-}
-
-
-static GLint
-fxt1_variance (GLdouble variance[MAX_COMP],
- GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n)
-{
- GLint i, k, best = 0;
- GLint sx, sx2;
- GLdouble var, maxvar = -1; /* small enough */
- GLdouble teenth = 1.0 / n;
-
- for (i = 0; i < nc; i++) {
- sx = sx2 = 0;
- for (k = 0; k < n; k++) {
- GLint t = input[k][i];
- sx += t;
- sx2 += t * t;
- }
- var = sx2 * teenth - sx * sx * teenth * teenth;
- if (maxvar < var) {
- maxvar = var;
- best = i;
- }
- if (variance) {
- variance[i] = var;
- }
- }
-
- return best;
-}
-
-
-static GLint
-fxt1_choose (GLfloat vec[][MAX_COMP], GLint nv,
- GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n)
-{
-#if 0
- /* Choose colors from a grid.
- */
- GLint i, j;
-
- for (j = 0; j < nv; j++) {
- GLint m = j * (n - 1) / (nv - 1);
- for (i = 0; i < nc; i++) {
- vec[j][i] = input[m][i];
- }
- }
-#else
- /* Our solution here is to find the darkest and brightest colors in
- * the 8x4 tile and use those as the two representative colors.
- * There are probably better algorithms to use (histogram-based).
- */
- GLint i, j, k;
- GLint minSum = 2000; /* big enough */
- GLint maxSum = -1; /* small enough */
- GLint minCol = 0; /* phoudoin: silent compiler! */
- GLint maxCol = 0; /* phoudoin: silent compiler! */
-
- struct {
- GLint flag;
- GLint key;
- GLint freq;
- GLint idx;
- } hist[N_TEXELS];
- GLint lenh = 0;
-
- memset(hist, 0, sizeof(hist));
-
- for (k = 0; k < n; k++) {
- GLint l;
- GLint key = 0;
- GLint sum = 0;
- for (i = 0; i < nc; i++) {
- key <<= 8;
- key |= input[k][i];
- sum += input[k][i];
- }
- for (l = 0; l < n; l++) {
- if (!hist[l].flag) {
- /* alloc new slot */
- hist[l].flag = !0;
- hist[l].key = key;
- hist[l].freq = 1;
- hist[l].idx = k;
- lenh = l + 1;
- break;
- } else if (hist[l].key == key) {
- hist[l].freq++;
- break;
- }
- }
- if (minSum > sum) {
- minSum = sum;
- minCol = k;
- }
- if (maxSum < sum) {
- maxSum = sum;
- maxCol = k;
- }
- }
-
- if (lenh <= nv) {
- for (j = 0; j < lenh; j++) {
- for (i = 0; i < nc; i++) {
- vec[j][i] = (GLfloat)input[hist[j].idx][i];
- }
- }
- for (; j < nv; j++) {
- for (i = 0; i < nc; i++) {
- vec[j][i] = vec[0][i];
- }
- }
- return 0;
- }
-
- for (j = 0; j < nv; j++) {
- for (i = 0; i < nc; i++) {
- vec[j][i] = ((nv - 1 - j) * input[minCol][i] + j * input[maxCol][i] + (nv - 1) / 2) / (GLfloat)(nv - 1);
- }
- }
-#endif
-
- return !0;
-}
-
-
-static GLint
-fxt1_lloyd (GLfloat vec[][MAX_COMP], GLint nv,
- GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n)
-{
- /* Use the generalized lloyd's algorithm for VQ:
- * find 4 color vectors.
- *
- * for each sample color
- * sort to nearest vector.
- *
- * replace each vector with the centroid of its matching colors.
- *
- * repeat until RMS doesn't improve.
- *
- * if a color vector has no samples, or becomes the same as another
- * vector, replace it with the color which is farthest from a sample.
- *
- * vec[][MAX_COMP] initial vectors and resulting colors
- * nv number of resulting colors required
- * input[N_TEXELS][MAX_COMP] input texels
- * nc number of components in input / vec
- * n number of input samples
- */
-
- GLint sum[MAX_VECT][MAX_COMP]; /* used to accumulate closest texels */
- GLint cnt[MAX_VECT]; /* how many times a certain vector was chosen */
- GLfloat error, lasterror = 1e9;
-
- GLint i, j, k, rep;
-
- /* the quantizer */
- for (rep = 0; rep < LL_N_REP; rep++) {
- /* reset sums & counters */
- for (j = 0; j < nv; j++) {
- for (i = 0; i < nc; i++) {
- sum[j][i] = 0;
- }
- cnt[j] = 0;
- }
- error = 0;
-
- /* scan whole block */
- for (k = 0; k < n; k++) {
-#if 1
- GLint best = -1;
- GLfloat err = 1e9; /* big enough */
- /* determine best vector */
- for (j = 0; j < nv; j++) {
- GLfloat e = (vec[j][0] - input[k][0]) * (vec[j][0] - input[k][0]) +
- (vec[j][1] - input[k][1]) * (vec[j][1] - input[k][1]) +
- (vec[j][2] - input[k][2]) * (vec[j][2] - input[k][2]);
- if (nc == 4) {
- e += (vec[j][3] - input[k][3]) * (vec[j][3] - input[k][3]);
- }
- if (e < err) {
- err = e;
- best = j;
- }
- }
-#else
- GLint best = fxt1_bestcol(vec, nv, input[k], nc, &err);
-#endif
- assert(best >= 0);
- /* add in closest color */
- for (i = 0; i < nc; i++) {
- sum[best][i] += input[k][i];
- }
- /* mark this vector as used */
- cnt[best]++;
- /* accumulate error */
- error += err;
- }
-
- /* check RMS */
- if ((error < LL_RMS_E) ||
- ((error < lasterror) && ((lasterror - error) < LL_RMS_D))) {
- return !0; /* good match */
- }
- lasterror = error;
-
- /* move each vector to the barycenter of its closest colors */
- for (j = 0; j < nv; j++) {
- if (cnt[j]) {
- GLfloat div = 1.0F / cnt[j];
- for (i = 0; i < nc; i++) {
- vec[j][i] = div * sum[j][i];
- }
- } else {
- /* this vec has no samples or is identical with a previous vec */
- GLint worst = fxt1_worst(vec[j], input, nc, n);
- for (i = 0; i < nc; i++) {
- vec[j][i] = input[worst][i];
- }
- }
- }
- }
-
- return 0; /* could not converge fast enough */
-}
-
-
-static void
-fxt1_quantize_CHROMA (GLuint *cc,
- GLubyte input[N_TEXELS][MAX_COMP])
-{
- const GLint n_vect = 4; /* 4 base vectors to find */
- const GLint n_comp = 3; /* 3 components: R, G, B */
- GLfloat vec[MAX_VECT][MAX_COMP];
- GLint i, j, k;
- Fx64 hi; /* high quadword */
- GLuint lohi, lolo; /* low quadword: hi dword, lo dword */
-
- if (fxt1_choose(vec, n_vect, input, n_comp, N_TEXELS) != 0) {
- fxt1_lloyd(vec, n_vect, input, n_comp, N_TEXELS);
- }
-
- FX64_MOV32(hi, 4); /* cc-chroma = "010" + unused bit */
- for (j = n_vect - 1; j >= 0; j--) {
- for (i = 0; i < n_comp; i++) {
- /* add in colors */
- FX64_SHL(hi, 5);
- FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F));
- }
- }
- ((Fx64 *)cc)[1] = hi;
-
- lohi = lolo = 0;
- /* right microtile */
- for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) {
- lohi <<= 2;
- lohi |= fxt1_bestcol(vec, n_vect, input[k], n_comp);
- }
- /* left microtile */
- for (; k >= 0; k--) {
- lolo <<= 2;
- lolo |= fxt1_bestcol(vec, n_vect, input[k], n_comp);
- }
- cc[1] = lohi;
- cc[0] = lolo;
-}
-
-
-static void
-fxt1_quantize_ALPHA0 (GLuint *cc,
- GLubyte input[N_TEXELS][MAX_COMP],
- GLubyte reord[N_TEXELS][MAX_COMP], GLint n)
-{
- const GLint n_vect = 3; /* 3 base vectors to find */
- const GLint n_comp = 4; /* 4 components: R, G, B, A */
- GLfloat vec[MAX_VECT][MAX_COMP];
- GLint i, j, k;
- Fx64 hi; /* high quadword */
- GLuint lohi, lolo; /* low quadword: hi dword, lo dword */
-
- /* the last vector indicates zero */
- for (i = 0; i < n_comp; i++) {
- vec[n_vect][i] = 0;
- }
-
- /* the first n texels in reord are guaranteed to be non-zero */
- if (fxt1_choose(vec, n_vect, reord, n_comp, n) != 0) {
- fxt1_lloyd(vec, n_vect, reord, n_comp, n);
- }
-
- FX64_MOV32(hi, 6); /* alpha = "011" + lerp = 0 */
- for (j = n_vect - 1; j >= 0; j--) {
- /* add in alphas */
- FX64_SHL(hi, 5);
- FX64_OR32(hi, (GLuint)(vec[j][ACOMP] / 8.0F));
- }
- for (j = n_vect - 1; j >= 0; j--) {
- for (i = 0; i < n_comp - 1; i++) {
- /* add in colors */
- FX64_SHL(hi, 5);
- FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F));
- }
- }
- ((Fx64 *)cc)[1] = hi;
-
- lohi = lolo = 0;
- /* right microtile */
- for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) {
- lohi <<= 2;
- lohi |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp);
- }
- /* left microtile */
- for (; k >= 0; k--) {
- lolo <<= 2;
- lolo |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp);
- }
- cc[1] = lohi;
- cc[0] = lolo;
-}
-
-
-static void
-fxt1_quantize_ALPHA1 (GLuint *cc,
- GLubyte input[N_TEXELS][MAX_COMP])
-{
- const GLint n_vect = 3; /* highest vector number in each microtile */
- const GLint n_comp = 4; /* 4 components: R, G, B, A */
- GLfloat vec[1 + 1 + 1][MAX_COMP]; /* 1.5 extrema for each sub-block */
- GLfloat b, iv[MAX_COMP]; /* interpolation vector */
- GLint i, j, k;
- Fx64 hi; /* high quadword */
- GLuint lohi, lolo; /* low quadword: hi dword, lo dword */
-
- GLint minSum;
- GLint maxSum;
- GLint minColL = 0, maxColL = 0;
- GLint minColR = 0, maxColR = 0;
- GLint sumL = 0, sumR = 0;
- GLint nn_comp;
- /* Our solution here is to find the darkest and brightest colors in
- * the 4x4 tile and use those as the two representative colors.
- * There are probably better algorithms to use (histogram-based).
- */
- nn_comp = n_comp;
- while ((minColL == maxColL) && nn_comp) {
- minSum = 2000; /* big enough */
- maxSum = -1; /* small enough */
- for (k = 0; k < N_TEXELS / 2; k++) {
- GLint sum = 0;
- for (i = 0; i < nn_comp; i++) {
- sum += input[k][i];
- }
- if (minSum > sum) {
- minSum = sum;
- minColL = k;
- }
- if (maxSum < sum) {
- maxSum = sum;
- maxColL = k;
- }
- sumL += sum;
- }
-
- nn_comp--;
- }
-
- nn_comp = n_comp;
- while ((minColR == maxColR) && nn_comp) {
- minSum = 2000; /* big enough */
- maxSum = -1; /* small enough */
- for (k = N_TEXELS / 2; k < N_TEXELS; k++) {
- GLint sum = 0;
- for (i = 0; i < nn_comp; i++) {
- sum += input[k][i];
- }
- if (minSum > sum) {
- minSum = sum;
- minColR = k;
- }
- if (maxSum < sum) {
- maxSum = sum;
- maxColR = k;
- }
- sumR += sum;
- }
-
- nn_comp--;
- }
-
- /* choose the common vector (yuck!) */
- {
- GLint j1, j2;
- GLint v1 = 0, v2 = 0;
- GLfloat err = 1e9; /* big enough */
- GLfloat tv[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
- for (i = 0; i < n_comp; i++) {
- tv[0][i] = input[minColL][i];
- tv[1][i] = input[maxColL][i];
- tv[2][i] = input[minColR][i];
- tv[3][i] = input[maxColR][i];
- }
- for (j1 = 0; j1 < 2; j1++) {
- for (j2 = 2; j2 < 4; j2++) {
- GLfloat e = 0.0F;
- for (i = 0; i < n_comp; i++) {
- e += (tv[j1][i] - tv[j2][i]) * (tv[j1][i] - tv[j2][i]);
- }
- if (e < err) {
- err = e;
- v1 = j1;
- v2 = j2;
- }
- }
- }
- for (i = 0; i < n_comp; i++) {
- vec[0][i] = tv[1 - v1][i];
- vec[1][i] = (tv[v1][i] * sumL + tv[v2][i] * sumR) / (sumL + sumR);
- vec[2][i] = tv[5 - v2][i];
- }
- }
-
- /* left microtile */
- cc[0] = 0;
- if (minColL != maxColL) {
- /* compute interpolation vector */
- MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]);
-
- /* add in texels */
- lolo = 0;
- for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
- GLint texel;
- /* interpolate color */
- CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
- /* add in texel */
- lolo <<= 2;
- lolo |= texel;
- }
-
- cc[0] = lolo;
- }
-
- /* right microtile */
- cc[1] = 0;
- if (minColR != maxColR) {
- /* compute interpolation vector */
- MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[1]);
-
- /* add in texels */
- lohi = 0;
- for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
- GLint texel;
- /* interpolate color */
- CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
- /* add in texel */
- lohi <<= 2;
- lohi |= texel;
- }
-
- cc[1] = lohi;
- }
-
- FX64_MOV32(hi, 7); /* alpha = "011" + lerp = 1 */
- for (j = n_vect - 1; j >= 0; j--) {
- /* add in alphas */
- FX64_SHL(hi, 5);
- FX64_OR32(hi, (GLuint)(vec[j][ACOMP] / 8.0F));
- }
- for (j = n_vect - 1; j >= 0; j--) {
- for (i = 0; i < n_comp - 1; i++) {
- /* add in colors */
- FX64_SHL(hi, 5);
- FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F));
- }
- }
- ((Fx64 *)cc)[1] = hi;
-}
-
-
-static void
-fxt1_quantize_HI (GLuint *cc,
- GLubyte input[N_TEXELS][MAX_COMP],
- GLubyte reord[N_TEXELS][MAX_COMP], GLint n)
-{
- const GLint n_vect = 6; /* highest vector number */
- const GLint n_comp = 3; /* 3 components: R, G, B */
- GLfloat b = 0.0F; /* phoudoin: silent compiler! */
- GLfloat iv[MAX_COMP]; /* interpolation vector */
- GLint i, k;
- GLuint hihi; /* high quadword: hi dword */
-
- GLint minSum = 2000; /* big enough */
- GLint maxSum = -1; /* small enough */
- GLint minCol = 0; /* phoudoin: silent compiler! */
- GLint maxCol = 0; /* phoudoin: silent compiler! */
-
- /* Our solution here is to find the darkest and brightest colors in
- * the 8x4 tile and use those as the two representative colors.
- * There are probably better algorithms to use (histogram-based).
- */
- for (k = 0; k < n; k++) {
- GLint sum = 0;
- for (i = 0; i < n_comp; i++) {
- sum += reord[k][i];
- }
- if (minSum > sum) {
- minSum = sum;
- minCol = k;
- }
- if (maxSum < sum) {
- maxSum = sum;
- maxCol = k;
- }
- }
-
- hihi = 0; /* cc-hi = "00" */
- for (i = 0; i < n_comp; i++) {
- /* add in colors */
- hihi <<= 5;
- hihi |= reord[maxCol][i] >> 3;
- }
- for (i = 0; i < n_comp; i++) {
- /* add in colors */
- hihi <<= 5;
- hihi |= reord[minCol][i] >> 3;
- }
- cc[3] = hihi;
- cc[0] = cc[1] = cc[2] = 0;
-
- /* compute interpolation vector */
- if (minCol != maxCol) {
- MAKEIVEC(n_vect, n_comp, iv, b, reord[minCol], reord[maxCol]);
- }
-
- /* add in texels */
- for (k = N_TEXELS - 1; k >= 0; k--) {
- GLint t = k * 3;
- GLuint *kk = (GLuint *)((char *)cc + t / 8);
- GLint texel = n_vect + 1; /* transparent black */
-
- if (!ISTBLACK(input[k])) {
- if (minCol != maxCol) {
- /* interpolate color */
- CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
- /* add in texel */
- kk[0] |= texel << (t & 7);
- }
- } else {
- /* add in texel */
- kk[0] |= texel << (t & 7);
- }
- }
-}
-
-
-static void
-fxt1_quantize_MIXED1 (GLuint *cc,
- GLubyte input[N_TEXELS][MAX_COMP])
-{
- const GLint n_vect = 2; /* highest vector number in each microtile */
- const GLint n_comp = 3; /* 3 components: R, G, B */
- GLubyte vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
- GLfloat b, iv[MAX_COMP]; /* interpolation vector */
- GLint i, j, k;
- Fx64 hi; /* high quadword */
- GLuint lohi, lolo; /* low quadword: hi dword, lo dword */
-
- GLint minSum;
- GLint maxSum;
- GLint minColL = 0, maxColL = -1;
- GLint minColR = 0, maxColR = -1;
-
- /* Our solution here is to find the darkest and brightest colors in
- * the 4x4 tile and use those as the two representative colors.
- * There are probably better algorithms to use (histogram-based).
- */
- minSum = 2000; /* big enough */
- maxSum = -1; /* small enough */
- for (k = 0; k < N_TEXELS / 2; k++) {
- if (!ISTBLACK(input[k])) {
- GLint sum = 0;
- for (i = 0; i < n_comp; i++) {
- sum += input[k][i];
- }
- if (minSum > sum) {
- minSum = sum;
- minColL = k;
- }
- if (maxSum < sum) {
- maxSum = sum;
- maxColL = k;
- }
- }
- }
- minSum = 2000; /* big enough */
- maxSum = -1; /* small enough */
- for (; k < N_TEXELS; k++) {
- if (!ISTBLACK(input[k])) {
- GLint sum = 0;
- for (i = 0; i < n_comp; i++) {
- sum += input[k][i];
- }
- if (minSum > sum) {
- minSum = sum;
- minColR = k;
- }
- if (maxSum < sum) {
- maxSum = sum;
- maxColR = k;
- }
- }
- }
-
- /* left microtile */
- if (maxColL == -1) {
- /* all transparent black */
- cc[0] = ~0u;
- for (i = 0; i < n_comp; i++) {
- vec[0][i] = 0;
- vec[1][i] = 0;
- }
- } else {
- cc[0] = 0;
- for (i = 0; i < n_comp; i++) {
- vec[0][i] = input[minColL][i];
- vec[1][i] = input[maxColL][i];
- }
- if (minColL != maxColL) {
- /* compute interpolation vector */
- MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]);
-
- /* add in texels */
- lolo = 0;
- for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
- GLint texel = n_vect + 1; /* transparent black */
- if (!ISTBLACK(input[k])) {
- /* interpolate color */
- CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
- }
- /* add in texel */
- lolo <<= 2;
- lolo |= texel;
- }
- cc[0] = lolo;
- }
- }
-
- /* right microtile */
- if (maxColR == -1) {
- /* all transparent black */
- cc[1] = ~0u;
- for (i = 0; i < n_comp; i++) {
- vec[2][i] = 0;
- vec[3][i] = 0;
- }
- } else {
- cc[1] = 0;
- for (i = 0; i < n_comp; i++) {
- vec[2][i] = input[minColR][i];
- vec[3][i] = input[maxColR][i];
- }
- if (minColR != maxColR) {
- /* compute interpolation vector */
- MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]);
-
- /* add in texels */
- lohi = 0;
- for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
- GLint texel = n_vect + 1; /* transparent black */
- if (!ISTBLACK(input[k])) {
- /* interpolate color */
- CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
- }
- /* add in texel */
- lohi <<= 2;
- lohi |= texel;
- }
- cc[1] = lohi;
- }
- }
-
- FX64_MOV32(hi, 9 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */
- for (j = 2 * 2 - 1; j >= 0; j--) {
- for (i = 0; i < n_comp; i++) {
- /* add in colors */
- FX64_SHL(hi, 5);
- FX64_OR32(hi, vec[j][i] >> 3);
- }
- }
- ((Fx64 *)cc)[1] = hi;
-}
-
-
-static void
-fxt1_quantize_MIXED0 (GLuint *cc,
- GLubyte input[N_TEXELS][MAX_COMP])
-{
- const GLint n_vect = 3; /* highest vector number in each microtile */
- const GLint n_comp = 3; /* 3 components: R, G, B */
- GLubyte vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
- GLfloat b, iv[MAX_COMP]; /* interpolation vector */
- GLint i, j, k;
- Fx64 hi; /* high quadword */
- GLuint lohi, lolo; /* low quadword: hi dword, lo dword */
-
- GLint minColL = 0, maxColL = 0;
- GLint minColR = 0, maxColR = 0;
-#if 0
- GLint minSum;
- GLint maxSum;
-
- /* Our solution here is to find the darkest and brightest colors in
- * the 4x4 tile and use those as the two representative colors.
- * There are probably better algorithms to use (histogram-based).
- */
- minSum = 2000; /* big enough */
- maxSum = -1; /* small enough */
- for (k = 0; k < N_TEXELS / 2; k++) {
- GLint sum = 0;
- for (i = 0; i < n_comp; i++) {
- sum += input[k][i];
- }
- if (minSum > sum) {
- minSum = sum;
- minColL = k;
- }
- if (maxSum < sum) {
- maxSum = sum;
- maxColL = k;
- }
- }
- minSum = 2000; /* big enough */
- maxSum = -1; /* small enough */
- for (; k < N_TEXELS; k++) {
- GLint sum = 0;
- for (i = 0; i < n_comp; i++) {
- sum += input[k][i];
- }
- if (minSum > sum) {
- minSum = sum;
- minColR = k;
- }
- if (maxSum < sum) {
- maxSum = sum;
- maxColR = k;
- }
- }
-#else
- GLint minVal;
- GLint maxVal;
- GLint maxVarL = fxt1_variance(NULL, input, n_comp, N_TEXELS / 2);
- GLint maxVarR = fxt1_variance(NULL, &input[N_TEXELS / 2], n_comp, N_TEXELS / 2);
-
- /* Scan the channel with max variance for lo & hi
- * and use those as the two representative colors.
- */
- minVal = 2000; /* big enough */
- maxVal = -1; /* small enough */
- for (k = 0; k < N_TEXELS / 2; k++) {
- GLint t = input[k][maxVarL];
- if (minVal > t) {
- minVal = t;
- minColL = k;
- }
- if (maxVal < t) {
- maxVal = t;
- maxColL = k;
- }
- }
- minVal = 2000; /* big enough */
- maxVal = -1; /* small enough */
- for (; k < N_TEXELS; k++) {
- GLint t = input[k][maxVarR];
- if (minVal > t) {
- minVal = t;
- minColR = k;
- }
- if (maxVal < t) {
- maxVal = t;
- maxColR = k;
- }
- }
-#endif
-
- /* left microtile */
- cc[0] = 0;
- for (i = 0; i < n_comp; i++) {
- vec[0][i] = input[minColL][i];
- vec[1][i] = input[maxColL][i];
- }
- if (minColL != maxColL) {
- /* compute interpolation vector */
- MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]);
-
- /* add in texels */
- lolo = 0;
- for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
- GLint texel;
- /* interpolate color */
- CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
- /* add in texel */
- lolo <<= 2;
- lolo |= texel;
- }
-
- /* funky encoding for LSB of green */
- if ((GLint)((lolo >> 1) & 1) != (((vec[1][GCOMP] ^ vec[0][GCOMP]) >> 2) & 1)) {
- for (i = 0; i < n_comp; i++) {
- vec[1][i] = input[minColL][i];
- vec[0][i] = input[maxColL][i];
- }
- lolo = ~lolo;
- }
-
- cc[0] = lolo;
- }
-
- /* right microtile */
- cc[1] = 0;
- for (i = 0; i < n_comp; i++) {
- vec[2][i] = input[minColR][i];
- vec[3][i] = input[maxColR][i];
- }
- if (minColR != maxColR) {
- /* compute interpolation vector */
- MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]);
-
- /* add in texels */
- lohi = 0;
- for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
- GLint texel;
- /* interpolate color */
- CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
- /* add in texel */
- lohi <<= 2;
- lohi |= texel;
- }
-
- /* funky encoding for LSB of green */
- if ((GLint)((lohi >> 1) & 1) != (((vec[3][GCOMP] ^ vec[2][GCOMP]) >> 2) & 1)) {
- for (i = 0; i < n_comp; i++) {
- vec[3][i] = input[minColR][i];
- vec[2][i] = input[maxColR][i];
- }
- lohi = ~lohi;
- }
-
- cc[1] = lohi;
- }
-
- FX64_MOV32(hi, 8 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */
- for (j = 2 * 2 - 1; j >= 0; j--) {
- for (i = 0; i < n_comp; i++) {
- /* add in colors */
- FX64_SHL(hi, 5);
- FX64_OR32(hi, vec[j][i] >> 3);
- }
- }
- ((Fx64 *)cc)[1] = hi;
-}
-
-
-static void
-fxt1_quantize (GLuint *cc, const GLubyte *lines[], GLint comps)
-{
- GLint trualpha;
- GLubyte reord[N_TEXELS][MAX_COMP];
-
- GLubyte input[N_TEXELS][MAX_COMP];
- GLint i, k, l;
-
- if (comps == 3) {
- /* make the whole block opaque */
- memset(input, -1, sizeof(input));
- }
-
- /* 8 texels each line */
- for (l = 0; l < 4; l++) {
- for (k = 0; k < 4; k++) {
- for (i = 0; i < comps; i++) {
- input[k + l * 4][i] = *lines[l]++;
- }
- }
- for (; k < 8; k++) {
- for (i = 0; i < comps; i++) {
- input[k + l * 4 + 12][i] = *lines[l]++;
- }
- }
- }
-
- /* block layout:
- * 00, 01, 02, 03, 08, 09, 0a, 0b
- * 10, 11, 12, 13, 18, 19, 1a, 1b
- * 04, 05, 06, 07, 0c, 0d, 0e, 0f
- * 14, 15, 16, 17, 1c, 1d, 1e, 1f
- */
-
- /* [dBorca]
- * stupidity flows forth from this
- */
- l = N_TEXELS;
- trualpha = 0;
- if (comps == 4) {
- /* skip all transparent black texels */
- l = 0;
- for (k = 0; k < N_TEXELS; k++) {
- /* test all components against 0 */
- if (!ISTBLACK(input[k])) {
- /* texel is not transparent black */
- COPY_4UBV(reord[l], input[k]);
- if (reord[l][ACOMP] < (255 - ALPHA_TS)) {
- /* non-opaque texel */
- trualpha = !0;
- }
- l++;
- }
- }
- }
-
-#if 0
- if (trualpha) {
- fxt1_quantize_ALPHA0(cc, input, reord, l);
- } else if (l == 0) {
- cc[0] = cc[1] = cc[2] = -1;
- cc[3] = 0;
- } else if (l < N_TEXELS) {
- fxt1_quantize_HI(cc, input, reord, l);
- } else {
- fxt1_quantize_CHROMA(cc, input);
- }
- (void)fxt1_quantize_ALPHA1;
- (void)fxt1_quantize_MIXED1;
- (void)fxt1_quantize_MIXED0;
-#else
- if (trualpha) {
- fxt1_quantize_ALPHA1(cc, input);
- } else if (l == 0) {
- cc[0] = cc[1] = cc[2] = ~0u;
- cc[3] = 0;
- } else if (l < N_TEXELS) {
- fxt1_quantize_MIXED1(cc, input);
- } else {
- fxt1_quantize_MIXED0(cc, input);
- }
- (void)fxt1_quantize_ALPHA0;
- (void)fxt1_quantize_HI;
- (void)fxt1_quantize_CHROMA;
-#endif
-}
-
-
-static void
-fxt1_encode (GLuint width, GLuint height, GLint comps,
- const void *source, GLint srcRowStride,
- void *dest, GLint destRowStride)
-{
- GLuint x, y;
- const GLubyte *data;
- GLuint *encoded = (GLuint *)dest;
- void *newSource = NULL;
-
- assert(comps == 3 || comps == 4);
-
- /* Replicate image if width is not M8 or height is not M4 */
- if ((width & 7) | (height & 3)) {
- GLint newWidth = (width + 7) & ~7;
- GLint newHeight = (height + 3) & ~3;
- newSource = malloc(comps * newWidth * newHeight * sizeof(GLchan));
- if (!newSource) {
- GET_CURRENT_CONTEXT(ctx);
- _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture compression");
- goto cleanUp;
- }
- _mesa_upscale_teximage2d(width, height, newWidth, newHeight,
- comps, (const GLchan *) source,
- srcRowStride, (GLchan *) newSource);
- source = newSource;
- width = newWidth;
- height = newHeight;
- srcRowStride = comps * newWidth;
- }
-
- /* convert from 16/32-bit channels to GLubyte if needed */
- if (CHAN_TYPE != GL_UNSIGNED_BYTE) {
- const GLuint n = width * height * comps;
- const GLchan *src = (const GLchan *) source;
- GLubyte *dest = (GLubyte *) malloc(n * sizeof(GLubyte));
- GLuint i;
- if (!dest) {
- GET_CURRENT_CONTEXT(ctx);
- _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture compression");
- goto cleanUp;
- }
- for (i = 0; i < n; i++) {
- dest[i] = CHAN_TO_UBYTE(src[i]);
- }
- if (newSource != NULL) {
- free(newSource);
- }
- newSource = dest; /* we'll free this buffer before returning */
- source = dest; /* the new, GLubyte incoming image */
- }
-
- data = (const GLubyte *) source;
- destRowStride = (destRowStride - width * 2) / 4;
- for (y = 0; y < height; y += 4) {
- GLuint offs = 0 + (y + 0) * srcRowStride;
- for (x = 0; x < width; x += 8) {
- const GLubyte *lines[4];
- lines[0] = &data[offs];
- lines[1] = lines[0] + srcRowStride;
- lines[2] = lines[1] + srcRowStride;
- lines[3] = lines[2] + srcRowStride;
- offs += 8 * comps;
- fxt1_quantize(encoded, lines, comps);
- /* 128 bits per 8x4 block */
- encoded += 4;
- }
- encoded += destRowStride;
- }
-
- cleanUp:
- if (newSource != NULL) {
- free(newSource);
- }
-}
-
-
-/***************************************************************************\
- * FXT1 decoder
- *
- * The decoder is based on GL_3DFX_texture_compression_FXT1
- * specification and serves as a concept for the encoder.
-\***************************************************************************/
-
-
-/* lookup table for scaling 5 bit colors up to 8 bits */
-static const GLubyte _rgb_scale_5[] = {
- 0, 8, 16, 25, 33, 41, 49, 58,
- 66, 74, 82, 90, 99, 107, 115, 123,
- 132, 140, 148, 156, 165, 173, 181, 189,
- 197, 206, 214, 222, 230, 239, 247, 255
-};
-
-/* lookup table for scaling 6 bit colors up to 8 bits */
-static const GLubyte _rgb_scale_6[] = {
- 0, 4, 8, 12, 16, 20, 24, 28,
- 32, 36, 40, 45, 49, 53, 57, 61,
- 65, 69, 73, 77, 81, 85, 89, 93,
- 97, 101, 105, 109, 113, 117, 121, 125,
- 130, 134, 138, 142, 146, 150, 154, 158,
- 162, 166, 170, 174, 178, 182, 186, 190,
- 194, 198, 202, 206, 210, 215, 219, 223,
- 227, 231, 235, 239, 243, 247, 251, 255
-};
-
-
-#define CC_SEL(cc, which) (((GLuint *)(cc))[(which) / 32] >> ((which) & 31))
-#define UP5(c) _rgb_scale_5[(c) & 31]
-#define UP6(c, b) _rgb_scale_6[(((c) & 31) << 1) | ((b) & 1)]
-#define LERP(n, t, c0, c1) (((n) - (t)) * (c0) + (t) * (c1) + (n) / 2) / (n)
-
-
-static void
-fxt1_decode_1HI (const GLubyte *code, GLint t, GLchan *rgba)
-{
- const GLuint *cc;
-
- t *= 3;
- cc = (const GLuint *)(code + t / 8);
- t = (cc[0] >> (t & 7)) & 7;
-
- if (t == 7) {
- rgba[RCOMP] = rgba[GCOMP] = rgba[BCOMP] = rgba[ACOMP] = 0;
- } else {
- GLubyte r, g, b;
- cc = (const GLuint *)(code + 12);
- if (t == 0) {
- b = UP5(CC_SEL(cc, 0));
- g = UP5(CC_SEL(cc, 5));
- r = UP5(CC_SEL(cc, 10));
- } else if (t == 6) {
- b = UP5(CC_SEL(cc, 15));
- g = UP5(CC_SEL(cc, 20));
- r = UP5(CC_SEL(cc, 25));
- } else {
- b = LERP(6, t, UP5(CC_SEL(cc, 0)), UP5(CC_SEL(cc, 15)));
- g = LERP(6, t, UP5(CC_SEL(cc, 5)), UP5(CC_SEL(cc, 20)));
- r = LERP(6, t, UP5(CC_SEL(cc, 10)), UP5(CC_SEL(cc, 25)));
- }
- rgba[RCOMP] = UBYTE_TO_CHAN(r);
- rgba[GCOMP] = UBYTE_TO_CHAN(g);
- rgba[BCOMP] = UBYTE_TO_CHAN(b);
- rgba[ACOMP] = CHAN_MAX;
- }
-}
-
-
-static void
-fxt1_decode_1CHROMA (const GLubyte *code, GLint t, GLchan *rgba)
-{
- const GLuint *cc;
- GLuint kk;
-
- cc = (const GLuint *)code;
- if (t & 16) {
- cc++;
- t &= 15;
- }
- t = (cc[0] >> (t * 2)) & 3;
-
- t *= 15;
- cc = (const GLuint *)(code + 8 + t / 8);
- kk = cc[0] >> (t & 7);
- rgba[BCOMP] = UBYTE_TO_CHAN( UP5(kk) );
- rgba[GCOMP] = UBYTE_TO_CHAN( UP5(kk >> 5) );
- rgba[RCOMP] = UBYTE_TO_CHAN( UP5(kk >> 10) );
- rgba[ACOMP] = CHAN_MAX;
-}
-
-
-static void
-fxt1_decode_1MIXED (const GLubyte *code, GLint t, GLchan *rgba)
-{
- const GLuint *cc;
- GLuint col[2][3];
- GLint glsb, selb;
-
- cc = (const GLuint *)code;
- if (t & 16) {
- t &= 15;
- t = (cc[1] >> (t * 2)) & 3;
- /* col 2 */
- col[0][BCOMP] = (*(const GLuint *)(code + 11)) >> 6;
- col[0][GCOMP] = CC_SEL(cc, 99);
- col[0][RCOMP] = CC_SEL(cc, 104);
- /* col 3 */
- col[1][BCOMP] = CC_SEL(cc, 109);
- col[1][GCOMP] = CC_SEL(cc, 114);
- col[1][RCOMP] = CC_SEL(cc, 119);
- glsb = CC_SEL(cc, 126);
- selb = CC_SEL(cc, 33);
- } else {
- t = (cc[0] >> (t * 2)) & 3;
- /* col 0 */
- col[0][BCOMP] = CC_SEL(cc, 64);
- col[0][GCOMP] = CC_SEL(cc, 69);
- col[0][RCOMP] = CC_SEL(cc, 74);
- /* col 1 */
- col[1][BCOMP] = CC_SEL(cc, 79);
- col[1][GCOMP] = CC_SEL(cc, 84);
- col[1][RCOMP] = CC_SEL(cc, 89);
- glsb = CC_SEL(cc, 125);
- selb = CC_SEL(cc, 1);
- }
-
- if (CC_SEL(cc, 124) & 1) {
- /* alpha[0] == 1 */
-
- if (t == 3) {
- /* zero */
- rgba[RCOMP] = rgba[BCOMP] = rgba[GCOMP] = rgba[ACOMP] = 0;
- } else {
- GLubyte r, g, b;
- if (t == 0) {
- b = UP5(col[0][BCOMP]);
- g = UP5(col[0][GCOMP]);
- r = UP5(col[0][RCOMP]);
- } else if (t == 2) {
- b = UP5(col[1][BCOMP]);
- g = UP6(col[1][GCOMP], glsb);
- r = UP5(col[1][RCOMP]);
- } else {
- b = (UP5(col[0][BCOMP]) + UP5(col[1][BCOMP])) / 2;
- g = (UP5(col[0][GCOMP]) + UP6(col[1][GCOMP], glsb)) / 2;
- r = (UP5(col[0][RCOMP]) + UP5(col[1][RCOMP])) / 2;
- }
- rgba[RCOMP] = UBYTE_TO_CHAN(r);
- rgba[GCOMP] = UBYTE_TO_CHAN(g);
- rgba[BCOMP] = UBYTE_TO_CHAN(b);
- rgba[ACOMP] = CHAN_MAX;
- }
- } else {
- /* alpha[0] == 0 */
- GLubyte r, g, b;
- if (t == 0) {
- b = UP5(col[0][BCOMP]);
- g = UP6(col[0][GCOMP], glsb ^ selb);
- r = UP5(col[0][RCOMP]);
- } else if (t == 3) {
- b = UP5(col[1][BCOMP]);
- g = UP6(col[1][GCOMP], glsb);
- r = UP5(col[1][RCOMP]);
- } else {
- b = LERP(3, t, UP5(col[0][BCOMP]), UP5(col[1][BCOMP]));
- g = LERP(3, t, UP6(col[0][GCOMP], glsb ^ selb),
- UP6(col[1][GCOMP], glsb));
- r = LERP(3, t, UP5(col[0][RCOMP]), UP5(col[1][RCOMP]));
- }
- rgba[RCOMP] = UBYTE_TO_CHAN(r);
- rgba[GCOMP] = UBYTE_TO_CHAN(g);
- rgba[BCOMP] = UBYTE_TO_CHAN(b);
- rgba[ACOMP] = CHAN_MAX;
- }
-}
-
-
-static void
-fxt1_decode_1ALPHA (const GLubyte *code, GLint t, GLchan *rgba)
-{
- const GLuint *cc;
- GLubyte r, g, b, a;
-
- cc = (const GLuint *)code;
- if (CC_SEL(cc, 124) & 1) {
- /* lerp == 1 */
- GLuint col0[4];
-
- if (t & 16) {
- t &= 15;
- t = (cc[1] >> (t * 2)) & 3;
- /* col 2 */
- col0[BCOMP] = (*(const GLuint *)(code + 11)) >> 6;
- col0[GCOMP] = CC_SEL(cc, 99);
- col0[RCOMP] = CC_SEL(cc, 104);
- col0[ACOMP] = CC_SEL(cc, 119);
- } else {
- t = (cc[0] >> (t * 2)) & 3;
- /* col 0 */
- col0[BCOMP] = CC_SEL(cc, 64);
- col0[GCOMP] = CC_SEL(cc, 69);
- col0[RCOMP] = CC_SEL(cc, 74);
- col0[ACOMP] = CC_SEL(cc, 109);
- }
-
- if (t == 0) {
- b = UP5(col0[BCOMP]);
- g = UP5(col0[GCOMP]);
- r = UP5(col0[RCOMP]);
- a = UP5(col0[ACOMP]);
- } else if (t == 3) {
- b = UP5(CC_SEL(cc, 79));
- g = UP5(CC_SEL(cc, 84));
- r = UP5(CC_SEL(cc, 89));
- a = UP5(CC_SEL(cc, 114));
- } else {
- b = LERP(3, t, UP5(col0[BCOMP]), UP5(CC_SEL(cc, 79)));
- g = LERP(3, t, UP5(col0[GCOMP]), UP5(CC_SEL(cc, 84)));
- r = LERP(3, t, UP5(col0[RCOMP]), UP5(CC_SEL(cc, 89)));
- a = LERP(3, t, UP5(col0[ACOMP]), UP5(CC_SEL(cc, 114)));
- }
- } else {
- /* lerp == 0 */
-
- if (t & 16) {
- cc++;
- t &= 15;
- }
- t = (cc[0] >> (t * 2)) & 3;
-
- if (t == 3) {
- /* zero */
- r = g = b = a = 0;
- } else {
- GLuint kk;
- cc = (const GLuint *)code;
- a = UP5(cc[3] >> (t * 5 + 13));
- t *= 15;
- cc = (const GLuint *)(code + 8 + t / 8);
- kk = cc[0] >> (t & 7);
- b = UP5(kk);
- g = UP5(kk >> 5);
- r = UP5(kk >> 10);
- }
- }
- rgba[RCOMP] = UBYTE_TO_CHAN(r);
- rgba[GCOMP] = UBYTE_TO_CHAN(g);
- rgba[BCOMP] = UBYTE_TO_CHAN(b);
- rgba[ACOMP] = UBYTE_TO_CHAN(a);
-}
-
-
-void
-fxt1_decode_1 (const void *texture, GLint stride, /* in pixels */
- GLint i, GLint j, GLchan *rgba)
-{
- static void (*decode_1[]) (const GLubyte *, GLint, GLchan *) = {
- fxt1_decode_1HI, /* cc-high = "00?" */
- fxt1_decode_1HI, /* cc-high = "00?" */
- fxt1_decode_1CHROMA, /* cc-chroma = "010" */
- fxt1_decode_1ALPHA, /* alpha = "011" */
- fxt1_decode_1MIXED, /* mixed = "1??" */
- fxt1_decode_1MIXED, /* mixed = "1??" */
- fxt1_decode_1MIXED, /* mixed = "1??" */
- fxt1_decode_1MIXED /* mixed = "1??" */
- };
-
- const GLubyte *code = (const GLubyte *)texture +
- ((j / 4) * (stride / 8) + (i / 8)) * 16;
- GLint mode = CC_SEL(code, 125);
- GLint t = i & 7;
-
- if (t & 4) {
- t += 12;
- }
- t += (j & 3) * 4;
-
- decode_1[mode](code, t, rgba);
-}
-
-
-#endif /* FEATURE_texture_fxt1 */
+/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/** + * \file texcompress_fxt1.c + * GL_3DFX_texture_compression_FXT1 support. + */ + + +#include "glheader.h" +#include "imports.h" +#include "colormac.h" +#include "image.h" +#include "macros.h" +#include "mfeatures.h" +#include "mipmap.h" +#include "texcompress.h" +#include "texcompress_fxt1.h" +#include "texstore.h" +#include "swrast/s_context.h" + + +#if FEATURE_texture_fxt1 + + +static void +fxt1_encode (GLuint width, GLuint height, GLint comps, + const void *source, GLint srcRowStride, + void *dest, GLint destRowStride); + +void +fxt1_decode_1 (const void *texture, GLint stride, + GLint i, GLint j, GLchan *rgba); + + +/** + * Store user's image in rgb_fxt1 format. + */ +GLboolean +_mesa_texstore_rgb_fxt1(TEXSTORE_PARAMS) +{ + const GLchan *pixels; + GLint srcRowStride; + GLubyte *dst; + const GLint texWidth = dstRowStride * 8 / 16; /* a bit of a hack */ + const GLchan *tempImage = NULL; + + ASSERT(dstFormat == MESA_FORMAT_RGB_FXT1); + ASSERT(dstXoffset % 8 == 0); + ASSERT(dstYoffset % 4 == 0); + ASSERT(dstZoffset == 0); + (void) dstZoffset; + (void) dstImageOffsets; + + if (srcFormat != GL_RGB || + srcType != CHAN_TYPE || + ctx->_ImageTransferState || + srcPacking->SwapBytes) { + /* convert image to RGB/GLchan */ + tempImage = _mesa_make_temp_chan_image(ctx, dims, + baseInternalFormat, + _mesa_get_format_base_format(dstFormat), + srcWidth, srcHeight, srcDepth, + srcFormat, srcType, srcAddr, + srcPacking); + if (!tempImage) + return GL_FALSE; /* out of memory */ + pixels = tempImage; + srcRowStride = 3 * srcWidth; + srcFormat = GL_RGB; + } + else { + pixels = (const GLchan *) srcAddr; + srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, + srcType) / sizeof(GLchan); + } + + dst = _mesa_compressed_image_address(dstXoffset, dstYoffset, 0, + dstFormat, + texWidth, (GLubyte *) dstAddr); + + fxt1_encode(srcWidth, srcHeight, 3, pixels, srcRowStride, + dst, dstRowStride); + + if (tempImage) + free((void*) tempImage); + + return GL_TRUE; +} + + +/** + * Store user's image in rgba_fxt1 format. + */ +GLboolean +_mesa_texstore_rgba_fxt1(TEXSTORE_PARAMS) +{ + const GLchan *pixels; + GLint srcRowStride; + GLubyte *dst; + GLint texWidth = dstRowStride * 8 / 16; /* a bit of a hack */ + const GLchan *tempImage = NULL; + + ASSERT(dstFormat == MESA_FORMAT_RGBA_FXT1); + ASSERT(dstXoffset % 8 == 0); + ASSERT(dstYoffset % 4 == 0); + ASSERT(dstZoffset == 0); + (void) dstZoffset; + (void) dstImageOffsets; + + if (srcFormat != GL_RGBA || + srcType != CHAN_TYPE || + ctx->_ImageTransferState || + srcPacking->SwapBytes) { + /* convert image to RGBA/GLchan */ + tempImage = _mesa_make_temp_chan_image(ctx, dims, + baseInternalFormat, + _mesa_get_format_base_format(dstFormat), + srcWidth, srcHeight, srcDepth, + srcFormat, srcType, srcAddr, + srcPacking); + if (!tempImage) + return GL_FALSE; /* out of memory */ + pixels = tempImage; + srcRowStride = 4 * srcWidth; + srcFormat = GL_RGBA; + } + else { + pixels = (const GLchan *) srcAddr; + srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, + srcType) / sizeof(GLchan); + } + + dst = _mesa_compressed_image_address(dstXoffset, dstYoffset, 0, + dstFormat, + texWidth, (GLubyte *) dstAddr); + + fxt1_encode(srcWidth, srcHeight, 4, pixels, srcRowStride, + dst, dstRowStride); + + if (tempImage) + free((void*) tempImage); + + return GL_TRUE; +} + + +void +_mesa_fetch_texel_2d_f_rgba_fxt1( const struct swrast_texture_image *texImage, + GLint i, GLint j, GLint k, GLfloat *texel ) +{ + /* just sample as GLchan and convert to float here */ + GLchan rgba[4]; + (void) k; + fxt1_decode_1(texImage->Base.Data, texImage->Base.RowStride, i, j, rgba); + texel[RCOMP] = CHAN_TO_FLOAT(rgba[RCOMP]); + texel[GCOMP] = CHAN_TO_FLOAT(rgba[GCOMP]); + texel[BCOMP] = CHAN_TO_FLOAT(rgba[BCOMP]); + texel[ACOMP] = CHAN_TO_FLOAT(rgba[ACOMP]); +} + + +void +_mesa_fetch_texel_2d_f_rgb_fxt1( const struct swrast_texture_image *texImage, + GLint i, GLint j, GLint k, GLfloat *texel ) +{ + /* just sample as GLchan and convert to float here */ + GLchan rgba[4]; + (void) k; + fxt1_decode_1(texImage->Base.Data, texImage->Base.RowStride, i, j, rgba); + texel[RCOMP] = CHAN_TO_FLOAT(rgba[RCOMP]); + texel[GCOMP] = CHAN_TO_FLOAT(rgba[GCOMP]); + texel[BCOMP] = CHAN_TO_FLOAT(rgba[BCOMP]); + texel[ACOMP] = 1.0F; +} + + + +/***************************************************************************\ + * FXT1 encoder + * + * The encoder was built by reversing the decoder, + * and is vaguely based on Texus2 by 3dfx. Note that this code + * is merely a proof of concept, since it is highly UNoptimized; + * moreover, it is sub-optimal due to initial conditions passed + * to Lloyd's algorithm (the interpolation modes are even worse). +\***************************************************************************/ + + +#define MAX_COMP 4 /* ever needed maximum number of components in texel */ +#define MAX_VECT 4 /* ever needed maximum number of base vectors to find */ +#define N_TEXELS 32 /* number of texels in a block (always 32) */ +#define LL_N_REP 50 /* number of iterations in lloyd's vq */ +#define LL_RMS_D 10 /* fault tolerance (maximum delta) */ +#define LL_RMS_E 255 /* fault tolerance (maximum error) */ +#define ALPHA_TS 2 /* alpha threshold: (255 - ALPHA_TS) deemed opaque */ +#define ISTBLACK(v) (*((GLuint *)(v)) == 0) + + +/* + * Define a 64-bit unsigned integer type and macros + */ +#if 1 + +#define FX64_NATIVE 1 + +typedef uint64_t Fx64; + +#define FX64_MOV32(a, b) a = b +#define FX64_OR32(a, b) a |= b +#define FX64_SHL(a, c) a <<= c + +#else + +#define FX64_NATIVE 0 + +typedef struct { + GLuint lo, hi; +} Fx64; + +#define FX64_MOV32(a, b) a.lo = b +#define FX64_OR32(a, b) a.lo |= b + +#define FX64_SHL(a, c) \ + do { \ + if ((c) >= 32) { \ + a.hi = a.lo << ((c) - 32); \ + a.lo = 0; \ + } else { \ + a.hi = (a.hi << (c)) | (a.lo >> (32 - (c))); \ + a.lo <<= (c); \ + } \ + } while (0) + +#endif + + +#define F(i) (GLfloat)1 /* can be used to obtain an oblong metric: 0.30 / 0.59 / 0.11 */ +#define SAFECDOT 1 /* for paranoids */ + +#define MAKEIVEC(NV, NC, IV, B, V0, V1) \ + do { \ + /* compute interpolation vector */ \ + GLfloat d2 = 0.0F; \ + GLfloat rd2; \ + \ + for (i = 0; i < NC; i++) { \ + IV[i] = (V1[i] - V0[i]) * F(i); \ + d2 += IV[i] * IV[i]; \ + } \ + rd2 = (GLfloat)NV / d2; \ + B = 0; \ + for (i = 0; i < NC; i++) { \ + IV[i] *= F(i); \ + B -= IV[i] * V0[i]; \ + IV[i] *= rd2; \ + } \ + B = B * rd2 + 0.5f; \ + } while (0) + +#define CALCCDOT(TEXEL, NV, NC, IV, B, V)\ + do { \ + GLfloat dot = 0.0F; \ + for (i = 0; i < NC; i++) { \ + dot += V[i] * IV[i]; \ + } \ + TEXEL = (GLint)(dot + B); \ + if (SAFECDOT) { \ + if (TEXEL < 0) { \ + TEXEL = 0; \ + } else if (TEXEL > NV) { \ + TEXEL = NV; \ + } \ + } \ + } while (0) + + +static GLint +fxt1_bestcol (GLfloat vec[][MAX_COMP], GLint nv, + GLubyte input[MAX_COMP], GLint nc) +{ + GLint i, j, best = -1; + GLfloat err = 1e9; /* big enough */ + + for (j = 0; j < nv; j++) { + GLfloat e = 0.0F; + for (i = 0; i < nc; i++) { + e += (vec[j][i] - input[i]) * (vec[j][i] - input[i]); + } + if (e < err) { + err = e; + best = j; + } + } + + return best; +} + + +static GLint +fxt1_worst (GLfloat vec[MAX_COMP], + GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n) +{ + GLint i, k, worst = -1; + GLfloat err = -1.0F; /* small enough */ + + for (k = 0; k < n; k++) { + GLfloat e = 0.0F; + for (i = 0; i < nc; i++) { + e += (vec[i] - input[k][i]) * (vec[i] - input[k][i]); + } + if (e > err) { + err = e; + worst = k; + } + } + + return worst; +} + + +static GLint +fxt1_variance (GLdouble variance[MAX_COMP], + GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n) +{ + GLint i, k, best = 0; + GLint sx, sx2; + GLdouble var, maxvar = -1; /* small enough */ + GLdouble teenth = 1.0 / n; + + for (i = 0; i < nc; i++) { + sx = sx2 = 0; + for (k = 0; k < n; k++) { + GLint t = input[k][i]; + sx += t; + sx2 += t * t; + } + var = sx2 * teenth - sx * sx * teenth * teenth; + if (maxvar < var) { + maxvar = var; + best = i; + } + if (variance) { + variance[i] = var; + } + } + + return best; +} + + +static GLint +fxt1_choose (GLfloat vec[][MAX_COMP], GLint nv, + GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n) +{ +#if 0 + /* Choose colors from a grid. + */ + GLint i, j; + + for (j = 0; j < nv; j++) { + GLint m = j * (n - 1) / (nv - 1); + for (i = 0; i < nc; i++) { + vec[j][i] = input[m][i]; + } + } +#else + /* Our solution here is to find the darkest and brightest colors in + * the 8x4 tile and use those as the two representative colors. + * There are probably better algorithms to use (histogram-based). + */ + GLint i, j, k; + GLint minSum = 2000; /* big enough */ + GLint maxSum = -1; /* small enough */ + GLint minCol = 0; /* phoudoin: silent compiler! */ + GLint maxCol = 0; /* phoudoin: silent compiler! */ + + struct { + GLint flag; + GLint key; + GLint freq; + GLint idx; + } hist[N_TEXELS]; + GLint lenh = 0; + + memset(hist, 0, sizeof(hist)); + + for (k = 0; k < n; k++) { + GLint l; + GLint key = 0; + GLint sum = 0; + for (i = 0; i < nc; i++) { + key <<= 8; + key |= input[k][i]; + sum += input[k][i]; + } + for (l = 0; l < n; l++) { + if (!hist[l].flag) { + /* alloc new slot */ + hist[l].flag = !0; + hist[l].key = key; + hist[l].freq = 1; + hist[l].idx = k; + lenh = l + 1; + break; + } else if (hist[l].key == key) { + hist[l].freq++; + break; + } + } + if (minSum > sum) { + minSum = sum; + minCol = k; + } + if (maxSum < sum) { + maxSum = sum; + maxCol = k; + } + } + + if (lenh <= nv) { + for (j = 0; j < lenh; j++) { + for (i = 0; i < nc; i++) { + vec[j][i] = (GLfloat)input[hist[j].idx][i]; + } + } + for (; j < nv; j++) { + for (i = 0; i < nc; i++) { + vec[j][i] = vec[0][i]; + } + } + return 0; + } + + for (j = 0; j < nv; j++) { + for (i = 0; i < nc; i++) { + vec[j][i] = ((nv - 1 - j) * input[minCol][i] + j * input[maxCol][i] + (nv - 1) / 2) / (GLfloat)(nv - 1); + } + } +#endif + + return !0; +} + + +static GLint +fxt1_lloyd (GLfloat vec[][MAX_COMP], GLint nv, + GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n) +{ + /* Use the generalized lloyd's algorithm for VQ: + * find 4 color vectors. + * + * for each sample color + * sort to nearest vector. + * + * replace each vector with the centroid of its matching colors. + * + * repeat until RMS doesn't improve. + * + * if a color vector has no samples, or becomes the same as another + * vector, replace it with the color which is farthest from a sample. + * + * vec[][MAX_COMP] initial vectors and resulting colors + * nv number of resulting colors required + * input[N_TEXELS][MAX_COMP] input texels + * nc number of components in input / vec + * n number of input samples + */ + + GLint sum[MAX_VECT][MAX_COMP]; /* used to accumulate closest texels */ + GLint cnt[MAX_VECT]; /* how many times a certain vector was chosen */ + GLfloat error, lasterror = 1e9; + + GLint i, j, k, rep; + + /* the quantizer */ + for (rep = 0; rep < LL_N_REP; rep++) { + /* reset sums & counters */ + for (j = 0; j < nv; j++) { + for (i = 0; i < nc; i++) { + sum[j][i] = 0; + } + cnt[j] = 0; + } + error = 0; + + /* scan whole block */ + for (k = 0; k < n; k++) { +#if 1 + GLint best = -1; + GLfloat err = 1e9; /* big enough */ + /* determine best vector */ + for (j = 0; j < nv; j++) { + GLfloat e = (vec[j][0] - input[k][0]) * (vec[j][0] - input[k][0]) + + (vec[j][1] - input[k][1]) * (vec[j][1] - input[k][1]) + + (vec[j][2] - input[k][2]) * (vec[j][2] - input[k][2]); + if (nc == 4) { + e += (vec[j][3] - input[k][3]) * (vec[j][3] - input[k][3]); + } + if (e < err) { + err = e; + best = j; + } + } +#else + GLint best = fxt1_bestcol(vec, nv, input[k], nc, &err); +#endif + assert(best >= 0); + /* add in closest color */ + for (i = 0; i < nc; i++) { + sum[best][i] += input[k][i]; + } + /* mark this vector as used */ + cnt[best]++; + /* accumulate error */ + error += err; + } + + /* check RMS */ + if ((error < LL_RMS_E) || + ((error < lasterror) && ((lasterror - error) < LL_RMS_D))) { + return !0; /* good match */ + } + lasterror = error; + + /* move each vector to the barycenter of its closest colors */ + for (j = 0; j < nv; j++) { + if (cnt[j]) { + GLfloat div = 1.0F / cnt[j]; + for (i = 0; i < nc; i++) { + vec[j][i] = div * sum[j][i]; + } + } else { + /* this vec has no samples or is identical with a previous vec */ + GLint worst = fxt1_worst(vec[j], input, nc, n); + for (i = 0; i < nc; i++) { + vec[j][i] = input[worst][i]; + } + } + } + } + + return 0; /* could not converge fast enough */ +} + + +static void +fxt1_quantize_CHROMA (GLuint *cc, + GLubyte input[N_TEXELS][MAX_COMP]) +{ + const GLint n_vect = 4; /* 4 base vectors to find */ + const GLint n_comp = 3; /* 3 components: R, G, B */ + GLfloat vec[MAX_VECT][MAX_COMP]; + GLint i, j, k; + Fx64 hi; /* high quadword */ + GLuint lohi, lolo; /* low quadword: hi dword, lo dword */ + + if (fxt1_choose(vec, n_vect, input, n_comp, N_TEXELS) != 0) { + fxt1_lloyd(vec, n_vect, input, n_comp, N_TEXELS); + } + + FX64_MOV32(hi, 4); /* cc-chroma = "010" + unused bit */ + for (j = n_vect - 1; j >= 0; j--) { + for (i = 0; i < n_comp; i++) { + /* add in colors */ + FX64_SHL(hi, 5); + FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F)); + } + } + ((Fx64 *)cc)[1] = hi; + + lohi = lolo = 0; + /* right microtile */ + for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) { + lohi <<= 2; + lohi |= fxt1_bestcol(vec, n_vect, input[k], n_comp); + } + /* left microtile */ + for (; k >= 0; k--) { + lolo <<= 2; + lolo |= fxt1_bestcol(vec, n_vect, input[k], n_comp); + } + cc[1] = lohi; + cc[0] = lolo; +} + + +static void +fxt1_quantize_ALPHA0 (GLuint *cc, + GLubyte input[N_TEXELS][MAX_COMP], + GLubyte reord[N_TEXELS][MAX_COMP], GLint n) +{ + const GLint n_vect = 3; /* 3 base vectors to find */ + const GLint n_comp = 4; /* 4 components: R, G, B, A */ + GLfloat vec[MAX_VECT][MAX_COMP]; + GLint i, j, k; + Fx64 hi; /* high quadword */ + GLuint lohi, lolo; /* low quadword: hi dword, lo dword */ + + /* the last vector indicates zero */ + for (i = 0; i < n_comp; i++) { + vec[n_vect][i] = 0; + } + + /* the first n texels in reord are guaranteed to be non-zero */ + if (fxt1_choose(vec, n_vect, reord, n_comp, n) != 0) { + fxt1_lloyd(vec, n_vect, reord, n_comp, n); + } + + FX64_MOV32(hi, 6); /* alpha = "011" + lerp = 0 */ + for (j = n_vect - 1; j >= 0; j--) { + /* add in alphas */ + FX64_SHL(hi, 5); + FX64_OR32(hi, (GLuint)(vec[j][ACOMP] / 8.0F)); + } + for (j = n_vect - 1; j >= 0; j--) { + for (i = 0; i < n_comp - 1; i++) { + /* add in colors */ + FX64_SHL(hi, 5); + FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F)); + } + } + ((Fx64 *)cc)[1] = hi; + + lohi = lolo = 0; + /* right microtile */ + for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) { + lohi <<= 2; + lohi |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp); + } + /* left microtile */ + for (; k >= 0; k--) { + lolo <<= 2; + lolo |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp); + } + cc[1] = lohi; + cc[0] = lolo; +} + + +static void +fxt1_quantize_ALPHA1 (GLuint *cc, + GLubyte input[N_TEXELS][MAX_COMP]) +{ + const GLint n_vect = 3; /* highest vector number in each microtile */ + const GLint n_comp = 4; /* 4 components: R, G, B, A */ + GLfloat vec[1 + 1 + 1][MAX_COMP]; /* 1.5 extrema for each sub-block */ + GLfloat b, iv[MAX_COMP]; /* interpolation vector */ + GLint i, j, k; + Fx64 hi; /* high quadword */ + GLuint lohi, lolo; /* low quadword: hi dword, lo dword */ + + GLint minSum; + GLint maxSum; + GLint minColL = 0, maxColL = 0; + GLint minColR = 0, maxColR = 0; + GLint sumL = 0, sumR = 0; + GLint nn_comp; + /* Our solution here is to find the darkest and brightest colors in + * the 4x4 tile and use those as the two representative colors. + * There are probably better algorithms to use (histogram-based). + */ + nn_comp = n_comp; + while ((minColL == maxColL) && nn_comp) { + minSum = 2000; /* big enough */ + maxSum = -1; /* small enough */ + for (k = 0; k < N_TEXELS / 2; k++) { + GLint sum = 0; + for (i = 0; i < nn_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColL = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColL = k; + } + sumL += sum; + } + + nn_comp--; + } + + nn_comp = n_comp; + while ((minColR == maxColR) && nn_comp) { + minSum = 2000; /* big enough */ + maxSum = -1; /* small enough */ + for (k = N_TEXELS / 2; k < N_TEXELS; k++) { + GLint sum = 0; + for (i = 0; i < nn_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColR = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColR = k; + } + sumR += sum; + } + + nn_comp--; + } + + /* choose the common vector (yuck!) */ + { + GLint j1, j2; + GLint v1 = 0, v2 = 0; + GLfloat err = 1e9; /* big enough */ + GLfloat tv[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ + for (i = 0; i < n_comp; i++) { + tv[0][i] = input[minColL][i]; + tv[1][i] = input[maxColL][i]; + tv[2][i] = input[minColR][i]; + tv[3][i] = input[maxColR][i]; + } + for (j1 = 0; j1 < 2; j1++) { + for (j2 = 2; j2 < 4; j2++) { + GLfloat e = 0.0F; + for (i = 0; i < n_comp; i++) { + e += (tv[j1][i] - tv[j2][i]) * (tv[j1][i] - tv[j2][i]); + } + if (e < err) { + err = e; + v1 = j1; + v2 = j2; + } + } + } + for (i = 0; i < n_comp; i++) { + vec[0][i] = tv[1 - v1][i]; + vec[1][i] = (tv[v1][i] * sumL + tv[v2][i] * sumR) / (sumL + sumR); + vec[2][i] = tv[5 - v2][i]; + } + } + + /* left microtile */ + cc[0] = 0; + if (minColL != maxColL) { + /* compute interpolation vector */ + MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]); + + /* add in texels */ + lolo = 0; + for (k = N_TEXELS / 2 - 1; k >= 0; k--) { + GLint texel; + /* interpolate color */ + CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); + /* add in texel */ + lolo <<= 2; + lolo |= texel; + } + + cc[0] = lolo; + } + + /* right microtile */ + cc[1] = 0; + if (minColR != maxColR) { + /* compute interpolation vector */ + MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[1]); + + /* add in texels */ + lohi = 0; + for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { + GLint texel; + /* interpolate color */ + CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); + /* add in texel */ + lohi <<= 2; + lohi |= texel; + } + + cc[1] = lohi; + } + + FX64_MOV32(hi, 7); /* alpha = "011" + lerp = 1 */ + for (j = n_vect - 1; j >= 0; j--) { + /* add in alphas */ + FX64_SHL(hi, 5); + FX64_OR32(hi, (GLuint)(vec[j][ACOMP] / 8.0F)); + } + for (j = n_vect - 1; j >= 0; j--) { + for (i = 0; i < n_comp - 1; i++) { + /* add in colors */ + FX64_SHL(hi, 5); + FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F)); + } + } + ((Fx64 *)cc)[1] = hi; +} + + +static void +fxt1_quantize_HI (GLuint *cc, + GLubyte input[N_TEXELS][MAX_COMP], + GLubyte reord[N_TEXELS][MAX_COMP], GLint n) +{ + const GLint n_vect = 6; /* highest vector number */ + const GLint n_comp = 3; /* 3 components: R, G, B */ + GLfloat b = 0.0F; /* phoudoin: silent compiler! */ + GLfloat iv[MAX_COMP]; /* interpolation vector */ + GLint i, k; + GLuint hihi; /* high quadword: hi dword */ + + GLint minSum = 2000; /* big enough */ + GLint maxSum = -1; /* small enough */ + GLint minCol = 0; /* phoudoin: silent compiler! */ + GLint maxCol = 0; /* phoudoin: silent compiler! */ + + /* Our solution here is to find the darkest and brightest colors in + * the 8x4 tile and use those as the two representative colors. + * There are probably better algorithms to use (histogram-based). + */ + for (k = 0; k < n; k++) { + GLint sum = 0; + for (i = 0; i < n_comp; i++) { + sum += reord[k][i]; + } + if (minSum > sum) { + minSum = sum; + minCol = k; + } + if (maxSum < sum) { + maxSum = sum; + maxCol = k; + } + } + + hihi = 0; /* cc-hi = "00" */ + for (i = 0; i < n_comp; i++) { + /* add in colors */ + hihi <<= 5; + hihi |= reord[maxCol][i] >> 3; + } + for (i = 0; i < n_comp; i++) { + /* add in colors */ + hihi <<= 5; + hihi |= reord[minCol][i] >> 3; + } + cc[3] = hihi; + cc[0] = cc[1] = cc[2] = 0; + + /* compute interpolation vector */ + if (minCol != maxCol) { + MAKEIVEC(n_vect, n_comp, iv, b, reord[minCol], reord[maxCol]); + } + + /* add in texels */ + for (k = N_TEXELS - 1; k >= 0; k--) { + GLint t = k * 3; + GLuint *kk = (GLuint *)((char *)cc + t / 8); + GLint texel = n_vect + 1; /* transparent black */ + + if (!ISTBLACK(input[k])) { + if (minCol != maxCol) { + /* interpolate color */ + CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); + /* add in texel */ + kk[0] |= texel << (t & 7); + } + } else { + /* add in texel */ + kk[0] |= texel << (t & 7); + } + } +} + + +static void +fxt1_quantize_MIXED1 (GLuint *cc, + GLubyte input[N_TEXELS][MAX_COMP]) +{ + const GLint n_vect = 2; /* highest vector number in each microtile */ + const GLint n_comp = 3; /* 3 components: R, G, B */ + GLubyte vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ + GLfloat b, iv[MAX_COMP]; /* interpolation vector */ + GLint i, j, k; + Fx64 hi; /* high quadword */ + GLuint lohi, lolo; /* low quadword: hi dword, lo dword */ + + GLint minSum; + GLint maxSum; + GLint minColL = 0, maxColL = -1; + GLint minColR = 0, maxColR = -1; + + /* Our solution here is to find the darkest and brightest colors in + * the 4x4 tile and use those as the two representative colors. + * There are probably better algorithms to use (histogram-based). + */ + minSum = 2000; /* big enough */ + maxSum = -1; /* small enough */ + for (k = 0; k < N_TEXELS / 2; k++) { + if (!ISTBLACK(input[k])) { + GLint sum = 0; + for (i = 0; i < n_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColL = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColL = k; + } + } + } + minSum = 2000; /* big enough */ + maxSum = -1; /* small enough */ + for (; k < N_TEXELS; k++) { + if (!ISTBLACK(input[k])) { + GLint sum = 0; + for (i = 0; i < n_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColR = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColR = k; + } + } + } + + /* left microtile */ + if (maxColL == -1) { + /* all transparent black */ + cc[0] = ~0u; + for (i = 0; i < n_comp; i++) { + vec[0][i] = 0; + vec[1][i] = 0; + } + } else { + cc[0] = 0; + for (i = 0; i < n_comp; i++) { + vec[0][i] = input[minColL][i]; + vec[1][i] = input[maxColL][i]; + } + if (minColL != maxColL) { + /* compute interpolation vector */ + MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]); + + /* add in texels */ + lolo = 0; + for (k = N_TEXELS / 2 - 1; k >= 0; k--) { + GLint texel = n_vect + 1; /* transparent black */ + if (!ISTBLACK(input[k])) { + /* interpolate color */ + CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); + } + /* add in texel */ + lolo <<= 2; + lolo |= texel; + } + cc[0] = lolo; + } + } + + /* right microtile */ + if (maxColR == -1) { + /* all transparent black */ + cc[1] = ~0u; + for (i = 0; i < n_comp; i++) { + vec[2][i] = 0; + vec[3][i] = 0; + } + } else { + cc[1] = 0; + for (i = 0; i < n_comp; i++) { + vec[2][i] = input[minColR][i]; + vec[3][i] = input[maxColR][i]; + } + if (minColR != maxColR) { + /* compute interpolation vector */ + MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]); + + /* add in texels */ + lohi = 0; + for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { + GLint texel = n_vect + 1; /* transparent black */ + if (!ISTBLACK(input[k])) { + /* interpolate color */ + CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); + } + /* add in texel */ + lohi <<= 2; + lohi |= texel; + } + cc[1] = lohi; + } + } + + FX64_MOV32(hi, 9 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */ + for (j = 2 * 2 - 1; j >= 0; j--) { + for (i = 0; i < n_comp; i++) { + /* add in colors */ + FX64_SHL(hi, 5); + FX64_OR32(hi, vec[j][i] >> 3); + } + } + ((Fx64 *)cc)[1] = hi; +} + + +static void +fxt1_quantize_MIXED0 (GLuint *cc, + GLubyte input[N_TEXELS][MAX_COMP]) +{ + const GLint n_vect = 3; /* highest vector number in each microtile */ + const GLint n_comp = 3; /* 3 components: R, G, B */ + GLubyte vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ + GLfloat b, iv[MAX_COMP]; /* interpolation vector */ + GLint i, j, k; + Fx64 hi; /* high quadword */ + GLuint lohi, lolo; /* low quadword: hi dword, lo dword */ + + GLint minColL = 0, maxColL = 0; + GLint minColR = 0, maxColR = 0; +#if 0 + GLint minSum; + GLint maxSum; + + /* Our solution here is to find the darkest and brightest colors in + * the 4x4 tile and use those as the two representative colors. + * There are probably better algorithms to use (histogram-based). + */ + minSum = 2000; /* big enough */ + maxSum = -1; /* small enough */ + for (k = 0; k < N_TEXELS / 2; k++) { + GLint sum = 0; + for (i = 0; i < n_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColL = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColL = k; + } + } + minSum = 2000; /* big enough */ + maxSum = -1; /* small enough */ + for (; k < N_TEXELS; k++) { + GLint sum = 0; + for (i = 0; i < n_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColR = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColR = k; + } + } +#else + GLint minVal; + GLint maxVal; + GLint maxVarL = fxt1_variance(NULL, input, n_comp, N_TEXELS / 2); + GLint maxVarR = fxt1_variance(NULL, &input[N_TEXELS / 2], n_comp, N_TEXELS / 2); + + /* Scan the channel with max variance for lo & hi + * and use those as the two representative colors. + */ + minVal = 2000; /* big enough */ + maxVal = -1; /* small enough */ + for (k = 0; k < N_TEXELS / 2; k++) { + GLint t = input[k][maxVarL]; + if (minVal > t) { + minVal = t; + minColL = k; + } + if (maxVal < t) { + maxVal = t; + maxColL = k; + } + } + minVal = 2000; /* big enough */ + maxVal = -1; /* small enough */ + for (; k < N_TEXELS; k++) { + GLint t = input[k][maxVarR]; + if (minVal > t) { + minVal = t; + minColR = k; + } + if (maxVal < t) { + maxVal = t; + maxColR = k; + } + } +#endif + + /* left microtile */ + cc[0] = 0; + for (i = 0; i < n_comp; i++) { + vec[0][i] = input[minColL][i]; + vec[1][i] = input[maxColL][i]; + } + if (minColL != maxColL) { + /* compute interpolation vector */ + MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]); + + /* add in texels */ + lolo = 0; + for (k = N_TEXELS / 2 - 1; k >= 0; k--) { + GLint texel; + /* interpolate color */ + CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); + /* add in texel */ + lolo <<= 2; + lolo |= texel; + } + + /* funky encoding for LSB of green */ + if ((GLint)((lolo >> 1) & 1) != (((vec[1][GCOMP] ^ vec[0][GCOMP]) >> 2) & 1)) { + for (i = 0; i < n_comp; i++) { + vec[1][i] = input[minColL][i]; + vec[0][i] = input[maxColL][i]; + } + lolo = ~lolo; + } + + cc[0] = lolo; + } + + /* right microtile */ + cc[1] = 0; + for (i = 0; i < n_comp; i++) { + vec[2][i] = input[minColR][i]; + vec[3][i] = input[maxColR][i]; + } + if (minColR != maxColR) { + /* compute interpolation vector */ + MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]); + + /* add in texels */ + lohi = 0; + for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { + GLint texel; + /* interpolate color */ + CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); + /* add in texel */ + lohi <<= 2; + lohi |= texel; + } + + /* funky encoding for LSB of green */ + if ((GLint)((lohi >> 1) & 1) != (((vec[3][GCOMP] ^ vec[2][GCOMP]) >> 2) & 1)) { + for (i = 0; i < n_comp; i++) { + vec[3][i] = input[minColR][i]; + vec[2][i] = input[maxColR][i]; + } + lohi = ~lohi; + } + + cc[1] = lohi; + } + + FX64_MOV32(hi, 8 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */ + for (j = 2 * 2 - 1; j >= 0; j--) { + for (i = 0; i < n_comp; i++) { + /* add in colors */ + FX64_SHL(hi, 5); + FX64_OR32(hi, vec[j][i] >> 3); + } + } + ((Fx64 *)cc)[1] = hi; +} + + +static void +fxt1_quantize (GLuint *cc, const GLubyte *lines[], GLint comps) +{ + GLint trualpha; + GLubyte reord[N_TEXELS][MAX_COMP]; + + GLubyte input[N_TEXELS][MAX_COMP]; + GLint i, k, l; + + if (comps == 3) { + /* make the whole block opaque */ + memset(input, -1, sizeof(input)); + } + + /* 8 texels each line */ + for (l = 0; l < 4; l++) { + for (k = 0; k < 4; k++) { + for (i = 0; i < comps; i++) { + input[k + l * 4][i] = *lines[l]++; + } + } + for (; k < 8; k++) { + for (i = 0; i < comps; i++) { + input[k + l * 4 + 12][i] = *lines[l]++; + } + } + } + + /* block layout: + * 00, 01, 02, 03, 08, 09, 0a, 0b + * 10, 11, 12, 13, 18, 19, 1a, 1b + * 04, 05, 06, 07, 0c, 0d, 0e, 0f + * 14, 15, 16, 17, 1c, 1d, 1e, 1f + */ + + /* [dBorca] + * stupidity flows forth from this + */ + l = N_TEXELS; + trualpha = 0; + if (comps == 4) { + /* skip all transparent black texels */ + l = 0; + for (k = 0; k < N_TEXELS; k++) { + /* test all components against 0 */ + if (!ISTBLACK(input[k])) { + /* texel is not transparent black */ + COPY_4UBV(reord[l], input[k]); + if (reord[l][ACOMP] < (255 - ALPHA_TS)) { + /* non-opaque texel */ + trualpha = !0; + } + l++; + } + } + } + +#if 0 + if (trualpha) { + fxt1_quantize_ALPHA0(cc, input, reord, l); + } else if (l == 0) { + cc[0] = cc[1] = cc[2] = -1; + cc[3] = 0; + } else if (l < N_TEXELS) { + fxt1_quantize_HI(cc, input, reord, l); + } else { + fxt1_quantize_CHROMA(cc, input); + } + (void)fxt1_quantize_ALPHA1; + (void)fxt1_quantize_MIXED1; + (void)fxt1_quantize_MIXED0; +#else + if (trualpha) { + fxt1_quantize_ALPHA1(cc, input); + } else if (l == 0) { + cc[0] = cc[1] = cc[2] = ~0u; + cc[3] = 0; + } else if (l < N_TEXELS) { + fxt1_quantize_MIXED1(cc, input); + } else { + fxt1_quantize_MIXED0(cc, input); + } + (void)fxt1_quantize_ALPHA0; + (void)fxt1_quantize_HI; + (void)fxt1_quantize_CHROMA; +#endif +} + + +static void +fxt1_encode (GLuint width, GLuint height, GLint comps, + const void *source, GLint srcRowStride, + void *dest, GLint destRowStride) +{ + GLuint x, y; + const GLubyte *data; + GLuint *encoded = (GLuint *)dest; + void *newSource = NULL; + + assert(comps == 3 || comps == 4); + + /* Replicate image if width is not M8 or height is not M4 */ + if ((width & 7) | (height & 3)) { + GLint newWidth = (width + 7) & ~7; + GLint newHeight = (height + 3) & ~3; + newSource = malloc(comps * newWidth * newHeight * sizeof(GLchan)); + if (!newSource) { + GET_CURRENT_CONTEXT(ctx); + _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture compression"); + goto cleanUp; + } + _mesa_upscale_teximage2d(width, height, newWidth, newHeight, + comps, (const GLchan *) source, + srcRowStride, (GLchan *) newSource); + source = newSource; + width = newWidth; + height = newHeight; + srcRowStride = comps * newWidth; + } + + /* convert from 16/32-bit channels to GLubyte if needed */ + if (CHAN_TYPE != GL_UNSIGNED_BYTE) { + const GLuint n = width * height * comps; + const GLchan *src = (const GLchan *) source; + GLubyte *dest = (GLubyte *) malloc(n * sizeof(GLubyte)); + GLuint i; + if (!dest) { + GET_CURRENT_CONTEXT(ctx); + _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture compression"); + goto cleanUp; + } + for (i = 0; i < n; i++) { + dest[i] = CHAN_TO_UBYTE(src[i]); + } + if (newSource != NULL) { + free(newSource); + } + newSource = dest; /* we'll free this buffer before returning */ + source = dest; /* the new, GLubyte incoming image */ + } + + data = (const GLubyte *) source; + destRowStride = (destRowStride - width * 2) / 4; + for (y = 0; y < height; y += 4) { + GLuint offs = 0 + (y + 0) * srcRowStride; + for (x = 0; x < width; x += 8) { + const GLubyte *lines[4]; + lines[0] = &data[offs]; + lines[1] = lines[0] + srcRowStride; + lines[2] = lines[1] + srcRowStride; + lines[3] = lines[2] + srcRowStride; + offs += 8 * comps; + fxt1_quantize(encoded, lines, comps); + /* 128 bits per 8x4 block */ + encoded += 4; + } + encoded += destRowStride; + } + + cleanUp: + if (newSource != NULL) { + free(newSource); + } +} + + +/***************************************************************************\ + * FXT1 decoder + * + * The decoder is based on GL_3DFX_texture_compression_FXT1 + * specification and serves as a concept for the encoder. +\***************************************************************************/ + + +/* lookup table for scaling 5 bit colors up to 8 bits */ +static const GLubyte _rgb_scale_5[] = { + 0, 8, 16, 25, 33, 41, 49, 58, + 66, 74, 82, 90, 99, 107, 115, 123, + 132, 140, 148, 156, 165, 173, 181, 189, + 197, 206, 214, 222, 230, 239, 247, 255 +}; + +/* lookup table for scaling 6 bit colors up to 8 bits */ +static const GLubyte _rgb_scale_6[] = { + 0, 4, 8, 12, 16, 20, 24, 28, + 32, 36, 40, 45, 49, 53, 57, 61, + 65, 69, 73, 77, 81, 85, 89, 93, + 97, 101, 105, 109, 113, 117, 121, 125, + 130, 134, 138, 142, 146, 150, 154, 158, + 162, 166, 170, 174, 178, 182, 186, 190, + 194, 198, 202, 206, 210, 215, 219, 223, + 227, 231, 235, 239, 243, 247, 251, 255 +}; + + +#define CC_SEL(cc, which) (((GLuint *)(cc))[(which) / 32] >> ((which) & 31)) +#define UP5(c) _rgb_scale_5[(c) & 31] +#define UP6(c, b) _rgb_scale_6[(((c) & 31) << 1) | ((b) & 1)] +#define LERP(n, t, c0, c1) (((n) - (t)) * (c0) + (t) * (c1) + (n) / 2) / (n) + + +static void +fxt1_decode_1HI (const GLubyte *code, GLint t, GLchan *rgba) +{ + const GLuint *cc; + + t *= 3; + cc = (const GLuint *)(code + t / 8); + t = (cc[0] >> (t & 7)) & 7; + + if (t == 7) { + rgba[RCOMP] = rgba[GCOMP] = rgba[BCOMP] = rgba[ACOMP] = 0; + } else { + GLubyte r, g, b; + cc = (const GLuint *)(code + 12); + if (t == 0) { + b = UP5(CC_SEL(cc, 0)); + g = UP5(CC_SEL(cc, 5)); + r = UP5(CC_SEL(cc, 10)); + } else if (t == 6) { + b = UP5(CC_SEL(cc, 15)); + g = UP5(CC_SEL(cc, 20)); + r = UP5(CC_SEL(cc, 25)); + } else { + b = LERP(6, t, UP5(CC_SEL(cc, 0)), UP5(CC_SEL(cc, 15))); + g = LERP(6, t, UP5(CC_SEL(cc, 5)), UP5(CC_SEL(cc, 20))); + r = LERP(6, t, UP5(CC_SEL(cc, 10)), UP5(CC_SEL(cc, 25))); + } + rgba[RCOMP] = UBYTE_TO_CHAN(r); + rgba[GCOMP] = UBYTE_TO_CHAN(g); + rgba[BCOMP] = UBYTE_TO_CHAN(b); + rgba[ACOMP] = CHAN_MAX; + } +} + + +static void +fxt1_decode_1CHROMA (const GLubyte *code, GLint t, GLchan *rgba) +{ + const GLuint *cc; + GLuint kk; + + cc = (const GLuint *)code; + if (t & 16) { + cc++; + t &= 15; + } + t = (cc[0] >> (t * 2)) & 3; + + t *= 15; + cc = (const GLuint *)(code + 8 + t / 8); + kk = cc[0] >> (t & 7); + rgba[BCOMP] = UBYTE_TO_CHAN( UP5(kk) ); + rgba[GCOMP] = UBYTE_TO_CHAN( UP5(kk >> 5) ); + rgba[RCOMP] = UBYTE_TO_CHAN( UP5(kk >> 10) ); + rgba[ACOMP] = CHAN_MAX; +} + + +static void +fxt1_decode_1MIXED (const GLubyte *code, GLint t, GLchan *rgba) +{ + const GLuint *cc; + GLuint col[2][3]; + GLint glsb, selb; + + cc = (const GLuint *)code; + if (t & 16) { + t &= 15; + t = (cc[1] >> (t * 2)) & 3; + /* col 2 */ + col[0][BCOMP] = (*(const GLuint *)(code + 11)) >> 6; + col[0][GCOMP] = CC_SEL(cc, 99); + col[0][RCOMP] = CC_SEL(cc, 104); + /* col 3 */ + col[1][BCOMP] = CC_SEL(cc, 109); + col[1][GCOMP] = CC_SEL(cc, 114); + col[1][RCOMP] = CC_SEL(cc, 119); + glsb = CC_SEL(cc, 126); + selb = CC_SEL(cc, 33); + } else { + t = (cc[0] >> (t * 2)) & 3; + /* col 0 */ + col[0][BCOMP] = CC_SEL(cc, 64); + col[0][GCOMP] = CC_SEL(cc, 69); + col[0][RCOMP] = CC_SEL(cc, 74); + /* col 1 */ + col[1][BCOMP] = CC_SEL(cc, 79); + col[1][GCOMP] = CC_SEL(cc, 84); + col[1][RCOMP] = CC_SEL(cc, 89); + glsb = CC_SEL(cc, 125); + selb = CC_SEL(cc, 1); + } + + if (CC_SEL(cc, 124) & 1) { + /* alpha[0] == 1 */ + + if (t == 3) { + /* zero */ + rgba[RCOMP] = rgba[BCOMP] = rgba[GCOMP] = rgba[ACOMP] = 0; + } else { + GLubyte r, g, b; + if (t == 0) { + b = UP5(col[0][BCOMP]); + g = UP5(col[0][GCOMP]); + r = UP5(col[0][RCOMP]); + } else if (t == 2) { + b = UP5(col[1][BCOMP]); + g = UP6(col[1][GCOMP], glsb); + r = UP5(col[1][RCOMP]); + } else { + b = (UP5(col[0][BCOMP]) + UP5(col[1][BCOMP])) / 2; + g = (UP5(col[0][GCOMP]) + UP6(col[1][GCOMP], glsb)) / 2; + r = (UP5(col[0][RCOMP]) + UP5(col[1][RCOMP])) / 2; + } + rgba[RCOMP] = UBYTE_TO_CHAN(r); + rgba[GCOMP] = UBYTE_TO_CHAN(g); + rgba[BCOMP] = UBYTE_TO_CHAN(b); + rgba[ACOMP] = CHAN_MAX; + } + } else { + /* alpha[0] == 0 */ + GLubyte r, g, b; + if (t == 0) { + b = UP5(col[0][BCOMP]); + g = UP6(col[0][GCOMP], glsb ^ selb); + r = UP5(col[0][RCOMP]); + } else if (t == 3) { + b = UP5(col[1][BCOMP]); + g = UP6(col[1][GCOMP], glsb); + r = UP5(col[1][RCOMP]); + } else { + b = LERP(3, t, UP5(col[0][BCOMP]), UP5(col[1][BCOMP])); + g = LERP(3, t, UP6(col[0][GCOMP], glsb ^ selb), + UP6(col[1][GCOMP], glsb)); + r = LERP(3, t, UP5(col[0][RCOMP]), UP5(col[1][RCOMP])); + } + rgba[RCOMP] = UBYTE_TO_CHAN(r); + rgba[GCOMP] = UBYTE_TO_CHAN(g); + rgba[BCOMP] = UBYTE_TO_CHAN(b); + rgba[ACOMP] = CHAN_MAX; + } +} + + +static void +fxt1_decode_1ALPHA (const GLubyte *code, GLint t, GLchan *rgba) +{ + const GLuint *cc; + GLubyte r, g, b, a; + + cc = (const GLuint *)code; + if (CC_SEL(cc, 124) & 1) { + /* lerp == 1 */ + GLuint col0[4]; + + if (t & 16) { + t &= 15; + t = (cc[1] >> (t * 2)) & 3; + /* col 2 */ + col0[BCOMP] = (*(const GLuint *)(code + 11)) >> 6; + col0[GCOMP] = CC_SEL(cc, 99); + col0[RCOMP] = CC_SEL(cc, 104); + col0[ACOMP] = CC_SEL(cc, 119); + } else { + t = (cc[0] >> (t * 2)) & 3; + /* col 0 */ + col0[BCOMP] = CC_SEL(cc, 64); + col0[GCOMP] = CC_SEL(cc, 69); + col0[RCOMP] = CC_SEL(cc, 74); + col0[ACOMP] = CC_SEL(cc, 109); + } + + if (t == 0) { + b = UP5(col0[BCOMP]); + g = UP5(col0[GCOMP]); + r = UP5(col0[RCOMP]); + a = UP5(col0[ACOMP]); + } else if (t == 3) { + b = UP5(CC_SEL(cc, 79)); + g = UP5(CC_SEL(cc, 84)); + r = UP5(CC_SEL(cc, 89)); + a = UP5(CC_SEL(cc, 114)); + } else { + b = LERP(3, t, UP5(col0[BCOMP]), UP5(CC_SEL(cc, 79))); + g = LERP(3, t, UP5(col0[GCOMP]), UP5(CC_SEL(cc, 84))); + r = LERP(3, t, UP5(col0[RCOMP]), UP5(CC_SEL(cc, 89))); + a = LERP(3, t, UP5(col0[ACOMP]), UP5(CC_SEL(cc, 114))); + } + } else { + /* lerp == 0 */ + + if (t & 16) { + cc++; + t &= 15; + } + t = (cc[0] >> (t * 2)) & 3; + + if (t == 3) { + /* zero */ + r = g = b = a = 0; + } else { + GLuint kk; + cc = (const GLuint *)code; + a = UP5(cc[3] >> (t * 5 + 13)); + t *= 15; + cc = (const GLuint *)(code + 8 + t / 8); + kk = cc[0] >> (t & 7); + b = UP5(kk); + g = UP5(kk >> 5); + r = UP5(kk >> 10); + } + } + rgba[RCOMP] = UBYTE_TO_CHAN(r); + rgba[GCOMP] = UBYTE_TO_CHAN(g); + rgba[BCOMP] = UBYTE_TO_CHAN(b); + rgba[ACOMP] = UBYTE_TO_CHAN(a); +} + + +void +fxt1_decode_1 (const void *texture, GLint stride, /* in pixels */ + GLint i, GLint j, GLchan *rgba) +{ + static void (*decode_1[]) (const GLubyte *, GLint, GLchan *) = { + fxt1_decode_1HI, /* cc-high = "00?" */ + fxt1_decode_1HI, /* cc-high = "00?" */ + fxt1_decode_1CHROMA, /* cc-chroma = "010" */ + fxt1_decode_1ALPHA, /* alpha = "011" */ + fxt1_decode_1MIXED, /* mixed = "1??" */ + fxt1_decode_1MIXED, /* mixed = "1??" */ + fxt1_decode_1MIXED, /* mixed = "1??" */ + fxt1_decode_1MIXED /* mixed = "1??" */ + }; + + const GLubyte *code = (const GLubyte *)texture + + ((j / 4) * (stride / 8) + (i / 8)) * 16; + GLint mode = CC_SEL(code, 125); + GLint t = i & 7; + + if (t & 4) { + t += 12; + } + t += (j & 3) * 4; + + decode_1[mode](code, t, rgba); +} + + +#endif /* FEATURE_texture_fxt1 */ |