diff options
author | marha <marha@users.sourceforge.net> | 2010-12-29 12:20:21 +0000 |
---|---|---|
committer | marha <marha@users.sourceforge.net> | 2010-12-29 12:20:21 +0000 |
commit | 053f5dfd42ade05252e586a282e34906db10828d (patch) | |
tree | de215580ce205409a6d810a005c6c5909f3145d1 /mesalib/src/mesa/program/prog_statevars.c | |
parent | 04ceb8c4a0cca3d8682f094d1d6faed8f693afb5 (diff) | |
parent | 807c6931fe683fd844ceec1b023232181e6aae03 (diff) | |
download | vcxsrv-053f5dfd42ade05252e586a282e34906db10828d.tar.gz vcxsrv-053f5dfd42ade05252e586a282e34906db10828d.tar.bz2 vcxsrv-053f5dfd42ade05252e586a282e34906db10828d.zip |
svn merge ^/branches/released .
Diffstat (limited to 'mesalib/src/mesa/program/prog_statevars.c')
-rw-r--r-- | mesalib/src/mesa/program/prog_statevars.c | 2371 |
1 files changed, 1182 insertions, 1189 deletions
diff --git a/mesalib/src/mesa/program/prog_statevars.c b/mesalib/src/mesa/program/prog_statevars.c index 2687f8ae2..df3c76d18 100644 --- a/mesalib/src/mesa/program/prog_statevars.c +++ b/mesalib/src/mesa/program/prog_statevars.c @@ -1,1189 +1,1182 @@ -/* - * Mesa 3-D graphics library - * Version: 7.1 - * - * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included - * in all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS - * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN - * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - */ - -/** - * \file prog_statevars.c - * Program state variable management. - * \author Brian Paul - */ - - -#include "main/glheader.h" -#include "main/context.h" -#include "main/imports.h" -#include "main/macros.h" -#include "main/mtypes.h" -#include "prog_statevars.h" -#include "prog_parameter.h" - - -/** - * Use the list of tokens in the state[] array to find global GL state - * and return it in <value>. Usually, four values are returned in <value> - * but matrix queries may return as many as 16 values. - * This function is used for ARB vertex/fragment programs. - * The program parser will produce the state[] values. - */ -static void -_mesa_fetch_state(GLcontext *ctx, const gl_state_index state[], - GLfloat *value) -{ - switch (state[0]) { - case STATE_MATERIAL: - { - /* state[1] is either 0=front or 1=back side */ - const GLuint face = (GLuint) state[1]; - const struct gl_material *mat = &ctx->Light.Material; - ASSERT(face == 0 || face == 1); - /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */ - ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT); - /* XXX we could get rid of this switch entirely with a little - * work in arbprogparse.c's parse_state_single_item(). - */ - /* state[2] is the material attribute */ - switch (state[2]) { - case STATE_AMBIENT: - COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]); - return; - case STATE_DIFFUSE: - COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]); - return; - case STATE_SPECULAR: - COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]); - return; - case STATE_EMISSION: - COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]); - return; - case STATE_SHININESS: - value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0]; - value[1] = 0.0F; - value[2] = 0.0F; - value[3] = 1.0F; - return; - default: - _mesa_problem(ctx, "Invalid material state in fetch_state"); - return; - } - } - case STATE_LIGHT: - { - /* state[1] is the light number */ - const GLuint ln = (GLuint) state[1]; - /* state[2] is the light attribute */ - switch (state[2]) { - case STATE_AMBIENT: - COPY_4V(value, ctx->Light.Light[ln].Ambient); - return; - case STATE_DIFFUSE: - COPY_4V(value, ctx->Light.Light[ln].Diffuse); - return; - case STATE_SPECULAR: - COPY_4V(value, ctx->Light.Light[ln].Specular); - return; - case STATE_POSITION: - COPY_4V(value, ctx->Light.Light[ln].EyePosition); - return; - case STATE_ATTENUATION: - value[0] = ctx->Light.Light[ln].ConstantAttenuation; - value[1] = ctx->Light.Light[ln].LinearAttenuation; - value[2] = ctx->Light.Light[ln].QuadraticAttenuation; - value[3] = ctx->Light.Light[ln].SpotExponent; - return; - case STATE_SPOT_DIRECTION: - COPY_3V(value, ctx->Light.Light[ln].SpotDirection); - value[3] = ctx->Light.Light[ln]._CosCutoff; - return; - case STATE_SPOT_CUTOFF: - value[0] = ctx->Light.Light[ln].SpotCutoff; - return; - case STATE_HALF_VECTOR: - { - static const GLfloat eye_z[] = {0, 0, 1}; - GLfloat p[3]; - /* Compute infinite half angle vector: - * halfVector = normalize(normalize(lightPos) + (0, 0, 1)) - * light.EyePosition.w should be 0 for infinite lights. - */ - COPY_3V(p, ctx->Light.Light[ln].EyePosition); - NORMALIZE_3FV(p); - ADD_3V(value, p, eye_z); - NORMALIZE_3FV(value); - value[3] = 1.0; - } - return; - default: - _mesa_problem(ctx, "Invalid light state in fetch_state"); - return; - } - } - case STATE_LIGHTMODEL_AMBIENT: - COPY_4V(value, ctx->Light.Model.Ambient); - return; - case STATE_LIGHTMODEL_SCENECOLOR: - if (state[1] == 0) { - /* front */ - GLint i; - for (i = 0; i < 3; i++) { - value[i] = ctx->Light.Model.Ambient[i] - * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i] - + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i]; - } - value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3]; - } - else { - /* back */ - GLint i; - for (i = 0; i < 3; i++) { - value[i] = ctx->Light.Model.Ambient[i] - * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i] - + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i]; - } - value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3]; - } - return; - case STATE_LIGHTPROD: - { - const GLuint ln = (GLuint) state[1]; - const GLuint face = (GLuint) state[2]; - GLint i; - ASSERT(face == 0 || face == 1); - switch (state[3]) { - case STATE_AMBIENT: - for (i = 0; i < 3; i++) { - value[i] = ctx->Light.Light[ln].Ambient[i] * - ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i]; - } - /* [3] = material alpha */ - value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3]; - return; - case STATE_DIFFUSE: - for (i = 0; i < 3; i++) { - value[i] = ctx->Light.Light[ln].Diffuse[i] * - ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i]; - } - /* [3] = material alpha */ - value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3]; - return; - case STATE_SPECULAR: - for (i = 0; i < 3; i++) { - value[i] = ctx->Light.Light[ln].Specular[i] * - ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i]; - } - /* [3] = material alpha */ - value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3]; - return; - default: - _mesa_problem(ctx, "Invalid lightprod state in fetch_state"); - return; - } - } - case STATE_TEXGEN: - { - /* state[1] is the texture unit */ - const GLuint unit = (GLuint) state[1]; - /* state[2] is the texgen attribute */ - switch (state[2]) { - case STATE_TEXGEN_EYE_S: - COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane); - return; - case STATE_TEXGEN_EYE_T: - COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane); - return; - case STATE_TEXGEN_EYE_R: - COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane); - return; - case STATE_TEXGEN_EYE_Q: - COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane); - return; - case STATE_TEXGEN_OBJECT_S: - COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane); - return; - case STATE_TEXGEN_OBJECT_T: - COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane); - return; - case STATE_TEXGEN_OBJECT_R: - COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane); - return; - case STATE_TEXGEN_OBJECT_Q: - COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane); - return; - default: - _mesa_problem(ctx, "Invalid texgen state in fetch_state"); - return; - } - } - case STATE_TEXENV_COLOR: - { - /* state[1] is the texture unit */ - const GLuint unit = (GLuint) state[1]; - COPY_4V(value, ctx->Texture.Unit[unit].EnvColor); - } - return; - case STATE_FOG_COLOR: - COPY_4V(value, ctx->Fog.Color); - return; - case STATE_FOG_PARAMS: - value[0] = ctx->Fog.Density; - value[1] = ctx->Fog.Start; - value[2] = ctx->Fog.End; - value[3] = (ctx->Fog.End == ctx->Fog.Start) - ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start)); - return; - case STATE_CLIPPLANE: - { - const GLuint plane = (GLuint) state[1]; - COPY_4V(value, ctx->Transform.EyeUserPlane[plane]); - } - return; - case STATE_POINT_SIZE: - value[0] = ctx->Point.Size; - value[1] = ctx->Point.MinSize; - value[2] = ctx->Point.MaxSize; - value[3] = ctx->Point.Threshold; - return; - case STATE_POINT_ATTENUATION: - value[0] = ctx->Point.Params[0]; - value[1] = ctx->Point.Params[1]; - value[2] = ctx->Point.Params[2]; - value[3] = 1.0F; - return; - case STATE_MODELVIEW_MATRIX: - case STATE_PROJECTION_MATRIX: - case STATE_MVP_MATRIX: - case STATE_TEXTURE_MATRIX: - case STATE_PROGRAM_MATRIX: - case STATE_COLOR_MATRIX: - { - /* state[0] = modelview, projection, texture, etc. */ - /* state[1] = which texture matrix or program matrix */ - /* state[2] = first row to fetch */ - /* state[3] = last row to fetch */ - /* state[4] = transpose, inverse or invtrans */ - const GLmatrix *matrix; - const gl_state_index mat = state[0]; - const GLuint index = (GLuint) state[1]; - const GLuint firstRow = (GLuint) state[2]; - const GLuint lastRow = (GLuint) state[3]; - const gl_state_index modifier = state[4]; - const GLfloat *m; - GLuint row, i; - ASSERT(firstRow >= 0); - ASSERT(firstRow < 4); - ASSERT(lastRow >= 0); - ASSERT(lastRow < 4); - if (mat == STATE_MODELVIEW_MATRIX) { - matrix = ctx->ModelviewMatrixStack.Top; - } - else if (mat == STATE_PROJECTION_MATRIX) { - matrix = ctx->ProjectionMatrixStack.Top; - } - else if (mat == STATE_MVP_MATRIX) { - matrix = &ctx->_ModelProjectMatrix; - } - else if (mat == STATE_TEXTURE_MATRIX) { - ASSERT(index < Elements(ctx->TextureMatrixStack)); - matrix = ctx->TextureMatrixStack[index].Top; - } - else if (mat == STATE_PROGRAM_MATRIX) { - ASSERT(index < Elements(ctx->ProgramMatrixStack)); - matrix = ctx->ProgramMatrixStack[index].Top; - } - else if (mat == STATE_COLOR_MATRIX) { - matrix = ctx->ColorMatrixStack.Top; - } - else { - _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()"); - return; - } - if (modifier == STATE_MATRIX_INVERSE || - modifier == STATE_MATRIX_INVTRANS) { - /* Be sure inverse is up to date: - */ - _math_matrix_alloc_inv( (GLmatrix *) matrix ); - _math_matrix_analyse( (GLmatrix*) matrix ); - m = matrix->inv; - } - else { - m = matrix->m; - } - if (modifier == STATE_MATRIX_TRANSPOSE || - modifier == STATE_MATRIX_INVTRANS) { - for (i = 0, row = firstRow; row <= lastRow; row++) { - value[i++] = m[row * 4 + 0]; - value[i++] = m[row * 4 + 1]; - value[i++] = m[row * 4 + 2]; - value[i++] = m[row * 4 + 3]; - } - } - else { - for (i = 0, row = firstRow; row <= lastRow; row++) { - value[i++] = m[row + 0]; - value[i++] = m[row + 4]; - value[i++] = m[row + 8]; - value[i++] = m[row + 12]; - } - } - } - return; - case STATE_DEPTH_RANGE: - value[0] = ctx->Viewport.Near; /* near */ - value[1] = ctx->Viewport.Far; /* far */ - value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */ - value[3] = 1.0; - return; - case STATE_FRAGMENT_PROGRAM: - { - /* state[1] = {STATE_ENV, STATE_LOCAL} */ - /* state[2] = parameter index */ - const int idx = (int) state[2]; - switch (state[1]) { - case STATE_ENV: - COPY_4V(value, ctx->FragmentProgram.Parameters[idx]); - return; - case STATE_LOCAL: - COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]); - return; - default: - _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()"); - return; - } - } - return; - - case STATE_VERTEX_PROGRAM: - { - /* state[1] = {STATE_ENV, STATE_LOCAL} */ - /* state[2] = parameter index */ - const int idx = (int) state[2]; - switch (state[1]) { - case STATE_ENV: - COPY_4V(value, ctx->VertexProgram.Parameters[idx]); - return; - case STATE_LOCAL: - COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]); - return; - default: - _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()"); - return; - } - } - return; - - case STATE_NORMAL_SCALE: - ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1); - return; - - case STATE_INTERNAL: - switch (state[1]) { - case STATE_CURRENT_ATTRIB: - { - const GLuint idx = (GLuint) state[2]; - COPY_4V(value, ctx->Current.Attrib[idx]); - } - return; - - case STATE_NORMAL_SCALE: - ASSIGN_4V(value, - ctx->_ModelViewInvScale, - ctx->_ModelViewInvScale, - ctx->_ModelViewInvScale, - 1); - return; - - case STATE_TEXRECT_SCALE: - /* Value = { 1/texWidth, 1/texHeight, 0, 1 }. - * Used to convert unnormalized texcoords to normalized texcoords. - */ - { - const int unit = (int) state[2]; - const struct gl_texture_object *texObj - = ctx->Texture.Unit[unit]._Current; - if (texObj) { - struct gl_texture_image *texImage = texObj->Image[0][0]; - ASSIGN_4V(value, - (GLfloat) (1.0 / texImage->Width), - (GLfloat) (1.0 / texImage->Height), - 0.0f, 1.0f); - } - } - return; - - case STATE_FOG_PARAMS_OPTIMIZED: - /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog) - * might be more expensive than EX2 on some hw, plus it needs - * another constant (e) anyway. Linear fog can now be done with a - * single MAD. - * linear: fogcoord * -1/(end-start) + end/(end-start) - * exp: 2^-(density/ln(2) * fogcoord) - * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2) - */ - value[0] = (ctx->Fog.End == ctx->Fog.Start) - ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start)); - value[1] = ctx->Fog.End * -value[0]; - value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2); - value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2); - return; - - case STATE_POINT_SIZE_CLAMPED: - { - /* this includes implementation dependent limits, to avoid - * another potentially necessary clamp. - * Note: for sprites, point smooth (point AA) is ignored - * and we'll clamp to MinPointSizeAA and MaxPointSize, because we - * expect drivers will want to say their minimum for AA size is 0.0 - * but for non-AA it's 1.0 (because normal points with size below 1.0 - * need to get rounded up to 1.0, hence never disappear). GL does - * not specify max clamp size for sprites, other than it needs to be - * at least as large as max AA size, hence use non-AA size there. - */ - GLfloat minImplSize; - GLfloat maxImplSize; - if (ctx->Point.PointSprite) { - minImplSize = ctx->Const.MinPointSizeAA; - maxImplSize = ctx->Const.MaxPointSize; - } - else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) { - minImplSize = ctx->Const.MinPointSizeAA; - maxImplSize = ctx->Const.MaxPointSizeAA; - } - else { - minImplSize = ctx->Const.MinPointSize; - maxImplSize = ctx->Const.MaxPointSize; - } - value[0] = ctx->Point.Size; - value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize; - value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize; - value[3] = ctx->Point.Threshold; - } - return; - case STATE_POINT_SIZE_IMPL_CLAMP: - { - /* for implementation clamp only in vs */ - GLfloat minImplSize; - GLfloat maxImplSize; - if (ctx->Point.PointSprite) { - minImplSize = ctx->Const.MinPointSizeAA; - maxImplSize = ctx->Const.MaxPointSize; - } - else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) { - minImplSize = ctx->Const.MinPointSizeAA; - maxImplSize = ctx->Const.MaxPointSizeAA; - } - else { - minImplSize = ctx->Const.MinPointSize; - maxImplSize = ctx->Const.MaxPointSize; - } - value[0] = ctx->Point.Size; - value[1] = minImplSize; - value[2] = maxImplSize; - value[3] = ctx->Point.Threshold; - } - return; - case STATE_LIGHT_SPOT_DIR_NORMALIZED: - { - /* here, state[2] is the light number */ - /* pre-normalize spot dir */ - const GLuint ln = (GLuint) state[2]; - COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection); - value[3] = ctx->Light.Light[ln]._CosCutoff; - } - return; - - case STATE_LIGHT_POSITION: - { - const GLuint ln = (GLuint) state[2]; - COPY_4V(value, ctx->Light.Light[ln]._Position); - } - return; - - case STATE_LIGHT_POSITION_NORMALIZED: - { - const GLuint ln = (GLuint) state[2]; - COPY_4V(value, ctx->Light.Light[ln]._Position); - NORMALIZE_3FV( value ); - } - return; - - case STATE_LIGHT_HALF_VECTOR: - { - const GLuint ln = (GLuint) state[2]; - GLfloat p[3]; - /* Compute infinite half angle vector: - * halfVector = normalize(normalize(lightPos) + (0, 0, 1)) - * light.EyePosition.w should be 0 for infinite lights. - */ - COPY_3V(p, ctx->Light.Light[ln]._Position); - NORMALIZE_3FV(p); - ADD_3V(value, p, ctx->_EyeZDir); - NORMALIZE_3FV(value); - value[3] = 1.0; - } - return; - - case STATE_PT_SCALE: - value[0] = ctx->Pixel.RedScale; - value[1] = ctx->Pixel.GreenScale; - value[2] = ctx->Pixel.BlueScale; - value[3] = ctx->Pixel.AlphaScale; - return; - - case STATE_PT_BIAS: - value[0] = ctx->Pixel.RedBias; - value[1] = ctx->Pixel.GreenBias; - value[2] = ctx->Pixel.BlueBias; - value[3] = ctx->Pixel.AlphaBias; - return; - - case STATE_PCM_SCALE: - COPY_4V(value, ctx->Pixel.PostColorMatrixScale); - return; - - case STATE_PCM_BIAS: - COPY_4V(value, ctx->Pixel.PostColorMatrixBias); - return; - - case STATE_SHADOW_AMBIENT: - { - const int unit = (int) state[2]; - const struct gl_texture_object *texObj - = ctx->Texture.Unit[unit]._Current; - if (texObj) { - value[0] = - value[1] = - value[2] = - value[3] = texObj->CompareFailValue; - } - } - return; - - case STATE_FB_SIZE: - value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1); - value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1); - value[2] = 0.0F; - value[3] = 0.0F; - return; - - case STATE_ROT_MATRIX_0: - { - const int unit = (int) state[2]; - GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix; - value[0] = rotMat22[0]; - value[1] = rotMat22[2]; - value[2] = 0.0; - value[3] = 0.0; - } - return; - - case STATE_ROT_MATRIX_1: - { - const int unit = (int) state[2]; - GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix; - value[0] = rotMat22[1]; - value[1] = rotMat22[3]; - value[2] = 0.0; - value[3] = 0.0; - } - return; - - /* XXX: make sure new tokens added here are also handled in the - * _mesa_program_state_flags() switch, below. - */ - default: - /* Unknown state indexes are silently ignored here. - * Drivers may do something special. - */ - return; - } - return; - - default: - _mesa_problem(ctx, "Invalid state in _mesa_fetch_state"); - return; - } -} - - -/** - * Return a bitmask of the Mesa state flags (_NEW_* values) which would - * indicate that the given context state may have changed. - * The bitmask is used during validation to determine if we need to update - * vertex/fragment program parameters (like "state.material.color") when - * some GL state has changed. - */ -GLbitfield -_mesa_program_state_flags(const gl_state_index state[STATE_LENGTH]) -{ - switch (state[0]) { - case STATE_MATERIAL: - case STATE_LIGHT: - case STATE_LIGHTMODEL_AMBIENT: - case STATE_LIGHTMODEL_SCENECOLOR: - case STATE_LIGHTPROD: - return _NEW_LIGHT; - - case STATE_TEXGEN: - case STATE_TEXENV_COLOR: - return _NEW_TEXTURE; - - case STATE_FOG_COLOR: - case STATE_FOG_PARAMS: - return _NEW_FOG; - - case STATE_CLIPPLANE: - return _NEW_TRANSFORM; - - case STATE_POINT_SIZE: - case STATE_POINT_ATTENUATION: - return _NEW_POINT; - - case STATE_MODELVIEW_MATRIX: - return _NEW_MODELVIEW; - case STATE_PROJECTION_MATRIX: - return _NEW_PROJECTION; - case STATE_MVP_MATRIX: - return _NEW_MODELVIEW | _NEW_PROJECTION; - case STATE_TEXTURE_MATRIX: - return _NEW_TEXTURE_MATRIX; - case STATE_PROGRAM_MATRIX: - return _NEW_TRACK_MATRIX; - case STATE_COLOR_MATRIX: - return _NEW_COLOR_MATRIX; - - case STATE_DEPTH_RANGE: - return _NEW_VIEWPORT; - - case STATE_FRAGMENT_PROGRAM: - case STATE_VERTEX_PROGRAM: - return _NEW_PROGRAM; - - case STATE_NORMAL_SCALE: - return _NEW_MODELVIEW; - - case STATE_INTERNAL: - switch (state[1]) { - case STATE_CURRENT_ATTRIB: - return _NEW_CURRENT_ATTRIB; - - case STATE_NORMAL_SCALE: - return _NEW_MODELVIEW; - - case STATE_TEXRECT_SCALE: - case STATE_SHADOW_AMBIENT: - case STATE_ROT_MATRIX_0: - case STATE_ROT_MATRIX_1: - return _NEW_TEXTURE; - case STATE_FOG_PARAMS_OPTIMIZED: - return _NEW_FOG; - case STATE_POINT_SIZE_CLAMPED: - case STATE_POINT_SIZE_IMPL_CLAMP: - return _NEW_POINT | _NEW_MULTISAMPLE; - case STATE_LIGHT_SPOT_DIR_NORMALIZED: - case STATE_LIGHT_POSITION: - case STATE_LIGHT_POSITION_NORMALIZED: - case STATE_LIGHT_HALF_VECTOR: - return _NEW_LIGHT; - - case STATE_PT_SCALE: - case STATE_PT_BIAS: - case STATE_PCM_SCALE: - case STATE_PCM_BIAS: - return _NEW_PIXEL; - - case STATE_FB_SIZE: - return _NEW_BUFFERS; - - default: - /* unknown state indexes are silently ignored and - * no flag set, since it is handled by the driver. - */ - return 0; - } - - default: - _mesa_problem(NULL, "unexpected state[0] in make_state_flags()"); - return 0; - } -} - - -static void -append(char *dst, const char *src) -{ - while (*dst) - dst++; - while (*src) - *dst++ = *src++; - *dst = 0; -} - - -/** - * Convert token 'k' to a string, append it onto 'dst' string. - */ -static void -append_token(char *dst, gl_state_index k) -{ - switch (k) { - case STATE_MATERIAL: - append(dst, "material"); - break; - case STATE_LIGHT: - append(dst, "light"); - break; - case STATE_LIGHTMODEL_AMBIENT: - append(dst, "lightmodel.ambient"); - break; - case STATE_LIGHTMODEL_SCENECOLOR: - break; - case STATE_LIGHTPROD: - append(dst, "lightprod"); - break; - case STATE_TEXGEN: - append(dst, "texgen"); - break; - case STATE_FOG_COLOR: - append(dst, "fog.color"); - break; - case STATE_FOG_PARAMS: - append(dst, "fog.params"); - break; - case STATE_CLIPPLANE: - append(dst, "clip"); - break; - case STATE_POINT_SIZE: - append(dst, "point.size"); - break; - case STATE_POINT_ATTENUATION: - append(dst, "point.attenuation"); - break; - case STATE_MODELVIEW_MATRIX: - append(dst, "matrix.modelview"); - break; - case STATE_PROJECTION_MATRIX: - append(dst, "matrix.projection"); - break; - case STATE_MVP_MATRIX: - append(dst, "matrix.mvp"); - break; - case STATE_TEXTURE_MATRIX: - append(dst, "matrix.texture"); - break; - case STATE_PROGRAM_MATRIX: - append(dst, "matrix.program"); - break; - case STATE_COLOR_MATRIX: - append(dst, "matrix.color"); - break; - case STATE_MATRIX_INVERSE: - append(dst, ".inverse"); - break; - case STATE_MATRIX_TRANSPOSE: - append(dst, ".transpose"); - break; - case STATE_MATRIX_INVTRANS: - append(dst, ".invtrans"); - break; - case STATE_AMBIENT: - append(dst, ".ambient"); - break; - case STATE_DIFFUSE: - append(dst, ".diffuse"); - break; - case STATE_SPECULAR: - append(dst, ".specular"); - break; - case STATE_EMISSION: - append(dst, ".emission"); - break; - case STATE_SHININESS: - append(dst, "lshininess"); - break; - case STATE_HALF_VECTOR: - append(dst, ".half"); - break; - case STATE_POSITION: - append(dst, ".position"); - break; - case STATE_ATTENUATION: - append(dst, ".attenuation"); - break; - case STATE_SPOT_DIRECTION: - append(dst, ".spot.direction"); - break; - case STATE_SPOT_CUTOFF: - append(dst, ".spot.cutoff"); - break; - case STATE_TEXGEN_EYE_S: - append(dst, ".eye.s"); - break; - case STATE_TEXGEN_EYE_T: - append(dst, ".eye.t"); - break; - case STATE_TEXGEN_EYE_R: - append(dst, ".eye.r"); - break; - case STATE_TEXGEN_EYE_Q: - append(dst, ".eye.q"); - break; - case STATE_TEXGEN_OBJECT_S: - append(dst, ".object.s"); - break; - case STATE_TEXGEN_OBJECT_T: - append(dst, ".object.t"); - break; - case STATE_TEXGEN_OBJECT_R: - append(dst, ".object.r"); - break; - case STATE_TEXGEN_OBJECT_Q: - append(dst, ".object.q"); - break; - case STATE_TEXENV_COLOR: - append(dst, "texenv"); - break; - case STATE_DEPTH_RANGE: - append(dst, "depth.range"); - break; - case STATE_VERTEX_PROGRAM: - case STATE_FRAGMENT_PROGRAM: - break; - case STATE_ENV: - append(dst, "env"); - break; - case STATE_LOCAL: - append(dst, "local"); - break; - /* BEGIN internal state vars */ - case STATE_INTERNAL: - append(dst, ".internal."); - break; - case STATE_CURRENT_ATTRIB: - append(dst, "current"); - break; - case STATE_NORMAL_SCALE: - append(dst, "normalScale"); - break; - case STATE_TEXRECT_SCALE: - append(dst, "texrectScale"); - break; - case STATE_FOG_PARAMS_OPTIMIZED: - append(dst, "fogParamsOptimized"); - break; - case STATE_POINT_SIZE_CLAMPED: - append(dst, "pointSizeClamped"); - break; - case STATE_POINT_SIZE_IMPL_CLAMP: - append(dst, "pointSizeImplClamp"); - break; - case STATE_LIGHT_SPOT_DIR_NORMALIZED: - append(dst, "lightSpotDirNormalized"); - break; - case STATE_LIGHT_POSITION: - append(dst, "lightPosition"); - break; - case STATE_LIGHT_POSITION_NORMALIZED: - append(dst, "light.position.normalized"); - break; - case STATE_LIGHT_HALF_VECTOR: - append(dst, "lightHalfVector"); - break; - case STATE_PT_SCALE: - append(dst, "PTscale"); - break; - case STATE_PT_BIAS: - append(dst, "PTbias"); - break; - case STATE_PCM_SCALE: - append(dst, "PCMscale"); - break; - case STATE_PCM_BIAS: - append(dst, "PCMbias"); - break; - case STATE_SHADOW_AMBIENT: - append(dst, "CompareFailValue"); - break; - case STATE_FB_SIZE: - append(dst, "FbSize"); - break; - case STATE_ROT_MATRIX_0: - append(dst, "rotMatrixRow0"); - break; - case STATE_ROT_MATRIX_1: - append(dst, "rotMatrixRow1"); - break; - default: - /* probably STATE_INTERNAL_DRIVER+i (driver private state) */ - append(dst, "driverState"); - } -} - -static void -append_face(char *dst, GLint face) -{ - if (face == 0) - append(dst, "front."); - else - append(dst, "back."); -} - -static void -append_index(char *dst, GLint index) -{ - char s[20]; - sprintf(s, "[%d]", index); - append(dst, s); -} - -/** - * Make a string from the given state vector. - * For example, return "state.matrix.texture[2].inverse". - * Use free() to deallocate the string. - */ -char * -_mesa_program_state_string(const gl_state_index state[STATE_LENGTH]) -{ - char str[1000] = ""; - char tmp[30]; - - append(str, "state."); - append_token(str, state[0]); - - switch (state[0]) { - case STATE_MATERIAL: - append_face(str, state[1]); - append_token(str, state[2]); - break; - case STATE_LIGHT: - append_index(str, state[1]); /* light number [i]. */ - append_token(str, state[2]); /* coefficients */ - break; - case STATE_LIGHTMODEL_AMBIENT: - append(str, "lightmodel.ambient"); - break; - case STATE_LIGHTMODEL_SCENECOLOR: - if (state[1] == 0) { - append(str, "lightmodel.front.scenecolor"); - } - else { - append(str, "lightmodel.back.scenecolor"); - } - break; - case STATE_LIGHTPROD: - append_index(str, state[1]); /* light number [i]. */ - append_face(str, state[2]); - append_token(str, state[3]); - break; - case STATE_TEXGEN: - append_index(str, state[1]); /* tex unit [i] */ - append_token(str, state[2]); /* plane coef */ - break; - case STATE_TEXENV_COLOR: - append_index(str, state[1]); /* tex unit [i] */ - append(str, "color"); - break; - case STATE_CLIPPLANE: - append_index(str, state[1]); /* plane [i] */ - append(str, ".plane"); - break; - case STATE_MODELVIEW_MATRIX: - case STATE_PROJECTION_MATRIX: - case STATE_MVP_MATRIX: - case STATE_TEXTURE_MATRIX: - case STATE_PROGRAM_MATRIX: - case STATE_COLOR_MATRIX: - { - /* state[0] = modelview, projection, texture, etc. */ - /* state[1] = which texture matrix or program matrix */ - /* state[2] = first row to fetch */ - /* state[3] = last row to fetch */ - /* state[4] = transpose, inverse or invtrans */ - const gl_state_index mat = state[0]; - const GLuint index = (GLuint) state[1]; - const GLuint firstRow = (GLuint) state[2]; - const GLuint lastRow = (GLuint) state[3]; - const gl_state_index modifier = state[4]; - if (index || - mat == STATE_TEXTURE_MATRIX || - mat == STATE_PROGRAM_MATRIX) - append_index(str, index); - if (modifier) - append_token(str, modifier); - if (firstRow == lastRow) - sprintf(tmp, ".row[%d]", firstRow); - else - sprintf(tmp, ".row[%d..%d]", firstRow, lastRow); - append(str, tmp); - } - break; - case STATE_POINT_SIZE: - break; - case STATE_POINT_ATTENUATION: - break; - case STATE_FOG_PARAMS: - break; - case STATE_FOG_COLOR: - break; - case STATE_DEPTH_RANGE: - break; - case STATE_FRAGMENT_PROGRAM: - case STATE_VERTEX_PROGRAM: - /* state[1] = {STATE_ENV, STATE_LOCAL} */ - /* state[2] = parameter index */ - append_token(str, state[1]); - append_index(str, state[2]); - break; - case STATE_NORMAL_SCALE: - break; - case STATE_INTERNAL: - append_token(str, state[1]); - if (state[1] == STATE_CURRENT_ATTRIB) - append_index(str, state[2]); - break; - default: - _mesa_problem(NULL, "Invalid state in _mesa_program_state_string"); - break; - } - - return _mesa_strdup(str); -} - - -/** - * Loop over all the parameters in a parameter list. If the parameter - * is a GL state reference, look up the current value of that state - * variable and put it into the parameter's Value[4] array. - * This would be called at glBegin time when using a fragment program. - */ -void -_mesa_load_state_parameters(GLcontext *ctx, - struct gl_program_parameter_list *paramList) -{ - GLuint i; - - if (!paramList) - return; - - /*assert(ctx->Driver.NeedFlush == 0);*/ - - for (i = 0; i < paramList->NumParameters; i++) { - if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) { - _mesa_fetch_state(ctx, - (gl_state_index *) paramList->Parameters[i].StateIndexes, - paramList->ParameterValues[i]); - } - } -} - - -/** - * Copy the 16 elements of a matrix into four consecutive program - * registers starting at 'pos'. - */ -static void -load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16]) -{ - GLuint i; - for (i = 0; i < 4; i++) { - registers[pos + i][0] = mat[0 + i]; - registers[pos + i][1] = mat[4 + i]; - registers[pos + i][2] = mat[8 + i]; - registers[pos + i][3] = mat[12 + i]; - } -} - - -/** - * As above, but transpose the matrix. - */ -static void -load_transpose_matrix(GLfloat registers[][4], GLuint pos, - const GLfloat mat[16]) -{ - memcpy(registers[pos], mat, 16 * sizeof(GLfloat)); -} - - -/** - * Load current vertex program's parameter registers with tracked - * matrices (if NV program). This only needs to be done per - * glBegin/glEnd, not per-vertex. - */ -void -_mesa_load_tracked_matrices(GLcontext *ctx) -{ - GLuint i; - - for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) { - /* point 'mat' at source matrix */ - GLmatrix *mat; - if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) { - mat = ctx->ModelviewMatrixStack.Top; - } - else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) { - mat = ctx->ProjectionMatrixStack.Top; - } - else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) { - GLuint unit = MIN2(ctx->Texture.CurrentUnit, - Elements(ctx->TextureMatrixStack) - 1); - mat = ctx->TextureMatrixStack[unit].Top; - } - else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) { - mat = ctx->ColorMatrixStack.Top; - } - else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) { - /* XXX verify the combined matrix is up to date */ - mat = &ctx->_ModelProjectMatrix; - } - else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV && - ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) { - GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV; - ASSERT(n < Elements(ctx->ProgramMatrixStack)); - mat = ctx->ProgramMatrixStack[n].Top; - } - else { - /* no matrix is tracked, but we leave the register values as-is */ - assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE); - continue; - } - - /* load the matrix values into sequential registers */ - if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) { - load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m); - } - else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) { - _math_matrix_analyse(mat); /* update the inverse */ - ASSERT(!_math_matrix_is_dirty(mat)); - load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv); - } - else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) { - load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m); - } - else { - assert(ctx->VertexProgram.TrackMatrixTransform[i] - == GL_INVERSE_TRANSPOSE_NV); - _math_matrix_analyse(mat); /* update the inverse */ - ASSERT(!_math_matrix_is_dirty(mat)); - load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv); - } - } -} +/*
+ * Mesa 3-D graphics library
+ * Version: 7.1
+ *
+ * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file prog_statevars.c
+ * Program state variable management.
+ * \author Brian Paul
+ */
+
+
+#include "main/glheader.h"
+#include "main/context.h"
+#include "main/imports.h"
+#include "main/macros.h"
+#include "main/mtypes.h"
+#include "prog_statevars.h"
+#include "prog_parameter.h"
+
+
+/**
+ * Use the list of tokens in the state[] array to find global GL state
+ * and return it in <value>. Usually, four values are returned in <value>
+ * but matrix queries may return as many as 16 values.
+ * This function is used for ARB vertex/fragment programs.
+ * The program parser will produce the state[] values.
+ */
+static void
+_mesa_fetch_state(struct gl_context *ctx, const gl_state_index state[],
+ GLfloat *value)
+{
+ switch (state[0]) {
+ case STATE_MATERIAL:
+ {
+ /* state[1] is either 0=front or 1=back side */
+ const GLuint face = (GLuint) state[1];
+ const struct gl_material *mat = &ctx->Light.Material;
+ ASSERT(face == 0 || face == 1);
+ /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
+ ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
+ /* XXX we could get rid of this switch entirely with a little
+ * work in arbprogparse.c's parse_state_single_item().
+ */
+ /* state[2] is the material attribute */
+ switch (state[2]) {
+ case STATE_AMBIENT:
+ COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
+ return;
+ case STATE_DIFFUSE:
+ COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
+ return;
+ case STATE_SPECULAR:
+ COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
+ return;
+ case STATE_EMISSION:
+ COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
+ return;
+ case STATE_SHININESS:
+ value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
+ value[1] = 0.0F;
+ value[2] = 0.0F;
+ value[3] = 1.0F;
+ return;
+ default:
+ _mesa_problem(ctx, "Invalid material state in fetch_state");
+ return;
+ }
+ }
+ case STATE_LIGHT:
+ {
+ /* state[1] is the light number */
+ const GLuint ln = (GLuint) state[1];
+ /* state[2] is the light attribute */
+ switch (state[2]) {
+ case STATE_AMBIENT:
+ COPY_4V(value, ctx->Light.Light[ln].Ambient);
+ return;
+ case STATE_DIFFUSE:
+ COPY_4V(value, ctx->Light.Light[ln].Diffuse);
+ return;
+ case STATE_SPECULAR:
+ COPY_4V(value, ctx->Light.Light[ln].Specular);
+ return;
+ case STATE_POSITION:
+ COPY_4V(value, ctx->Light.Light[ln].EyePosition);
+ return;
+ case STATE_ATTENUATION:
+ value[0] = ctx->Light.Light[ln].ConstantAttenuation;
+ value[1] = ctx->Light.Light[ln].LinearAttenuation;
+ value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
+ value[3] = ctx->Light.Light[ln].SpotExponent;
+ return;
+ case STATE_SPOT_DIRECTION:
+ COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
+ value[3] = ctx->Light.Light[ln]._CosCutoff;
+ return;
+ case STATE_SPOT_CUTOFF:
+ value[0] = ctx->Light.Light[ln].SpotCutoff;
+ return;
+ case STATE_HALF_VECTOR:
+ {
+ static const GLfloat eye_z[] = {0, 0, 1};
+ GLfloat p[3];
+ /* Compute infinite half angle vector:
+ * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
+ * light.EyePosition.w should be 0 for infinite lights.
+ */
+ COPY_3V(p, ctx->Light.Light[ln].EyePosition);
+ NORMALIZE_3FV(p);
+ ADD_3V(value, p, eye_z);
+ NORMALIZE_3FV(value);
+ value[3] = 1.0;
+ }
+ return;
+ default:
+ _mesa_problem(ctx, "Invalid light state in fetch_state");
+ return;
+ }
+ }
+ case STATE_LIGHTMODEL_AMBIENT:
+ COPY_4V(value, ctx->Light.Model.Ambient);
+ return;
+ case STATE_LIGHTMODEL_SCENECOLOR:
+ if (state[1] == 0) {
+ /* front */
+ GLint i;
+ for (i = 0; i < 3; i++) {
+ value[i] = ctx->Light.Model.Ambient[i]
+ * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
+ + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
+ }
+ value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
+ }
+ else {
+ /* back */
+ GLint i;
+ for (i = 0; i < 3; i++) {
+ value[i] = ctx->Light.Model.Ambient[i]
+ * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
+ + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
+ }
+ value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
+ }
+ return;
+ case STATE_LIGHTPROD:
+ {
+ const GLuint ln = (GLuint) state[1];
+ const GLuint face = (GLuint) state[2];
+ GLint i;
+ ASSERT(face == 0 || face == 1);
+ switch (state[3]) {
+ case STATE_AMBIENT:
+ for (i = 0; i < 3; i++) {
+ value[i] = ctx->Light.Light[ln].Ambient[i] *
+ ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
+ }
+ /* [3] = material alpha */
+ value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
+ return;
+ case STATE_DIFFUSE:
+ for (i = 0; i < 3; i++) {
+ value[i] = ctx->Light.Light[ln].Diffuse[i] *
+ ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
+ }
+ /* [3] = material alpha */
+ value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
+ return;
+ case STATE_SPECULAR:
+ for (i = 0; i < 3; i++) {
+ value[i] = ctx->Light.Light[ln].Specular[i] *
+ ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
+ }
+ /* [3] = material alpha */
+ value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
+ return;
+ default:
+ _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
+ return;
+ }
+ }
+ case STATE_TEXGEN:
+ {
+ /* state[1] is the texture unit */
+ const GLuint unit = (GLuint) state[1];
+ /* state[2] is the texgen attribute */
+ switch (state[2]) {
+ case STATE_TEXGEN_EYE_S:
+ COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
+ return;
+ case STATE_TEXGEN_EYE_T:
+ COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
+ return;
+ case STATE_TEXGEN_EYE_R:
+ COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
+ return;
+ case STATE_TEXGEN_EYE_Q:
+ COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
+ return;
+ case STATE_TEXGEN_OBJECT_S:
+ COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
+ return;
+ case STATE_TEXGEN_OBJECT_T:
+ COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
+ return;
+ case STATE_TEXGEN_OBJECT_R:
+ COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
+ return;
+ case STATE_TEXGEN_OBJECT_Q:
+ COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
+ return;
+ default:
+ _mesa_problem(ctx, "Invalid texgen state in fetch_state");
+ return;
+ }
+ }
+ case STATE_TEXENV_COLOR:
+ {
+ /* state[1] is the texture unit */
+ const GLuint unit = (GLuint) state[1];
+ COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
+ }
+ return;
+ case STATE_FOG_COLOR:
+ COPY_4V(value, ctx->Fog.Color);
+ return;
+ case STATE_FOG_PARAMS:
+ value[0] = ctx->Fog.Density;
+ value[1] = ctx->Fog.Start;
+ value[2] = ctx->Fog.End;
+ value[3] = (ctx->Fog.End == ctx->Fog.Start)
+ ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
+ return;
+ case STATE_CLIPPLANE:
+ {
+ const GLuint plane = (GLuint) state[1];
+ COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
+ }
+ return;
+ case STATE_POINT_SIZE:
+ value[0] = ctx->Point.Size;
+ value[1] = ctx->Point.MinSize;
+ value[2] = ctx->Point.MaxSize;
+ value[3] = ctx->Point.Threshold;
+ return;
+ case STATE_POINT_ATTENUATION:
+ value[0] = ctx->Point.Params[0];
+ value[1] = ctx->Point.Params[1];
+ value[2] = ctx->Point.Params[2];
+ value[3] = 1.0F;
+ return;
+ case STATE_MODELVIEW_MATRIX:
+ case STATE_PROJECTION_MATRIX:
+ case STATE_MVP_MATRIX:
+ case STATE_TEXTURE_MATRIX:
+ case STATE_PROGRAM_MATRIX:
+ {
+ /* state[0] = modelview, projection, texture, etc. */
+ /* state[1] = which texture matrix or program matrix */
+ /* state[2] = first row to fetch */
+ /* state[3] = last row to fetch */
+ /* state[4] = transpose, inverse or invtrans */
+ const GLmatrix *matrix;
+ const gl_state_index mat = state[0];
+ const GLuint index = (GLuint) state[1];
+ const GLuint firstRow = (GLuint) state[2];
+ const GLuint lastRow = (GLuint) state[3];
+ const gl_state_index modifier = state[4];
+ const GLfloat *m;
+ GLuint row, i;
+ ASSERT(firstRow >= 0);
+ ASSERT(firstRow < 4);
+ ASSERT(lastRow >= 0);
+ ASSERT(lastRow < 4);
+ if (mat == STATE_MODELVIEW_MATRIX) {
+ matrix = ctx->ModelviewMatrixStack.Top;
+ }
+ else if (mat == STATE_PROJECTION_MATRIX) {
+ matrix = ctx->ProjectionMatrixStack.Top;
+ }
+ else if (mat == STATE_MVP_MATRIX) {
+ matrix = &ctx->_ModelProjectMatrix;
+ }
+ else if (mat == STATE_TEXTURE_MATRIX) {
+ ASSERT(index < Elements(ctx->TextureMatrixStack));
+ matrix = ctx->TextureMatrixStack[index].Top;
+ }
+ else if (mat == STATE_PROGRAM_MATRIX) {
+ ASSERT(index < Elements(ctx->ProgramMatrixStack));
+ matrix = ctx->ProgramMatrixStack[index].Top;
+ }
+ else {
+ _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
+ return;
+ }
+ if (modifier == STATE_MATRIX_INVERSE ||
+ modifier == STATE_MATRIX_INVTRANS) {
+ /* Be sure inverse is up to date:
+ */
+ _math_matrix_alloc_inv( (GLmatrix *) matrix );
+ _math_matrix_analyse( (GLmatrix*) matrix );
+ m = matrix->inv;
+ }
+ else {
+ m = matrix->m;
+ }
+ if (modifier == STATE_MATRIX_TRANSPOSE ||
+ modifier == STATE_MATRIX_INVTRANS) {
+ for (i = 0, row = firstRow; row <= lastRow; row++) {
+ value[i++] = m[row * 4 + 0];
+ value[i++] = m[row * 4 + 1];
+ value[i++] = m[row * 4 + 2];
+ value[i++] = m[row * 4 + 3];
+ }
+ }
+ else {
+ for (i = 0, row = firstRow; row <= lastRow; row++) {
+ value[i++] = m[row + 0];
+ value[i++] = m[row + 4];
+ value[i++] = m[row + 8];
+ value[i++] = m[row + 12];
+ }
+ }
+ }
+ return;
+ case STATE_DEPTH_RANGE:
+ value[0] = ctx->Viewport.Near; /* near */
+ value[1] = ctx->Viewport.Far; /* far */
+ value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
+ value[3] = 1.0;
+ return;
+ case STATE_FRAGMENT_PROGRAM:
+ {
+ /* state[1] = {STATE_ENV, STATE_LOCAL} */
+ /* state[2] = parameter index */
+ const int idx = (int) state[2];
+ switch (state[1]) {
+ case STATE_ENV:
+ COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
+ return;
+ case STATE_LOCAL:
+ COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
+ return;
+ default:
+ _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
+ return;
+ }
+ }
+ return;
+
+ case STATE_VERTEX_PROGRAM:
+ {
+ /* state[1] = {STATE_ENV, STATE_LOCAL} */
+ /* state[2] = parameter index */
+ const int idx = (int) state[2];
+ switch (state[1]) {
+ case STATE_ENV:
+ COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
+ return;
+ case STATE_LOCAL:
+ COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
+ return;
+ default:
+ _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
+ return;
+ }
+ }
+ return;
+
+ case STATE_NORMAL_SCALE:
+ ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
+ return;
+
+ case STATE_INTERNAL:
+ switch (state[1]) {
+ case STATE_CURRENT_ATTRIB:
+ {
+ const GLuint idx = (GLuint) state[2];
+ COPY_4V(value, ctx->Current.Attrib[idx]);
+ }
+ return;
+
+ case STATE_NORMAL_SCALE:
+ ASSIGN_4V(value,
+ ctx->_ModelViewInvScale,
+ ctx->_ModelViewInvScale,
+ ctx->_ModelViewInvScale,
+ 1);
+ return;
+
+ case STATE_TEXRECT_SCALE:
+ /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
+ * Used to convert unnormalized texcoords to normalized texcoords.
+ */
+ {
+ const int unit = (int) state[2];
+ const struct gl_texture_object *texObj
+ = ctx->Texture.Unit[unit]._Current;
+ if (texObj) {
+ struct gl_texture_image *texImage = texObj->Image[0][0];
+ ASSIGN_4V(value,
+ (GLfloat) (1.0 / texImage->Width),
+ (GLfloat) (1.0 / texImage->Height),
+ 0.0f, 1.0f);
+ }
+ }
+ return;
+
+ case STATE_FOG_PARAMS_OPTIMIZED:
+ /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
+ * might be more expensive than EX2 on some hw, plus it needs
+ * another constant (e) anyway. Linear fog can now be done with a
+ * single MAD.
+ * linear: fogcoord * -1/(end-start) + end/(end-start)
+ * exp: 2^-(density/ln(2) * fogcoord)
+ * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
+ */
+ value[0] = (ctx->Fog.End == ctx->Fog.Start)
+ ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
+ value[1] = ctx->Fog.End * -value[0];
+ value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2);
+ value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
+ return;
+
+ case STATE_POINT_SIZE_CLAMPED:
+ {
+ /* this includes implementation dependent limits, to avoid
+ * another potentially necessary clamp.
+ * Note: for sprites, point smooth (point AA) is ignored
+ * and we'll clamp to MinPointSizeAA and MaxPointSize, because we
+ * expect drivers will want to say their minimum for AA size is 0.0
+ * but for non-AA it's 1.0 (because normal points with size below 1.0
+ * need to get rounded up to 1.0, hence never disappear). GL does
+ * not specify max clamp size for sprites, other than it needs to be
+ * at least as large as max AA size, hence use non-AA size there.
+ */
+ GLfloat minImplSize;
+ GLfloat maxImplSize;
+ if (ctx->Point.PointSprite) {
+ minImplSize = ctx->Const.MinPointSizeAA;
+ maxImplSize = ctx->Const.MaxPointSize;
+ }
+ else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
+ minImplSize = ctx->Const.MinPointSizeAA;
+ maxImplSize = ctx->Const.MaxPointSizeAA;
+ }
+ else {
+ minImplSize = ctx->Const.MinPointSize;
+ maxImplSize = ctx->Const.MaxPointSize;
+ }
+ value[0] = ctx->Point.Size;
+ value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
+ value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
+ value[3] = ctx->Point.Threshold;
+ }
+ return;
+ case STATE_POINT_SIZE_IMPL_CLAMP:
+ {
+ /* for implementation clamp only in vs */
+ GLfloat minImplSize;
+ GLfloat maxImplSize;
+ if (ctx->Point.PointSprite) {
+ minImplSize = ctx->Const.MinPointSizeAA;
+ maxImplSize = ctx->Const.MaxPointSize;
+ }
+ else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
+ minImplSize = ctx->Const.MinPointSizeAA;
+ maxImplSize = ctx->Const.MaxPointSizeAA;
+ }
+ else {
+ minImplSize = ctx->Const.MinPointSize;
+ maxImplSize = ctx->Const.MaxPointSize;
+ }
+ value[0] = ctx->Point.Size;
+ value[1] = minImplSize;
+ value[2] = maxImplSize;
+ value[3] = ctx->Point.Threshold;
+ }
+ return;
+ case STATE_LIGHT_SPOT_DIR_NORMALIZED:
+ {
+ /* here, state[2] is the light number */
+ /* pre-normalize spot dir */
+ const GLuint ln = (GLuint) state[2];
+ COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
+ value[3] = ctx->Light.Light[ln]._CosCutoff;
+ }
+ return;
+
+ case STATE_LIGHT_POSITION:
+ {
+ const GLuint ln = (GLuint) state[2];
+ COPY_4V(value, ctx->Light.Light[ln]._Position);
+ }
+ return;
+
+ case STATE_LIGHT_POSITION_NORMALIZED:
+ {
+ const GLuint ln = (GLuint) state[2];
+ COPY_4V(value, ctx->Light.Light[ln]._Position);
+ NORMALIZE_3FV( value );
+ }
+ return;
+
+ case STATE_LIGHT_HALF_VECTOR:
+ {
+ const GLuint ln = (GLuint) state[2];
+ GLfloat p[3];
+ /* Compute infinite half angle vector:
+ * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
+ * light.EyePosition.w should be 0 for infinite lights.
+ */
+ COPY_3V(p, ctx->Light.Light[ln]._Position);
+ NORMALIZE_3FV(p);
+ ADD_3V(value, p, ctx->_EyeZDir);
+ NORMALIZE_3FV(value);
+ value[3] = 1.0;
+ }
+ return;
+
+ case STATE_PT_SCALE:
+ value[0] = ctx->Pixel.RedScale;
+ value[1] = ctx->Pixel.GreenScale;
+ value[2] = ctx->Pixel.BlueScale;
+ value[3] = ctx->Pixel.AlphaScale;
+ return;
+
+ case STATE_PT_BIAS:
+ value[0] = ctx->Pixel.RedBias;
+ value[1] = ctx->Pixel.GreenBias;
+ value[2] = ctx->Pixel.BlueBias;
+ value[3] = ctx->Pixel.AlphaBias;
+ return;
+
+ case STATE_SHADOW_AMBIENT:
+ {
+ const int unit = (int) state[2];
+ const struct gl_texture_object *texObj
+ = ctx->Texture.Unit[unit]._Current;
+ if (texObj) {
+ value[0] =
+ value[1] =
+ value[2] =
+ value[3] = texObj->CompareFailValue;
+ }
+ }
+ return;
+
+ case STATE_FB_SIZE:
+ value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
+ value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
+ value[2] = 0.0F;
+ value[3] = 0.0F;
+ return;
+
+ case STATE_FB_WPOS_Y_TRANSFORM:
+ /* A driver may negate this conditional by using ZW swizzle
+ * instead of XY (based on e.g. some other state). */
+ if (ctx->DrawBuffer->Name != 0) {
+ /* Identity (XY) followed by flipping Y upside down (ZW). */
+ value[0] = 1.0F;
+ value[1] = 0.0F;
+ value[2] = -1.0F;
+ value[3] = (GLfloat) (ctx->DrawBuffer->Height - 1);
+ } else {
+ /* Flipping Y upside down (XY) followed by identity (ZW). */
+ value[0] = -1.0F;
+ value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
+ value[2] = 1.0F;
+ value[3] = 0.0F;
+ }
+ return;
+
+ case STATE_ROT_MATRIX_0:
+ {
+ const int unit = (int) state[2];
+ GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
+ value[0] = rotMat22[0];
+ value[1] = rotMat22[2];
+ value[2] = 0.0;
+ value[3] = 0.0;
+ }
+ return;
+
+ case STATE_ROT_MATRIX_1:
+ {
+ const int unit = (int) state[2];
+ GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
+ value[0] = rotMat22[1];
+ value[1] = rotMat22[3];
+ value[2] = 0.0;
+ value[3] = 0.0;
+ }
+ return;
+
+ /* XXX: make sure new tokens added here are also handled in the
+ * _mesa_program_state_flags() switch, below.
+ */
+ default:
+ /* Unknown state indexes are silently ignored here.
+ * Drivers may do something special.
+ */
+ return;
+ }
+ return;
+
+ default:
+ _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
+ return;
+ }
+}
+
+
+/**
+ * Return a bitmask of the Mesa state flags (_NEW_* values) which would
+ * indicate that the given context state may have changed.
+ * The bitmask is used during validation to determine if we need to update
+ * vertex/fragment program parameters (like "state.material.color") when
+ * some GL state has changed.
+ */
+GLbitfield
+_mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
+{
+ switch (state[0]) {
+ case STATE_MATERIAL:
+ case STATE_LIGHT:
+ case STATE_LIGHTMODEL_AMBIENT:
+ case STATE_LIGHTMODEL_SCENECOLOR:
+ case STATE_LIGHTPROD:
+ return _NEW_LIGHT;
+
+ case STATE_TEXGEN:
+ case STATE_TEXENV_COLOR:
+ return _NEW_TEXTURE;
+
+ case STATE_FOG_COLOR:
+ case STATE_FOG_PARAMS:
+ return _NEW_FOG;
+
+ case STATE_CLIPPLANE:
+ return _NEW_TRANSFORM;
+
+ case STATE_POINT_SIZE:
+ case STATE_POINT_ATTENUATION:
+ return _NEW_POINT;
+
+ case STATE_MODELVIEW_MATRIX:
+ return _NEW_MODELVIEW;
+ case STATE_PROJECTION_MATRIX:
+ return _NEW_PROJECTION;
+ case STATE_MVP_MATRIX:
+ return _NEW_MODELVIEW | _NEW_PROJECTION;
+ case STATE_TEXTURE_MATRIX:
+ return _NEW_TEXTURE_MATRIX;
+ case STATE_PROGRAM_MATRIX:
+ return _NEW_TRACK_MATRIX;
+
+ case STATE_DEPTH_RANGE:
+ return _NEW_VIEWPORT;
+
+ case STATE_FRAGMENT_PROGRAM:
+ case STATE_VERTEX_PROGRAM:
+ return _NEW_PROGRAM;
+
+ case STATE_NORMAL_SCALE:
+ return _NEW_MODELVIEW;
+
+ case STATE_INTERNAL:
+ switch (state[1]) {
+ case STATE_CURRENT_ATTRIB:
+ return _NEW_CURRENT_ATTRIB;
+
+ case STATE_NORMAL_SCALE:
+ return _NEW_MODELVIEW;
+
+ case STATE_TEXRECT_SCALE:
+ case STATE_SHADOW_AMBIENT:
+ case STATE_ROT_MATRIX_0:
+ case STATE_ROT_MATRIX_1:
+ return _NEW_TEXTURE;
+ case STATE_FOG_PARAMS_OPTIMIZED:
+ return _NEW_FOG;
+ case STATE_POINT_SIZE_CLAMPED:
+ case STATE_POINT_SIZE_IMPL_CLAMP:
+ return _NEW_POINT | _NEW_MULTISAMPLE;
+ case STATE_LIGHT_SPOT_DIR_NORMALIZED:
+ case STATE_LIGHT_POSITION:
+ case STATE_LIGHT_POSITION_NORMALIZED:
+ case STATE_LIGHT_HALF_VECTOR:
+ return _NEW_LIGHT;
+
+ case STATE_PT_SCALE:
+ case STATE_PT_BIAS:
+ return _NEW_PIXEL;
+
+ case STATE_FB_SIZE:
+ case STATE_FB_WPOS_Y_TRANSFORM:
+ return _NEW_BUFFERS;
+
+ default:
+ /* unknown state indexes are silently ignored and
+ * no flag set, since it is handled by the driver.
+ */
+ return 0;
+ }
+
+ default:
+ _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
+ return 0;
+ }
+}
+
+
+static void
+append(char *dst, const char *src)
+{
+ while (*dst)
+ dst++;
+ while (*src)
+ *dst++ = *src++;
+ *dst = 0;
+}
+
+
+/**
+ * Convert token 'k' to a string, append it onto 'dst' string.
+ */
+static void
+append_token(char *dst, gl_state_index k)
+{
+ switch (k) {
+ case STATE_MATERIAL:
+ append(dst, "material");
+ break;
+ case STATE_LIGHT:
+ append(dst, "light");
+ break;
+ case STATE_LIGHTMODEL_AMBIENT:
+ append(dst, "lightmodel.ambient");
+ break;
+ case STATE_LIGHTMODEL_SCENECOLOR:
+ break;
+ case STATE_LIGHTPROD:
+ append(dst, "lightprod");
+ break;
+ case STATE_TEXGEN:
+ append(dst, "texgen");
+ break;
+ case STATE_FOG_COLOR:
+ append(dst, "fog.color");
+ break;
+ case STATE_FOG_PARAMS:
+ append(dst, "fog.params");
+ break;
+ case STATE_CLIPPLANE:
+ append(dst, "clip");
+ break;
+ case STATE_POINT_SIZE:
+ append(dst, "point.size");
+ break;
+ case STATE_POINT_ATTENUATION:
+ append(dst, "point.attenuation");
+ break;
+ case STATE_MODELVIEW_MATRIX:
+ append(dst, "matrix.modelview");
+ break;
+ case STATE_PROJECTION_MATRIX:
+ append(dst, "matrix.projection");
+ break;
+ case STATE_MVP_MATRIX:
+ append(dst, "matrix.mvp");
+ break;
+ case STATE_TEXTURE_MATRIX:
+ append(dst, "matrix.texture");
+ break;
+ case STATE_PROGRAM_MATRIX:
+ append(dst, "matrix.program");
+ break;
+ case STATE_MATRIX_INVERSE:
+ append(dst, ".inverse");
+ break;
+ case STATE_MATRIX_TRANSPOSE:
+ append(dst, ".transpose");
+ break;
+ case STATE_MATRIX_INVTRANS:
+ append(dst, ".invtrans");
+ break;
+ case STATE_AMBIENT:
+ append(dst, ".ambient");
+ break;
+ case STATE_DIFFUSE:
+ append(dst, ".diffuse");
+ break;
+ case STATE_SPECULAR:
+ append(dst, ".specular");
+ break;
+ case STATE_EMISSION:
+ append(dst, ".emission");
+ break;
+ case STATE_SHININESS:
+ append(dst, "lshininess");
+ break;
+ case STATE_HALF_VECTOR:
+ append(dst, ".half");
+ break;
+ case STATE_POSITION:
+ append(dst, ".position");
+ break;
+ case STATE_ATTENUATION:
+ append(dst, ".attenuation");
+ break;
+ case STATE_SPOT_DIRECTION:
+ append(dst, ".spot.direction");
+ break;
+ case STATE_SPOT_CUTOFF:
+ append(dst, ".spot.cutoff");
+ break;
+ case STATE_TEXGEN_EYE_S:
+ append(dst, ".eye.s");
+ break;
+ case STATE_TEXGEN_EYE_T:
+ append(dst, ".eye.t");
+ break;
+ case STATE_TEXGEN_EYE_R:
+ append(dst, ".eye.r");
+ break;
+ case STATE_TEXGEN_EYE_Q:
+ append(dst, ".eye.q");
+ break;
+ case STATE_TEXGEN_OBJECT_S:
+ append(dst, ".object.s");
+ break;
+ case STATE_TEXGEN_OBJECT_T:
+ append(dst, ".object.t");
+ break;
+ case STATE_TEXGEN_OBJECT_R:
+ append(dst, ".object.r");
+ break;
+ case STATE_TEXGEN_OBJECT_Q:
+ append(dst, ".object.q");
+ break;
+ case STATE_TEXENV_COLOR:
+ append(dst, "texenv");
+ break;
+ case STATE_DEPTH_RANGE:
+ append(dst, "depth.range");
+ break;
+ case STATE_VERTEX_PROGRAM:
+ case STATE_FRAGMENT_PROGRAM:
+ break;
+ case STATE_ENV:
+ append(dst, "env");
+ break;
+ case STATE_LOCAL:
+ append(dst, "local");
+ break;
+ /* BEGIN internal state vars */
+ case STATE_INTERNAL:
+ append(dst, ".internal.");
+ break;
+ case STATE_CURRENT_ATTRIB:
+ append(dst, "current");
+ break;
+ case STATE_NORMAL_SCALE:
+ append(dst, "normalScale");
+ break;
+ case STATE_TEXRECT_SCALE:
+ append(dst, "texrectScale");
+ break;
+ case STATE_FOG_PARAMS_OPTIMIZED:
+ append(dst, "fogParamsOptimized");
+ break;
+ case STATE_POINT_SIZE_CLAMPED:
+ append(dst, "pointSizeClamped");
+ break;
+ case STATE_POINT_SIZE_IMPL_CLAMP:
+ append(dst, "pointSizeImplClamp");
+ break;
+ case STATE_LIGHT_SPOT_DIR_NORMALIZED:
+ append(dst, "lightSpotDirNormalized");
+ break;
+ case STATE_LIGHT_POSITION:
+ append(dst, "lightPosition");
+ break;
+ case STATE_LIGHT_POSITION_NORMALIZED:
+ append(dst, "light.position.normalized");
+ break;
+ case STATE_LIGHT_HALF_VECTOR:
+ append(dst, "lightHalfVector");
+ break;
+ case STATE_PT_SCALE:
+ append(dst, "PTscale");
+ break;
+ case STATE_PT_BIAS:
+ append(dst, "PTbias");
+ break;
+ case STATE_SHADOW_AMBIENT:
+ append(dst, "CompareFailValue");
+ break;
+ case STATE_FB_SIZE:
+ append(dst, "FbSize");
+ break;
+ case STATE_FB_WPOS_Y_TRANSFORM:
+ append(dst, "FbWposYTransform");
+ break;
+ case STATE_ROT_MATRIX_0:
+ append(dst, "rotMatrixRow0");
+ break;
+ case STATE_ROT_MATRIX_1:
+ append(dst, "rotMatrixRow1");
+ break;
+ default:
+ /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
+ append(dst, "driverState");
+ }
+}
+
+static void
+append_face(char *dst, GLint face)
+{
+ if (face == 0)
+ append(dst, "front.");
+ else
+ append(dst, "back.");
+}
+
+static void
+append_index(char *dst, GLint index)
+{
+ char s[20];
+ sprintf(s, "[%d]", index);
+ append(dst, s);
+}
+
+/**
+ * Make a string from the given state vector.
+ * For example, return "state.matrix.texture[2].inverse".
+ * Use free() to deallocate the string.
+ */
+char *
+_mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
+{
+ char str[1000] = "";
+ char tmp[30];
+
+ append(str, "state.");
+ append_token(str, state[0]);
+
+ switch (state[0]) {
+ case STATE_MATERIAL:
+ append_face(str, state[1]);
+ append_token(str, state[2]);
+ break;
+ case STATE_LIGHT:
+ append_index(str, state[1]); /* light number [i]. */
+ append_token(str, state[2]); /* coefficients */
+ break;
+ case STATE_LIGHTMODEL_AMBIENT:
+ append(str, "lightmodel.ambient");
+ break;
+ case STATE_LIGHTMODEL_SCENECOLOR:
+ if (state[1] == 0) {
+ append(str, "lightmodel.front.scenecolor");
+ }
+ else {
+ append(str, "lightmodel.back.scenecolor");
+ }
+ break;
+ case STATE_LIGHTPROD:
+ append_index(str, state[1]); /* light number [i]. */
+ append_face(str, state[2]);
+ append_token(str, state[3]);
+ break;
+ case STATE_TEXGEN:
+ append_index(str, state[1]); /* tex unit [i] */
+ append_token(str, state[2]); /* plane coef */
+ break;
+ case STATE_TEXENV_COLOR:
+ append_index(str, state[1]); /* tex unit [i] */
+ append(str, "color");
+ break;
+ case STATE_CLIPPLANE:
+ append_index(str, state[1]); /* plane [i] */
+ append(str, ".plane");
+ break;
+ case STATE_MODELVIEW_MATRIX:
+ case STATE_PROJECTION_MATRIX:
+ case STATE_MVP_MATRIX:
+ case STATE_TEXTURE_MATRIX:
+ case STATE_PROGRAM_MATRIX:
+ {
+ /* state[0] = modelview, projection, texture, etc. */
+ /* state[1] = which texture matrix or program matrix */
+ /* state[2] = first row to fetch */
+ /* state[3] = last row to fetch */
+ /* state[4] = transpose, inverse or invtrans */
+ const gl_state_index mat = state[0];
+ const GLuint index = (GLuint) state[1];
+ const GLuint firstRow = (GLuint) state[2];
+ const GLuint lastRow = (GLuint) state[3];
+ const gl_state_index modifier = state[4];
+ if (index ||
+ mat == STATE_TEXTURE_MATRIX ||
+ mat == STATE_PROGRAM_MATRIX)
+ append_index(str, index);
+ if (modifier)
+ append_token(str, modifier);
+ if (firstRow == lastRow)
+ sprintf(tmp, ".row[%d]", firstRow);
+ else
+ sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
+ append(str, tmp);
+ }
+ break;
+ case STATE_POINT_SIZE:
+ break;
+ case STATE_POINT_ATTENUATION:
+ break;
+ case STATE_FOG_PARAMS:
+ break;
+ case STATE_FOG_COLOR:
+ break;
+ case STATE_DEPTH_RANGE:
+ break;
+ case STATE_FRAGMENT_PROGRAM:
+ case STATE_VERTEX_PROGRAM:
+ /* state[1] = {STATE_ENV, STATE_LOCAL} */
+ /* state[2] = parameter index */
+ append_token(str, state[1]);
+ append_index(str, state[2]);
+ break;
+ case STATE_NORMAL_SCALE:
+ break;
+ case STATE_INTERNAL:
+ append_token(str, state[1]);
+ if (state[1] == STATE_CURRENT_ATTRIB)
+ append_index(str, state[2]);
+ break;
+ default:
+ _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
+ break;
+ }
+
+ return _mesa_strdup(str);
+}
+
+
+/**
+ * Loop over all the parameters in a parameter list. If the parameter
+ * is a GL state reference, look up the current value of that state
+ * variable and put it into the parameter's Value[4] array.
+ * Other parameter types never change or are explicitly set by the user
+ * with glUniform() or glProgramParameter(), etc.
+ * This would be called at glBegin time.
+ */
+void
+_mesa_load_state_parameters(struct gl_context *ctx,
+ struct gl_program_parameter_list *paramList)
+{
+ GLuint i;
+
+ if (!paramList)
+ return;
+
+ for (i = 0; i < paramList->NumParameters; i++) {
+ if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
+ _mesa_fetch_state(ctx,
+ paramList->Parameters[i].StateIndexes,
+ paramList->ParameterValues[i]);
+ }
+ }
+}
+
+
+/**
+ * Copy the 16 elements of a matrix into four consecutive program
+ * registers starting at 'pos'.
+ */
+static void
+load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
+{
+ GLuint i;
+ for (i = 0; i < 4; i++) {
+ registers[pos + i][0] = mat[0 + i];
+ registers[pos + i][1] = mat[4 + i];
+ registers[pos + i][2] = mat[8 + i];
+ registers[pos + i][3] = mat[12 + i];
+ }
+}
+
+
+/**
+ * As above, but transpose the matrix.
+ */
+static void
+load_transpose_matrix(GLfloat registers[][4], GLuint pos,
+ const GLfloat mat[16])
+{
+ memcpy(registers[pos], mat, 16 * sizeof(GLfloat));
+}
+
+
+/**
+ * Load current vertex program's parameter registers with tracked
+ * matrices (if NV program). This only needs to be done per
+ * glBegin/glEnd, not per-vertex.
+ */
+void
+_mesa_load_tracked_matrices(struct gl_context *ctx)
+{
+ GLuint i;
+
+ for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
+ /* point 'mat' at source matrix */
+ GLmatrix *mat;
+ if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
+ mat = ctx->ModelviewMatrixStack.Top;
+ }
+ else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
+ mat = ctx->ProjectionMatrixStack.Top;
+ }
+ else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
+ GLuint unit = MIN2(ctx->Texture.CurrentUnit,
+ Elements(ctx->TextureMatrixStack) - 1);
+ mat = ctx->TextureMatrixStack[unit].Top;
+ }
+ else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
+ /* XXX verify the combined matrix is up to date */
+ mat = &ctx->_ModelProjectMatrix;
+ }
+ else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
+ ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
+ GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
+ ASSERT(n < Elements(ctx->ProgramMatrixStack));
+ mat = ctx->ProgramMatrixStack[n].Top;
+ }
+ else {
+ /* no matrix is tracked, but we leave the register values as-is */
+ assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
+ continue;
+ }
+
+ /* load the matrix values into sequential registers */
+ if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
+ load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
+ }
+ else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
+ _math_matrix_analyse(mat); /* update the inverse */
+ ASSERT(!_math_matrix_is_dirty(mat));
+ load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
+ }
+ else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
+ load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
+ }
+ else {
+ assert(ctx->VertexProgram.TrackMatrixTransform[i]
+ == GL_INVERSE_TRANSPOSE_NV);
+ _math_matrix_analyse(mat); /* update the inverse */
+ ASSERT(!_math_matrix_is_dirty(mat));
+ load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
+ }
+ }
+}
|