diff options
author | marha <marha@users.sourceforge.net> | 2009-10-09 06:31:44 +0000 |
---|---|---|
committer | marha <marha@users.sourceforge.net> | 2009-10-09 06:31:44 +0000 |
commit | 06456f5db88b434c3634ede42bdbfdce78fc4249 (patch) | |
tree | 97f5174e2d3da40faee7f2ad8858233da3d0166e /mesalib/src/mesa/swrast/s_span.c | |
parent | 7b230a3fe2d6c83488d9eec43067fe8ba8ac081b (diff) | |
parent | a0c4815433ccd57322f4f7703ca35e9ccfa59250 (diff) | |
download | vcxsrv-06456f5db88b434c3634ede42bdbfdce78fc4249.tar.gz vcxsrv-06456f5db88b434c3634ede42bdbfdce78fc4249.tar.bz2 vcxsrv-06456f5db88b434c3634ede42bdbfdce78fc4249.zip |
svn merge ^/branches/released . --username marha
Diffstat (limited to 'mesalib/src/mesa/swrast/s_span.c')
-rw-r--r-- | mesalib/src/mesa/swrast/s_span.c | 1795 |
1 files changed, 1795 insertions, 0 deletions
diff --git a/mesalib/src/mesa/swrast/s_span.c b/mesalib/src/mesa/swrast/s_span.c new file mode 100644 index 000000000..0e2793b47 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_span.c @@ -0,0 +1,1795 @@ +/* + * Mesa 3-D graphics library + * Version: 7.5 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * Copyright (C) 2009 VMware, Inc. All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/** + * \file swrast/s_span.c + * \brief Span processing functions used by all rasterization functions. + * This is where all the per-fragment tests are performed + * \author Brian Paul + */ + +#include "main/glheader.h" +#include "main/colormac.h" +#include "main/context.h" +#include "main/macros.h" +#include "main/imports.h" +#include "main/image.h" + +#include "s_atifragshader.h" +#include "s_alpha.h" +#include "s_blend.h" +#include "s_context.h" +#include "s_depth.h" +#include "s_fog.h" +#include "s_logic.h" +#include "s_masking.h" +#include "s_fragprog.h" +#include "s_span.h" +#include "s_stencil.h" +#include "s_texcombine.h" + + +/** + * Set default fragment attributes for the span using the + * current raster values. Used prior to glDraw/CopyPixels + * and glBitmap. + */ +void +_swrast_span_default_attribs(GLcontext *ctx, SWspan *span) +{ + /* Z*/ + { + const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF; + if (ctx->DrawBuffer->Visual.depthBits <= 16) + span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F); + else { + GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax; + tmpf = MIN2(tmpf, depthMax); + span->z = (GLint)tmpf; + } + span->zStep = 0; + span->interpMask |= SPAN_Z; + } + + /* W (for perspective correction) */ + span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0; + span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0; + span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0; + + /* primary color, or color index */ + if (ctx->Visual.rgbMode) { + GLchan r, g, b, a; + UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]); + UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]); + UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]); + UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]); +#if CHAN_TYPE == GL_FLOAT + span->red = r; + span->green = g; + span->blue = b; + span->alpha = a; +#else + span->red = IntToFixed(r); + span->green = IntToFixed(g); + span->blue = IntToFixed(b); + span->alpha = IntToFixed(a); +#endif + span->redStep = 0; + span->greenStep = 0; + span->blueStep = 0; + span->alphaStep = 0; + span->interpMask |= SPAN_RGBA; + + COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor); + ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0); + ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0); + } + else { + span->index = FloatToFixed(ctx->Current.RasterIndex); + span->indexStep = 0; + span->interpMask |= SPAN_INDEX; + } + + /* Secondary color */ + if (ctx->Visual.rgbMode && (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)) + { + COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor); + ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0); + ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0); + } + + /* fog */ + { + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLfloat fogVal; /* a coord or a blend factor */ + if (swrast->_PreferPixelFog) { + /* fog blend factors will be computed from fog coordinates per pixel */ + fogVal = ctx->Current.RasterDistance; + } + else { + /* fog blend factor should be computed from fogcoord now */ + fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance); + } + span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal; + span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0; + span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0; + } + + /* texcoords */ + { + GLuint i; + for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) { + const GLuint attr = FRAG_ATTRIB_TEX0 + i; + const GLfloat *tc = ctx->Current.RasterTexCoords[i]; + if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) { + COPY_4V(span->attrStart[attr], tc); + } + else if (tc[3] > 0.0F) { + /* use (s/q, t/q, r/q, 1) */ + span->attrStart[attr][0] = tc[0] / tc[3]; + span->attrStart[attr][1] = tc[1] / tc[3]; + span->attrStart[attr][2] = tc[2] / tc[3]; + span->attrStart[attr][3] = 1.0; + } + else { + ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F); + } + ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F); + ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F); + } + } +} + + +/** + * Interpolate the active attributes (and'd with attrMask) to + * fill in span->array->attribs[]. + * Perspective correction will be done. The point/line/triangle function + * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]! + */ +static INLINE void +interpolate_active_attribs(GLcontext *ctx, SWspan *span, GLbitfield attrMask) +{ + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + + /* + * Don't overwrite existing array values, such as colors that may have + * been produced by glDraw/CopyPixels. + */ + attrMask &= ~span->arrayAttribs; + + ATTRIB_LOOP_BEGIN + if (attrMask & (1 << attr)) { + const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3]; + GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3]; + const GLfloat dv0dx = span->attrStepX[attr][0]; + const GLfloat dv1dx = span->attrStepX[attr][1]; + const GLfloat dv2dx = span->attrStepX[attr][2]; + const GLfloat dv3dx = span->attrStepX[attr][3]; + GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx; + GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx; + GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx; + GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx; + GLuint k; + for (k = 0; k < span->end; k++) { + const GLfloat invW = 1.0f / w; + span->array->attribs[attr][k][0] = v0 * invW; + span->array->attribs[attr][k][1] = v1 * invW; + span->array->attribs[attr][k][2] = v2 * invW; + span->array->attribs[attr][k][3] = v3 * invW; + v0 += dv0dx; + v1 += dv1dx; + v2 += dv2dx; + v3 += dv3dx; + w += dwdx; + } + ASSERT((span->arrayAttribs & (1 << attr)) == 0); + span->arrayAttribs |= (1 << attr); + } + ATTRIB_LOOP_END +} + + +/** + * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16) + * color array. + */ +static INLINE void +interpolate_int_colors(GLcontext *ctx, SWspan *span) +{ + const GLuint n = span->end; + GLuint i; + +#if CHAN_BITS != 32 + ASSERT(!(span->arrayMask & SPAN_RGBA)); +#endif + + switch (span->array->ChanType) { +#if CHAN_BITS != 32 + case GL_UNSIGNED_BYTE: + { + GLubyte (*rgba)[4] = span->array->rgba8; + if (span->interpMask & SPAN_FLAT) { + GLubyte color[4]; + color[RCOMP] = FixedToInt(span->red); + color[GCOMP] = FixedToInt(span->green); + color[BCOMP] = FixedToInt(span->blue); + color[ACOMP] = FixedToInt(span->alpha); + for (i = 0; i < n; i++) { + COPY_4UBV(rgba[i], color); + } + } + else { + GLfixed r = span->red; + GLfixed g = span->green; + GLfixed b = span->blue; + GLfixed a = span->alpha; + GLint dr = span->redStep; + GLint dg = span->greenStep; + GLint db = span->blueStep; + GLint da = span->alphaStep; + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = FixedToChan(r); + rgba[i][GCOMP] = FixedToChan(g); + rgba[i][BCOMP] = FixedToChan(b); + rgba[i][ACOMP] = FixedToChan(a); + r += dr; + g += dg; + b += db; + a += da; + } + } + } + break; + case GL_UNSIGNED_SHORT: + { + GLushort (*rgba)[4] = span->array->rgba16; + if (span->interpMask & SPAN_FLAT) { + GLushort color[4]; + color[RCOMP] = FixedToInt(span->red); + color[GCOMP] = FixedToInt(span->green); + color[BCOMP] = FixedToInt(span->blue); + color[ACOMP] = FixedToInt(span->alpha); + for (i = 0; i < n; i++) { + COPY_4V(rgba[i], color); + } + } + else { + GLushort (*rgba)[4] = span->array->rgba16; + GLfixed r, g, b, a; + GLint dr, dg, db, da; + r = span->red; + g = span->green; + b = span->blue; + a = span->alpha; + dr = span->redStep; + dg = span->greenStep; + db = span->blueStep; + da = span->alphaStep; + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = FixedToChan(r); + rgba[i][GCOMP] = FixedToChan(g); + rgba[i][BCOMP] = FixedToChan(b); + rgba[i][ACOMP] = FixedToChan(a); + r += dr; + g += dg; + b += db; + a += da; + } + } + } + break; +#endif + case GL_FLOAT: + interpolate_active_attribs(ctx, span, FRAG_BIT_COL0); + break; + default: + _mesa_problem(NULL, "bad datatype in interpolate_int_colors"); + } + span->arrayMask |= SPAN_RGBA; +} + + +/** + * Populate the FRAG_ATTRIB_COL0 array. + */ +static INLINE void +interpolate_float_colors(SWspan *span) +{ + GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + const GLuint n = span->end; + GLuint i; + + assert(!(span->arrayAttribs & FRAG_BIT_COL0)); + + if (span->arrayMask & SPAN_RGBA) { + /* convert array of int colors */ + for (i = 0; i < n; i++) { + col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]); + col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]); + col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]); + col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]); + } + } + else { + /* interpolate red/green/blue/alpha to get float colors */ + ASSERT(span->interpMask & SPAN_RGBA); + if (span->interpMask & SPAN_FLAT) { + GLfloat r = FixedToFloat(span->red); + GLfloat g = FixedToFloat(span->green); + GLfloat b = FixedToFloat(span->blue); + GLfloat a = FixedToFloat(span->alpha); + for (i = 0; i < n; i++) { + ASSIGN_4V(col0[i], r, g, b, a); + } + } + else { + GLfloat r = FixedToFloat(span->red); + GLfloat g = FixedToFloat(span->green); + GLfloat b = FixedToFloat(span->blue); + GLfloat a = FixedToFloat(span->alpha); + GLfloat dr = FixedToFloat(span->redStep); + GLfloat dg = FixedToFloat(span->greenStep); + GLfloat db = FixedToFloat(span->blueStep); + GLfloat da = FixedToFloat(span->alphaStep); + for (i = 0; i < n; i++) { + col0[i][0] = r; + col0[i][1] = g; + col0[i][2] = b; + col0[i][3] = a; + r += dr; + g += dg; + b += db; + a += da; + } + } + } + + span->arrayAttribs |= FRAG_BIT_COL0; + span->array->ChanType = GL_FLOAT; +} + + + +/* Fill in the span.color.index array from the interpolation values */ +static INLINE void +interpolate_indexes(GLcontext *ctx, SWspan *span) +{ + GLfixed index = span->index; + const GLint indexStep = span->indexStep; + const GLuint n = span->end; + GLuint *indexes = span->array->index; + GLuint i; + (void) ctx; + + ASSERT(!(span->arrayMask & SPAN_INDEX)); + + if ((span->interpMask & SPAN_FLAT) || (indexStep == 0)) { + /* constant color */ + index = FixedToInt(index); + for (i = 0; i < n; i++) { + indexes[i] = index; + } + } + else { + /* interpolate */ + for (i = 0; i < n; i++) { + indexes[i] = FixedToInt(index); + index += indexStep; + } + } + span->arrayMask |= SPAN_INDEX; + span->interpMask &= ~SPAN_INDEX; +} + + +/** + * Fill in the span.zArray array from the span->z, zStep values. + */ +void +_swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span ) +{ + const GLuint n = span->end; + GLuint i; + + ASSERT(!(span->arrayMask & SPAN_Z)); + + if (ctx->DrawBuffer->Visual.depthBits <= 16) { + GLfixed zval = span->z; + GLuint *z = span->array->z; + for (i = 0; i < n; i++) { + z[i] = FixedToInt(zval); + zval += span->zStep; + } + } + else { + /* Deep Z buffer, no fixed->int shift */ + GLuint zval = span->z; + GLuint *z = span->array->z; + for (i = 0; i < n; i++) { + z[i] = zval; + zval += span->zStep; + } + } + span->interpMask &= ~SPAN_Z; + span->arrayMask |= SPAN_Z; +} + + +/** + * Compute mipmap LOD from partial derivatives. + * This the ideal solution, as given in the OpenGL spec. + */ +GLfloat +_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy, + GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH, + GLfloat s, GLfloat t, GLfloat q, GLfloat invQ) +{ + GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ); + GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ); + GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ); + GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ); + GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx); + GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy); + GLfloat rho = MAX2(x, y); + GLfloat lambda = LOG2(rho); + return lambda; +} + + +/** + * Compute mipmap LOD from partial derivatives. + * This is a faster approximation than above function. + */ +#if 0 +GLfloat +_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy, + GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH, + GLfloat s, GLfloat t, GLfloat q, GLfloat invQ) +{ + GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ; + GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ; + GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ; + GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ; + GLfloat maxU, maxV, rho, lambda; + dsdx2 = FABSF(dsdx2); + dsdy2 = FABSF(dsdy2); + dtdx2 = FABSF(dtdx2); + dtdy2 = FABSF(dtdy2); + maxU = MAX2(dsdx2, dsdy2) * texW; + maxV = MAX2(dtdx2, dtdy2) * texH; + rho = MAX2(maxU, maxV); + lambda = LOG2(rho); + return lambda; +} +#endif + + +/** + * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the + * using the attrStart/Step values. + * + * This function only used during fixed-function fragment processing. + * + * Note: in the places where we divide by Q (or mult by invQ) we're + * really doing two things: perspective correction and texcoord + * projection. Remember, for texcoord (s,t,r,q) we need to index + * texels with (s/q, t/q, r/q). + */ +static void +interpolate_texcoords(GLcontext *ctx, SWspan *span) +{ + const GLuint maxUnit + = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1; + GLuint u; + + /* XXX CoordUnits vs. ImageUnits */ + for (u = 0; u < maxUnit; u++) { + if (ctx->Texture._EnabledCoordUnits & (1 << u)) { + const GLuint attr = FRAG_ATTRIB_TEX0 + u; + const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current; + GLfloat texW, texH; + GLboolean needLambda; + GLfloat (*texcoord)[4] = span->array->attribs[attr]; + GLfloat *lambda = span->array->lambda[u]; + const GLfloat dsdx = span->attrStepX[attr][0]; + const GLfloat dsdy = span->attrStepY[attr][0]; + const GLfloat dtdx = span->attrStepX[attr][1]; + const GLfloat dtdy = span->attrStepY[attr][1]; + const GLfloat drdx = span->attrStepX[attr][2]; + const GLfloat dqdx = span->attrStepX[attr][3]; + const GLfloat dqdy = span->attrStepY[attr][3]; + GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx; + GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx; + GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx; + GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx; + + if (obj) { + const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel]; + needLambda = (obj->MinFilter != obj->MagFilter) + || ctx->FragmentProgram._Current; + texW = img->WidthScale; + texH = img->HeightScale; + } + else { + /* using a fragment program */ + texW = 1.0; + texH = 1.0; + needLambda = GL_FALSE; + } + + if (needLambda) { + GLuint i; + if (ctx->FragmentProgram._Current + || ctx->ATIFragmentShader._Enabled) { + /* do perspective correction but don't divide s, t, r by q */ + const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3]; + GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx; + for (i = 0; i < span->end; i++) { + const GLfloat invW = 1.0F / w; + texcoord[i][0] = s * invW; + texcoord[i][1] = t * invW; + texcoord[i][2] = r * invW; + texcoord[i][3] = q * invW; + lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy, + dqdx, dqdy, texW, texH, + s, t, q, invW); + s += dsdx; + t += dtdx; + r += drdx; + q += dqdx; + w += dwdx; + } + } + else { + for (i = 0; i < span->end; i++) { + const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); + texcoord[i][0] = s * invQ; + texcoord[i][1] = t * invQ; + texcoord[i][2] = r * invQ; + texcoord[i][3] = q; + lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy, + dqdx, dqdy, texW, texH, + s, t, q, invQ); + s += dsdx; + t += dtdx; + r += drdx; + q += dqdx; + } + } + span->arrayMask |= SPAN_LAMBDA; + } + else { + GLuint i; + if (ctx->FragmentProgram._Current || + ctx->ATIFragmentShader._Enabled) { + /* do perspective correction but don't divide s, t, r by q */ + const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3]; + GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx; + for (i = 0; i < span->end; i++) { + const GLfloat invW = 1.0F / w; + texcoord[i][0] = s * invW; + texcoord[i][1] = t * invW; + texcoord[i][2] = r * invW; + texcoord[i][3] = q * invW; + lambda[i] = 0.0; + s += dsdx; + t += dtdx; + r += drdx; + q += dqdx; + w += dwdx; + } + } + else if (dqdx == 0.0F) { + /* Ortho projection or polygon's parallel to window X axis */ + const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); + for (i = 0; i < span->end; i++) { + texcoord[i][0] = s * invQ; + texcoord[i][1] = t * invQ; + texcoord[i][2] = r * invQ; + texcoord[i][3] = q; + lambda[i] = 0.0; + s += dsdx; + t += dtdx; + r += drdx; + } + } + else { + for (i = 0; i < span->end; i++) { + const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); + texcoord[i][0] = s * invQ; + texcoord[i][1] = t * invQ; + texcoord[i][2] = r * invQ; + texcoord[i][3] = q; + lambda[i] = 0.0; + s += dsdx; + t += dtdx; + r += drdx; + q += dqdx; + } + } + } /* lambda */ + } /* if */ + } /* for */ +} + + +/** + * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array. + */ +static INLINE void +interpolate_wpos(GLcontext *ctx, SWspan *span) +{ + GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS]; + GLuint i; + const GLfloat zScale = 1.0 / ctx->DrawBuffer->_DepthMaxF; + GLfloat w, dw; + + if (span->arrayMask & SPAN_XY) { + for (i = 0; i < span->end; i++) { + wpos[i][0] = (GLfloat) span->array->x[i]; + wpos[i][1] = (GLfloat) span->array->y[i]; + } + } + else { + for (i = 0; i < span->end; i++) { + wpos[i][0] = (GLfloat) span->x + i; + wpos[i][1] = (GLfloat) span->y; + } + } + + dw = span->attrStepX[FRAG_ATTRIB_WPOS][3]; + w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw; + for (i = 0; i < span->end; i++) { + wpos[i][2] = (GLfloat) span->array->z[i] * zScale; + wpos[i][3] = w; + w += dw; + } +} + + +/** + * Apply the current polygon stipple pattern to a span of pixels. + */ +static INLINE void +stipple_polygon_span(GLcontext *ctx, SWspan *span) +{ + GLubyte *mask = span->array->mask; + + ASSERT(ctx->Polygon.StippleFlag); + + if (span->arrayMask & SPAN_XY) { + /* arrays of x/y pixel coords */ + GLuint i; + for (i = 0; i < span->end; i++) { + const GLint col = span->array->x[i] % 32; + const GLint row = span->array->y[i] % 32; + const GLuint stipple = ctx->PolygonStipple[row]; + if (((1 << col) & stipple) == 0) { + mask[i] = 0; + } + } + } + else { + /* horizontal span of pixels */ + const GLuint highBit = 1 << 31; + const GLuint stipple = ctx->PolygonStipple[span->y % 32]; + GLuint i, m = highBit >> (GLuint) (span->x % 32); + for (i = 0; i < span->end; i++) { + if ((m & stipple) == 0) { + mask[i] = 0; + } + m = m >> 1; + if (m == 0) { + m = highBit; + } + } + } + span->writeAll = GL_FALSE; +} + + +/** + * Clip a pixel span to the current buffer/window boundaries: + * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish + * window clipping and scissoring. + * Return: GL_TRUE some pixels still visible + * GL_FALSE nothing visible + */ +static INLINE GLuint +clip_span( GLcontext *ctx, SWspan *span ) +{ + const GLint xmin = ctx->DrawBuffer->_Xmin; + const GLint xmax = ctx->DrawBuffer->_Xmax; + const GLint ymin = ctx->DrawBuffer->_Ymin; + const GLint ymax = ctx->DrawBuffer->_Ymax; + + span->leftClip = 0; + + if (span->arrayMask & SPAN_XY) { + /* arrays of x/y pixel coords */ + const GLint *x = span->array->x; + const GLint *y = span->array->y; + const GLint n = span->end; + GLubyte *mask = span->array->mask; + GLint i; + if (span->arrayMask & SPAN_MASK) { + /* note: using & intead of && to reduce branches */ + for (i = 0; i < n; i++) { + mask[i] &= (x[i] >= xmin) & (x[i] < xmax) + & (y[i] >= ymin) & (y[i] < ymax); + } + } + else { + /* note: using & intead of && to reduce branches */ + for (i = 0; i < n; i++) { + mask[i] = (x[i] >= xmin) & (x[i] < xmax) + & (y[i] >= ymin) & (y[i] < ymax); + } + } + return GL_TRUE; /* some pixels visible */ + } + else { + /* horizontal span of pixels */ + const GLint x = span->x; + const GLint y = span->y; + GLint n = span->end; + + /* Trivial rejection tests */ + if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) { + span->end = 0; + return GL_FALSE; /* all pixels clipped */ + } + + /* Clip to right */ + if (x + n > xmax) { + ASSERT(x < xmax); + n = span->end = xmax - x; + } + + /* Clip to the left */ + if (x < xmin) { + const GLint leftClip = xmin - x; + GLuint i; + + ASSERT(leftClip > 0); + ASSERT(x + n > xmin); + + /* Clip 'leftClip' pixels from the left side. + * The span->leftClip field will be applied when we interpolate + * fragment attributes. + * For arrays of values, shift them left. + */ + for (i = 0; i < FRAG_ATTRIB_MAX; i++) { + if (span->arrayAttribs & (1 << i)) { + /* shift array elements left by 'leftClip' */ + _mesa_memcpy(span->array->attribs[i], + span->array->attribs[i] + leftClip, + (n - leftClip) * 4 * sizeof(GLfloat)); + } + } + + span->leftClip = leftClip; + span->x = xmin; + span->end -= leftClip; + span->writeAll = GL_FALSE; + } + + ASSERT(span->x >= xmin); + ASSERT(span->x + span->end <= xmax); + ASSERT(span->y >= ymin); + ASSERT(span->y < ymax); + + return GL_TRUE; /* some pixels visible */ + } +} + + +/** + * Apply all the per-fragment opertions to a span of color index fragments + * and write them to the enabled color drawbuffers. + * The 'span' parameter can be considered to be const. Note that + * span->interpMask and span->arrayMask may be changed but will be restored + * to their original values before returning. + */ +void +_swrast_write_index_span( GLcontext *ctx, SWspan *span) +{ + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLbitfield origInterpMask = span->interpMask; + const GLbitfield origArrayMask = span->arrayMask; + struct gl_framebuffer *fb = ctx->DrawBuffer; + + ASSERT(span->end <= MAX_WIDTH); + ASSERT(span->primitive == GL_POINT || span->primitive == GL_LINE || + span->primitive == GL_POLYGON || span->primitive == GL_BITMAP); + ASSERT((span->interpMask | span->arrayMask) & SPAN_INDEX); + /* + ASSERT((span->interpMask & span->arrayMask) == 0); + */ + + if (span->arrayMask & SPAN_MASK) { + /* mask was initialized by caller, probably glBitmap */ + span->writeAll = GL_FALSE; + } + else { + _mesa_memset(span->array->mask, 1, span->end); + span->writeAll = GL_TRUE; + } + + /* Clipping */ + if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) { + if (!clip_span(ctx, span)) { + return; + } + } + + if (!(span->arrayMask & SPAN_MASK)) { + /* post-clip sanity check */ + assert(span->x >= 0); + assert(span->y >= 0); + } + + /* Depth bounds test */ + if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) { + if (!_swrast_depth_bounds_test(ctx, span)) { + return; + } + } + +#ifdef DEBUG + /* Make sure all fragments are within window bounds */ + if (span->arrayMask & SPAN_XY) { + GLuint i; + for (i = 0; i < span->end; i++) { + if (span->array->mask[i]) { + assert(span->array->x[i] >= fb->_Xmin); + assert(span->array->x[i] < fb->_Xmax); + assert(span->array->y[i] >= fb->_Ymin); + assert(span->array->y[i] < fb->_Ymax); + } + } + } +#endif + + /* Polygon Stippling */ + if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) { + stipple_polygon_span(ctx, span); + } + + /* Stencil and Z testing */ + if (ctx->Stencil._Enabled || ctx->Depth.Test) { + if (!(span->arrayMask & SPAN_Z)) + _swrast_span_interpolate_z(ctx, span); + + if (ctx->Stencil._Enabled) { + if (!_swrast_stencil_and_ztest_span(ctx, span)) { + span->arrayMask = origArrayMask; + return; + } + } + else { + ASSERT(ctx->Depth.Test); + if (!_swrast_depth_test_span(ctx, span)) { + span->interpMask = origInterpMask; + span->arrayMask = origArrayMask; + return; + } + } + } + +#if FEATURE_ARB_occlusion_query + if (ctx->Query.CurrentOcclusionObject) { + /* update count of 'passed' fragments */ + struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; + GLuint i; + for (i = 0; i < span->end; i++) + q->Result += span->array->mask[i]; + } +#endif + + /* we have to wait until after occlusion to do this test */ + if (ctx->Color.IndexMask == 0) { + /* write no pixels */ + span->arrayMask = origArrayMask; + return; + } + + /* Interpolate the color indexes if needed */ + if (swrast->_FogEnabled || + ctx->Color.IndexLogicOpEnabled || + ctx->Color.IndexMask != 0xffffffff || + (span->arrayMask & SPAN_COVERAGE)) { + if (!(span->arrayMask & SPAN_INDEX) /*span->interpMask & SPAN_INDEX*/) { + interpolate_indexes(ctx, span); + } + } + + /* Fog */ + if (swrast->_FogEnabled) { + _swrast_fog_ci_span(ctx, span); + } + + /* Antialias coverage application */ + if (span->arrayMask & SPAN_COVERAGE) { + const GLfloat *coverage = span->array->coverage; + GLuint *index = span->array->index; + GLuint i; + for (i = 0; i < span->end; i++) { + ASSERT(coverage[i] < 16); + index[i] = (index[i] & ~0xf) | ((GLuint) coverage[i]); + } + } + + /* + * Write to renderbuffers + */ + { + const GLuint numBuffers = fb->_NumColorDrawBuffers; + GLuint buf; + + for (buf = 0; buf < numBuffers; buf++) { + struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf]; + GLuint indexSave[MAX_WIDTH]; + + ASSERT(rb->_BaseFormat == GL_COLOR_INDEX); + + if (numBuffers > 1) { + /* save indexes for second, third renderbuffer writes */ + _mesa_memcpy(indexSave, span->array->index, + span->end * sizeof(indexSave[0])); + } + + if (ctx->Color.IndexLogicOpEnabled) { + _swrast_logicop_ci_span(ctx, rb, span); + } + + if (ctx->Color.IndexMask != 0xffffffff) { + _swrast_mask_ci_span(ctx, rb, span); + } + + if (!(span->arrayMask & SPAN_INDEX) && span->indexStep == 0) { + /* all fragments have same color index */ + GLubyte index8; + GLushort index16; + GLuint index32; + void *value; + + if (rb->DataType == GL_UNSIGNED_BYTE) { + index8 = FixedToInt(span->index); + value = &index8; + } + else if (rb->DataType == GL_UNSIGNED_SHORT) { + index16 = FixedToInt(span->index); + value = &index16; + } + else { + ASSERT(rb->DataType == GL_UNSIGNED_INT); + index32 = FixedToInt(span->index); + value = &index32; + } + + if (span->arrayMask & SPAN_XY) { + rb->PutMonoValues(ctx, rb, span->end, span->array->x, + span->array->y, value, span->array->mask); + } + else { + rb->PutMonoRow(ctx, rb, span->end, span->x, span->y, + value, span->array->mask); + } + } + else { + /* each fragment is a different color */ + GLubyte index8[MAX_WIDTH]; + GLushort index16[MAX_WIDTH]; + void *values; + + if (rb->DataType == GL_UNSIGNED_BYTE) { + GLuint k; + for (k = 0; k < span->end; k++) { + index8[k] = (GLubyte) span->array->index[k]; + } + values = index8; + } + else if (rb->DataType == GL_UNSIGNED_SHORT) { + GLuint k; + for (k = 0; k < span->end; k++) { + index16[k] = (GLushort) span->array->index[k]; + } + values = index16; + } + else { + ASSERT(rb->DataType == GL_UNSIGNED_INT); + values = span->array->index; + } + + if (span->arrayMask & SPAN_XY) { + rb->PutValues(ctx, rb, span->end, + span->array->x, span->array->y, + values, span->array->mask); + } + else { + rb->PutRow(ctx, rb, span->end, span->x, span->y, + values, span->array->mask); + } + } + + if (buf + 1 < numBuffers) { + /* restore original span values */ + _mesa_memcpy(span->array->index, indexSave, + span->end * sizeof(indexSave[0])); + } + } /* for buf */ + } + + span->interpMask = origInterpMask; + span->arrayMask = origArrayMask; +} + + +/** + * Add specular colors to primary colors. + * Only called during fixed-function operation. + * Result is float color array (FRAG_ATTRIB_COL0). + */ +static INLINE void +add_specular(GLcontext *ctx, SWspan *span) +{ + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLubyte *mask = span->array->mask; + GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1]; + GLuint i; + + ASSERT(!ctx->FragmentProgram._Current); + ASSERT(span->arrayMask & SPAN_RGBA); + ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1); + (void) swrast; /* silence warning */ + + if (span->array->ChanType == GL_FLOAT) { + if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { + interpolate_active_attribs(ctx, span, FRAG_BIT_COL0); + } + } + else { + /* need float colors */ + if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { + interpolate_float_colors(span); + } + } + + if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) { + /* XXX could avoid this and interpolate COL1 in the loop below */ + interpolate_active_attribs(ctx, span, FRAG_BIT_COL1); + } + + ASSERT(span->arrayAttribs & FRAG_BIT_COL0); + ASSERT(span->arrayAttribs & FRAG_BIT_COL1); + + for (i = 0; i < span->end; i++) { + if (mask[i]) { + col0[i][0] += col1[i][0]; + col0[i][1] += col1[i][1]; + col0[i][2] += col1[i][2]; + } + } + + span->array->ChanType = GL_FLOAT; +} + + +/** + * Apply antialiasing coverage value to alpha values. + */ +static INLINE void +apply_aa_coverage(SWspan *span) +{ + const GLfloat *coverage = span->array->coverage; + GLuint i; + if (span->array->ChanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = span->array->rgba8; + for (i = 0; i < span->end; i++) { + const GLfloat a = rgba[i][ACOMP] * coverage[i]; + rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0); + ASSERT(coverage[i] >= 0.0); + ASSERT(coverage[i] <= 1.0); + } + } + else if (span->array->ChanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = span->array->rgba16; + for (i = 0; i < span->end; i++) { + const GLfloat a = rgba[i][ACOMP] * coverage[i]; + rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0); + } + } + else { + GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + for (i = 0; i < span->end; i++) { + rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i]; + /* clamp later */ + } + } +} + + +/** + * Clamp span's float colors to [0,1] + */ +static INLINE void +clamp_colors(SWspan *span) +{ + GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + GLuint i; + ASSERT(span->array->ChanType == GL_FLOAT); + for (i = 0; i < span->end; i++) { + rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F); + rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F); + rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F); + rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F); + } +} + + +/** + * Convert the span's color arrays to the given type. + * The only way 'output' can be greater than zero is when we have a fragment + * program that writes to gl_FragData[1] or higher. + * \param output which fragment program color output is being processed + */ +static INLINE void +convert_color_type(SWspan *span, GLenum newType, GLuint output) +{ + GLvoid *src, *dst; + + if (output > 0 || span->array->ChanType == GL_FLOAT) { + src = span->array->attribs[FRAG_ATTRIB_COL0 + output]; + span->array->ChanType = GL_FLOAT; + } + else if (span->array->ChanType == GL_UNSIGNED_BYTE) { + src = span->array->rgba8; + } + else { + ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT); + src = span->array->rgba16; + } + + if (newType == GL_UNSIGNED_BYTE) { + dst = span->array->rgba8; + } + else if (newType == GL_UNSIGNED_SHORT) { + dst = span->array->rgba16; + } + else { + dst = span->array->attribs[FRAG_ATTRIB_COL0]; + } + + _mesa_convert_colors(span->array->ChanType, src, + newType, dst, + span->end, span->array->mask); + + span->array->ChanType = newType; + span->array->rgba = dst; +} + + + +/** + * Apply fragment shader, fragment program or normal texturing to span. + */ +static INLINE void +shade_texture_span(GLcontext *ctx, SWspan *span) +{ + GLbitfield inputsRead; + + /* Determine which fragment attributes are actually needed */ + if (ctx->FragmentProgram._Current) { + inputsRead = ctx->FragmentProgram._Current->Base.InputsRead; + } + else { + /* XXX we could be a bit smarter about this */ + inputsRead = ~0; + } + + if (ctx->FragmentProgram._Current || + ctx->ATIFragmentShader._Enabled) { + /* programmable shading */ + if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) { + convert_color_type(span, GL_FLOAT, 0); + } + if (span->primitive != GL_POINT || + (span->interpMask & SPAN_RGBA) || + ctx->Point.PointSprite) { + /* for single-pixel points, we populated the arrays already */ + interpolate_active_attribs(ctx, span, ~0); + } + span->array->ChanType = GL_FLOAT; + + if (!(span->arrayMask & SPAN_Z)) + _swrast_span_interpolate_z (ctx, span); + +#if 0 + if (inputsRead & FRAG_BIT_WPOS) +#else + /* XXX always interpolate wpos so that DDX/DDY work */ +#endif + interpolate_wpos(ctx, span); + + /* Run fragment program/shader now */ + if (ctx->FragmentProgram._Current) { + _swrast_exec_fragment_program(ctx, span); + } + else { + ASSERT(ctx->ATIFragmentShader._Enabled); + _swrast_exec_fragment_shader(ctx, span); + } + } + else if (ctx->Texture._EnabledCoordUnits) { + /* conventional texturing */ + +#if CHAN_BITS == 32 + if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { + interpolate_int_colors(ctx, span); + } +#else + if (!(span->arrayMask & SPAN_RGBA)) + interpolate_int_colors(ctx, span); +#endif + if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0) + interpolate_texcoords(ctx, span); + + _swrast_texture_span(ctx, span); + } +} + + + +/** + * Apply all the per-fragment operations to a span. + * This now includes texturing (_swrast_write_texture_span() is history). + * This function may modify any of the array values in the span. + * span->interpMask and span->arrayMask may be changed but will be restored + * to their original values before returning. + */ +void +_swrast_write_rgba_span( GLcontext *ctx, SWspan *span) +{ + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLuint colorMask = *((GLuint *) ctx->Color.ColorMask); + const GLbitfield origInterpMask = span->interpMask; + const GLbitfield origArrayMask = span->arrayMask; + const GLbitfield origArrayAttribs = span->arrayAttribs; + const GLenum origChanType = span->array->ChanType; + void * const origRgba = span->array->rgba; + const GLboolean shader = (ctx->FragmentProgram._Current + || ctx->ATIFragmentShader._Enabled); + const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits; + struct gl_framebuffer *fb = ctx->DrawBuffer; + + /* + printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__, + span->interpMask, span->arrayMask); + */ + + ASSERT(span->primitive == GL_POINT || + span->primitive == GL_LINE || + span->primitive == GL_POLYGON || + span->primitive == GL_BITMAP); + + /* Fragment write masks */ + if (span->arrayMask & SPAN_MASK) { + /* mask was initialized by caller, probably glBitmap */ + span->writeAll = GL_FALSE; + } + else { + _mesa_memset(span->array->mask, 1, span->end); + span->writeAll = GL_TRUE; + } + + /* Clip to window/scissor box */ + if (!clip_span(ctx, span)) { + return; + } + + ASSERT(span->end <= MAX_WIDTH); + +#ifdef DEBUG + /* Make sure all fragments are within window bounds */ + if (span->arrayMask & SPAN_XY) { + /* array of pixel locations */ + GLuint i; + for (i = 0; i < span->end; i++) { + if (span->array->mask[i]) { + assert(span->array->x[i] >= fb->_Xmin); + assert(span->array->x[i] < fb->_Xmax); + assert(span->array->y[i] >= fb->_Ymin); + assert(span->array->y[i] < fb->_Ymax); + } + } + } +#endif + + /* Polygon Stippling */ + if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) { + stipple_polygon_span(ctx, span); + } + + /* This is the normal place to compute the fragment color/Z + * from texturing or shading. + */ + if (shaderOrTexture && !swrast->_DeferredTexture) { + shade_texture_span(ctx, span); + } + + /* Do the alpha test */ + if (ctx->Color.AlphaEnabled) { + if (!_swrast_alpha_test(ctx, span)) { + /* all fragments failed test */ + goto end; + } + } + + /* Stencil and Z testing */ + if (ctx->Stencil._Enabled || ctx->Depth.Test) { + if (!(span->arrayMask & SPAN_Z)) + _swrast_span_interpolate_z(ctx, span); + if (ctx->Stencil._Enabled) { + /* Combined Z/stencil tests */ + if (!_swrast_stencil_and_ztest_span(ctx, span)) { + /* all fragments failed test */ + goto end; + } + } + else if (fb->Visual.depthBits > 0) { + /* Just regular depth testing */ + ASSERT(ctx->Depth.Test); + ASSERT(span->arrayMask & SPAN_Z); + if (!_swrast_depth_test_span(ctx, span)) { + /* all fragments failed test */ + goto end; + } + } + } + +#if FEATURE_ARB_occlusion_query + if (ctx->Query.CurrentOcclusionObject) { + /* update count of 'passed' fragments */ + struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; + GLuint i; + for (i = 0; i < span->end; i++) + q->Result += span->array->mask[i]; + } +#endif + + /* We had to wait until now to check for glColorMask(0,0,0,0) because of + * the occlusion test. + */ + if (colorMask == 0x0) { + /* no colors to write */ + goto end; + } + + /* If we were able to defer fragment color computation to now, there's + * a good chance that many fragments will have already been killed by + * Z/stencil testing. + */ + if (shaderOrTexture && swrast->_DeferredTexture) { + shade_texture_span(ctx, span); + } + +#if CHAN_BITS == 32 + if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { + interpolate_active_attribs(ctx, span, FRAG_BIT_COL0); + } +#else + if ((span->arrayMask & SPAN_RGBA) == 0) { + interpolate_int_colors(ctx, span); + } +#endif + + ASSERT(span->arrayMask & SPAN_RGBA); + + if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) { + /* Add primary and specular (diffuse + specular) colors */ + if (!shader) { + if (ctx->Fog.ColorSumEnabled || + (ctx->Light.Enabled && + ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) { + add_specular(ctx, span); + } + } + } + + /* Fog */ + if (swrast->_FogEnabled) { + _swrast_fog_rgba_span(ctx, span); + } + + /* Antialias coverage application */ + if (span->arrayMask & SPAN_COVERAGE) { + apply_aa_coverage(span); + } + + /* Clamp color/alpha values over the range [0.0, 1.0] before storage */ + if (ctx->Color.ClampFragmentColor == GL_TRUE && + span->array->ChanType == GL_FLOAT) { + clamp_colors(span); + } + + /* + * Write to renderbuffers. + * Depending on glDrawBuffer() state and the which color outputs are + * written by the fragment shader, we may either replicate one color to + * all renderbuffers or write a different color to each renderbuffer. + * multiFragOutputs=TRUE for the later case. + */ + { + const GLuint numBuffers = fb->_NumColorDrawBuffers; + const struct gl_fragment_program *fp = ctx->FragmentProgram._Current; + const GLboolean multiFragOutputs = + (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0)); + GLuint buf; + + for (buf = 0; buf < numBuffers; buf++) { + struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf]; + + /* color[fragOutput] will be written to buffer[buf] */ + + if (rb) { + GLchan rgbaSave[MAX_WIDTH][4]; + const GLuint fragOutput = multiFragOutputs ? buf : 0; + + if (rb->DataType != span->array->ChanType || fragOutput > 0) { + convert_color_type(span, rb->DataType, fragOutput); + } + + if (!multiFragOutputs && numBuffers > 1) { + /* save colors for second, third renderbuffer writes */ + _mesa_memcpy(rgbaSave, span->array->rgba, + 4 * span->end * sizeof(GLchan)); + } + + ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB); + + if (ctx->Color._LogicOpEnabled) { + _swrast_logicop_rgba_span(ctx, rb, span); + } + else if (ctx->Color.BlendEnabled) { + _swrast_blend_span(ctx, rb, span); + } + + if (colorMask != 0xffffffff) { + _swrast_mask_rgba_span(ctx, rb, span); + } + + if (span->arrayMask & SPAN_XY) { + /* array of pixel coords */ + ASSERT(rb->PutValues); + rb->PutValues(ctx, rb, span->end, + span->array->x, span->array->y, + span->array->rgba, span->array->mask); + } + else { + /* horizontal run of pixels */ + ASSERT(rb->PutRow); + rb->PutRow(ctx, rb, span->end, span->x, span->y, + span->array->rgba, + span->writeAll ? NULL: span->array->mask); + } + + if (!multiFragOutputs && numBuffers > 1) { + /* restore original span values */ + _mesa_memcpy(span->array->rgba, rgbaSave, + 4 * span->end * sizeof(GLchan)); + } + + } /* if rb */ + } /* for buf */ + } + +end: + /* restore these values before returning */ + span->interpMask = origInterpMask; + span->arrayMask = origArrayMask; + span->arrayAttribs = origArrayAttribs; + span->array->ChanType = origChanType; + span->array->rgba = origRgba; +} + + +/** + * Read RGBA pixels from a renderbuffer. Clipping will be done to prevent + * reading ouside the buffer's boundaries. + * \param dstType datatype for returned colors + * \param rgba the returned colors + */ +void +_swrast_read_rgba_span( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint n, GLint x, GLint y, GLenum dstType, + GLvoid *rgba) +{ + const GLint bufWidth = (GLint) rb->Width; + const GLint bufHeight = (GLint) rb->Height; + + if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) { + /* completely above, below, or right */ + /* XXX maybe leave rgba values undefined? */ + _mesa_bzero(rgba, 4 * n * sizeof(GLchan)); + } + else { + GLint skip, length; + if (x < 0) { + /* left edge clipping */ + skip = -x; + length = (GLint) n - skip; + if (length < 0) { + /* completely left of window */ + return; + } + if (length > bufWidth) { + length = bufWidth; + } + } + else if ((GLint) (x + n) > bufWidth) { + /* right edge clipping */ + skip = 0; + length = bufWidth - x; + if (length < 0) { + /* completely to right of window */ + return; + } + } + else { + /* no clipping */ + skip = 0; + length = (GLint) n; + } + + ASSERT(rb); + ASSERT(rb->GetRow); + ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA); + + if (rb->DataType == dstType) { + rb->GetRow(ctx, rb, length, x + skip, y, + (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType)); + } + else { + GLuint temp[MAX_WIDTH * 4]; + rb->GetRow(ctx, rb, length, x + skip, y, temp); + _mesa_convert_colors(rb->DataType, temp, + dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType), + length, NULL); + } + } +} + + +/** + * Read CI pixels from a renderbuffer. Clipping will be done to prevent + * reading ouside the buffer's boundaries. + */ +void +_swrast_read_index_span( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint n, GLint x, GLint y, GLuint index[] ) +{ + const GLint bufWidth = (GLint) rb->Width; + const GLint bufHeight = (GLint) rb->Height; + + if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) { + /* completely above, below, or right */ + _mesa_bzero(index, n * sizeof(GLuint)); + } + else { + GLint skip, length; + if (x < 0) { + /* left edge clipping */ + skip = -x; + length = (GLint) n - skip; + if (length < 0) { + /* completely left of window */ + return; + } + if (length > bufWidth) { + length = bufWidth; + } + } + else if ((GLint) (x + n) > bufWidth) { + /* right edge clipping */ + skip = 0; + length = bufWidth - x; + if (length < 0) { + /* completely to right of window */ + return; + } + } + else { + /* no clipping */ + skip = 0; + length = (GLint) n; + } + + ASSERT(rb->GetRow); + ASSERT(rb->_BaseFormat == GL_COLOR_INDEX); + + if (rb->DataType == GL_UNSIGNED_BYTE) { + GLubyte index8[MAX_WIDTH]; + GLint i; + rb->GetRow(ctx, rb, length, x + skip, y, index8); + for (i = 0; i < length; i++) + index[skip + i] = index8[i]; + } + else if (rb->DataType == GL_UNSIGNED_SHORT) { + GLushort index16[MAX_WIDTH]; + GLint i; + rb->GetRow(ctx, rb, length, x + skip, y, index16); + for (i = 0; i < length; i++) + index[skip + i] = index16[i]; + } + else if (rb->DataType == GL_UNSIGNED_INT) { + rb->GetRow(ctx, rb, length, x + skip, y, index + skip); + } + } +} + + +/** + * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid + * reading values outside the buffer bounds. + * We can use this for reading any format/type of renderbuffer. + * \param valueSize is the size in bytes of each value (pixel) put into the + * values array. + */ +void +_swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, const GLint x[], const GLint y[], + void *values, GLuint valueSize) +{ + GLuint i, inCount = 0, inStart = 0; + + for (i = 0; i < count; i++) { + if (x[i] >= 0 && y[i] >= 0 && + x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) { + /* inside */ + if (inCount == 0) + inStart = i; + inCount++; + } + else { + if (inCount > 0) { + /* read [inStart, inStart + inCount) */ + rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart, + (GLubyte *) values + inStart * valueSize); + inCount = 0; + } + } + } + if (inCount > 0) { + /* read last values */ + rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart, + (GLubyte *) values + inStart * valueSize); + } +} + + +/** + * Wrapper for gl_renderbuffer::PutRow() which does clipping. + * \param valueSize size of each value (pixel) in bytes + */ +void +_swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, GLint x, GLint y, + const GLvoid *values, GLuint valueSize) +{ + GLint skip = 0; + + if (y < 0 || y >= (GLint) rb->Height) + return; /* above or below */ + + if (x + (GLint) count <= 0 || x >= (GLint) rb->Width) + return; /* entirely left or right */ + + if ((GLint) (x + count) > (GLint) rb->Width) { + /* right clip */ + GLint clip = x + count - rb->Width; + count -= clip; + } + + if (x < 0) { + /* left clip */ + skip = -x; + x = 0; + count -= skip; + } + + rb->PutRow(ctx, rb, count, x, y, + (const GLubyte *) values + skip * valueSize, NULL); +} + + +/** + * Wrapper for gl_renderbuffer::GetRow() which does clipping. + * \param valueSize size of each value (pixel) in bytes + */ +void +_swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, GLint x, GLint y, + GLvoid *values, GLuint valueSize) +{ + GLint skip = 0; + + if (y < 0 || y >= (GLint) rb->Height) + return; /* above or below */ + + if (x + (GLint) count <= 0 || x >= (GLint) rb->Width) + return; /* entirely left or right */ + + if (x + count > rb->Width) { + /* right clip */ + GLint clip = x + count - rb->Width; + count -= clip; + } + + if (x < 0) { + /* left clip */ + skip = -x; + x = 0; + count -= skip; + } + + rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize); +} + + +/** + * Get RGBA pixels from the given renderbuffer. Put the pixel colors into + * the span's specular color arrays. The specular color arrays should no + * longer be needed by time this function is called. + * Used by blending, logicop and masking functions. + * \return pointer to the colors we read. + */ +void * +_swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb, + SWspan *span) +{ + const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType); + void *rbPixels; + + /* + * Point rbPixels to a temporary space (use specular color arrays). + */ + rbPixels = span->array->attribs[FRAG_ATTRIB_COL1]; + + /* Get destination values from renderbuffer */ + if (span->arrayMask & SPAN_XY) { + _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y, + rbPixels, pixelSize); + } + else { + _swrast_get_row(ctx, rb, span->end, span->x, span->y, + rbPixels, pixelSize); + } + + return rbPixels; +} |