diff options
author | marha <marha@users.sourceforge.net> | 2009-10-08 13:15:52 +0000 |
---|---|---|
committer | marha <marha@users.sourceforge.net> | 2009-10-08 13:15:52 +0000 |
commit | a0c4815433ccd57322f4f7703ca35e9ccfa59250 (patch) | |
tree | f5213802ec12adb86ec3136001c1c29fe5343700 /mesalib/src/mesa/swrast | |
parent | c73dc01b6de45612b24dc2dd34fba24d81ebf46c (diff) | |
download | vcxsrv-a0c4815433ccd57322f4f7703ca35e9ccfa59250.tar.gz vcxsrv-a0c4815433ccd57322f4f7703ca35e9ccfa59250.tar.bz2 vcxsrv-a0c4815433ccd57322f4f7703ca35e9ccfa59250.zip |
Added MesaLib-7.6
Diffstat (limited to 'mesalib/src/mesa/swrast')
58 files changed, 24879 insertions, 0 deletions
diff --git a/mesalib/src/mesa/swrast/descrip.mms b/mesalib/src/mesa/swrast/descrip.mms new file mode 100644 index 000000000..0b23deb3c --- /dev/null +++ b/mesalib/src/mesa/swrast/descrip.mms @@ -0,0 +1,82 @@ +# Makefile for core library for VMS +# contributed by Jouk Jansen joukj@hrem.nano.tudelft.nl +# Last revision : 3 October 2007 + +.first + define gl [---.include.gl] + define math [-.math] + define swrast [-.swrast] + define array_cache [-.array_cache] + define glapi [-.glapi] + define main [-.main] + define shader [-.shader] + +.include [---]mms-config. + +##### MACROS ##### + +VPATH = RCS + +INCDIR = [---.include],[-.main],[-.glapi],[-.shader],[-.shader.slang] +LIBDIR = [---.lib] +CFLAGS = /include=($(INCDIR),[])/define=(PTHREADS=1)/name=(as_is,short)/float=ieee/ieee=denorm + +SOURCES = s_aaline.c s_aatriangle.c s_accum.c s_alpha.c \ + s_bitmap.c s_blend.c s_blit.c s_buffers.c s_context.c \ + s_copypix.c s_depth.c s_fragprog.c \ + s_drawpix.c s_feedback.c s_fog.c s_imaging.c s_lines.c s_logic.c \ + s_masking.c s_points.c s_readpix.c \ + s_span.c s_stencil.c s_texstore.c s_texcombine.c s_texfilter.c \ + s_triangle.c s_zoom.c s_atifragshader.c + +OBJECTS = s_aaline.obj,s_aatriangle.obj,s_accum.obj,s_alpha.obj,\ + s_bitmap.obj,s_blend.obj,s_blit.obj,s_fragprog.obj,\ + s_buffers.obj,s_context.obj,s_atifragshader.obj,\ + s_copypix.obj,s_depth.obj,s_drawpix.obj,s_feedback.obj,s_fog.obj,\ + s_imaging.obj,s_lines.obj,s_logic.obj,s_masking.obj,\ + s_points.obj,s_readpix.obj,s_span.obj,s_stencil.obj,\ + s_texstore.obj,s_texcombine.obj,s_texfilter.obj,s_triangle.obj,\ + s_zoom.obj + +##### RULES ##### + +VERSION=Mesa V3.4 + +##### TARGETS ##### +# Make the library +$(LIBDIR)$(GL_LIB) : $(OBJECTS) + @ library $(LIBDIR)$(GL_LIB) $(OBJECTS) + +clean : + purge + delete *.obj;* + +s_atifragshader.obj : s_atifragshader.c +s_aaline.obj : s_aaline.c +s_aatriangle.obj : s_aatriangle.c +s_accum.obj : s_accum.c +s_alpha.obj : s_alpha.c +s_bitmap.obj : s_bitmap.c +s_blend.obj : s_blend.c +s_blit.obj : s_blit.c +s_buffers.obj : s_buffers.c +s_context.obj : s_context.c +s_copypix.obj : s_copypix.c +s_depth.obj : s_depth.c +s_drawpix.obj : s_drawpix.c +s_feedback.obj : s_feedback.c +s_fog.obj : s_fog.c +s_imaging.obj : s_imaging.c +s_lines.obj : s_lines.c +s_logic.obj : s_logic.c +s_masking.obj : s_masking.c +s_points.obj : s_points.c +s_readpix.obj : s_readpix.c +s_span.obj : s_span.c +s_stencil.obj : s_stencil.c +s_texstore.obj : s_texstore.c +s_texcombine.obj : s_texcombine.c +s_texfilter.obj : s_texfilter.c +s_triangle.obj : s_triangle.c +s_zoom.obj : s_zoom.c +s_fragprog.obj : s_fragprog.c diff --git a/mesalib/src/mesa/swrast/s_aaline.c b/mesalib/src/mesa/swrast/s_aaline.c new file mode 100644 index 000000000..9bfa8f2e6 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_aaline.c @@ -0,0 +1,524 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.3 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/imports.h" +#include "main/macros.h" +#include "main/mtypes.h" +#include "swrast/s_aaline.h" +#include "swrast/s_context.h" +#include "swrast/s_span.h" +#include "swrast/swrast.h" + + +#define SUB_PIXEL 4 + + +/* + * Info about the AA line we're rendering + */ +struct LineInfo +{ + GLfloat x0, y0; /* start */ + GLfloat x1, y1; /* end */ + GLfloat dx, dy; /* direction vector */ + GLfloat len; /* length */ + GLfloat halfWidth; /* half of line width */ + GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */ + /* for coverage computation */ + GLfloat qx0, qy0; /* quad vertices */ + GLfloat qx1, qy1; + GLfloat qx2, qy2; + GLfloat qx3, qy3; + GLfloat ex0, ey0; /* quad edge vectors */ + GLfloat ex1, ey1; + GLfloat ex2, ey2; + GLfloat ex3, ey3; + + /* DO_Z */ + GLfloat zPlane[4]; + /* DO_RGBA */ + GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4]; + /* DO_INDEX */ + GLfloat iPlane[4]; + /* DO_ATTRIBS */ + GLfloat wPlane[4]; + GLfloat attrPlane[FRAG_ATTRIB_MAX][4][4]; + GLfloat lambda[FRAG_ATTRIB_MAX]; + GLfloat texWidth[FRAG_ATTRIB_MAX]; + GLfloat texHeight[FRAG_ATTRIB_MAX]; + + SWspan span; +}; + + + +/* + * Compute the equation of a plane used to interpolate line fragment data + * such as color, Z, texture coords, etc. + * Input: (x0, y0) and (x1,y1) are the endpoints of the line. + * z0, and z1 are the end point values to interpolate. + * Output: plane - the plane equation. + * + * Note: we don't really have enough parameters to specify a plane. + * We take the endpoints of the line and compute a plane such that + * the cross product of the line vector and the plane normal is + * parallel to the projection plane. + */ +static void +compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1, + GLfloat z0, GLfloat z1, GLfloat plane[4]) +{ +#if 0 + /* original */ + const GLfloat px = x1 - x0; + const GLfloat py = y1 - y0; + const GLfloat pz = z1 - z0; + const GLfloat qx = -py; + const GLfloat qy = px; + const GLfloat qz = 0; + const GLfloat a = py * qz - pz * qy; + const GLfloat b = pz * qx - px * qz; + const GLfloat c = px * qy - py * qx; + const GLfloat d = -(a * x0 + b * y0 + c * z0); + plane[0] = a; + plane[1] = b; + plane[2] = c; + plane[3] = d; +#else + /* simplified */ + const GLfloat px = x1 - x0; + const GLfloat py = y1 - y0; + const GLfloat pz = z0 - z1; + const GLfloat a = pz * px; + const GLfloat b = pz * py; + const GLfloat c = px * px + py * py; + const GLfloat d = -(a * x0 + b * y0 + c * z0); + if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) { + plane[0] = 0.0; + plane[1] = 0.0; + plane[2] = 1.0; + plane[3] = 0.0; + } + else { + plane[0] = a; + plane[1] = b; + plane[2] = c; + plane[3] = d; + } +#endif +} + + +static INLINE void +constant_plane(GLfloat value, GLfloat plane[4]) +{ + plane[0] = 0.0; + plane[1] = 0.0; + plane[2] = -1.0; + plane[3] = value; +} + + +static INLINE GLfloat +solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4]) +{ + const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; + return z; +} + +#define SOLVE_PLANE(X, Y, PLANE) \ + ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2]) + + +/* + * Return 1 / solve_plane(). + */ +static INLINE GLfloat +solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4]) +{ + const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y; + if (denom == 0.0) + return 0.0; + else + return -plane[2] / denom; +} + + +/* + * Solve plane and return clamped GLchan value. + */ +static INLINE GLchan +solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4]) +{ + const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; +#if CHAN_TYPE == GL_FLOAT + return CLAMP(z, 0.0F, CHAN_MAXF); +#else + if (z < 0) + return 0; + else if (z > CHAN_MAX) + return CHAN_MAX; + return (GLchan) IROUND_POS(z); +#endif +} + + +/* + * Compute mipmap level of detail. + */ +static INLINE GLfloat +compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4], + GLfloat invQ, GLfloat width, GLfloat height) +{ + GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width; + GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width; + GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height; + GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height; + GLfloat r1 = dudx * dudx + dudy * dudy; + GLfloat r2 = dvdx * dvdx + dvdy * dvdy; + GLfloat rho2 = r1 + r2; + /* return log base 2 of rho */ + if (rho2 == 0.0F) + return 0.0; + else + return (GLfloat) (LOGF(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */ +} + + + + +/* + * Fill in the samples[] array with the (x,y) subpixel positions of + * xSamples * ySamples sample positions. + * Note that the four corner samples are put into the first four + * positions of the array. This allows us to optimize for the common + * case of all samples being inside the polygon. + */ +static void +make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2]) +{ + const GLfloat dx = 1.0F / (GLfloat) xSamples; + const GLfloat dy = 1.0F / (GLfloat) ySamples; + GLint x, y; + GLint i; + + i = 4; + for (x = 0; x < xSamples; x++) { + for (y = 0; y < ySamples; y++) { + GLint j; + if (x == 0 && y == 0) { + /* lower left */ + j = 0; + } + else if (x == xSamples - 1 && y == 0) { + /* lower right */ + j = 1; + } + else if (x == 0 && y == ySamples - 1) { + /* upper left */ + j = 2; + } + else if (x == xSamples - 1 && y == ySamples - 1) { + /* upper right */ + j = 3; + } + else { + j = i++; + } + samples[j][0] = x * dx + 0.5F * dx; + samples[j][1] = y * dy + 0.5F * dy; + } + } +} + + + +/* + * Compute how much of the given pixel's area is inside the rectangle + * defined by vertices v0, v1, v2, v3. + * Vertices MUST be specified in counter-clockwise order. + * Return: coverage in [0, 1]. + */ +static GLfloat +compute_coveragef(const struct LineInfo *info, + GLint winx, GLint winy) +{ + static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2]; + static GLboolean haveSamples = GL_FALSE; + const GLfloat x = (GLfloat) winx; + const GLfloat y = (GLfloat) winy; + GLint stop = 4, i; + GLfloat insideCount = SUB_PIXEL * SUB_PIXEL; + + if (!haveSamples) { + make_sample_table(SUB_PIXEL, SUB_PIXEL, samples); + haveSamples = GL_TRUE; + } + +#if 0 /*DEBUG*/ + { + const GLfloat area = dx0 * dy1 - dx1 * dy0; + assert(area >= 0.0); + } +#endif + + for (i = 0; i < stop; i++) { + const GLfloat sx = x + samples[i][0]; + const GLfloat sy = y + samples[i][1]; + const GLfloat fx0 = sx - info->qx0; + const GLfloat fy0 = sy - info->qy0; + const GLfloat fx1 = sx - info->qx1; + const GLfloat fy1 = sy - info->qy1; + const GLfloat fx2 = sx - info->qx2; + const GLfloat fy2 = sy - info->qy2; + const GLfloat fx3 = sx - info->qx3; + const GLfloat fy3 = sy - info->qy3; + /* cross product determines if sample is inside or outside each edge */ + GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0); + GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1); + GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2); + GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3); + /* Check if the sample is exactly on an edge. If so, let cross be a + * positive or negative value depending on the direction of the edge. + */ + if (cross0 == 0.0F) + cross0 = info->ex0 + info->ey0; + if (cross1 == 0.0F) + cross1 = info->ex1 + info->ey1; + if (cross2 == 0.0F) + cross2 = info->ex2 + info->ey2; + if (cross3 == 0.0F) + cross3 = info->ex3 + info->ey3; + if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) { + /* point is outside quadrilateral */ + insideCount -= 1.0F; + stop = SUB_PIXEL * SUB_PIXEL; + } + } + if (stop == 4) + return 1.0F; + else + return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL)); +} + + +/** + * Compute coverage value for color index mode. + * XXX this may not be quite correct. + * \return coverage in [0,15]. + */ +static GLfloat +compute_coveragei(const struct LineInfo *info, + GLint winx, GLint winy) +{ + return compute_coveragef(info, winx, winy) * 15.0F; +} + + + +typedef void (*plot_func)(GLcontext *ctx, struct LineInfo *line, + int ix, int iy); + + + +/* + * Draw an AA line segment (called many times per line when stippling) + */ +static void +segment(GLcontext *ctx, + struct LineInfo *line, + plot_func plot, + GLfloat t0, GLfloat t1) +{ + const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx; + const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy; + /* compute the actual segment's endpoints */ + const GLfloat x0 = line->x0 + t0 * line->dx; + const GLfloat y0 = line->y0 + t0 * line->dy; + const GLfloat x1 = line->x0 + t1 * line->dx; + const GLfloat y1 = line->y0 + t1 * line->dy; + + /* compute vertices of the line-aligned quadrilateral */ + line->qx0 = x0 - line->yAdj; + line->qy0 = y0 + line->xAdj; + line->qx1 = x0 + line->yAdj; + line->qy1 = y0 - line->xAdj; + line->qx2 = x1 + line->yAdj; + line->qy2 = y1 - line->xAdj; + line->qx3 = x1 - line->yAdj; + line->qy3 = y1 + line->xAdj; + /* compute the quad's edge vectors (for coverage calc) */ + line->ex0 = line->qx1 - line->qx0; + line->ey0 = line->qy1 - line->qy0; + line->ex1 = line->qx2 - line->qx1; + line->ey1 = line->qy2 - line->qy1; + line->ex2 = line->qx3 - line->qx2; + line->ey2 = line->qy3 - line->qy2; + line->ex3 = line->qx0 - line->qx3; + line->ey3 = line->qy0 - line->qy3; + + if (absDx > absDy) { + /* X-major line */ + GLfloat dydx = line->dy / line->dx; + GLfloat xLeft, xRight, yBot, yTop; + GLint ix, ixRight; + if (x0 < x1) { + xLeft = x0 - line->halfWidth; + xRight = x1 + line->halfWidth; + if (line->dy >= 0.0) { + yBot = y0 - 3.0F * line->halfWidth; + yTop = y0 + line->halfWidth; + } + else { + yBot = y0 - line->halfWidth; + yTop = y0 + 3.0F * line->halfWidth; + } + } + else { + xLeft = x1 - line->halfWidth; + xRight = x0 + line->halfWidth; + if (line->dy <= 0.0) { + yBot = y1 - 3.0F * line->halfWidth; + yTop = y1 + line->halfWidth; + } + else { + yBot = y1 - line->halfWidth; + yTop = y1 + 3.0F * line->halfWidth; + } + } + + /* scan along the line, left-to-right */ + ixRight = (GLint) (xRight + 1.0F); + + /*printf("avg span height: %g\n", yTop - yBot);*/ + for (ix = (GLint) xLeft; ix < ixRight; ix++) { + const GLint iyBot = (GLint) yBot; + const GLint iyTop = (GLint) (yTop + 1.0F); + GLint iy; + /* scan across the line, bottom-to-top */ + for (iy = iyBot; iy < iyTop; iy++) { + (*plot)(ctx, line, ix, iy); + } + yBot += dydx; + yTop += dydx; + } + } + else { + /* Y-major line */ + GLfloat dxdy = line->dx / line->dy; + GLfloat yBot, yTop, xLeft, xRight; + GLint iy, iyTop; + if (y0 < y1) { + yBot = y0 - line->halfWidth; + yTop = y1 + line->halfWidth; + if (line->dx >= 0.0) { + xLeft = x0 - 3.0F * line->halfWidth; + xRight = x0 + line->halfWidth; + } + else { + xLeft = x0 - line->halfWidth; + xRight = x0 + 3.0F * line->halfWidth; + } + } + else { + yBot = y1 - line->halfWidth; + yTop = y0 + line->halfWidth; + if (line->dx <= 0.0) { + xLeft = x1 - 3.0F * line->halfWidth; + xRight = x1 + line->halfWidth; + } + else { + xLeft = x1 - line->halfWidth; + xRight = x1 + 3.0F * line->halfWidth; + } + } + + /* scan along the line, bottom-to-top */ + iyTop = (GLint) (yTop + 1.0F); + + /*printf("avg span width: %g\n", xRight - xLeft);*/ + for (iy = (GLint) yBot; iy < iyTop; iy++) { + const GLint ixLeft = (GLint) xLeft; + const GLint ixRight = (GLint) (xRight + 1.0F); + GLint ix; + /* scan across the line, left-to-right */ + for (ix = ixLeft; ix < ixRight; ix++) { + (*plot)(ctx, line, ix, iy); + } + xLeft += dxdy; + xRight += dxdy; + } + } +} + + +#define NAME(x) aa_ci_##x +#define DO_Z +#define DO_ATTRIBS /* for fog */ +#define DO_INDEX +#include "s_aalinetemp.h" + + +#define NAME(x) aa_rgba_##x +#define DO_Z +#define DO_RGBA +#include "s_aalinetemp.h" + + +#define NAME(x) aa_general_rgba_##x +#define DO_Z +#define DO_RGBA +#define DO_ATTRIBS +#include "s_aalinetemp.h" + + + +void +_swrast_choose_aa_line_function(GLcontext *ctx) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + + ASSERT(ctx->Line.SmoothFlag); + + if (ctx->Visual.rgbMode) { + /* RGBA */ + if (ctx->Texture._EnabledCoordUnits != 0 + || ctx->FragmentProgram._Current + || (ctx->Light.Enabled && + ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR) + || ctx->Fog.ColorSumEnabled + || swrast->_FogEnabled) { + swrast->Line = aa_general_rgba_line; + } + else { + swrast->Line = aa_rgba_line; + } + } + else { + /* Color Index */ + swrast->Line = aa_ci_line; + } +} diff --git a/mesalib/src/mesa/swrast/s_aaline.h b/mesalib/src/mesa/swrast/s_aaline.h new file mode 100644 index 000000000..f1d708ec8 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_aaline.h @@ -0,0 +1,38 @@ + +/* + * Mesa 3-D graphics library + * Version: 3.5 + * + * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_AALINE_H +#define S_AALINE_H + + +#include "swrast.h" + + +extern void +_swrast_choose_aa_line_function(GLcontext *ctx); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_aalinetemp.h b/mesalib/src/mesa/swrast/s_aalinetemp.h new file mode 100644 index 000000000..42ffe9f20 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_aalinetemp.h @@ -0,0 +1,274 @@ +/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/* + * Antialiased line template. + */ + + +/* + * Function to render each fragment in the AA line. + * \param ix - integer fragment window X coordiante + * \param iy - integer fragment window Y coordiante + */ +static void +NAME(plot)(GLcontext *ctx, struct LineInfo *line, int ix, int iy) +{ + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLfloat fx = (GLfloat) ix; + const GLfloat fy = (GLfloat) iy; +#ifdef DO_INDEX + const GLfloat coverage = compute_coveragei(line, ix, iy); +#else + const GLfloat coverage = compute_coveragef(line, ix, iy); +#endif + const GLuint i = line->span.end; + + (void) swrast; + + if (coverage == 0.0) + return; + + line->span.end++; + line->span.array->coverage[i] = coverage; + line->span.array->x[i] = ix; + line->span.array->y[i] = iy; + + /* + * Compute Z, color, texture coords, fog for the fragment by + * solving the plane equations at (ix,iy). + */ +#ifdef DO_Z + line->span.array->z[i] = (GLuint) solve_plane(fx, fy, line->zPlane); +#endif +#ifdef DO_RGBA + line->span.array->rgba[i][RCOMP] = solve_plane_chan(fx, fy, line->rPlane); + line->span.array->rgba[i][GCOMP] = solve_plane_chan(fx, fy, line->gPlane); + line->span.array->rgba[i][BCOMP] = solve_plane_chan(fx, fy, line->bPlane); + line->span.array->rgba[i][ACOMP] = solve_plane_chan(fx, fy, line->aPlane); +#endif +#ifdef DO_INDEX + line->span.array->index[i] = (GLint) solve_plane(fx, fy, line->iPlane); +#endif +#if defined(DO_ATTRIBS) + ATTRIB_LOOP_BEGIN + GLfloat (*attribArray)[4] = line->span.array->attribs[attr]; + if (attr >= FRAG_ATTRIB_TEX0 && attr < FRAG_ATTRIB_VAR0 + && !ctx->FragmentProgram._Current) { + /* texcoord w/ divide by Q */ + const GLuint unit = attr - FRAG_ATTRIB_TEX0; + const GLfloat invQ = solve_plane_recip(fx, fy, line->attrPlane[attr][3]); + GLuint c; + for (c = 0; c < 3; c++) { + attribArray[i][c] = solve_plane(fx, fy, line->attrPlane[attr][c]) * invQ; + } + line->span.array->lambda[unit][i] + = compute_lambda(line->attrPlane[attr][0], + line->attrPlane[attr][1], invQ, + line->texWidth[attr], line->texHeight[attr]); + } + else { + /* non-texture attrib */ + const GLfloat invW = solve_plane_recip(fx, fy, line->wPlane); + GLuint c; + for (c = 0; c < 4; c++) { + attribArray[i][c] = solve_plane(fx, fy, line->attrPlane[attr][c]) * invW; + } + } + ATTRIB_LOOP_END +#endif + + if (line->span.end == MAX_WIDTH) { +#if defined(DO_RGBA) + _swrast_write_rgba_span(ctx, &(line->span)); +#else + _swrast_write_index_span(ctx, &(line->span)); +#endif + line->span.end = 0; /* reset counter */ + } +} + + + +/* + * Line setup + */ +static void +NAME(line)(GLcontext *ctx, const SWvertex *v0, const SWvertex *v1) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLfloat tStart, tEnd; /* segment start, end along line length */ + GLboolean inSegment; + GLint iLen, i; + + /* Init the LineInfo struct */ + struct LineInfo line; + line.x0 = v0->attrib[FRAG_ATTRIB_WPOS][0]; + line.y0 = v0->attrib[FRAG_ATTRIB_WPOS][1]; + line.x1 = v1->attrib[FRAG_ATTRIB_WPOS][0]; + line.y1 = v1->attrib[FRAG_ATTRIB_WPOS][1]; + line.dx = line.x1 - line.x0; + line.dy = line.y1 - line.y0; + line.len = SQRTF(line.dx * line.dx + line.dy * line.dy); + line.halfWidth = 0.5F * CLAMP(ctx->Line.Width, + ctx->Const.MinLineWidthAA, + ctx->Const.MaxLineWidthAA); + + if (line.len == 0.0 || IS_INF_OR_NAN(line.len)) + return; + + INIT_SPAN(line.span, GL_LINE); + line.span.arrayMask = SPAN_XY | SPAN_COVERAGE; + line.span.facing = swrast->PointLineFacing; + line.xAdj = line.dx / line.len * line.halfWidth; + line.yAdj = line.dy / line.len * line.halfWidth; + +#ifdef DO_Z + line.span.arrayMask |= SPAN_Z; + compute_plane(line.x0, line.y0, line.x1, line.y1, + v0->attrib[FRAG_ATTRIB_WPOS][2], v1->attrib[FRAG_ATTRIB_WPOS][2], line.zPlane); +#endif +#ifdef DO_RGBA + line.span.arrayMask |= SPAN_RGBA; + if (ctx->Light.ShadeModel == GL_SMOOTH) { + compute_plane(line.x0, line.y0, line.x1, line.y1, + v0->color[RCOMP], v1->color[RCOMP], line.rPlane); + compute_plane(line.x0, line.y0, line.x1, line.y1, + v0->color[GCOMP], v1->color[GCOMP], line.gPlane); + compute_plane(line.x0, line.y0, line.x1, line.y1, + v0->color[BCOMP], v1->color[BCOMP], line.bPlane); + compute_plane(line.x0, line.y0, line.x1, line.y1, + v0->color[ACOMP], v1->color[ACOMP], line.aPlane); + } + else { + constant_plane(v1->color[RCOMP], line.rPlane); + constant_plane(v1->color[GCOMP], line.gPlane); + constant_plane(v1->color[BCOMP], line.bPlane); + constant_plane(v1->color[ACOMP], line.aPlane); + } +#endif +#ifdef DO_INDEX + line.span.arrayMask |= SPAN_INDEX; + if (ctx->Light.ShadeModel == GL_SMOOTH) { + compute_plane(line.x0, line.y0, line.x1, line.y1, + v0->attrib[FRAG_ATTRIB_CI][0], + v1->attrib[FRAG_ATTRIB_CI][0], line.iPlane); + } + else { + constant_plane(v1->attrib[FRAG_ATTRIB_CI][0], line.iPlane); + } +#endif +#if defined(DO_ATTRIBS) + { + const GLfloat invW0 = v0->attrib[FRAG_ATTRIB_WPOS][3]; + const GLfloat invW1 = v1->attrib[FRAG_ATTRIB_WPOS][3]; + line.span.arrayMask |= SPAN_LAMBDA; + compute_plane(line.x0, line.y0, line.x1, line.y1, invW0, invW1, line.wPlane); + ATTRIB_LOOP_BEGIN + GLuint c; + if (swrast->_InterpMode[attr] == GL_FLAT) { + for (c = 0; c < 4; c++) { + constant_plane(v1->attrib[attr][c], line.attrPlane[attr][c]); + } + } + else { + for (c = 0; c < 4; c++) { + const GLfloat a0 = v0->attrib[attr][c] * invW0; + const GLfloat a1 = v1->attrib[attr][c] * invW1; + compute_plane(line.x0, line.y0, line.x1, line.y1, a0, a1, + line.attrPlane[attr][c]); + } + } + line.span.arrayAttribs |= (1 << attr); + if (attr >= FRAG_ATTRIB_TEX0 && attr < FRAG_ATTRIB_VAR0) { + const GLuint u = attr - FRAG_ATTRIB_TEX0; + const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current; + const struct gl_texture_image *texImage = obj->Image[0][obj->BaseLevel]; + line.texWidth[attr] = (GLfloat) texImage->Width; + line.texHeight[attr] = (GLfloat) texImage->Height; + } + ATTRIB_LOOP_END + } +#endif + + tStart = tEnd = 0.0; + inSegment = GL_FALSE; + iLen = (GLint) line.len; + + if (ctx->Line.StippleFlag) { + for (i = 0; i < iLen; i++) { + const GLuint bit = (swrast->StippleCounter / ctx->Line.StippleFactor) & 0xf; + if ((1 << bit) & ctx->Line.StipplePattern) { + /* stipple bit is on */ + const GLfloat t = (GLfloat) i / (GLfloat) line.len; + if (!inSegment) { + /* start new segment */ + inSegment = GL_TRUE; + tStart = t; + } + else { + /* still in the segment, extend it */ + tEnd = t; + } + } + else { + /* stipple bit is off */ + if (inSegment && (tEnd > tStart)) { + /* draw the segment */ + segment(ctx, &line, NAME(plot), tStart, tEnd); + inSegment = GL_FALSE; + } + else { + /* still between segments, do nothing */ + } + } + swrast->StippleCounter++; + } + + if (inSegment) { + /* draw the final segment of the line */ + segment(ctx, &line, NAME(plot), tStart, 1.0F); + } + } + else { + /* non-stippled */ + segment(ctx, &line, NAME(plot), 0.0, 1.0); + } + +#if defined(DO_RGBA) + _swrast_write_rgba_span(ctx, &(line.span)); +#else + _swrast_write_index_span(ctx, &(line.span)); +#endif +} + + + + +#undef DO_Z +#undef DO_RGBA +#undef DO_INDEX +#undef DO_ATTRIBS +#undef NAME diff --git a/mesalib/src/mesa/swrast/s_aatriangle.c b/mesalib/src/mesa/swrast/s_aatriangle.c new file mode 100644 index 000000000..078f16aea --- /dev/null +++ b/mesalib/src/mesa/swrast/s_aatriangle.c @@ -0,0 +1,417 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.3 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/* + * Antialiased Triangle rasterizers + */ + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/context.h" +#include "main/macros.h" +#include "main/imports.h" +#include "s_aatriangle.h" +#include "s_context.h" +#include "s_span.h" + + +/* + * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2 + * vertices and the given Z values. + * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0. + */ +static INLINE void +compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[], + GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4]) +{ + const GLfloat px = v1[0] - v0[0]; + const GLfloat py = v1[1] - v0[1]; + const GLfloat pz = z1 - z0; + + const GLfloat qx = v2[0] - v0[0]; + const GLfloat qy = v2[1] - v0[1]; + const GLfloat qz = z2 - z0; + + /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */ + const GLfloat a = py * qz - pz * qy; + const GLfloat b = pz * qx - px * qz; + const GLfloat c = px * qy - py * qx; + /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending + on the distance of plane from origin and arbitrary "w" parallel + to the plane. */ + /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)", + which is equal to "-d" below. */ + const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0); + + plane[0] = a; + plane[1] = b; + plane[2] = c; + plane[3] = d; +} + + +/* + * Compute coefficients of a plane with a constant Z value. + */ +static INLINE void +constant_plane(GLfloat value, GLfloat plane[4]) +{ + plane[0] = 0.0; + plane[1] = 0.0; + plane[2] = -1.0; + plane[3] = value; +} + +#define CONSTANT_PLANE(VALUE, PLANE) \ +do { \ + PLANE[0] = 0.0F; \ + PLANE[1] = 0.0F; \ + PLANE[2] = -1.0F; \ + PLANE[3] = VALUE; \ +} while (0) + + + +/* + * Solve plane equation for Z at (X,Y). + */ +static INLINE GLfloat +solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4]) +{ + ASSERT(plane[2] != 0.0F); + return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; +} + + +#define SOLVE_PLANE(X, Y, PLANE) \ + ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2]) + + +/* + * Return 1 / solve_plane(). + */ +static INLINE GLfloat +solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4]) +{ + const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y; + if (denom == 0.0F) + return 0.0F; + else + return -plane[2] / denom; +} + + +/* + * Solve plane and return clamped GLchan value. + */ +static INLINE GLchan +solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4]) +{ + const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; +#if CHAN_TYPE == GL_FLOAT + return CLAMP(z, 0.0F, CHAN_MAXF); +#else + if (z < 0) + return 0; + else if (z > CHAN_MAX) + return CHAN_MAX; + return (GLchan) IROUND_POS(z); +#endif +} + + +static INLINE GLfloat +plane_dx(const GLfloat plane[4]) +{ + return -plane[0] / plane[2]; +} + +static INLINE GLfloat +plane_dy(const GLfloat plane[4]) +{ + return -plane[1] / plane[2]; +} + + + +/* + * Compute how much (area) of the given pixel is inside the triangle. + * Vertices MUST be specified in counter-clockwise order. + * Return: coverage in [0, 1]. + */ +static GLfloat +compute_coveragef(const GLfloat v0[3], const GLfloat v1[3], + const GLfloat v2[3], GLint winx, GLint winy) +{ + /* Given a position [0,3]x[0,3] return the sub-pixel sample position. + * Contributed by Ray Tice. + * + * Jitter sample positions - + * - average should be .5 in x & y for each column + * - each of the 16 rows and columns should be used once + * - the rectangle formed by the first four points + * should contain the other points + * - the distrubition should be fairly even in any given direction + * + * The pattern drawn below isn't optimal, but it's better than a regular + * grid. In the drawing, the center of each subpixel is surrounded by + * four dots. The "x" marks the jittered position relative to the + * subpixel center. + */ +#define POS(a, b) (0.5+a*4+b)/16 + static const GLfloat samples[16][2] = { + /* start with the four corners */ + { POS(0, 2), POS(0, 0) }, + { POS(3, 3), POS(0, 2) }, + { POS(0, 0), POS(3, 1) }, + { POS(3, 1), POS(3, 3) }, + /* continue with interior samples */ + { POS(1, 1), POS(0, 1) }, + { POS(2, 0), POS(0, 3) }, + { POS(0, 3), POS(1, 3) }, + { POS(1, 2), POS(1, 0) }, + { POS(2, 3), POS(1, 2) }, + { POS(3, 2), POS(1, 1) }, + { POS(0, 1), POS(2, 2) }, + { POS(1, 0), POS(2, 1) }, + { POS(2, 1), POS(2, 3) }, + { POS(3, 0), POS(2, 0) }, + { POS(1, 3), POS(3, 0) }, + { POS(2, 2), POS(3, 2) } + }; + + const GLfloat x = (GLfloat) winx; + const GLfloat y = (GLfloat) winy; + const GLfloat dx0 = v1[0] - v0[0]; + const GLfloat dy0 = v1[1] - v0[1]; + const GLfloat dx1 = v2[0] - v1[0]; + const GLfloat dy1 = v2[1] - v1[1]; + const GLfloat dx2 = v0[0] - v2[0]; + const GLfloat dy2 = v0[1] - v2[1]; + GLint stop = 4, i; + GLfloat insideCount = 16.0F; + +#ifdef DEBUG + { + const GLfloat area = dx0 * dy1 - dx1 * dy0; + ASSERT(area >= 0.0); + } +#endif + + for (i = 0; i < stop; i++) { + const GLfloat sx = x + samples[i][0]; + const GLfloat sy = y + samples[i][1]; + /* cross product determines if sample is inside or outside each edge */ + GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0])); + /* Check if the sample is exactly on an edge. If so, let cross be a + * positive or negative value depending on the direction of the edge. + */ + if (cross == 0.0F) + cross = dx0 + dy0; + if (cross < 0.0F) { + /* sample point is outside first edge */ + insideCount -= 1.0F; + stop = 16; + } + else { + /* sample point is inside first edge */ + cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0])); + if (cross == 0.0F) + cross = dx1 + dy1; + if (cross < 0.0F) { + /* sample point is outside second edge */ + insideCount -= 1.0F; + stop = 16; + } + else { + /* sample point is inside first and second edges */ + cross = (dx2 * (sy - v2[1]) - dy2 * (sx - v2[0])); + if (cross == 0.0F) + cross = dx2 + dy2; + if (cross < 0.0F) { + /* sample point is outside third edge */ + insideCount -= 1.0F; + stop = 16; + } + } + } + } + if (stop == 4) + return 1.0F; + else + return insideCount * (1.0F / 16.0F); +} + + + +/* + * Compute how much (area) of the given pixel is inside the triangle. + * Vertices MUST be specified in counter-clockwise order. + * Return: coverage in [0, 15]. + */ +static GLint +compute_coveragei(const GLfloat v0[3], const GLfloat v1[3], + const GLfloat v2[3], GLint winx, GLint winy) +{ + /* NOTE: 15 samples instead of 16. */ + static const GLfloat samples[15][2] = { + /* start with the four corners */ + { POS(0, 2), POS(0, 0) }, + { POS(3, 3), POS(0, 2) }, + { POS(0, 0), POS(3, 1) }, + { POS(3, 1), POS(3, 3) }, + /* continue with interior samples */ + { POS(1, 1), POS(0, 1) }, + { POS(2, 0), POS(0, 3) }, + { POS(0, 3), POS(1, 3) }, + { POS(1, 2), POS(1, 0) }, + { POS(2, 3), POS(1, 2) }, + { POS(3, 2), POS(1, 1) }, + { POS(0, 1), POS(2, 2) }, + { POS(1, 0), POS(2, 1) }, + { POS(2, 1), POS(2, 3) }, + { POS(3, 0), POS(2, 0) }, + { POS(1, 3), POS(3, 0) } + }; + const GLfloat x = (GLfloat) winx; + const GLfloat y = (GLfloat) winy; + const GLfloat dx0 = v1[0] - v0[0]; + const GLfloat dy0 = v1[1] - v0[1]; + const GLfloat dx1 = v2[0] - v1[0]; + const GLfloat dy1 = v2[1] - v1[1]; + const GLfloat dx2 = v0[0] - v2[0]; + const GLfloat dy2 = v0[1] - v2[1]; + GLint stop = 4, i; + GLint insideCount = 15; + +#ifdef DEBUG + { + const GLfloat area = dx0 * dy1 - dx1 * dy0; + ASSERT(area >= 0.0); + } +#endif + + for (i = 0; i < stop; i++) { + const GLfloat sx = x + samples[i][0]; + const GLfloat sy = y + samples[i][1]; + const GLfloat fx0 = sx - v0[0]; + const GLfloat fy0 = sy - v0[1]; + const GLfloat fx1 = sx - v1[0]; + const GLfloat fy1 = sy - v1[1]; + const GLfloat fx2 = sx - v2[0]; + const GLfloat fy2 = sy - v2[1]; + /* cross product determines if sample is inside or outside each edge */ + GLfloat cross0 = (dx0 * fy0 - dy0 * fx0); + GLfloat cross1 = (dx1 * fy1 - dy1 * fx1); + GLfloat cross2 = (dx2 * fy2 - dy2 * fx2); + /* Check if the sample is exactly on an edge. If so, let cross be a + * positive or negative value depending on the direction of the edge. + */ + if (cross0 == 0.0F) + cross0 = dx0 + dy0; + if (cross1 == 0.0F) + cross1 = dx1 + dy1; + if (cross2 == 0.0F) + cross2 = dx2 + dy2; + if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) { + /* point is outside triangle */ + insideCount--; + stop = 15; + } + } + if (stop == 4) + return 15; + else + return insideCount; +} + + +static void +rgba_aa_tri(GLcontext *ctx, + const SWvertex *v0, + const SWvertex *v1, + const SWvertex *v2) +{ +#define DO_Z +#define DO_RGBA +#include "s_aatritemp.h" +} + + +static void +index_aa_tri(GLcontext *ctx, + const SWvertex *v0, + const SWvertex *v1, + const SWvertex *v2) +{ +#define DO_Z +#define DO_ATTRIBS +#define DO_INDEX +#include "s_aatritemp.h" +} + + +static void +general_aa_tri(GLcontext *ctx, + const SWvertex *v0, + const SWvertex *v1, + const SWvertex *v2) +{ +#define DO_Z +#define DO_RGBA +#define DO_ATTRIBS +#include "s_aatritemp.h" +} + + + +/* + * Examine GL state and set swrast->Triangle to an + * appropriate antialiased triangle rasterizer function. + */ +void +_swrast_set_aa_triangle_function(GLcontext *ctx) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + + ASSERT(ctx->Polygon.SmoothFlag); + + if (ctx->Texture._EnabledCoordUnits != 0 + || ctx->FragmentProgram._Current + || swrast->_FogEnabled + || NEED_SECONDARY_COLOR(ctx)) { + SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri; + } + else if (ctx->Visual.rgbMode) { + SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri; + } + else { + SWRAST_CONTEXT(ctx)->Triangle = index_aa_tri; + } + + ASSERT(SWRAST_CONTEXT(ctx)->Triangle); +} diff --git a/mesalib/src/mesa/swrast/s_aatriangle.h b/mesalib/src/mesa/swrast/s_aatriangle.h new file mode 100644 index 000000000..4b57fa73a --- /dev/null +++ b/mesalib/src/mesa/swrast/s_aatriangle.h @@ -0,0 +1,38 @@ + +/* + * Mesa 3-D graphics library + * Version: 3.5 + * + * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_AATRIANGLE_H +#define S_AATRIANGLE_H + + +#include "swrast.h" + + +extern void +_swrast_set_aa_triangle_function(GLcontext *ctx); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_aatritemp.h b/mesalib/src/mesa/swrast/s_aatritemp.h new file mode 100644 index 000000000..0827b3db9 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_aatritemp.h @@ -0,0 +1,383 @@ +/* + * Mesa 3-D graphics library + * Version: 7.0.3 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/* + * Antialiased Triangle Rasterizer Template + * + * This file is #include'd to generate custom AA triangle rasterizers. + * NOTE: this code hasn't been optimized yet. That'll come after it + * works correctly. + * + * The following macros may be defined to indicate what auxillary information + * must be copmuted across the triangle: + * DO_Z - if defined, compute Z values + * DO_RGBA - if defined, compute RGBA values + * DO_INDEX - if defined, compute color index values + * DO_ATTRIBS - if defined, compute texcoords, varying, etc. + */ + +/*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/ +{ + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLfloat *p0 = v0->attrib[FRAG_ATTRIB_WPOS]; + const GLfloat *p1 = v1->attrib[FRAG_ATTRIB_WPOS]; + const GLfloat *p2 = v2->attrib[FRAG_ATTRIB_WPOS]; + const SWvertex *vMin, *vMid, *vMax; + GLint iyMin, iyMax; + GLfloat yMin, yMax; + GLboolean ltor; + GLfloat majDx, majDy; /* major (i.e. long) edge dx and dy */ + + SWspan span; + +#ifdef DO_Z + GLfloat zPlane[4]; +#endif +#ifdef DO_RGBA + GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4]; +#endif +#ifdef DO_INDEX + GLfloat iPlane[4]; +#endif +#if defined(DO_ATTRIBS) + GLfloat attrPlane[FRAG_ATTRIB_MAX][4][4]; + GLfloat wPlane[4]; /* win[3] */ +#endif + GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceCullSign; + + (void) swrast; + + INIT_SPAN(span, GL_POLYGON); + span.arrayMask = SPAN_COVERAGE; + + /* determine bottom to top order of vertices */ + { + GLfloat y0 = v0->attrib[FRAG_ATTRIB_WPOS][1]; + GLfloat y1 = v1->attrib[FRAG_ATTRIB_WPOS][1]; + GLfloat y2 = v2->attrib[FRAG_ATTRIB_WPOS][1]; + if (y0 <= y1) { + if (y1 <= y2) { + vMin = v0; vMid = v1; vMax = v2; /* y0<=y1<=y2 */ + } + else if (y2 <= y0) { + vMin = v2; vMid = v0; vMax = v1; /* y2<=y0<=y1 */ + } + else { + vMin = v0; vMid = v2; vMax = v1; bf = -bf; /* y0<=y2<=y1 */ + } + } + else { + if (y0 <= y2) { + vMin = v1; vMid = v0; vMax = v2; bf = -bf; /* y1<=y0<=y2 */ + } + else if (y2 <= y1) { + vMin = v2; vMid = v1; vMax = v0; bf = -bf; /* y2<=y1<=y0 */ + } + else { + vMin = v1; vMid = v2; vMax = v0; /* y1<=y2<=y0 */ + } + } + } + + majDx = vMax->attrib[FRAG_ATTRIB_WPOS][0] - vMin->attrib[FRAG_ATTRIB_WPOS][0]; + majDy = vMax->attrib[FRAG_ATTRIB_WPOS][1] - vMin->attrib[FRAG_ATTRIB_WPOS][1]; + + /* front/back-face determination and cullling */ + { + const GLfloat botDx = vMid->attrib[FRAG_ATTRIB_WPOS][0] - vMin->attrib[FRAG_ATTRIB_WPOS][0]; + const GLfloat botDy = vMid->attrib[FRAG_ATTRIB_WPOS][1] - vMin->attrib[FRAG_ATTRIB_WPOS][1]; + const GLfloat area = majDx * botDy - botDx * majDy; + /* Do backface culling */ + if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area)) + return; + ltor = (GLboolean) (area < 0.0F); + + span.facing = area * swrast->_BackfaceSign > 0.0F; + } + + /* Plane equation setup: + * We evaluate plane equations at window (x,y) coordinates in order + * to compute color, Z, fog, texcoords, etc. This isn't terribly + * efficient but it's easy and reliable. + */ +#ifdef DO_Z + compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane); + span.arrayMask |= SPAN_Z; +#endif +#ifdef DO_RGBA + if (ctx->Light.ShadeModel == GL_SMOOTH) { + compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane); + compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane); + compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane); + compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane); + } + else { + constant_plane(v2->color[RCOMP], rPlane); + constant_plane(v2->color[GCOMP], gPlane); + constant_plane(v2->color[BCOMP], bPlane); + constant_plane(v2->color[ACOMP], aPlane); + } + span.arrayMask |= SPAN_RGBA; +#endif +#ifdef DO_INDEX + if (ctx->Light.ShadeModel == GL_SMOOTH) { + compute_plane(p0, p1, p2, (GLfloat) v0->attrib[FRAG_ATTRIB_CI][0], + v1->attrib[FRAG_ATTRIB_CI][0], v2->attrib[FRAG_ATTRIB_CI][0], iPlane); + } + else { + constant_plane(v2->attrib[FRAG_ATTRIB_CI][0], iPlane); + } + span.arrayMask |= SPAN_INDEX; +#endif +#if defined(DO_ATTRIBS) + { + const GLfloat invW0 = v0->attrib[FRAG_ATTRIB_WPOS][3]; + const GLfloat invW1 = v1->attrib[FRAG_ATTRIB_WPOS][3]; + const GLfloat invW2 = v2->attrib[FRAG_ATTRIB_WPOS][3]; + compute_plane(p0, p1, p2, invW0, invW1, invW2, wPlane); + span.attrStepX[FRAG_ATTRIB_WPOS][3] = plane_dx(wPlane); + span.attrStepY[FRAG_ATTRIB_WPOS][3] = plane_dy(wPlane); + ATTRIB_LOOP_BEGIN + GLuint c; + if (swrast->_InterpMode[attr] == GL_FLAT) { + for (c = 0; c < 4; c++) { + constant_plane(v2->attrib[attr][c] * invW2, attrPlane[attr][c]); + } + } + else { + for (c = 0; c < 4; c++) { + const GLfloat a0 = v0->attrib[attr][c] * invW0; + const GLfloat a1 = v1->attrib[attr][c] * invW1; + const GLfloat a2 = v2->attrib[attr][c] * invW2; + compute_plane(p0, p1, p2, a0, a1, a2, attrPlane[attr][c]); + } + } + for (c = 0; c < 4; c++) { + span.attrStepX[attr][c] = plane_dx(attrPlane[attr][c]); + span.attrStepY[attr][c] = plane_dy(attrPlane[attr][c]); + } + ATTRIB_LOOP_END + } +#endif + + /* Begin bottom-to-top scan over the triangle. + * The long edge will either be on the left or right side of the + * triangle. We always scan from the long edge toward the shorter + * edges, stopping when we find that coverage = 0. If the long edge + * is on the left we scan left-to-right. Else, we scan right-to-left. + */ + yMin = vMin->attrib[FRAG_ATTRIB_WPOS][1]; + yMax = vMax->attrib[FRAG_ATTRIB_WPOS][1]; + iyMin = (GLint) yMin; + iyMax = (GLint) yMax + 1; + + if (ltor) { + /* scan left to right */ + const GLfloat *pMin = vMin->attrib[FRAG_ATTRIB_WPOS]; + const GLfloat *pMid = vMid->attrib[FRAG_ATTRIB_WPOS]; + const GLfloat *pMax = vMax->attrib[FRAG_ATTRIB_WPOS]; + const GLfloat dxdy = majDx / majDy; + const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F; + GLfloat x = pMin[0] - (yMin - iyMin) * dxdy; + GLint iy; + for (iy = iyMin; iy < iyMax; iy++, x += dxdy) { + GLint ix, startX = (GLint) (x - xAdj); + GLuint count; + GLfloat coverage = 0.0F; + + /* skip over fragments with zero coverage */ + while (startX < MAX_WIDTH) { + coverage = compute_coveragef(pMin, pMid, pMax, startX, iy); + if (coverage > 0.0F) + break; + startX++; + } + + /* enter interior of triangle */ + ix = startX; + +#if defined(DO_ATTRIBS) + /* compute attributes at left-most fragment */ + span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 0.5, iy + 0.5, wPlane); + ATTRIB_LOOP_BEGIN + GLuint c; + for (c = 0; c < 4; c++) { + span.attrStart[attr][c] = solve_plane(ix + 0.5, iy + 0.5, attrPlane[attr][c]); + } + ATTRIB_LOOP_END +#endif + + count = 0; + while (coverage > 0.0F) { + /* (cx,cy) = center of fragment */ + const GLfloat cx = ix + 0.5F, cy = iy + 0.5F; + SWspanarrays *array = span.array; +#ifdef DO_INDEX + array->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy); +#else + array->coverage[count] = coverage; +#endif +#ifdef DO_Z + array->z[count] = (GLuint) solve_plane(cx, cy, zPlane); +#endif +#ifdef DO_RGBA + array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane); + array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane); + array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane); + array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane); +#endif +#ifdef DO_INDEX + array->index[count] = (GLint) solve_plane(cx, cy, iPlane); +#endif + ix++; + count++; + coverage = compute_coveragef(pMin, pMid, pMax, ix, iy); + } + + if (ix <= startX) + continue; + + span.x = startX; + span.y = iy; + span.end = (GLuint) ix - (GLuint) startX; +#if defined(DO_RGBA) + _swrast_write_rgba_span(ctx, &span); +#else + _swrast_write_index_span(ctx, &span); +#endif + } + } + else { + /* scan right to left */ + const GLfloat *pMin = vMin->attrib[FRAG_ATTRIB_WPOS]; + const GLfloat *pMid = vMid->attrib[FRAG_ATTRIB_WPOS]; + const GLfloat *pMax = vMax->attrib[FRAG_ATTRIB_WPOS]; + const GLfloat dxdy = majDx / majDy; + const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F; + GLfloat x = pMin[0] - (yMin - iyMin) * dxdy; + GLint iy; + for (iy = iyMin; iy < iyMax; iy++, x += dxdy) { + GLint ix, left, startX = (GLint) (x + xAdj); + GLuint count, n; + GLfloat coverage = 0.0F; + + /* make sure we're not past the window edge */ + if (startX >= ctx->DrawBuffer->_Xmax) { + startX = ctx->DrawBuffer->_Xmax - 1; + } + + /* skip fragments with zero coverage */ + while (startX > 0) { + coverage = compute_coveragef(pMin, pMax, pMid, startX, iy); + if (coverage > 0.0F) + break; + startX--; + } + + /* enter interior of triangle */ + ix = startX; + count = 0; + while (coverage > 0.0F) { + /* (cx,cy) = center of fragment */ + const GLfloat cx = ix + 0.5F, cy = iy + 0.5F; + SWspanarrays *array = span.array; + ASSERT(ix >= 0); +#ifdef DO_INDEX + array->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy); +#else + array->coverage[ix] = coverage; +#endif +#ifdef DO_Z + array->z[ix] = (GLuint) solve_plane(cx, cy, zPlane); +#endif +#ifdef DO_RGBA + array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane); + array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane); + array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane); + array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane); +#endif +#ifdef DO_INDEX + array->index[ix] = (GLint) solve_plane(cx, cy, iPlane); +#endif + ix--; + count++; + coverage = compute_coveragef(pMin, pMax, pMid, ix, iy); + } + +#if defined(DO_ATTRIBS) + /* compute attributes at left-most fragment */ + span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 1.5, iy + 0.5, wPlane); + ATTRIB_LOOP_BEGIN + GLuint c; + for (c = 0; c < 4; c++) { + span.attrStart[attr][c] = solve_plane(ix + 1.5, iy + 0.5, attrPlane[attr][c]); + } + ATTRIB_LOOP_END +#endif + + if (startX <= ix) + continue; + + n = (GLuint) startX - (GLuint) ix; + + left = ix + 1; + + /* shift all values to the left */ + /* XXX this is temporary */ + { + SWspanarrays *array = span.array; + GLint j; + for (j = 0; j < (GLint) n; j++) { + array->coverage[j] = array->coverage[j + left]; +#ifdef DO_RGBA + COPY_CHAN4(array->rgba[j], array->rgba[j + left]); +#endif +#ifdef DO_INDEX + array->index[j] = array->index[j + left]; +#endif +#ifdef DO_Z + array->z[j] = array->z[j + left]; +#endif + } + } + + span.x = left; + span.y = iy; + span.end = n; +#if defined(DO_RGBA) + _swrast_write_rgba_span(ctx, &span); +#else + _swrast_write_index_span(ctx, &span); +#endif + } + } +} + + +#undef DO_Z +#undef DO_RGBA +#undef DO_INDEX +#undef DO_ATTRIBS +#undef DO_OCCLUSION_TEST diff --git a/mesalib/src/mesa/swrast/s_accum.c b/mesalib/src/mesa/swrast/s_accum.c new file mode 100644 index 000000000..c6c7dbf5c --- /dev/null +++ b/mesalib/src/mesa/swrast/s_accum.c @@ -0,0 +1,599 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.2 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/macros.h" +#include "main/imports.h" +#include "main/fbobject.h" + +#include "s_accum.h" +#include "s_context.h" +#include "s_masking.h" +#include "s_span.h" + + +/* XXX this would have to change for accum buffers with more or less + * than 16 bits per color channel. + */ +#define ACCUM_SCALE16 32767.0 + + +/* + * Accumulation buffer notes + * + * Normally, accumulation buffer values are GLshorts with values in + * [-32767, 32767] which represent floating point colors in [-1, 1], + * as defined by the OpenGL specification. + * + * We optimize for the common case used for full-scene antialiasing: + * // start with accum buffer cleared to zero + * glAccum(GL_LOAD, w); // or GL_ACCUM the first image + * glAccum(GL_ACCUM, w); + * ... + * glAccum(GL_ACCUM, w); + * glAccum(GL_RETURN, 1.0); + * That is, we start with an empty accumulation buffer and accumulate + * n images, each with weight w = 1/n. + * In this scenario, we can simply store unscaled integer values in + * the accum buffer instead of scaled integers. We'll also keep track + * of the w value so when we do GL_RETURN we simply divide the accumulated + * values by n (n=1/w). + * This lets us avoid _many_ int->float->int conversions. + */ + + +#if CHAN_BITS == 8 +/* enable the optimization */ +#define USE_OPTIMIZED_ACCUM 1 +#else +#define USE_OPTIMIZED_ACCUM 0 +#endif + + +/** + * This is called when we fall out of optimized/unscaled accum buffer mode. + * That is, we convert each unscaled accum buffer value into a scaled value + * representing the range[-1, 1]. + */ +static void +rescale_accum( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + struct gl_renderbuffer *rb + = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer; + const GLfloat s = swrast->_IntegerAccumScaler * (32767.0F / CHAN_MAXF); + + assert(rb); + assert(rb->_BaseFormat == GL_RGBA); + /* add other types in future? */ + assert(rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT); + assert(swrast->_IntegerAccumMode); + + if (rb->GetPointer(ctx, rb, 0, 0)) { + /* directly-addressable memory */ + GLuint y; + for (y = 0; y < rb->Height; y++) { + GLuint i; + GLshort *acc = (GLshort *) rb->GetPointer(ctx, rb, 0, y); + for (i = 0; i < 4 * rb->Width; i++) { + acc[i] = (GLshort) (acc[i] * s); + } + } + } + else { + /* use get/put row funcs */ + GLuint y; + for (y = 0; y < rb->Height; y++) { + GLshort accRow[MAX_WIDTH * 4]; + GLuint i; + rb->GetRow(ctx, rb, rb->Width, 0, y, accRow); + for (i = 0; i < 4 * rb->Width; i++) { + accRow[i] = (GLshort) (accRow[i] * s); + } + rb->PutRow(ctx, rb, rb->Width, 0, y, accRow, NULL); + } + } + + swrast->_IntegerAccumMode = GL_FALSE; +} + + + +/** + * Clear the accumulation Buffer. + */ +void +_swrast_clear_accum_buffer( GLcontext *ctx, struct gl_renderbuffer *rb ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLuint x, y, width, height; + + if (ctx->Visual.accumRedBits == 0) { + /* No accumulation buffer! Not an error. */ + return; + } + + if (!rb || !rb->Data) + return; + + assert(rb->_BaseFormat == GL_RGBA); + /* add other types in future? */ + assert(rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT); + + /* bounds, with scissor */ + x = ctx->DrawBuffer->_Xmin; + y = ctx->DrawBuffer->_Ymin; + width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; + height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; + + if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) { + const GLfloat accScale = 32767.0; + GLshort clearVal[4]; + GLuint i; + + clearVal[0] = (GLshort) (ctx->Accum.ClearColor[0] * accScale); + clearVal[1] = (GLshort) (ctx->Accum.ClearColor[1] * accScale); + clearVal[2] = (GLshort) (ctx->Accum.ClearColor[2] * accScale); + clearVal[3] = (GLshort) (ctx->Accum.ClearColor[3] * accScale); + + for (i = 0; i < height; i++) { + rb->PutMonoRow(ctx, rb, width, x, y + i, clearVal, NULL); + } + } + else { + /* someday support other sizes */ + } + + /* update optimized accum state vars */ + if (ctx->Accum.ClearColor[0] == 0.0 && ctx->Accum.ClearColor[1] == 0.0 && + ctx->Accum.ClearColor[2] == 0.0 && ctx->Accum.ClearColor[3] == 0.0) { +#if USE_OPTIMIZED_ACCUM + swrast->_IntegerAccumMode = GL_TRUE; +#else + swrast->_IntegerAccumMode = GL_FALSE; +#endif + swrast->_IntegerAccumScaler = 0.0; /* denotes empty accum buffer */ + } + else { + swrast->_IntegerAccumMode = GL_FALSE; + } +} + + +static void +accum_add(GLcontext *ctx, GLfloat value, + GLint xpos, GLint ypos, GLint width, GLint height ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + struct gl_renderbuffer *rb + = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer; + + assert(rb); + + /* Leave optimized accum buffer mode */ + if (swrast->_IntegerAccumMode) + rescale_accum(ctx); + + if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) { + const GLshort incr = (GLshort) (value * ACCUM_SCALE16); + if (rb->GetPointer(ctx, rb, 0, 0)) { + GLint i, j; + for (i = 0; i < height; i++) { + GLshort *acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i); + for (j = 0; j < 4 * width; j++) { + acc[j] += incr; + } + } + } + else { + GLint i, j; + for (i = 0; i < height; i++) { + GLshort accRow[4 * MAX_WIDTH]; + rb->GetRow(ctx, rb, width, xpos, ypos + i, accRow); + for (j = 0; j < 4 * width; j++) { + accRow[j] += incr; + } + rb->PutRow(ctx, rb, width, xpos, ypos + i, accRow, NULL); + } + } + } + else { + /* other types someday */ + } +} + + +static void +accum_mult(GLcontext *ctx, GLfloat mult, + GLint xpos, GLint ypos, GLint width, GLint height ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + struct gl_renderbuffer *rb + = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer; + + assert(rb); + + /* Leave optimized accum buffer mode */ + if (swrast->_IntegerAccumMode) + rescale_accum(ctx); + + if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) { + if (rb->GetPointer(ctx, rb, 0, 0)) { + GLint i, j; + for (i = 0; i < height; i++) { + GLshort *acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i); + for (j = 0; j < 4 * width; j++) { + acc[j] = (GLshort) (acc[j] * mult); + } + } + } + else { + GLint i, j; + for (i = 0; i < height; i++) { + GLshort accRow[4 * MAX_WIDTH]; + rb->GetRow(ctx, rb, width, xpos, ypos + i, accRow); + for (j = 0; j < 4 * width; j++) { + accRow[j] = (GLshort) (accRow[j] * mult); + } + rb->PutRow(ctx, rb, width, xpos, ypos + i, accRow, NULL); + } + } + } + else { + /* other types someday */ + } +} + + + +static void +accum_accum(GLcontext *ctx, GLfloat value, + GLint xpos, GLint ypos, GLint width, GLint height ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + struct gl_renderbuffer *rb + = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer; + const GLboolean directAccess = (rb->GetPointer(ctx, rb, 0, 0) != NULL); + + assert(rb); + + if (!ctx->ReadBuffer->_ColorReadBuffer) { + /* no read buffer - OK */ + return; + } + + /* May have to leave optimized accum buffer mode */ + if (swrast->_IntegerAccumScaler == 0.0 && value > 0.0 && value <= 1.0) + swrast->_IntegerAccumScaler = value; + if (swrast->_IntegerAccumMode && value != swrast->_IntegerAccumScaler) + rescale_accum(ctx); + + if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) { + const GLfloat scale = value * ACCUM_SCALE16 / CHAN_MAXF; + GLshort accumRow[4 * MAX_WIDTH]; + GLchan rgba[MAX_WIDTH][4]; + GLint i; + + for (i = 0; i < height; i++) { + GLshort *acc; + if (directAccess) { + acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i); + } + else { + rb->GetRow(ctx, rb, width, xpos, ypos + i, accumRow); + acc = accumRow; + } + + /* read colors from color buffer */ + _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer, width, + xpos, ypos + i, CHAN_TYPE, rgba); + + /* do accumulation */ + if (swrast->_IntegerAccumMode) { + /* simply add integer color values into accum buffer */ + GLint j; + for (j = 0; j < width; j++) { + acc[j * 4 + 0] += rgba[j][RCOMP]; + acc[j * 4 + 1] += rgba[j][GCOMP]; + acc[j * 4 + 2] += rgba[j][BCOMP]; + acc[j * 4 + 3] += rgba[j][ACOMP]; + } + } + else { + /* scaled integer (or float) accum buffer */ + GLint j; + for (j = 0; j < width; j++) { + acc[j * 4 + 0] += (GLshort) ((GLfloat) rgba[j][RCOMP] * scale); + acc[j * 4 + 1] += (GLshort) ((GLfloat) rgba[j][GCOMP] * scale); + acc[j * 4 + 2] += (GLshort) ((GLfloat) rgba[j][BCOMP] * scale); + acc[j * 4 + 3] += (GLshort) ((GLfloat) rgba[j][ACOMP] * scale); + } + } + + if (!directAccess) { + rb->PutRow(ctx, rb, width, xpos, ypos + i, accumRow, NULL); + } + } + } + else { + /* other types someday */ + } +} + + + +static void +accum_load(GLcontext *ctx, GLfloat value, + GLint xpos, GLint ypos, GLint width, GLint height ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + struct gl_renderbuffer *rb + = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer; + const GLboolean directAccess = (rb->GetPointer(ctx, rb, 0, 0) != NULL); + + assert(rb); + + if (!ctx->ReadBuffer->_ColorReadBuffer) { + /* no read buffer - OK */ + return; + } + + /* This is a change to go into optimized accum buffer mode */ + if (value > 0.0 && value <= 1.0) { +#if USE_OPTIMIZED_ACCUM + swrast->_IntegerAccumMode = GL_TRUE; +#else + swrast->_IntegerAccumMode = GL_FALSE; +#endif + swrast->_IntegerAccumScaler = value; + } + else { + swrast->_IntegerAccumMode = GL_FALSE; + swrast->_IntegerAccumScaler = 0.0; + } + + if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) { + const GLfloat scale = value * ACCUM_SCALE16 / CHAN_MAXF; + GLshort accumRow[4 * MAX_WIDTH]; + GLchan rgba[MAX_WIDTH][4]; + GLint i; + + for (i = 0; i < height; i++) { + GLshort *acc; + if (directAccess) { + acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i); + } + else { + rb->GetRow(ctx, rb, width, xpos, ypos + i, accumRow); + acc = accumRow; + } + + /* read colors from color buffer */ + _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer, width, + xpos, ypos + i, CHAN_TYPE, rgba); + + /* do load */ + if (swrast->_IntegerAccumMode) { + /* just copy values in */ + GLint j; + assert(swrast->_IntegerAccumScaler > 0.0); + assert(swrast->_IntegerAccumScaler <= 1.0); + for (j = 0; j < width; j++) { + acc[j * 4 + 0] = rgba[j][RCOMP]; + acc[j * 4 + 1] = rgba[j][GCOMP]; + acc[j * 4 + 2] = rgba[j][BCOMP]; + acc[j * 4 + 3] = rgba[j][ACOMP]; + } + } + else { + /* scaled integer (or float) accum buffer */ + GLint j; + for (j = 0; j < width; j++) { + acc[j * 4 + 0] = (GLshort) ((GLfloat) rgba[j][RCOMP] * scale); + acc[j * 4 + 1] = (GLshort) ((GLfloat) rgba[j][GCOMP] * scale); + acc[j * 4 + 2] = (GLshort) ((GLfloat) rgba[j][BCOMP] * scale); + acc[j * 4 + 3] = (GLshort) ((GLfloat) rgba[j][ACOMP] * scale); + } + } + + if (!directAccess) { + rb->PutRow(ctx, rb, width, xpos, ypos + i, accumRow, NULL); + } + } + } +} + + +static void +accum_return(GLcontext *ctx, GLfloat value, + GLint xpos, GLint ypos, GLint width, GLint height ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + struct gl_framebuffer *fb = ctx->DrawBuffer; + struct gl_renderbuffer *accumRb = fb->Attachment[BUFFER_ACCUM].Renderbuffer; + const GLboolean directAccess + = (accumRb->GetPointer(ctx, accumRb, 0, 0) != NULL); + const GLboolean masking = (!ctx->Color.ColorMask[RCOMP] || + !ctx->Color.ColorMask[GCOMP] || + !ctx->Color.ColorMask[BCOMP] || + !ctx->Color.ColorMask[ACOMP]); + + static GLchan multTable[32768]; + static GLfloat prevMult = 0.0; + const GLfloat mult = swrast->_IntegerAccumScaler; + const GLint max = MIN2((GLint) (256 / mult), 32767); + + /* May have to leave optimized accum buffer mode */ + if (swrast->_IntegerAccumMode && value != 1.0) + rescale_accum(ctx); + + if (swrast->_IntegerAccumMode && swrast->_IntegerAccumScaler > 0) { + /* build lookup table to avoid many floating point multiplies */ + GLint j; + assert(swrast->_IntegerAccumScaler <= 1.0); + if (mult != prevMult) { + for (j = 0; j < max; j++) + multTable[j] = IROUND((GLfloat) j * mult); + prevMult = mult; + } + } + + if (accumRb->DataType == GL_SHORT || + accumRb->DataType == GL_UNSIGNED_SHORT) { + const GLfloat scale = value * CHAN_MAXF / ACCUM_SCALE16; + GLuint buffer; + GLint i; + + /* XXX maybe transpose the 'i' and 'buffer' loops??? */ + for (i = 0; i < height; i++) { + GLshort accumRow[4 * MAX_WIDTH]; + GLshort *acc; + SWspan span; + + /* init color span */ + INIT_SPAN(span, GL_BITMAP); + span.end = width; + span.arrayMask = SPAN_RGBA; + span.x = xpos; + span.y = ypos + i; + + if (directAccess) { + acc = (GLshort *) accumRb->GetPointer(ctx, accumRb, xpos, ypos +i); + } + else { + accumRb->GetRow(ctx, accumRb, width, xpos, ypos + i, accumRow); + acc = accumRow; + } + + /* get the colors to return */ + if (swrast->_IntegerAccumMode) { + GLint j; + for (j = 0; j < width; j++) { + ASSERT(acc[j * 4 + 0] < max); + ASSERT(acc[j * 4 + 1] < max); + ASSERT(acc[j * 4 + 2] < max); + ASSERT(acc[j * 4 + 3] < max); + span.array->rgba[j][RCOMP] = multTable[acc[j * 4 + 0]]; + span.array->rgba[j][GCOMP] = multTable[acc[j * 4 + 1]]; + span.array->rgba[j][BCOMP] = multTable[acc[j * 4 + 2]]; + span.array->rgba[j][ACOMP] = multTable[acc[j * 4 + 3]]; + } + } + else { + /* scaled integer (or float) accum buffer */ + GLint j; + for (j = 0; j < width; j++) { +#if CHAN_BITS==32 + GLchan r = acc[j * 4 + 0] * scale; + GLchan g = acc[j * 4 + 1] * scale; + GLchan b = acc[j * 4 + 2] * scale; + GLchan a = acc[j * 4 + 3] * scale; +#else + GLint r = IROUND( (GLfloat) (acc[j * 4 + 0]) * scale ); + GLint g = IROUND( (GLfloat) (acc[j * 4 + 1]) * scale ); + GLint b = IROUND( (GLfloat) (acc[j * 4 + 2]) * scale ); + GLint a = IROUND( (GLfloat) (acc[j * 4 + 3]) * scale ); +#endif + span.array->rgba[j][RCOMP] = CLAMP( r, 0, CHAN_MAX ); + span.array->rgba[j][GCOMP] = CLAMP( g, 0, CHAN_MAX ); + span.array->rgba[j][BCOMP] = CLAMP( b, 0, CHAN_MAX ); + span.array->rgba[j][ACOMP] = CLAMP( a, 0, CHAN_MAX ); + } + } + + /* store colors */ + for (buffer = 0; buffer < fb->_NumColorDrawBuffers; buffer++) { + struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buffer]; + if (masking) { + _swrast_mask_rgba_span(ctx, rb, &span); + } + rb->PutRow(ctx, rb, width, xpos, ypos + i, span.array->rgba, NULL); + } + } + } + else { + /* other types someday */ + } +} + + + +/** + * Software fallback for glAccum. + */ +void +_swrast_Accum(GLcontext *ctx, GLenum op, GLfloat value) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLint xpos, ypos, width, height; + + if (swrast->NewState) + _swrast_validate_derived( ctx ); + + if (!ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer) { + _mesa_warning(ctx, "Calling glAccum() without an accumulation buffer"); + return; + } + + swrast_render_start(ctx); + + /* Compute region after calling swrast_render_start() so that we know the + * drawbuffer's size/bounds are up to date. + */ + xpos = ctx->DrawBuffer->_Xmin; + ypos = ctx->DrawBuffer->_Ymin; + width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; + height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; + + switch (op) { + case GL_ADD: + if (value != 0.0F) { + accum_add(ctx, value, xpos, ypos, width, height); + } + break; + case GL_MULT: + if (value != 1.0F) { + accum_mult(ctx, value, xpos, ypos, width, height); + } + break; + case GL_ACCUM: + if (value != 0.0F) { + accum_accum(ctx, value, xpos, ypos, width, height); + } + break; + case GL_LOAD: + accum_load(ctx, value, xpos, ypos, width, height); + break; + case GL_RETURN: + accum_return(ctx, value, xpos, ypos, width, height); + break; + default: + _mesa_problem(ctx, "invalid mode in _swrast_Accum()"); + break; + } + + swrast_render_finish(ctx); +} diff --git a/mesalib/src/mesa/swrast/s_accum.h b/mesalib/src/mesa/swrast/s_accum.h new file mode 100644 index 000000000..42e38cf02 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_accum.h @@ -0,0 +1,37 @@ +/* + * Mesa 3-D graphics library + * Version: 6.3 + * + * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_ACCUM_H +#define S_ACCUM_H + + +#include "main/mtypes.h" + + +extern void +_swrast_clear_accum_buffer(GLcontext *ctx, struct gl_renderbuffer *rb); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_alpha.c b/mesalib/src/mesa/swrast/s_alpha.c new file mode 100644 index 000000000..5761bb00b --- /dev/null +++ b/mesalib/src/mesa/swrast/s_alpha.c @@ -0,0 +1,160 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.2 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +/** + * \file swrast/s_alpha.c + * \brief Functions to apply alpha test. + */ + +#include "main/glheader.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/macros.h" + +#include "s_alpha.h" +#include "s_context.h" + + +#define ALPHA_TEST(ALPHA, LOOP_CODE) \ +do { \ + switch (ctx->Color.AlphaFunc) { \ + case GL_LESS: \ + for (i = 0; i < n; i++) { \ + mask[i] &= (ALPHA < ref); \ + LOOP_CODE; \ + } \ + break; \ + case GL_LEQUAL: \ + for (i = 0; i < n; i++) { \ + mask[i] &= (ALPHA <= ref); \ + LOOP_CODE; \ + } \ + break; \ + case GL_GEQUAL: \ + for (i = 0; i < n; i++) { \ + mask[i] &= (ALPHA >= ref); \ + LOOP_CODE; \ + } \ + break; \ + case GL_GREATER: \ + for (i = 0; i < n; i++) { \ + mask[i] &= (ALPHA > ref); \ + LOOP_CODE; \ + } \ + break; \ + case GL_NOTEQUAL: \ + for (i = 0; i < n; i++) { \ + mask[i] &= (ALPHA != ref); \ + LOOP_CODE; \ + } \ + break; \ + case GL_EQUAL: \ + for (i = 0; i < n; i++) { \ + mask[i] &= (ALPHA == ref); \ + LOOP_CODE; \ + } \ + break; \ + default: \ + _mesa_problem(ctx, "Invalid alpha test in _swrast_alpha_test" ); \ + return 0; \ + } \ +} while (0) + + + +/** + * Perform the alpha test for an array of pixels. + * For pixels that fail the test, mask[i] will be set to 0. + * \return 0 if all pixels in the span failed the alpha test, + * 1 if one or more pixels passed the alpha test. + */ +GLint +_swrast_alpha_test(const GLcontext *ctx, SWspan *span) +{ + const GLuint n = span->end; + GLubyte *mask = span->array->mask; + GLuint i; + + if (ctx->Color.AlphaFunc == GL_ALWAYS) { + /* do nothing */ + return 1; + } + else if (ctx->Color.AlphaFunc == GL_NEVER) { + /* All pixels failed - caller should check for this return value and + * act accordingly. + */ + span->writeAll = GL_FALSE; + return 0; + } + + if (span->arrayMask & SPAN_RGBA) { + /* Use array's alpha values */ + if (span->array->ChanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = span->array->rgba8; + GLubyte ref; + CLAMPED_FLOAT_TO_UBYTE(ref, ctx->Color.AlphaRef); + ALPHA_TEST(rgba[i][ACOMP], ;); + } + else if (span->array->ChanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = span->array->rgba16; + GLushort ref; + CLAMPED_FLOAT_TO_USHORT(ref, ctx->Color.AlphaRef); + ALPHA_TEST(rgba[i][ACOMP], ;); + } + else { + GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + const GLfloat ref = ctx->Color.AlphaRef; + ALPHA_TEST(rgba[i][ACOMP], ;); + } + } + else { + /* Interpolate alpha values */ + ASSERT(span->interpMask & SPAN_RGBA); + if (span->array->ChanType == GL_UNSIGNED_BYTE) { + const GLfixed alphaStep = span->alphaStep; + GLfixed alpha = span->alpha; + GLubyte ref; + CLAMPED_FLOAT_TO_UBYTE(ref, ctx->Color.AlphaRef); + ALPHA_TEST(FixedToInt(alpha), alpha += alphaStep); + } + else if (span->array->ChanType == GL_UNSIGNED_SHORT) { + const GLfixed alphaStep = span->alphaStep; + GLfixed alpha = span->alpha; + GLushort ref; + CLAMPED_FLOAT_TO_USHORT(ref, ctx->Color.AlphaRef); + ALPHA_TEST(FixedToInt(alpha), alpha += alphaStep); + } + else { + const GLfloat alphaStep = span->alphaStep; + GLfloat alpha = span->alpha; + const GLfloat ref = ctx->Color.AlphaRef; + ALPHA_TEST(alpha, alpha += alphaStep); + } + } + + span->writeAll = GL_FALSE; + + /* XXX examine mask[] values? */ + return 1; +} diff --git a/mesalib/src/mesa/swrast/s_alpha.h b/mesalib/src/mesa/swrast/s_alpha.h new file mode 100644 index 000000000..7a5b72e65 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_alpha.h @@ -0,0 +1,38 @@ + +/* + * Mesa 3-D graphics library + * Version: 4.1 + * + * Copyright (C) 1999-2002 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_ALPHA_H +#define S_ALPHA_H + + +#include "s_context.h" + + +extern GLint +_swrast_alpha_test( const GLcontext *ctx, SWspan *span ); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_atifragshader.c b/mesalib/src/mesa/swrast/s_atifragshader.c new file mode 100644 index 000000000..5fefae6c4 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_atifragshader.c @@ -0,0 +1,604 @@ +/* + * Copyright (C) 2004 David Airlie All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * DAVID AIRLIE BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +#include "main/glheader.h" +#include "main/colormac.h" +#include "main/context.h" +#include "main/macros.h" +#include "shader/program.h" +#include "shader/atifragshader.h" +#include "swrast/s_atifragshader.h" + + +/** + * State for executing ATI fragment shader. + */ +struct atifs_machine +{ + GLfloat Registers[6][4]; /** six temporary registers */ + GLfloat PrevPassRegisters[6][4]; + GLfloat Inputs[2][4]; /** Primary, secondary input colors */ +}; + + + +/** + * Fetch a texel. + */ +static void +fetch_texel(GLcontext * ctx, const GLfloat texcoord[4], GLfloat lambda, + GLuint unit, GLfloat color[4]) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + + /* XXX use a float-valued TextureSample routine here!!! */ + swrast->TextureSample[unit](ctx, ctx->Texture.Unit[unit]._Current, + 1, (const GLfloat(*)[4]) texcoord, + &lambda, (GLfloat (*)[4]) color); +} + +static void +apply_swizzle(GLfloat values[4], GLuint swizzle) +{ + GLfloat s, t, r, q; + + s = values[0]; + t = values[1]; + r = values[2]; + q = values[3]; + + switch (swizzle) { + case GL_SWIZZLE_STR_ATI: + values[0] = s; + values[1] = t; + values[2] = r; + break; + case GL_SWIZZLE_STQ_ATI: + values[0] = s; + values[1] = t; + values[2] = q; + break; + case GL_SWIZZLE_STR_DR_ATI: + values[0] = s / r; + values[1] = t / r; + values[2] = 1 / r; + break; + case GL_SWIZZLE_STQ_DQ_ATI: +/* make sure q is not 0 to avoid problems later with infinite values (texture lookup)? */ + if (q == 0.0F) q = 0.000000001; + values[0] = s / q; + values[1] = t / q; + values[2] = 1 / q; + break; + } + values[3] = 0.0; +} + +static void +apply_src_rep(GLint optype, GLuint rep, GLfloat * val) +{ + GLint i; + GLint start, end; + if (!rep) + return; + + start = optype ? 3 : 0; + end = 4; + + for (i = start; i < end; i++) { + switch (rep) { + case GL_RED: + val[i] = val[0]; + break; + case GL_GREEN: + val[i] = val[1]; + break; + case GL_BLUE: + val[i] = val[2]; + break; + case GL_ALPHA: + val[i] = val[3]; + break; + } + } +} + +static void +apply_src_mod(GLint optype, GLuint mod, GLfloat * val) +{ + GLint i; + GLint start, end; + + if (!mod) + return; + + start = optype ? 3 : 0; + end = 4; + + for (i = start; i < end; i++) { + if (mod & GL_COMP_BIT_ATI) + val[i] = 1 - val[i]; + + if (mod & GL_BIAS_BIT_ATI) + val[i] = val[i] - 0.5; + + if (mod & GL_2X_BIT_ATI) + val[i] = 2 * val[i]; + + if (mod & GL_NEGATE_BIT_ATI) + val[i] = -val[i]; + } +} + +static void +apply_dst_mod(GLuint optype, GLuint mod, GLfloat * val) +{ + GLint i; + GLint has_sat = mod & GL_SATURATE_BIT_ATI; + GLint start, end; + + mod &= ~GL_SATURATE_BIT_ATI; + + start = optype ? 3 : 0; + end = optype ? 4 : 3; + + for (i = start; i < end; i++) { + switch (mod) { + case GL_2X_BIT_ATI: + val[i] = 2 * val[i]; + break; + case GL_4X_BIT_ATI: + val[i] = 4 * val[i]; + break; + case GL_8X_BIT_ATI: + val[i] = 8 * val[i]; + break; + case GL_HALF_BIT_ATI: + val[i] = val[i] * 0.5; + break; + case GL_QUARTER_BIT_ATI: + val[i] = val[i] * 0.25; + break; + case GL_EIGHTH_BIT_ATI: + val[i] = val[i] * 0.125; + break; + } + + if (has_sat) { + if (val[i] < 0.0) + val[i] = 0; + else if (val[i] > 1.0) + val[i] = 1.0; + } + else { + if (val[i] < -8.0) + val[i] = -8.0; + else if (val[i] > 8.0) + val[i] = 8.0; + } + } +} + + +static void +write_dst_addr(GLuint optype, GLuint mod, GLuint mask, GLfloat * src, + GLfloat * dst) +{ + GLint i; + apply_dst_mod(optype, mod, src); + + if (optype == ATI_FRAGMENT_SHADER_COLOR_OP) { + if (mask) { + if (mask & GL_RED_BIT_ATI) + dst[0] = src[0]; + + if (mask & GL_GREEN_BIT_ATI) + dst[1] = src[1]; + + if (mask & GL_BLUE_BIT_ATI) + dst[2] = src[2]; + } + else { + for (i = 0; i < 3; i++) + dst[i] = src[i]; + } + } + else + dst[3] = src[3]; +} + +static void +finish_pass(struct atifs_machine *machine) +{ + GLint i; + + for (i = 0; i < 6; i++) { + COPY_4V(machine->PrevPassRegisters[i], machine->Registers[i]); + } +} + +struct ati_fs_opcode_st ati_fs_opcodes[] = { + {GL_ADD_ATI, 2}, + {GL_SUB_ATI, 2}, + {GL_MUL_ATI, 2}, + {GL_MAD_ATI, 3}, + {GL_LERP_ATI, 3}, + {GL_MOV_ATI, 1}, + {GL_CND_ATI, 3}, + {GL_CND0_ATI, 3}, + {GL_DOT2_ADD_ATI, 3}, + {GL_DOT3_ATI, 2}, + {GL_DOT4_ATI, 2} +}; + + + +static void +handle_pass_op(struct atifs_machine *machine, struct atifs_setupinst *texinst, + const SWspan *span, GLuint column, GLuint idx) +{ + GLuint swizzle = texinst->swizzle; + GLuint pass_tex = texinst->src; + + if (pass_tex >= GL_TEXTURE0_ARB && pass_tex <= GL_TEXTURE7_ARB) { + pass_tex -= GL_TEXTURE0_ARB; + COPY_4V(machine->Registers[idx], + span->array->attribs[FRAG_ATTRIB_TEX0 + pass_tex][column]); + } + else if (pass_tex >= GL_REG_0_ATI && pass_tex <= GL_REG_5_ATI) { + pass_tex -= GL_REG_0_ATI; + COPY_4V(machine->Registers[idx], machine->PrevPassRegisters[pass_tex]); + } + apply_swizzle(machine->Registers[idx], swizzle); + +} + +static void +handle_sample_op(GLcontext * ctx, struct atifs_machine *machine, + struct atifs_setupinst *texinst, const SWspan *span, + GLuint column, GLuint idx) +{ +/* sample from unit idx using texinst->src as coords */ + GLuint swizzle = texinst->swizzle; + GLuint coord_source = texinst->src; + GLfloat tex_coords[4]; + + if (coord_source >= GL_TEXTURE0_ARB && coord_source <= GL_TEXTURE7_ARB) { + coord_source -= GL_TEXTURE0_ARB; + COPY_4V(tex_coords, + span->array->attribs[FRAG_ATTRIB_TEX0 + coord_source][column]); + } + else if (coord_source >= GL_REG_0_ATI && coord_source <= GL_REG_5_ATI) { + coord_source -= GL_REG_0_ATI; + COPY_4V(tex_coords, machine->PrevPassRegisters[coord_source]); + } + apply_swizzle(tex_coords, swizzle); + fetch_texel(ctx, tex_coords, 0.0F, idx, machine->Registers[idx]); +} + +#define SETUP_SRC_REG(optype, i, x) \ +do { \ + COPY_4V(src[optype][i], x); \ +} while (0) + + + +/** + * Execute the given fragment shader. + * NOTE: we do everything in single-precision floating point + * \param ctx - rendering context + * \param shader - the shader to execute + * \param machine - virtual machine state + * \param span - the SWspan we're operating on + * \param column - which pixel [i] we're operating on in the span + */ +static void +execute_shader(GLcontext *ctx, const struct ati_fragment_shader *shader, + struct atifs_machine *machine, const SWspan *span, + GLuint column) +{ + GLuint pc; + struct atifs_instruction *inst; + struct atifs_setupinst *texinst; + GLint optype; + GLuint i; + GLint j, pass; + GLint dstreg; + GLfloat src[2][3][4]; + GLfloat zeros[4] = { 0.0, 0.0, 0.0, 0.0 }; + GLfloat ones[4] = { 1.0, 1.0, 1.0, 1.0 }; + GLfloat dst[2][4], *dstp; + + for (pass = 0; pass < shader->NumPasses; pass++) { + if (pass > 0) + finish_pass(machine); + for (j = 0; j < MAX_NUM_FRAGMENT_REGISTERS_ATI; j++) { + texinst = &shader->SetupInst[pass][j]; + if (texinst->Opcode == ATI_FRAGMENT_SHADER_PASS_OP) + handle_pass_op(machine, texinst, span, column, j); + else if (texinst->Opcode == ATI_FRAGMENT_SHADER_SAMPLE_OP) + handle_sample_op(ctx, machine, texinst, span, column, j); + } + + for (pc = 0; pc < shader->numArithInstr[pass]; pc++) { + inst = &shader->Instructions[pass][pc]; + + /* setup the source registers for color and alpha ops */ + for (optype = 0; optype < 2; optype++) { + for (i = 0; i < inst->ArgCount[optype]; i++) { + GLint index = inst->SrcReg[optype][i].Index; + + if (index >= GL_REG_0_ATI && index <= GL_REG_5_ATI) + SETUP_SRC_REG(optype, i, + machine->Registers[index - GL_REG_0_ATI]); + else if (index >= GL_CON_0_ATI && index <= GL_CON_7_ATI) { + if (shader->LocalConstDef & (1 << (index - GL_CON_0_ATI))) { + SETUP_SRC_REG(optype, i, + shader->Constants[index - GL_CON_0_ATI]); + } else { + SETUP_SRC_REG(optype, i, + ctx->ATIFragmentShader.GlobalConstants[index - GL_CON_0_ATI]); + } + } + else if (index == GL_ONE) + SETUP_SRC_REG(optype, i, ones); + else if (index == GL_ZERO) + SETUP_SRC_REG(optype, i, zeros); + else if (index == GL_PRIMARY_COLOR_EXT) + SETUP_SRC_REG(optype, i, + machine->Inputs[ATI_FS_INPUT_PRIMARY]); + else if (index == GL_SECONDARY_INTERPOLATOR_ATI) + SETUP_SRC_REG(optype, i, + machine->Inputs[ATI_FS_INPUT_SECONDARY]); + + apply_src_rep(optype, inst->SrcReg[optype][i].argRep, + src[optype][i]); + apply_src_mod(optype, inst->SrcReg[optype][i].argMod, + src[optype][i]); + } + } + + /* Execute the operations - color then alpha */ + for (optype = 0; optype < 2; optype++) { + if (inst->Opcode[optype]) { + switch (inst->Opcode[optype]) { + case GL_ADD_ATI: + if (!optype) + for (i = 0; i < 3; i++) { + dst[optype][i] = + src[optype][0][i] + src[optype][1][i]; + } + else + dst[optype][3] = src[optype][0][3] + src[optype][1][3]; + break; + case GL_SUB_ATI: + if (!optype) + for (i = 0; i < 3; i++) { + dst[optype][i] = + src[optype][0][i] - src[optype][1][i]; + } + else + dst[optype][3] = src[optype][0][3] - src[optype][1][3]; + break; + case GL_MUL_ATI: + if (!optype) + for (i = 0; i < 3; i++) { + dst[optype][i] = + src[optype][0][i] * src[optype][1][i]; + } + else + dst[optype][3] = src[optype][0][3] * src[optype][1][3]; + break; + case GL_MAD_ATI: + if (!optype) + for (i = 0; i < 3; i++) { + dst[optype][i] = + src[optype][0][i] * src[optype][1][i] + + src[optype][2][i]; + } + else + dst[optype][3] = + src[optype][0][3] * src[optype][1][3] + + src[optype][2][3]; + break; + case GL_LERP_ATI: + if (!optype) + for (i = 0; i < 3; i++) { + dst[optype][i] = + src[optype][0][i] * src[optype][1][i] + (1 - + src + [optype] + [0][i]) * + src[optype][2][i]; + } + else + dst[optype][3] = + src[optype][0][3] * src[optype][1][3] + (1 - + src[optype] + [0][3]) * + src[optype][2][3]; + break; + + case GL_MOV_ATI: + if (!optype) + for (i = 0; i < 3; i++) { + dst[optype][i] = src[optype][0][i]; + } + else + dst[optype][3] = src[optype][0][3]; + break; + case GL_CND_ATI: + if (!optype) { + for (i = 0; i < 3; i++) { + dst[optype][i] = + (src[optype][2][i] > + 0.5) ? src[optype][0][i] : src[optype][1][i]; + } + } + else { + dst[optype][3] = + (src[optype][2][3] > + 0.5) ? src[optype][0][3] : src[optype][1][3]; + } + break; + + case GL_CND0_ATI: + if (!optype) + for (i = 0; i < 3; i++) { + dst[optype][i] = + (src[optype][2][i] >= + 0) ? src[optype][0][i] : src[optype][1][i]; + } + else { + dst[optype][3] = + (src[optype][2][3] >= + 0) ? src[optype][0][3] : src[optype][1][3]; + } + break; + case GL_DOT2_ADD_ATI: + { + GLfloat result; + + /* DOT 2 always uses the source from the color op */ + /* could save recalculation of dot products for alpha inst */ + result = src[0][0][0] * src[0][1][0] + + src[0][0][1] * src[0][1][1] + src[0][2][2]; + if (!optype) { + for (i = 0; i < 3; i++) { + dst[optype][i] = result; + } + } + else + dst[optype][3] = result; + } + break; + case GL_DOT3_ATI: + { + GLfloat result; + + /* DOT 3 always uses the source from the color op */ + result = src[0][0][0] * src[0][1][0] + + src[0][0][1] * src[0][1][1] + + src[0][0][2] * src[0][1][2]; + + if (!optype) { + for (i = 0; i < 3; i++) { + dst[optype][i] = result; + } + } + else + dst[optype][3] = result; + } + break; + case GL_DOT4_ATI: + { + GLfloat result; + + /* DOT 4 always uses the source from the color op */ + result = src[0][0][0] * src[0][1][0] + + src[0][0][1] * src[0][1][1] + + src[0][0][2] * src[0][1][2] + + src[0][0][3] * src[0][1][3]; + if (!optype) { + for (i = 0; i < 3; i++) { + dst[optype][i] = result; + } + } + else + dst[optype][3] = result; + } + break; + + } + } + } + + /* write out the destination registers */ + for (optype = 0; optype < 2; optype++) { + if (inst->Opcode[optype]) { + dstreg = inst->DstReg[optype].Index; + dstp = machine->Registers[dstreg - GL_REG_0_ATI]; + + if ((optype == 0) || ((inst->Opcode[1] != GL_DOT2_ADD_ATI) && + (inst->Opcode[1] != GL_DOT3_ATI) && (inst->Opcode[1] != GL_DOT4_ATI))) + write_dst_addr(optype, inst->DstReg[optype].dstMod, + inst->DstReg[optype].dstMask, dst[optype], + dstp); + else + write_dst_addr(1, inst->DstReg[0].dstMod, 0, dst[1], dstp); + } + } + } + } +} + + +/** + * Init fragment shader virtual machine state. + */ +static void +init_machine(GLcontext * ctx, struct atifs_machine *machine, + const struct ati_fragment_shader *shader, + const SWspan *span, GLuint col) +{ + GLfloat (*inputs)[4] = machine->Inputs; + GLint i, j; + + for (i = 0; i < 6; i++) { + for (j = 0; j < 4; j++) + machine->Registers[i][j] = 0.0; + } + + COPY_4V(inputs[ATI_FS_INPUT_PRIMARY], span->array->attribs[FRAG_ATTRIB_COL0][col]); + COPY_4V(inputs[ATI_FS_INPUT_SECONDARY], span->array->attribs[FRAG_ATTRIB_COL1][col]); +} + + + +/** + * Execute the current ATI shader program, operating on the given span. + */ +void +_swrast_exec_fragment_shader(GLcontext * ctx, SWspan *span) +{ + const struct ati_fragment_shader *shader = ctx->ATIFragmentShader.Current; + struct atifs_machine machine; + GLuint i; + + /* incoming colors should be floats */ + ASSERT(span->array->ChanType == GL_FLOAT); + + for (i = 0; i < span->end; i++) { + if (span->array->mask[i]) { + init_machine(ctx, &machine, shader, span, i); + + execute_shader(ctx, shader, &machine, span, i); + + /* store result color */ + { + const GLfloat *colOut = machine.Registers[0]; + /*fprintf(stderr,"outputs %f %f %f %f\n", + colOut[0], colOut[1], colOut[2], colOut[3]); */ + COPY_4V(span->array->attribs[FRAG_ATTRIB_COL0][i], colOut); + } + } + } +} diff --git a/mesalib/src/mesa/swrast/s_atifragshader.h b/mesalib/src/mesa/swrast/s_atifragshader.h new file mode 100644 index 000000000..871a0c045 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_atifragshader.h @@ -0,0 +1,37 @@ +/* + * Mesa 3-D graphics library + * Version: 6.1 + * + * Copyright (C) 1999-2003 David Airlie All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * DAVID AIRLIE BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_ATIFRAGSHADER_H +#define S_ATIFRAGSHADER_H + + +#include "s_context.h" + + +extern void +_swrast_exec_fragment_shader( GLcontext *ctx, SWspan *span ); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_bitmap.c b/mesalib/src/mesa/swrast/s_bitmap.c new file mode 100644 index 000000000..3dbdf2a61 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_bitmap.c @@ -0,0 +1,228 @@ +/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +/** + * \file swrast/s_bitmap.c + * \brief glBitmap rendering. + * \author Brian Paul + */ + +#include "main/glheader.h" +#include "main/bufferobj.h" +#include "main/image.h" +#include "main/macros.h" +#include "main/pixel.h" + +#include "s_context.h" +#include "s_span.h" + + + +/** + * Render a bitmap. + * Called via ctx->Driver.Bitmap() + * All parameter error checking will have been done before this is called. + */ +void +_swrast_Bitmap( GLcontext *ctx, GLint px, GLint py, + GLsizei width, GLsizei height, + const struct gl_pixelstore_attrib *unpack, + const GLubyte *bitmap ) +{ + GLint row, col; + GLuint count = 0; + SWspan span; + + ASSERT(ctx->RenderMode == GL_RENDER); + + bitmap = (const GLubyte *) _mesa_map_pbo_source(ctx, unpack, bitmap); + if (!bitmap) + return; + + swrast_render_start(ctx); + + if (SWRAST_CONTEXT(ctx)->NewState) + _swrast_validate_derived( ctx ); + + INIT_SPAN(span, GL_BITMAP); + span.end = width; + span.arrayMask = SPAN_XY; + _swrast_span_default_attribs(ctx, &span); + + for (row = 0; row < height; row++) { + const GLubyte *src = (const GLubyte *) _mesa_image_address2d(unpack, + bitmap, width, height, GL_COLOR_INDEX, GL_BITMAP, row, 0); + + if (unpack->LsbFirst) { + /* Lsb first */ + GLubyte mask = 1U << (unpack->SkipPixels & 0x7); + for (col = 0; col < width; col++) { + if (*src & mask) { + span.array->x[count] = px + col; + span.array->y[count] = py + row; + count++; + } + if (mask == 128U) { + src++; + mask = 1U; + } + else { + mask = mask << 1; + } + } + + /* get ready for next row */ + if (mask != 1) + src++; + } + else { + /* Msb first */ + GLubyte mask = 128U >> (unpack->SkipPixels & 0x7); + for (col = 0; col < width; col++) { + if (*src & mask) { + span.array->x[count] = px + col; + span.array->y[count] = py + row; + count++; + } + if (mask == 1U) { + src++; + mask = 128U; + } + else { + mask = mask >> 1; + } + } + + /* get ready for next row */ + if (mask != 128) + src++; + } + + if (count + width >= MAX_WIDTH || row + 1 == height) { + /* flush the span */ + span.end = count; + if (ctx->Visual.rgbMode) + _swrast_write_rgba_span(ctx, &span); + else + _swrast_write_index_span(ctx, &span); + span.end = 0; + count = 0; + } + } + + swrast_render_finish(ctx); + + _mesa_unmap_pbo_source(ctx, unpack); +} + + +#if 0 +/* + * XXX this is another way to implement Bitmap. Use horizontal runs of + * fragments, initializing the mask array to indicate which fragments to + * draw or skip. + */ +void +_swrast_Bitmap( GLcontext *ctx, GLint px, GLint py, + GLsizei width, GLsizei height, + const struct gl_pixelstore_attrib *unpack, + const GLubyte *bitmap ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLint row, col; + SWspan span; + + ASSERT(ctx->RenderMode == GL_RENDER); + ASSERT(bitmap); + + swrast_render_start(ctx); + + if (SWRAST_CONTEXT(ctx)->NewState) + _swrast_validate_derived( ctx ); + + INIT_SPAN(span, GL_BITMAP); + span.end = width; + span.arrayMask = SPAN_MASK; + _swrast_span_default_attribs(ctx, &span); + + /*span.arrayMask |= SPAN_MASK;*/ /* we'll init span.mask[] */ + span.x = px; + span.y = py; + /*span.end = width;*/ + + for (row=0; row<height; row++, span.y++) { + const GLubyte *src = (const GLubyte *) _mesa_image_address2d(unpack, + bitmap, width, height, GL_COLOR_INDEX, GL_BITMAP, row, 0); + + if (unpack->LsbFirst) { + /* Lsb first */ + GLubyte mask = 1U << (unpack->SkipPixels & 0x7); + for (col=0; col<width; col++) { + span.array->mask[col] = (*src & mask) ? GL_TRUE : GL_FALSE; + if (mask == 128U) { + src++; + mask = 1U; + } + else { + mask = mask << 1; + } + } + + if (ctx->Visual.rgbMode) + _swrast_write_rgba_span(ctx, &span); + else + _swrast_write_index_span(ctx, &span); + + /* get ready for next row */ + if (mask != 1) + src++; + } + else { + /* Msb first */ + GLubyte mask = 128U >> (unpack->SkipPixels & 0x7); + for (col=0; col<width; col++) { + span.array->mask[col] = (*src & mask) ? GL_TRUE : GL_FALSE; + if (mask == 1U) { + src++; + mask = 128U; + } + else { + mask = mask >> 1; + } + } + + if (ctx->Visual.rgbMode) + _swrast_write_rgba_span(ctx, &span); + else + _swrast_write_index_span(ctx, &span); + + /* get ready for next row */ + if (mask != 128) + src++; + } + } + + swrast_render_finish(ctx); +} +#endif diff --git a/mesalib/src/mesa/swrast/s_blend.c b/mesalib/src/mesa/swrast/s_blend.c new file mode 100644 index 000000000..95c83432a --- /dev/null +++ b/mesalib/src/mesa/swrast/s_blend.c @@ -0,0 +1,1002 @@ +/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/** + * \file swrast/s_blend.c + * \brief software blending. + * \author Brian Paul + * + * Only a few blend modes have been optimized (min, max, transparency, add) + * more optimized cases can easily be added if needed. + * Celestia uses glBlendFunc(GL_SRC_ALPHA, GL_ONE), for example. + */ + + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/macros.h" + +#include "s_blend.h" +#include "s_context.h" +#include "s_span.h" + + +#if defined(USE_MMX_ASM) +#include "x86/mmx.h" +#include "x86/common_x86_asm.h" +#define _BLENDAPI _ASMAPI +#else +#define _BLENDAPI +#endif + + +/** + * Integer divide by 255 + * Declare "int divtemp" before using. + * This satisfies Glean and should be reasonably fast. + * Contributed by Nathan Hand. + */ +#define DIV255(X) (divtemp = (X), ((divtemp << 8) + divtemp + 256) >> 16) + + + +/** + * Special case for glBlendFunc(GL_ZERO, GL_ONE). + * No-op means the framebuffer values remain unchanged. + * Any chanType ok. + */ +static void _BLENDAPI +blend_noop(GLcontext *ctx, GLuint n, const GLubyte mask[], + GLvoid *src, const GLvoid *dst, GLenum chanType) +{ + GLint bytes; + + ASSERT(ctx->Color.BlendEquationRGB == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendEquationA == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendSrcRGB == GL_ZERO); + ASSERT(ctx->Color.BlendDstRGB == GL_ONE); + (void) ctx; + + /* just memcpy */ + if (chanType == GL_UNSIGNED_BYTE) + bytes = 4 * n * sizeof(GLubyte); + else if (chanType == GL_UNSIGNED_SHORT) + bytes = 4 * n * sizeof(GLushort); + else + bytes = 4 * n * sizeof(GLfloat); + + _mesa_memcpy(src, dst, bytes); +} + + +/** + * Special case for glBlendFunc(GL_ONE, GL_ZERO) + * Any chanType ok. + */ +static void _BLENDAPI +blend_replace(GLcontext *ctx, GLuint n, const GLubyte mask[], + GLvoid *src, const GLvoid *dst, GLenum chanType) +{ + ASSERT(ctx->Color.BlendEquationRGB == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendEquationA == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendSrcRGB == GL_ONE); + ASSERT(ctx->Color.BlendDstRGB == GL_ZERO); + (void) ctx; + (void) n; + (void) mask; + (void) src; + (void) dst; +} + + +/** + * Common transparency blending mode: + * glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA). + */ +static void _BLENDAPI +blend_transparency_ubyte(GLcontext *ctx, GLuint n, const GLubyte mask[], + GLvoid *src, const GLvoid *dst, GLenum chanType) +{ + GLubyte (*rgba)[4] = (GLubyte (*)[4]) src; + const GLubyte (*dest)[4] = (const GLubyte (*)[4]) dst; + GLuint i; + + ASSERT(ctx->Color.BlendEquationRGB == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendEquationA == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendSrcRGB == GL_SRC_ALPHA); + ASSERT(ctx->Color.BlendSrcA == GL_SRC_ALPHA); + ASSERT(ctx->Color.BlendDstRGB == GL_ONE_MINUS_SRC_ALPHA); + ASSERT(ctx->Color.BlendDstA == GL_ONE_MINUS_SRC_ALPHA); + ASSERT(chanType == GL_UNSIGNED_BYTE); + + (void) ctx; + + for (i = 0; i < n; i++) { + if (mask[i]) { + const GLint t = rgba[i][ACOMP]; /* t is in [0, 255] */ + if (t == 0) { + /* 0% alpha */ + COPY_4UBV(rgba[i], dest[i]); + } + else if (t != 255) { + GLint divtemp; + const GLint r = DIV255((rgba[i][RCOMP] - dest[i][RCOMP]) * t) + dest[i][RCOMP]; + const GLint g = DIV255((rgba[i][GCOMP] - dest[i][GCOMP]) * t) + dest[i][GCOMP]; + const GLint b = DIV255((rgba[i][BCOMP] - dest[i][BCOMP]) * t) + dest[i][BCOMP]; + const GLint a = DIV255((rgba[i][ACOMP] - dest[i][ACOMP]) * t) + dest[i][ACOMP]; + ASSERT(r <= 255); + ASSERT(g <= 255); + ASSERT(b <= 255); + ASSERT(a <= 255); + rgba[i][RCOMP] = (GLubyte) r; + rgba[i][GCOMP] = (GLubyte) g; + rgba[i][BCOMP] = (GLubyte) b; + rgba[i][ACOMP] = (GLubyte) a; + } + } + } +} + + +static void _BLENDAPI +blend_transparency_ushort(GLcontext *ctx, GLuint n, const GLubyte mask[], + GLvoid *src, const GLvoid *dst, GLenum chanType) +{ + GLushort (*rgba)[4] = (GLushort (*)[4]) src; + const GLushort (*dest)[4] = (const GLushort (*)[4]) dst; + GLuint i; + + ASSERT(ctx->Color.BlendEquationRGB == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendEquationA == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendSrcRGB == GL_SRC_ALPHA); + ASSERT(ctx->Color.BlendSrcA == GL_SRC_ALPHA); + ASSERT(ctx->Color.BlendDstRGB == GL_ONE_MINUS_SRC_ALPHA); + ASSERT(ctx->Color.BlendDstA == GL_ONE_MINUS_SRC_ALPHA); + ASSERT(chanType == GL_UNSIGNED_SHORT); + + (void) ctx; + + for (i = 0; i < n; i++) { + if (mask[i]) { + const GLint t = rgba[i][ACOMP]; + if (t == 0) { + /* 0% alpha */ + COPY_4V(rgba[i], dest[i]); + } + else if (t != 65535) { + const GLfloat tt = (GLfloat) t / 65535.0F; + GLushort r = (GLushort) ((rgba[i][RCOMP] - dest[i][RCOMP]) * tt + dest[i][RCOMP]); + GLushort g = (GLushort) ((rgba[i][GCOMP] - dest[i][GCOMP]) * tt + dest[i][GCOMP]); + GLushort b = (GLushort) ((rgba[i][BCOMP] - dest[i][BCOMP]) * tt + dest[i][BCOMP]); + GLushort a = (GLushort) ((rgba[i][ACOMP] - dest[i][ACOMP]) * tt + dest[i][ACOMP]); + ASSIGN_4V(rgba[i], r, g, b, a); + } + } + } +} + + +static void _BLENDAPI +blend_transparency_float(GLcontext *ctx, GLuint n, const GLubyte mask[], + GLvoid *src, const GLvoid *dst, GLenum chanType) +{ + GLfloat (*rgba)[4] = (GLfloat (*)[4]) src; + const GLfloat (*dest)[4] = (const GLfloat (*)[4]) dst; + GLuint i; + + ASSERT(ctx->Color.BlendEquationRGB == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendEquationA == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendSrcRGB == GL_SRC_ALPHA); + ASSERT(ctx->Color.BlendSrcA == GL_SRC_ALPHA); + ASSERT(ctx->Color.BlendDstRGB == GL_ONE_MINUS_SRC_ALPHA); + ASSERT(ctx->Color.BlendDstA == GL_ONE_MINUS_SRC_ALPHA); + ASSERT(chanType == GL_FLOAT); + + (void) ctx; + + for (i = 0; i < n; i++) { + if (mask[i]) { + const GLfloat t = rgba[i][ACOMP]; /* t in [0, 1] */ + if (t == 0.0F) { + /* 0% alpha */ + COPY_4V(rgba[i], dest[i]); + } + else if (t != 1.0F) { + GLfloat r = (rgba[i][RCOMP] - dest[i][RCOMP]) * t + dest[i][RCOMP]; + GLfloat g = (rgba[i][GCOMP] - dest[i][GCOMP]) * t + dest[i][GCOMP]; + GLfloat b = (rgba[i][BCOMP] - dest[i][BCOMP]) * t + dest[i][BCOMP]; + GLfloat a = (rgba[i][ACOMP] - dest[i][ACOMP]) * t + dest[i][ACOMP]; + ASSIGN_4V(rgba[i], r, g, b, a); + } + } + } +} + + + +/** + * Add src and dest: glBlendFunc(GL_ONE, GL_ONE). + * Any chanType ok. + */ +static void _BLENDAPI +blend_add(GLcontext *ctx, GLuint n, const GLubyte mask[], + GLvoid *src, const GLvoid *dst, GLenum chanType) +{ + GLuint i; + + ASSERT(ctx->Color.BlendEquationRGB == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendEquationA == GL_FUNC_ADD); + ASSERT(ctx->Color.BlendSrcRGB == GL_ONE); + ASSERT(ctx->Color.BlendDstRGB == GL_ONE); + (void) ctx; + + if (chanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = (GLubyte (*)[4]) src; + const GLubyte (*dest)[4] = (const GLubyte (*)[4]) dst; + for (i=0;i<n;i++) { + if (mask[i]) { + GLint r = rgba[i][RCOMP] + dest[i][RCOMP]; + GLint g = rgba[i][GCOMP] + dest[i][GCOMP]; + GLint b = rgba[i][BCOMP] + dest[i][BCOMP]; + GLint a = rgba[i][ACOMP] + dest[i][ACOMP]; + rgba[i][RCOMP] = (GLubyte) MIN2( r, 255 ); + rgba[i][GCOMP] = (GLubyte) MIN2( g, 255 ); + rgba[i][BCOMP] = (GLubyte) MIN2( b, 255 ); + rgba[i][ACOMP] = (GLubyte) MIN2( a, 255 ); + } + } + } + else if (chanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = (GLushort (*)[4]) src; + const GLushort (*dest)[4] = (const GLushort (*)[4]) dst; + for (i=0;i<n;i++) { + if (mask[i]) { + GLint r = rgba[i][RCOMP] + dest[i][RCOMP]; + GLint g = rgba[i][GCOMP] + dest[i][GCOMP]; + GLint b = rgba[i][BCOMP] + dest[i][BCOMP]; + GLint a = rgba[i][ACOMP] + dest[i][ACOMP]; + rgba[i][RCOMP] = (GLshort) MIN2( r, 255 ); + rgba[i][GCOMP] = (GLshort) MIN2( g, 255 ); + rgba[i][BCOMP] = (GLshort) MIN2( b, 255 ); + rgba[i][ACOMP] = (GLshort) MIN2( a, 255 ); + } + } + } + else { + GLfloat (*rgba)[4] = (GLfloat (*)[4]) src; + const GLfloat (*dest)[4] = (const GLfloat (*)[4]) dst; + ASSERT(chanType == GL_FLOAT); + for (i=0;i<n;i++) { + if (mask[i]) { + /* don't RGB clamp to max */ + rgba[i][RCOMP] += dest[i][RCOMP]; + rgba[i][GCOMP] += dest[i][GCOMP]; + rgba[i][BCOMP] += dest[i][BCOMP]; + rgba[i][ACOMP] += dest[i][ACOMP]; + } + } + } +} + + + +/** + * Blend min function. + * Any chanType ok. + */ +static void _BLENDAPI +blend_min(GLcontext *ctx, GLuint n, const GLubyte mask[], + GLvoid *src, const GLvoid *dst, GLenum chanType) +{ + GLuint i; + ASSERT(ctx->Color.BlendEquationRGB == GL_MIN); + ASSERT(ctx->Color.BlendEquationA == GL_MIN); + (void) ctx; + + if (chanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = (GLubyte (*)[4]) src; + const GLubyte (*dest)[4] = (const GLubyte (*)[4]) dst; + for (i=0;i<n;i++) { + if (mask[i]) { + rgba[i][RCOMP] = MIN2( rgba[i][RCOMP], dest[i][RCOMP] ); + rgba[i][GCOMP] = MIN2( rgba[i][GCOMP], dest[i][GCOMP] ); + rgba[i][BCOMP] = MIN2( rgba[i][BCOMP], dest[i][BCOMP] ); + rgba[i][ACOMP] = MIN2( rgba[i][ACOMP], dest[i][ACOMP] ); + } + } + } + else if (chanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = (GLushort (*)[4]) src; + const GLushort (*dest)[4] = (const GLushort (*)[4]) dst; + for (i=0;i<n;i++) { + if (mask[i]) { + rgba[i][RCOMP] = MIN2( rgba[i][RCOMP], dest[i][RCOMP] ); + rgba[i][GCOMP] = MIN2( rgba[i][GCOMP], dest[i][GCOMP] ); + rgba[i][BCOMP] = MIN2( rgba[i][BCOMP], dest[i][BCOMP] ); + rgba[i][ACOMP] = MIN2( rgba[i][ACOMP], dest[i][ACOMP] ); + } + } + } + else { + GLfloat (*rgba)[4] = (GLfloat (*)[4]) src; + const GLfloat (*dest)[4] = (const GLfloat (*)[4]) dst; + ASSERT(chanType == GL_FLOAT); + for (i=0;i<n;i++) { + if (mask[i]) { + rgba[i][RCOMP] = MIN2( rgba[i][RCOMP], dest[i][RCOMP] ); + rgba[i][GCOMP] = MIN2( rgba[i][GCOMP], dest[i][GCOMP] ); + rgba[i][BCOMP] = MIN2( rgba[i][BCOMP], dest[i][BCOMP] ); + rgba[i][ACOMP] = MIN2( rgba[i][ACOMP], dest[i][ACOMP] ); + } + } + } +} + + +/** + * Blend max function. + * Any chanType ok. + */ +static void _BLENDAPI +blend_max(GLcontext *ctx, GLuint n, const GLubyte mask[], + GLvoid *src, const GLvoid *dst, GLenum chanType) +{ + GLuint i; + ASSERT(ctx->Color.BlendEquationRGB == GL_MAX); + ASSERT(ctx->Color.BlendEquationA == GL_MAX); + (void) ctx; + + if (chanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = (GLubyte (*)[4]) src; + const GLubyte (*dest)[4] = (const GLubyte (*)[4]) dst; + for (i=0;i<n;i++) { + if (mask[i]) { + rgba[i][RCOMP] = MAX2( rgba[i][RCOMP], dest[i][RCOMP] ); + rgba[i][GCOMP] = MAX2( rgba[i][GCOMP], dest[i][GCOMP] ); + rgba[i][BCOMP] = MAX2( rgba[i][BCOMP], dest[i][BCOMP] ); + rgba[i][ACOMP] = MAX2( rgba[i][ACOMP], dest[i][ACOMP] ); + } + } + } + else if (chanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = (GLushort (*)[4]) src; + const GLushort (*dest)[4] = (const GLushort (*)[4]) dst; + for (i=0;i<n;i++) { + if (mask[i]) { + rgba[i][RCOMP] = MAX2( rgba[i][RCOMP], dest[i][RCOMP] ); + rgba[i][GCOMP] = MAX2( rgba[i][GCOMP], dest[i][GCOMP] ); + rgba[i][BCOMP] = MAX2( rgba[i][BCOMP], dest[i][BCOMP] ); + rgba[i][ACOMP] = MAX2( rgba[i][ACOMP], dest[i][ACOMP] ); + } + } + } + else { + GLfloat (*rgba)[4] = (GLfloat (*)[4]) src; + const GLfloat (*dest)[4] = (const GLfloat (*)[4]) dst; + ASSERT(chanType == GL_FLOAT); + for (i=0;i<n;i++) { + if (mask[i]) { + rgba[i][RCOMP] = MAX2( rgba[i][RCOMP], dest[i][RCOMP] ); + rgba[i][GCOMP] = MAX2( rgba[i][GCOMP], dest[i][GCOMP] ); + rgba[i][BCOMP] = MAX2( rgba[i][BCOMP], dest[i][BCOMP] ); + rgba[i][ACOMP] = MAX2( rgba[i][ACOMP], dest[i][ACOMP] ); + } + } + } +} + + + +/** + * Modulate: result = src * dest + * Any chanType ok. + */ +static void _BLENDAPI +blend_modulate(GLcontext *ctx, GLuint n, const GLubyte mask[], + GLvoid *src, const GLvoid *dst, GLenum chanType) +{ + GLuint i; + (void) ctx; + + if (chanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = (GLubyte (*)[4]) src; + const GLubyte (*dest)[4] = (const GLubyte (*)[4]) dst; + for (i=0;i<n;i++) { + if (mask[i]) { + GLint divtemp; + rgba[i][RCOMP] = DIV255(rgba[i][RCOMP] * dest[i][RCOMP]); + rgba[i][GCOMP] = DIV255(rgba[i][GCOMP] * dest[i][GCOMP]); + rgba[i][BCOMP] = DIV255(rgba[i][BCOMP] * dest[i][BCOMP]); + rgba[i][ACOMP] = DIV255(rgba[i][ACOMP] * dest[i][ACOMP]); + } + } + } + else if (chanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = (GLushort (*)[4]) src; + const GLushort (*dest)[4] = (const GLushort (*)[4]) dst; + for (i=0;i<n;i++) { + if (mask[i]) { + rgba[i][RCOMP] = (rgba[i][RCOMP] * dest[i][RCOMP] + 65535) >> 16; + rgba[i][GCOMP] = (rgba[i][GCOMP] * dest[i][GCOMP] + 65535) >> 16; + rgba[i][BCOMP] = (rgba[i][BCOMP] * dest[i][BCOMP] + 65535) >> 16; + rgba[i][ACOMP] = (rgba[i][ACOMP] * dest[i][ACOMP] + 65535) >> 16; + } + } + } + else { + GLfloat (*rgba)[4] = (GLfloat (*)[4]) src; + const GLfloat (*dest)[4] = (const GLfloat (*)[4]) dst; + ASSERT(chanType == GL_FLOAT); + for (i=0;i<n;i++) { + if (mask[i]) { + rgba[i][RCOMP] = rgba[i][RCOMP] * dest[i][RCOMP]; + rgba[i][GCOMP] = rgba[i][GCOMP] * dest[i][GCOMP]; + rgba[i][BCOMP] = rgba[i][BCOMP] * dest[i][BCOMP]; + rgba[i][ACOMP] = rgba[i][ACOMP] * dest[i][ACOMP]; + } + } + } +} + + +/** + * Do any blending operation, using floating point. + * \param n number of pixels + * \param mask fragment writemask array + * \param rgba array of incoming (and modified) pixels + * \param dest array of pixels from the dest color buffer + */ +static void +blend_general_float(GLcontext *ctx, GLuint n, const GLubyte mask[], + GLfloat rgba[][4], GLfloat dest[][4], + GLenum chanType) +{ + GLuint i; + + for (i = 0; i < n; i++) { + if (mask[i]) { + /* Incoming/source Color */ + const GLfloat Rs = rgba[i][RCOMP]; + const GLfloat Gs = rgba[i][GCOMP]; + const GLfloat Bs = rgba[i][BCOMP]; + const GLfloat As = rgba[i][ACOMP]; + + /* Frame buffer/dest color */ + const GLfloat Rd = dest[i][RCOMP]; + const GLfloat Gd = dest[i][GCOMP]; + const GLfloat Bd = dest[i][BCOMP]; + const GLfloat Ad = dest[i][ACOMP]; + + GLfloat sR, sG, sB, sA; /* Source factor */ + GLfloat dR, dG, dB, dA; /* Dest factor */ + GLfloat r, g, b, a; /* result color */ + + /* XXX for the case of constant blend terms we could init + * the sX and dX variables just once before the loop. + */ + + /* Source RGB factor */ + switch (ctx->Color.BlendSrcRGB) { + case GL_ZERO: + sR = sG = sB = 0.0F; + break; + case GL_ONE: + sR = sG = sB = 1.0F; + break; + case GL_DST_COLOR: + sR = Rd; + sG = Gd; + sB = Bd; + break; + case GL_ONE_MINUS_DST_COLOR: + sR = 1.0F - Rd; + sG = 1.0F - Gd; + sB = 1.0F - Bd; + break; + case GL_SRC_ALPHA: + sR = sG = sB = As; + break; + case GL_ONE_MINUS_SRC_ALPHA: + sR = sG = sB = 1.0F - As; + break; + case GL_DST_ALPHA: + sR = sG = sB = Ad; + break; + case GL_ONE_MINUS_DST_ALPHA: + sR = sG = sB = 1.0F - Ad; + break; + case GL_SRC_ALPHA_SATURATE: + if (As < 1.0F - Ad) { + sR = sG = sB = As; + } + else { + sR = sG = sB = 1.0F - Ad; + } + break; + case GL_CONSTANT_COLOR: + sR = ctx->Color.BlendColor[0]; + sG = ctx->Color.BlendColor[1]; + sB = ctx->Color.BlendColor[2]; + break; + case GL_ONE_MINUS_CONSTANT_COLOR: + sR = 1.0F - ctx->Color.BlendColor[0]; + sG = 1.0F - ctx->Color.BlendColor[1]; + sB = 1.0F - ctx->Color.BlendColor[2]; + break; + case GL_CONSTANT_ALPHA: + sR = sG = sB = ctx->Color.BlendColor[3]; + break; + case GL_ONE_MINUS_CONSTANT_ALPHA: + sR = sG = sB = 1.0F - ctx->Color.BlendColor[3]; + break; + case GL_SRC_COLOR: + sR = Rs; + sG = Gs; + sB = Bs; + break; + case GL_ONE_MINUS_SRC_COLOR: + sR = 1.0F - Rs; + sG = 1.0F - Gs; + sB = 1.0F - Bs; + break; + default: + /* this should never happen */ + _mesa_problem(ctx, "Bad blend source RGB factor in blend_general_float"); + return; + } + + /* Source Alpha factor */ + switch (ctx->Color.BlendSrcA) { + case GL_ZERO: + sA = 0.0F; + break; + case GL_ONE: + sA = 1.0F; + break; + case GL_DST_COLOR: + sA = Ad; + break; + case GL_ONE_MINUS_DST_COLOR: + sA = 1.0F - Ad; + break; + case GL_SRC_ALPHA: + sA = As; + break; + case GL_ONE_MINUS_SRC_ALPHA: + sA = 1.0F - As; + break; + case GL_DST_ALPHA: + sA = Ad; + break; + case GL_ONE_MINUS_DST_ALPHA: + sA = 1.0F - Ad; + break; + case GL_SRC_ALPHA_SATURATE: + sA = 1.0; + break; + case GL_CONSTANT_COLOR: + sA = ctx->Color.BlendColor[3]; + break; + case GL_ONE_MINUS_CONSTANT_COLOR: + sA = 1.0F - ctx->Color.BlendColor[3]; + break; + case GL_CONSTANT_ALPHA: + sA = ctx->Color.BlendColor[3]; + break; + case GL_ONE_MINUS_CONSTANT_ALPHA: + sA = 1.0F - ctx->Color.BlendColor[3]; + break; + case GL_SRC_COLOR: + sA = As; + break; + case GL_ONE_MINUS_SRC_COLOR: + sA = 1.0F - As; + break; + default: + /* this should never happen */ + sA = 0.0F; + _mesa_problem(ctx, "Bad blend source A factor in blend_general_float"); + return; + } + + /* Dest RGB factor */ + switch (ctx->Color.BlendDstRGB) { + case GL_ZERO: + dR = dG = dB = 0.0F; + break; + case GL_ONE: + dR = dG = dB = 1.0F; + break; + case GL_SRC_COLOR: + dR = Rs; + dG = Gs; + dB = Bs; + break; + case GL_ONE_MINUS_SRC_COLOR: + dR = 1.0F - Rs; + dG = 1.0F - Gs; + dB = 1.0F - Bs; + break; + case GL_SRC_ALPHA: + dR = dG = dB = As; + break; + case GL_ONE_MINUS_SRC_ALPHA: + dR = dG = dB = 1.0F - As; + break; + case GL_DST_ALPHA: + dR = dG = dB = Ad; + break; + case GL_ONE_MINUS_DST_ALPHA: + dR = dG = dB = 1.0F - Ad; + break; + case GL_CONSTANT_COLOR: + dR = ctx->Color.BlendColor[0]; + dG = ctx->Color.BlendColor[1]; + dB = ctx->Color.BlendColor[2]; + break; + case GL_ONE_MINUS_CONSTANT_COLOR: + dR = 1.0F - ctx->Color.BlendColor[0]; + dG = 1.0F - ctx->Color.BlendColor[1]; + dB = 1.0F - ctx->Color.BlendColor[2]; + break; + case GL_CONSTANT_ALPHA: + dR = dG = dB = ctx->Color.BlendColor[3]; + break; + case GL_ONE_MINUS_CONSTANT_ALPHA: + dR = dG = dB = 1.0F - ctx->Color.BlendColor[3]; + break; + case GL_DST_COLOR: + dR = Rd; + dG = Gd; + dB = Bd; + break; + case GL_ONE_MINUS_DST_COLOR: + dR = 1.0F - Rd; + dG = 1.0F - Gd; + dB = 1.0F - Bd; + break; + default: + /* this should never happen */ + dR = dG = dB = 0.0F; + _mesa_problem(ctx, "Bad blend dest RGB factor in blend_general_float"); + return; + } + + /* Dest Alpha factor */ + switch (ctx->Color.BlendDstA) { + case GL_ZERO: + dA = 0.0F; + break; + case GL_ONE: + dA = 1.0F; + break; + case GL_SRC_COLOR: + dA = As; + break; + case GL_ONE_MINUS_SRC_COLOR: + dA = 1.0F - As; + break; + case GL_SRC_ALPHA: + dA = As; + break; + case GL_ONE_MINUS_SRC_ALPHA: + dA = 1.0F - As; + break; + case GL_DST_ALPHA: + dA = Ad; + break; + case GL_ONE_MINUS_DST_ALPHA: + dA = 1.0F - Ad; + break; + case GL_CONSTANT_COLOR: + dA = ctx->Color.BlendColor[3]; + break; + case GL_ONE_MINUS_CONSTANT_COLOR: + dA = 1.0F - ctx->Color.BlendColor[3]; + break; + case GL_CONSTANT_ALPHA: + dA = ctx->Color.BlendColor[3]; + break; + case GL_ONE_MINUS_CONSTANT_ALPHA: + dA = 1.0F - ctx->Color.BlendColor[3]; + break; + case GL_DST_COLOR: + dA = Ad; + break; + case GL_ONE_MINUS_DST_COLOR: + dA = 1.0F - Ad; + break; + default: + /* this should never happen */ + dA = 0.0F; + _mesa_problem(ctx, "Bad blend dest A factor in blend_general_float"); + return; + } + + /* compute the blended RGB */ + switch (ctx->Color.BlendEquationRGB) { + case GL_FUNC_ADD: + r = Rs * sR + Rd * dR; + g = Gs * sG + Gd * dG; + b = Bs * sB + Bd * dB; + a = As * sA + Ad * dA; + break; + case GL_FUNC_SUBTRACT: + r = Rs * sR - Rd * dR; + g = Gs * sG - Gd * dG; + b = Bs * sB - Bd * dB; + a = As * sA - Ad * dA; + break; + case GL_FUNC_REVERSE_SUBTRACT: + r = Rd * dR - Rs * sR; + g = Gd * dG - Gs * sG; + b = Bd * dB - Bs * sB; + a = Ad * dA - As * sA; + break; + case GL_MIN: + r = MIN2( Rd, Rs ); + g = MIN2( Gd, Gs ); + b = MIN2( Bd, Bs ); + break; + case GL_MAX: + r = MAX2( Rd, Rs ); + g = MAX2( Gd, Gs ); + b = MAX2( Bd, Bs ); + break; + default: + /* should never get here */ + r = g = b = 0.0F; /* silence uninitialized var warning */ + _mesa_problem(ctx, "unexpected BlendEquation in blend_general()"); + return; + } + + /* compute the blended alpha */ + switch (ctx->Color.BlendEquationA) { + case GL_FUNC_ADD: + a = As * sA + Ad * dA; + break; + case GL_FUNC_SUBTRACT: + a = As * sA - Ad * dA; + break; + case GL_FUNC_REVERSE_SUBTRACT: + a = Ad * dA - As * sA; + break; + case GL_MIN: + a = MIN2( Ad, As ); + break; + case GL_MAX: + a = MAX2( Ad, As ); + break; + default: + /* should never get here */ + a = 0.0F; /* silence uninitialized var warning */ + _mesa_problem(ctx, "unexpected BlendEquation in blend_general()"); + return; + } + + /* final clamping */ +#if 0 + rgba[i][RCOMP] = MAX2( r, 0.0F ); + rgba[i][GCOMP] = MAX2( g, 0.0F ); + rgba[i][BCOMP] = MAX2( b, 0.0F ); + rgba[i][ACOMP] = CLAMP( a, 0.0F, 1.0F ); +#else + ASSIGN_4V(rgba[i], r, g, b, a); +#endif + } + } +} + + +/** + * Do any blending operation, any chanType. + */ +static void +blend_general(GLcontext *ctx, GLuint n, const GLubyte mask[], + void *src, const void *dst, GLenum chanType) +{ + GLfloat rgbaF[MAX_WIDTH][4], destF[MAX_WIDTH][4]; + + if (chanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = (GLubyte (*)[4]) src; + const GLubyte (*dest)[4] = (const GLubyte (*)[4]) dst; + GLuint i; + /* convert ubytes to floats */ + for (i = 0; i < n; i++) { + if (mask[i]) { + rgbaF[i][RCOMP] = UBYTE_TO_FLOAT(rgba[i][RCOMP]); + rgbaF[i][GCOMP] = UBYTE_TO_FLOAT(rgba[i][GCOMP]); + rgbaF[i][BCOMP] = UBYTE_TO_FLOAT(rgba[i][BCOMP]); + rgbaF[i][ACOMP] = UBYTE_TO_FLOAT(rgba[i][ACOMP]); + destF[i][RCOMP] = UBYTE_TO_FLOAT(dest[i][RCOMP]); + destF[i][GCOMP] = UBYTE_TO_FLOAT(dest[i][GCOMP]); + destF[i][BCOMP] = UBYTE_TO_FLOAT(dest[i][BCOMP]); + destF[i][ACOMP] = UBYTE_TO_FLOAT(dest[i][ACOMP]); + } + } + /* do blend */ + blend_general_float(ctx, n, mask, rgbaF, destF, chanType); + /* convert back to ubytes */ + for (i = 0; i < n; i++) { + if (mask[i]) { + UNCLAMPED_FLOAT_TO_UBYTE(rgba[i][RCOMP], rgbaF[i][RCOMP]); + UNCLAMPED_FLOAT_TO_UBYTE(rgba[i][GCOMP], rgbaF[i][GCOMP]); + UNCLAMPED_FLOAT_TO_UBYTE(rgba[i][BCOMP], rgbaF[i][BCOMP]); + UNCLAMPED_FLOAT_TO_UBYTE(rgba[i][ACOMP], rgbaF[i][ACOMP]); + } + } + } + else if (chanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = (GLushort (*)[4]) src; + const GLushort (*dest)[4] = (const GLushort (*)[4]) dst; + GLuint i; + /* convert ushorts to floats */ + for (i = 0; i < n; i++) { + if (mask[i]) { + rgbaF[i][RCOMP] = USHORT_TO_FLOAT(rgba[i][RCOMP]); + rgbaF[i][GCOMP] = USHORT_TO_FLOAT(rgba[i][GCOMP]); + rgbaF[i][BCOMP] = USHORT_TO_FLOAT(rgba[i][BCOMP]); + rgbaF[i][ACOMP] = USHORT_TO_FLOAT(rgba[i][ACOMP]); + destF[i][RCOMP] = USHORT_TO_FLOAT(dest[i][RCOMP]); + destF[i][GCOMP] = USHORT_TO_FLOAT(dest[i][GCOMP]); + destF[i][BCOMP] = USHORT_TO_FLOAT(dest[i][BCOMP]); + destF[i][ACOMP] = USHORT_TO_FLOAT(dest[i][ACOMP]); + } + } + /* do blend */ + blend_general_float(ctx, n, mask, rgbaF, destF, chanType); + /* convert back to ushorts */ + for (i = 0; i < n; i++) { + if (mask[i]) { + UNCLAMPED_FLOAT_TO_USHORT(rgba[i][RCOMP], rgbaF[i][RCOMP]); + UNCLAMPED_FLOAT_TO_USHORT(rgba[i][GCOMP], rgbaF[i][GCOMP]); + UNCLAMPED_FLOAT_TO_USHORT(rgba[i][BCOMP], rgbaF[i][BCOMP]); + UNCLAMPED_FLOAT_TO_USHORT(rgba[i][ACOMP], rgbaF[i][ACOMP]); + } + } + } + else { + blend_general_float(ctx, n, mask, (GLfloat (*)[4]) src, + (GLfloat (*)[4]) dst, chanType); + } +} + + + +/** + * Analyze current blending parameters to pick fastest blending function. + * Result: the ctx->Color.BlendFunc pointer is updated. + */ +void +_swrast_choose_blend_func(GLcontext *ctx, GLenum chanType) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLenum eq = ctx->Color.BlendEquationRGB; + const GLenum srcRGB = ctx->Color.BlendSrcRGB; + const GLenum dstRGB = ctx->Color.BlendDstRGB; + const GLenum srcA = ctx->Color.BlendSrcA; + const GLenum dstA = ctx->Color.BlendDstA; + + if (ctx->Color.BlendEquationRGB != ctx->Color.BlendEquationA) { + swrast->BlendFunc = blend_general; + } + else if (eq == GL_MIN) { + /* Note: GL_MIN ignores the blending weight factors */ +#if defined(USE_MMX_ASM) + if (cpu_has_mmx && chanType == GL_UNSIGNED_BYTE) { + swrast->BlendFunc = _mesa_mmx_blend_min; + } + else +#endif + swrast->BlendFunc = blend_min; + } + else if (eq == GL_MAX) { + /* Note: GL_MAX ignores the blending weight factors */ +#if defined(USE_MMX_ASM) + if (cpu_has_mmx && chanType == GL_UNSIGNED_BYTE) { + swrast->BlendFunc = _mesa_mmx_blend_max; + } + else +#endif + swrast->BlendFunc = blend_max; + } + else if (srcRGB != srcA || dstRGB != dstA) { + swrast->BlendFunc = blend_general; + } + else if (eq == GL_FUNC_ADD && srcRGB == GL_SRC_ALPHA + && dstRGB == GL_ONE_MINUS_SRC_ALPHA) { +#if defined(USE_MMX_ASM) + if (cpu_has_mmx && chanType == GL_UNSIGNED_BYTE) { + swrast->BlendFunc = _mesa_mmx_blend_transparency; + } + else +#endif + { + if (chanType == GL_UNSIGNED_BYTE) + swrast->BlendFunc = blend_transparency_ubyte; + else if (chanType == GL_UNSIGNED_SHORT) + swrast->BlendFunc = blend_transparency_ushort; + else + swrast->BlendFunc = blend_transparency_float; + } + } + else if (eq == GL_FUNC_ADD && srcRGB == GL_ONE && dstRGB == GL_ONE) { +#if defined(USE_MMX_ASM) + if (cpu_has_mmx && chanType == GL_UNSIGNED_BYTE) { + swrast->BlendFunc = _mesa_mmx_blend_add; + } + else +#endif + swrast->BlendFunc = blend_add; + } + else if (((eq == GL_FUNC_ADD || eq == GL_FUNC_REVERSE_SUBTRACT) + && (srcRGB == GL_ZERO && dstRGB == GL_SRC_COLOR)) + || + ((eq == GL_FUNC_ADD || eq == GL_FUNC_SUBTRACT) + && (srcRGB == GL_DST_COLOR && dstRGB == GL_ZERO))) { +#if defined(USE_MMX_ASM) + if (cpu_has_mmx && chanType == GL_UNSIGNED_BYTE) { + swrast->BlendFunc = _mesa_mmx_blend_modulate; + } + else +#endif + swrast->BlendFunc = blend_modulate; + } + else if (eq == GL_FUNC_ADD && srcRGB == GL_ZERO && dstRGB == GL_ONE) { + swrast->BlendFunc = blend_noop; + } + else if (eq == GL_FUNC_ADD && srcRGB == GL_ONE && dstRGB == GL_ZERO) { + swrast->BlendFunc = blend_replace; + } + else { + swrast->BlendFunc = blend_general; + } +} + + + +/** + * Apply the blending operator to a span of pixels. + * We can handle horizontal runs of pixels (spans) or arrays of x/y + * pixel coordinates. + */ +void +_swrast_blend_span(GLcontext *ctx, struct gl_renderbuffer *rb, SWspan *span) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + void *rbPixels; + + ASSERT(span->end <= MAX_WIDTH); + ASSERT(span->arrayMask & SPAN_RGBA); + ASSERT(rb->DataType == span->array->ChanType); + ASSERT(!ctx->Color._LogicOpEnabled); + + rbPixels = _swrast_get_dest_rgba(ctx, rb, span); + + swrast->BlendFunc(ctx, span->end, span->array->mask, + span->array->rgba, rbPixels, span->array->ChanType); +} diff --git a/mesalib/src/mesa/swrast/s_blend.h b/mesalib/src/mesa/swrast/s_blend.h new file mode 100644 index 000000000..8d5a81635 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_blend.h @@ -0,0 +1,41 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.2 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_BLEND_H +#define S_BLEND_H + + +#include "s_context.h" + + +extern void +_swrast_blend_span(GLcontext *ctx, struct gl_renderbuffer *rb, SWspan *span); + + +extern void +_swrast_choose_blend_func(GLcontext *ctx, GLenum chanType); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_blit.c b/mesalib/src/mesa/swrast/s_blit.c new file mode 100644 index 000000000..8303e4deb --- /dev/null +++ b/mesalib/src/mesa/swrast/s_blit.c @@ -0,0 +1,615 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/image.h" +#include "main/macros.h" +#include "s_context.h" + + +#define ABS(X) ((X) < 0 ? -(X) : (X)) + + +/** + * Generate a row resampler function for GL_NEAREST mode. + */ +#define RESAMPLE(NAME, PIXELTYPE, SIZE) \ +static void \ +NAME(GLint srcWidth, GLint dstWidth, \ + const GLvoid *srcBuffer, GLvoid *dstBuffer, \ + GLboolean flip) \ +{ \ + const PIXELTYPE *src = (const PIXELTYPE *) srcBuffer;\ + PIXELTYPE *dst = (PIXELTYPE *) dstBuffer; \ + GLint dstCol; \ + \ + if (flip) { \ + for (dstCol = 0; dstCol < dstWidth; dstCol++) { \ + GLint srcCol = (dstCol * srcWidth) / dstWidth; \ + ASSERT(srcCol >= 0); \ + ASSERT(srcCol < srcWidth); \ + srcCol = srcWidth - 1 - srcCol; /* flip */ \ + if (SIZE == 1) { \ + dst[dstCol] = src[srcCol]; \ + } \ + else if (SIZE == 2) { \ + dst[dstCol*2+0] = src[srcCol*2+0]; \ + dst[dstCol*2+1] = src[srcCol*2+1]; \ + } \ + else if (SIZE == 4) { \ + dst[dstCol*4+0] = src[srcCol*4+0]; \ + dst[dstCol*4+1] = src[srcCol*4+1]; \ + dst[dstCol*4+2] = src[srcCol*4+2]; \ + dst[dstCol*4+3] = src[srcCol*4+3]; \ + } \ + } \ + } \ + else { \ + for (dstCol = 0; dstCol < dstWidth; dstCol++) { \ + GLint srcCol = (dstCol * srcWidth) / dstWidth; \ + ASSERT(srcCol >= 0); \ + ASSERT(srcCol < srcWidth); \ + if (SIZE == 1) { \ + dst[dstCol] = src[srcCol]; \ + } \ + else if (SIZE == 2) { \ + dst[dstCol*2+0] = src[srcCol*2+0]; \ + dst[dstCol*2+1] = src[srcCol*2+1]; \ + } \ + else if (SIZE == 4) { \ + dst[dstCol*4+0] = src[srcCol*4+0]; \ + dst[dstCol*4+1] = src[srcCol*4+1]; \ + dst[dstCol*4+2] = src[srcCol*4+2]; \ + dst[dstCol*4+3] = src[srcCol*4+3]; \ + } \ + } \ + } \ +} + +/** + * Resamplers for 1, 2, 4, 8 and 16-byte pixels. + */ +RESAMPLE(resample_row_1, GLubyte, 1) +RESAMPLE(resample_row_2, GLushort, 1) +RESAMPLE(resample_row_4, GLuint, 1) +RESAMPLE(resample_row_8, GLuint, 2) +RESAMPLE(resample_row_16, GLuint, 4) + + +/** + * Blit color, depth or stencil with GL_NEAREST filtering. + */ +static void +blit_nearest(GLcontext *ctx, + GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, + GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, + GLbitfield buffer) +{ + struct gl_renderbuffer *readRb, *drawRb; + + const GLint srcWidth = ABS(srcX1 - srcX0); + const GLint dstWidth = ABS(dstX1 - dstX0); + const GLint srcHeight = ABS(srcY1 - srcY0); + const GLint dstHeight = ABS(dstY1 - dstY0); + + const GLint srcXpos = MIN2(srcX0, srcX1); + const GLint srcYpos = MIN2(srcY0, srcY1); + const GLint dstXpos = MIN2(dstX0, dstX1); + const GLint dstYpos = MIN2(dstY0, dstY1); + + const GLboolean invertX = (srcX1 < srcX0) ^ (dstX1 < dstX0); + const GLboolean invertY = (srcY1 < srcY0) ^ (dstY1 < dstY0); + + GLint dstRow; + + GLint comps, pixelSize; + GLvoid *srcBuffer, *dstBuffer; + GLint prevY = -1; + + typedef void (*resample_func)(GLint srcWidth, GLint dstWidth, + const GLvoid *srcBuffer, GLvoid *dstBuffer, + GLboolean flip); + resample_func resampleRow; + + switch (buffer) { + case GL_COLOR_BUFFER_BIT: + readRb = ctx->ReadBuffer->_ColorReadBuffer; + drawRb = ctx->DrawBuffer->_ColorDrawBuffers[0]; + comps = 4; + break; + case GL_DEPTH_BUFFER_BIT: + readRb = ctx->ReadBuffer->_DepthBuffer; + drawRb = ctx->DrawBuffer->_DepthBuffer; + comps = 1; + break; + case GL_STENCIL_BUFFER_BIT: + readRb = ctx->ReadBuffer->_StencilBuffer; + drawRb = ctx->DrawBuffer->_StencilBuffer; + comps = 1; + break; + default: + _mesa_problem(ctx, "unexpected buffer in blit_nearest()"); + return; + } + + switch (readRb->DataType) { + case GL_UNSIGNED_BYTE: + pixelSize = comps * sizeof(GLubyte); + break; + case GL_UNSIGNED_SHORT: + pixelSize = comps * sizeof(GLushort); + break; + case GL_UNSIGNED_INT: + pixelSize = comps * sizeof(GLuint); + break; + case GL_FLOAT: + pixelSize = comps * sizeof(GLfloat); + break; + default: + _mesa_problem(ctx, "unexpected buffer type (0x%x) in blit_nearest", + readRb->DataType); + return; + } + + /* choose row resampler */ + switch (pixelSize) { + case 1: + resampleRow = resample_row_1; + break; + case 2: + resampleRow = resample_row_2; + break; + case 4: + resampleRow = resample_row_4; + break; + case 8: + resampleRow = resample_row_8; + break; + case 16: + resampleRow = resample_row_16; + break; + default: + _mesa_problem(ctx, "unexpected pixel size (%d) in blit_nearest", + pixelSize); + return; + } + + /* allocate the src/dst row buffers */ + srcBuffer = _mesa_malloc(pixelSize * srcWidth); + if (!srcBuffer) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glBlitFrameBufferEXT"); + return; + } + dstBuffer = _mesa_malloc(pixelSize * dstWidth); + if (!dstBuffer) { + _mesa_free(srcBuffer); + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glBlitFrameBufferEXT"); + return; + } + + for (dstRow = 0; dstRow < dstHeight; dstRow++) { + const GLint dstY = dstYpos + dstRow; + GLint srcRow = (dstRow * srcHeight) / dstHeight; + GLint srcY; + + ASSERT(srcRow >= 0); + ASSERT(srcRow < srcHeight); + + if (invertY) { + srcRow = srcHeight - 1 - srcRow; + } + + srcY = srcYpos + srcRow; + + /* get pixel row from source and resample to match dest width */ + if (prevY != srcY) { + readRb->GetRow(ctx, readRb, srcWidth, srcXpos, srcY, srcBuffer); + (*resampleRow)(srcWidth, dstWidth, srcBuffer, dstBuffer, invertX); + prevY = srcY; + } + + /* store pixel row in destination */ + drawRb->PutRow(ctx, drawRb, dstWidth, dstXpos, dstY, dstBuffer, NULL); + } + + _mesa_free(srcBuffer); + _mesa_free(dstBuffer); +} + + + +#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) ) + +static INLINE GLfloat +lerp_2d(GLfloat a, GLfloat b, + GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11) +{ + const GLfloat temp0 = LERP(a, v00, v10); + const GLfloat temp1 = LERP(a, v01, v11); + return LERP(b, temp0, temp1); +} + + +/** + * Bilinear interpolation of two source rows. + * GLubyte pixels. + */ +static void +resample_linear_row_ub(GLint srcWidth, GLint dstWidth, + const GLvoid *srcBuffer0, const GLvoid *srcBuffer1, + GLvoid *dstBuffer, GLboolean flip, GLfloat rowWeight) +{ + const GLubyte (*srcColor0)[4] = (const GLubyte (*)[4]) srcBuffer0; + const GLubyte (*srcColor1)[4] = (const GLubyte (*)[4]) srcBuffer1; + GLubyte (*dstColor)[4] = (GLubyte (*)[4]) dstBuffer; + const GLfloat dstWidthF = (GLfloat) dstWidth; + GLint dstCol; + + for (dstCol = 0; dstCol < dstWidth; dstCol++) { + const GLfloat srcCol = (dstCol * srcWidth) / dstWidthF; + GLint srcCol0 = IFLOOR(srcCol); + GLint srcCol1 = srcCol0 + 1; + GLfloat colWeight = srcCol - srcCol0; /* fractional part of srcCol */ + GLfloat red, green, blue, alpha; + + ASSERT(srcCol0 >= 0); + ASSERT(srcCol0 < srcWidth); + ASSERT(srcCol1 <= srcWidth); + + if (srcCol1 == srcWidth) { + /* last column fudge */ + srcCol1--; + colWeight = 0.0; + } + + if (flip) { + srcCol0 = srcWidth - 1 - srcCol0; + srcCol1 = srcWidth - 1 - srcCol1; + } + + red = lerp_2d(colWeight, rowWeight, + srcColor0[srcCol0][RCOMP], srcColor0[srcCol1][RCOMP], + srcColor1[srcCol0][RCOMP], srcColor1[srcCol1][RCOMP]); + green = lerp_2d(colWeight, rowWeight, + srcColor0[srcCol0][GCOMP], srcColor0[srcCol1][GCOMP], + srcColor1[srcCol0][GCOMP], srcColor1[srcCol1][GCOMP]); + blue = lerp_2d(colWeight, rowWeight, + srcColor0[srcCol0][BCOMP], srcColor0[srcCol1][BCOMP], + srcColor1[srcCol0][BCOMP], srcColor1[srcCol1][BCOMP]); + alpha = lerp_2d(colWeight, rowWeight, + srcColor0[srcCol0][ACOMP], srcColor0[srcCol1][ACOMP], + srcColor1[srcCol0][ACOMP], srcColor1[srcCol1][ACOMP]); + + dstColor[dstCol][RCOMP] = IFLOOR(red); + dstColor[dstCol][GCOMP] = IFLOOR(green); + dstColor[dstCol][BCOMP] = IFLOOR(blue); + dstColor[dstCol][ACOMP] = IFLOOR(alpha); + } +} + + + +/** + * Bilinear filtered blit (color only). + */ +static void +blit_linear(GLcontext *ctx, + GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, + GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1) +{ + struct gl_renderbuffer *readRb = ctx->ReadBuffer->_ColorReadBuffer; + struct gl_renderbuffer *drawRb = ctx->DrawBuffer->_ColorDrawBuffers[0]; + + const GLint srcWidth = ABS(srcX1 - srcX0); + const GLint dstWidth = ABS(dstX1 - dstX0); + const GLint srcHeight = ABS(srcY1 - srcY0); + const GLint dstHeight = ABS(dstY1 - dstY0); + const GLfloat dstHeightF = (GLfloat) dstHeight; + + const GLint srcXpos = MIN2(srcX0, srcX1); + const GLint srcYpos = MIN2(srcY0, srcY1); + const GLint dstXpos = MIN2(dstX0, dstX1); + const GLint dstYpos = MIN2(dstY0, dstY1); + + const GLboolean invertX = (srcX1 < srcX0) ^ (dstX1 < dstX0); + const GLboolean invertY = (srcY1 < srcY0) ^ (dstY1 < dstY0); + + GLint dstRow; + + GLint pixelSize; + GLvoid *srcBuffer0, *srcBuffer1; + GLint srcBufferY0 = -1, srcBufferY1 = -1; + GLvoid *dstBuffer; + + switch (readRb->DataType) { + case GL_UNSIGNED_BYTE: + pixelSize = 4 * sizeof(GLubyte); + break; + case GL_UNSIGNED_SHORT: + pixelSize = 4 * sizeof(GLushort); + break; + case GL_UNSIGNED_INT: + pixelSize = 4 * sizeof(GLuint); + break; + case GL_FLOAT: + pixelSize = 4 * sizeof(GLfloat); + break; + default: + _mesa_problem(ctx, "unexpected buffer type (0x%x) in blit_nearest", + readRb->DataType); + return; + } + + /* Allocate the src/dst row buffers. + * Keep two adjacent src rows around for bilinear sampling. + */ + srcBuffer0 = _mesa_malloc(pixelSize * srcWidth); + if (!srcBuffer0) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glBlitFrameBufferEXT"); + return; + } + srcBuffer1 = _mesa_malloc(pixelSize * srcWidth); + if (!srcBuffer1) { + _mesa_free(srcBuffer0); + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glBlitFrameBufferEXT"); + return; + } + dstBuffer = _mesa_malloc(pixelSize * dstWidth); + if (!dstBuffer) { + _mesa_free(srcBuffer0); + _mesa_free(srcBuffer1); + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glBlitFrameBufferEXT"); + return; + } + + for (dstRow = 0; dstRow < dstHeight; dstRow++) { + const GLint dstY = dstYpos + dstRow; + const GLfloat srcRow = (dstRow * srcHeight) / dstHeightF; + GLint srcRow0 = IFLOOR(srcRow); + GLint srcRow1 = srcRow0 + 1; + GLfloat rowWeight = srcRow - srcRow0; /* fractional part of srcRow */ + + ASSERT(srcRow >= 0); + ASSERT(srcRow < srcHeight); + + if (srcRow1 == srcHeight) { + /* last row fudge */ + srcRow1 = srcRow0; + rowWeight = 0.0; + } + + if (invertY) { + srcRow0 = srcHeight - 1 - srcRow0; + srcRow1 = srcHeight - 1 - srcRow1; + } + + srcY0 = srcYpos + srcRow0; + srcY1 = srcYpos + srcRow1; + + /* get the two source rows */ + if (srcY0 == srcBufferY0 && srcY1 == srcBufferY1) { + /* use same source row buffers again */ + } + else if (srcY0 == srcBufferY1) { + /* move buffer1 into buffer0 by swapping pointers */ + GLvoid *tmp = srcBuffer0; + srcBuffer0 = srcBuffer1; + srcBuffer1 = tmp; + /* get y1 row */ + readRb->GetRow(ctx, readRb, srcWidth, srcXpos, srcY1, srcBuffer1); + srcBufferY0 = srcY0; + srcBufferY1 = srcY1; + } + else { + /* get both new rows */ + readRb->GetRow(ctx, readRb, srcWidth, srcXpos, srcY0, srcBuffer0); + readRb->GetRow(ctx, readRb, srcWidth, srcXpos, srcY1, srcBuffer1); + srcBufferY0 = srcY0; + srcBufferY1 = srcY1; + } + + if (readRb->DataType == GL_UNSIGNED_BYTE) { + resample_linear_row_ub(srcWidth, dstWidth, srcBuffer0, srcBuffer1, + dstBuffer, invertX, rowWeight); + } + else { + _mesa_problem(ctx, "Unsupported color channel type in sw blit"); + break; + } + + /* store pixel row in destination */ + drawRb->PutRow(ctx, drawRb, dstWidth, dstXpos, dstY, dstBuffer, NULL); + } + + _mesa_free(srcBuffer0); + _mesa_free(srcBuffer1); + _mesa_free(dstBuffer); +} + + +/** + * Simple case: Blit color, depth or stencil with no scaling or flipping. + * XXX we could easily support vertical flipping here. + */ +static void +simple_blit(GLcontext *ctx, + GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, + GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, + GLbitfield buffer) +{ + struct gl_renderbuffer *readRb, *drawRb; + const GLint width = srcX1 - srcX0; + const GLint height = srcY1 - srcY0; + GLint row, srcY, dstY, yStep; + GLint comps, bytesPerRow; + void *rowBuffer; + + /* only one buffer */ + ASSERT(_mesa_bitcount(buffer) == 1); + /* no flipping checks */ + ASSERT(srcX0 < srcX1); + ASSERT(srcY0 < srcY1); + ASSERT(dstX0 < dstX1); + ASSERT(dstY0 < dstY1); + /* size checks */ + ASSERT(srcX1 - srcX0 == dstX1 - dstX0); + ASSERT(srcY1 - srcY0 == dstY1 - dstY0); + + /* determine if copy should be bottom-to-top or top-to-bottom */ + if (srcY0 > dstY0) { + /* src above dst: copy bottom-to-top */ + yStep = 1; + srcY = srcY0; + dstY = dstY0; + } + else { + /* src below dst: copy top-to-bottom */ + yStep = -1; + srcY = srcY1 - 1; + dstY = dstY1 - 1; + } + + switch (buffer) { + case GL_COLOR_BUFFER_BIT: + readRb = ctx->ReadBuffer->_ColorReadBuffer; + drawRb = ctx->DrawBuffer->_ColorDrawBuffers[0]; + comps = 4; + break; + case GL_DEPTH_BUFFER_BIT: + readRb = ctx->ReadBuffer->_DepthBuffer; + drawRb = ctx->DrawBuffer->_DepthBuffer; + comps = 1; + break; + case GL_STENCIL_BUFFER_BIT: + readRb = ctx->ReadBuffer->_StencilBuffer; + drawRb = ctx->DrawBuffer->_StencilBuffer; + comps = 1; + break; + default: + _mesa_problem(ctx, "unexpected buffer in simple_blit()"); + return; + } + + ASSERT(readRb->DataType == drawRb->DataType); + + /* compute bytes per row */ + switch (readRb->DataType) { + case GL_UNSIGNED_BYTE: + bytesPerRow = comps * width * sizeof(GLubyte); + break; + case GL_UNSIGNED_SHORT: + bytesPerRow = comps * width * sizeof(GLushort); + break; + case GL_UNSIGNED_INT: + bytesPerRow = comps * width * sizeof(GLuint); + break; + case GL_FLOAT: + bytesPerRow = comps * width * sizeof(GLfloat); + break; + default: + _mesa_problem(ctx, "unexpected buffer type in simple_blit"); + return; + } + + /* allocate the row buffer */ + rowBuffer = _mesa_malloc(bytesPerRow); + if (!rowBuffer) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glBlitFrameBufferEXT"); + return; + } + + for (row = 0; row < height; row++) { + readRb->GetRow(ctx, readRb, width, srcX0, srcY, rowBuffer); + drawRb->PutRow(ctx, drawRb, width, dstX0, dstY, rowBuffer, NULL); + srcY += yStep; + dstY += yStep; + } + + _mesa_free(rowBuffer); +} + + +/** + * Software fallback for glBlitFramebufferEXT(). + */ +void +_swrast_BlitFramebuffer(GLcontext *ctx, + GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, + GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, + GLbitfield mask, GLenum filter) +{ + static const GLbitfield buffers[3] = { + GL_COLOR_BUFFER_BIT, + GL_DEPTH_BUFFER_BIT, + GL_STENCIL_BUFFER_BIT + }; + GLint i; + + if (!ctx->DrawBuffer->_NumColorDrawBuffers) + return; + + if (!_mesa_clip_blit(ctx, &srcX0, &srcY0, &srcX1, &srcY1, + &dstX0, &dstY0, &dstX1, &dstY1)) { + return; + } + + swrast_render_start(ctx); + + if (srcX1 - srcX0 == dstX1 - dstX0 && + srcY1 - srcY0 == dstY1 - dstY0 && + srcX0 < srcX1 && + srcY0 < srcY1 && + dstX0 < dstX1 && + dstY0 < dstY1) { + /* no stretching or flipping. + * filter doesn't matter. + */ + for (i = 0; i < 3; i++) { + if (mask & buffers[i]) { + simple_blit(ctx, srcX0, srcY0, srcX1, srcY1, + dstX0, dstY0, dstX1, dstY1, buffers[i]); + } + } + } + else { + if (filter == GL_NEAREST) { + for (i = 0; i < 3; i++) { + if (mask & buffers[i]) { + blit_nearest(ctx, srcX0, srcY0, srcX1, srcY1, + dstX0, dstY0, dstX1, dstY1, buffers[i]); + } + } + } + else { + ASSERT(filter == GL_LINEAR); + if (mask & GL_COLOR_BUFFER_BIT) { /* depth/stencil not allowed */ + blit_linear(ctx, srcX0, srcY0, srcX1, srcY1, + dstX0, dstY0, dstX1, dstY1); + } + } + } + + swrast_render_finish(ctx); +} diff --git a/mesalib/src/mesa/swrast/s_clear.c b/mesalib/src/mesa/swrast/s_clear.c new file mode 100644 index 000000000..35080fd39 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_clear.c @@ -0,0 +1,344 @@ +/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +#include "main/glheader.h" +#include "main/colormac.h" +#include "main/macros.h" +#include "main/imports.h" +#include "main/mtypes.h" + +#include "s_accum.h" +#include "s_context.h" +#include "s_depth.h" +#include "s_masking.h" +#include "s_stencil.h" + + +/** + * Clear the color buffer when glColorMask is in effect. + */ +static void +clear_rgba_buffer_with_masking(GLcontext *ctx, struct gl_renderbuffer *rb) +{ + const GLint x = ctx->DrawBuffer->_Xmin; + const GLint y = ctx->DrawBuffer->_Ymin; + const GLint height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; + const GLint width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; + SWspan span; + GLint i; + + ASSERT(ctx->Visual.rgbMode); + ASSERT(rb->PutRow); + + /* Initialize color span with clear color */ + /* XXX optimize for clearcolor == black/zero (bzero) */ + INIT_SPAN(span, GL_BITMAP); + span.end = width; + span.arrayMask = SPAN_RGBA; + span.array->ChanType = rb->DataType; + if (span.array->ChanType == GL_UNSIGNED_BYTE) { + GLubyte clearColor[4]; + UNCLAMPED_FLOAT_TO_UBYTE(clearColor[RCOMP], ctx->Color.ClearColor[0]); + UNCLAMPED_FLOAT_TO_UBYTE(clearColor[GCOMP], ctx->Color.ClearColor[1]); + UNCLAMPED_FLOAT_TO_UBYTE(clearColor[BCOMP], ctx->Color.ClearColor[2]); + UNCLAMPED_FLOAT_TO_UBYTE(clearColor[ACOMP], ctx->Color.ClearColor[3]); + for (i = 0; i < width; i++) { + COPY_4UBV(span.array->rgba[i], clearColor); + } + } + else if (span.array->ChanType == GL_UNSIGNED_SHORT) { + GLushort clearColor[4]; + UNCLAMPED_FLOAT_TO_USHORT(clearColor[RCOMP], ctx->Color.ClearColor[0]); + UNCLAMPED_FLOAT_TO_USHORT(clearColor[GCOMP], ctx->Color.ClearColor[1]); + UNCLAMPED_FLOAT_TO_USHORT(clearColor[BCOMP], ctx->Color.ClearColor[2]); + UNCLAMPED_FLOAT_TO_USHORT(clearColor[ACOMP], ctx->Color.ClearColor[3]); + for (i = 0; i < width; i++) { + COPY_4V(span.array->rgba[i], clearColor); + } + } + else { + ASSERT(span.array->ChanType == GL_FLOAT); + for (i = 0; i < width; i++) { + CLAMPED_FLOAT_TO_CHAN(span.array->rgba[i][0], ctx->Color.ClearColor[0]); + CLAMPED_FLOAT_TO_CHAN(span.array->rgba[i][1], ctx->Color.ClearColor[1]); + CLAMPED_FLOAT_TO_CHAN(span.array->rgba[i][2], ctx->Color.ClearColor[2]); + CLAMPED_FLOAT_TO_CHAN(span.array->rgba[i][3], ctx->Color.ClearColor[3]); + } + } + + /* Note that masking will change the color values, but only the + * channels for which the write mask is GL_FALSE. The channels + * which which are write-enabled won't get modified. + */ + for (i = 0; i < height; i++) { + span.x = x; + span.y = y + i; + _swrast_mask_rgba_span(ctx, rb, &span); + /* write masked row */ + rb->PutRow(ctx, rb, width, x, y + i, span.array->rgba, NULL); + } +} + + +/** + * Clear color index buffer with masking. + */ +static void +clear_ci_buffer_with_masking(GLcontext *ctx, struct gl_renderbuffer *rb) +{ + const GLint x = ctx->DrawBuffer->_Xmin; + const GLint y = ctx->DrawBuffer->_Ymin; + const GLint height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; + const GLint width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; + SWspan span; + GLint i; + + ASSERT(!ctx->Visual.rgbMode); + ASSERT(rb->PutRow); + ASSERT(rb->DataType == GL_UNSIGNED_INT); + + /* Initialize index span with clear index */ + INIT_SPAN(span, GL_BITMAP); + span.end = width; + span.arrayMask = SPAN_INDEX; + for (i = 0; i < width;i++) { + span.array->index[i] = ctx->Color.ClearIndex; + } + + /* Note that masking will change the color indexes, but only the + * bits for which the write mask is GL_FALSE. The bits + * which are write-enabled won't get modified. + */ + for (i = 0; i < height;i++) { + span.x = x; + span.y = y + i; + _swrast_mask_ci_span(ctx, rb, &span); + /* write masked row */ + rb->PutRow(ctx, rb, width, x, y + i, span.array->index, NULL); + } +} + + +/** + * Clear an rgba color buffer without channel masking. + */ +static void +clear_rgba_buffer(GLcontext *ctx, struct gl_renderbuffer *rb) +{ + const GLint x = ctx->DrawBuffer->_Xmin; + const GLint y = ctx->DrawBuffer->_Ymin; + const GLint height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; + const GLint width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; + GLubyte clear8[4]; + GLushort clear16[4]; + GLvoid *clearVal; + GLint i; + + ASSERT(ctx->Visual.rgbMode); + + ASSERT(ctx->Color.ColorMask[0] && + ctx->Color.ColorMask[1] && + ctx->Color.ColorMask[2] && + ctx->Color.ColorMask[3]); + + ASSERT(rb->PutMonoRow); + + switch (rb->DataType) { + case GL_UNSIGNED_BYTE: + UNCLAMPED_FLOAT_TO_UBYTE(clear8[0], ctx->Color.ClearColor[0]); + UNCLAMPED_FLOAT_TO_UBYTE(clear8[1], ctx->Color.ClearColor[1]); + UNCLAMPED_FLOAT_TO_UBYTE(clear8[2], ctx->Color.ClearColor[2]); + UNCLAMPED_FLOAT_TO_UBYTE(clear8[3], ctx->Color.ClearColor[3]); + clearVal = clear8; + break; + case GL_UNSIGNED_SHORT: + UNCLAMPED_FLOAT_TO_USHORT(clear16[0], ctx->Color.ClearColor[0]); + UNCLAMPED_FLOAT_TO_USHORT(clear16[1], ctx->Color.ClearColor[1]); + UNCLAMPED_FLOAT_TO_USHORT(clear16[2], ctx->Color.ClearColor[2]); + UNCLAMPED_FLOAT_TO_USHORT(clear16[3], ctx->Color.ClearColor[3]); + clearVal = clear16; + break; + case GL_FLOAT: + clearVal = ctx->Color.ClearColor; + break; + default: + _mesa_problem(ctx, "Bad rb DataType in clear_color_buffer"); + return; + } + + for (i = 0; i < height; i++) { + rb->PutMonoRow(ctx, rb, width, x, y + i, clearVal, NULL); + } +} + + +/** + * Clear color index buffer without masking. + */ +static void +clear_ci_buffer(GLcontext *ctx, struct gl_renderbuffer *rb) +{ + const GLint x = ctx->DrawBuffer->_Xmin; + const GLint y = ctx->DrawBuffer->_Ymin; + const GLint height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; + const GLint width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; + GLubyte clear8; + GLushort clear16; + GLuint clear32; + GLvoid *clearVal; + GLint i; + + ASSERT(!ctx->Visual.rgbMode); + + ASSERT((ctx->Color.IndexMask & ((1 << rb->IndexBits) - 1)) + == (GLuint) ((1 << rb->IndexBits) - 1)); + + ASSERT(rb->PutMonoRow); + + /* setup clear value */ + switch (rb->DataType) { + case GL_UNSIGNED_BYTE: + clear8 = (GLubyte) ctx->Color.ClearIndex; + clearVal = &clear8; + break; + case GL_UNSIGNED_SHORT: + clear16 = (GLushort) ctx->Color.ClearIndex; + clearVal = &clear16; + break; + case GL_UNSIGNED_INT: + clear32 = ctx->Color.ClearIndex; + clearVal = &clear32; + break; + default: + _mesa_problem(ctx, "Bad rb DataType in clear_color_buffer"); + return; + } + + for (i = 0; i < height; i++) + rb->PutMonoRow(ctx, rb, width, x, y + i, clearVal, NULL); +} + + +/** + * Clear the front/back/left/right/aux color buffers. + * This function is usually only called if the device driver can't + * clear its own color buffers for some reason (such as with masking). + */ +static void +clear_color_buffers(GLcontext *ctx) +{ + GLboolean masking; + GLuint buf; + + if (ctx->Visual.rgbMode) { + if (ctx->Color.ColorMask[0] && + ctx->Color.ColorMask[1] && + ctx->Color.ColorMask[2] && + ctx->Color.ColorMask[3]) { + masking = GL_FALSE; + } + else { + masking = GL_TRUE; + } + } + else { + struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; + const GLuint indexBits = (1 << rb->IndexBits) - 1; + if ((ctx->Color.IndexMask & indexBits) == indexBits) { + masking = GL_FALSE; + } + else { + masking = GL_TRUE; + } + } + + for (buf = 0; buf < ctx->DrawBuffer->_NumColorDrawBuffers; buf++) { + struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[buf]; + if (ctx->Visual.rgbMode) { + if (masking) { + clear_rgba_buffer_with_masking(ctx, rb); + } + else { + clear_rgba_buffer(ctx, rb); + } + } + else { + if (masking) { + clear_ci_buffer_with_masking(ctx, rb); + } + else { + clear_ci_buffer(ctx, rb); + } + } + } +} + + +/** + * Called via the device driver's ctx->Driver.Clear() function if the + * device driver can't clear one or more of the buffers itself. + * \param buffers bitfield of BUFFER_BIT_* values indicating which + * renderbuffers are to be cleared. + * \param all if GL_TRUE, clear whole buffer, else clear specified region. + */ +void +_swrast_Clear(GLcontext *ctx, GLbitfield buffers) +{ +#ifdef DEBUG_FOO + { + const GLbitfield legalBits = + BUFFER_BIT_FRONT_LEFT | + BUFFER_BIT_FRONT_RIGHT | + BUFFER_BIT_BACK_LEFT | + BUFFER_BIT_BACK_RIGHT | + BUFFER_BIT_DEPTH | + BUFFER_BIT_STENCIL | + BUFFER_BIT_ACCUM | + BUFFER_BIT_AUX0; + assert((buffers & (~legalBits)) == 0); + } +#endif + + swrast_render_start(ctx); + + /* do software clearing here */ + if (buffers) { + if ((buffers & BUFFER_BITS_COLOR) + && (ctx->DrawBuffer->_NumColorDrawBuffers > 0)) { + clear_color_buffers(ctx); + } + if (buffers & BUFFER_BIT_DEPTH) { + _swrast_clear_depth_buffer(ctx, ctx->DrawBuffer->_DepthBuffer); + } + if (buffers & BUFFER_BIT_ACCUM) { + _swrast_clear_accum_buffer(ctx, + ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer); + } + if (buffers & BUFFER_BIT_STENCIL) { + _swrast_clear_stencil_buffer(ctx, ctx->DrawBuffer->_StencilBuffer); + } + } + + swrast_render_finish(ctx); +} diff --git a/mesalib/src/mesa/swrast/s_context.c b/mesalib/src/mesa/swrast/s_context.c new file mode 100644 index 000000000..abf000856 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_context.c @@ -0,0 +1,957 @@ +/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * Authors: + * Keith Whitwell <keith@tungstengraphics.com> + * Brian Paul + */ + +#include "main/imports.h" +#include "main/bufferobj.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/mtypes.h" +#include "main/teximage.h" +#include "shader/prog_parameter.h" +#include "shader/prog_statevars.h" +#include "swrast.h" +#include "s_blend.h" +#include "s_context.h" +#include "s_lines.h" +#include "s_points.h" +#include "s_span.h" +#include "s_triangle.h" +#include "s_texfilter.h" + + +/** + * Recompute the value of swrast->_RasterMask, etc. according to + * the current context. The _RasterMask field can be easily tested by + * drivers to determine certain basic GL state (does the primitive need + * stenciling, logic-op, fog, etc?). + */ +static void +_swrast_update_rasterflags( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLbitfield rasterMask = 0; + + if (ctx->Color.AlphaEnabled) rasterMask |= ALPHATEST_BIT; + if (ctx->Color.BlendEnabled) rasterMask |= BLEND_BIT; + if (ctx->Depth.Test) rasterMask |= DEPTH_BIT; + if (swrast->_FogEnabled) rasterMask |= FOG_BIT; + if (ctx->Scissor.Enabled) rasterMask |= CLIP_BIT; + if (ctx->Stencil._Enabled) rasterMask |= STENCIL_BIT; + if (ctx->Visual.rgbMode) { + const GLuint colorMask = *((GLuint *) &ctx->Color.ColorMask); + if (colorMask != 0xffffffff) rasterMask |= MASKING_BIT; + if (ctx->Color._LogicOpEnabled) rasterMask |= LOGIC_OP_BIT; + if (ctx->Texture._EnabledUnits) rasterMask |= TEXTURE_BIT; + } + else { + if (ctx->Color.IndexMask != 0xffffffff) rasterMask |= MASKING_BIT; + if (ctx->Color.IndexLogicOpEnabled) rasterMask |= LOGIC_OP_BIT; + } + + if ( ctx->Viewport.X < 0 + || ctx->Viewport.X + ctx->Viewport.Width > (GLint) ctx->DrawBuffer->Width + || ctx->Viewport.Y < 0 + || ctx->Viewport.Y + ctx->Viewport.Height > (GLint) ctx->DrawBuffer->Height) { + rasterMask |= CLIP_BIT; + } + + if (ctx->Query.CurrentOcclusionObject) + rasterMask |= OCCLUSION_BIT; + + + /* If we're not drawing to exactly one color buffer set the + * MULTI_DRAW_BIT flag. Also set it if we're drawing to no + * buffers or the RGBA or CI mask disables all writes. + */ + if (ctx->DrawBuffer->_NumColorDrawBuffers != 1) { + /* more than one color buffer designated for writing (or zero buffers) */ + rasterMask |= MULTI_DRAW_BIT; + } + else if (ctx->Visual.rgbMode && *((GLuint *) ctx->Color.ColorMask) == 0) { + rasterMask |= MULTI_DRAW_BIT; /* all RGBA channels disabled */ + } + else if (!ctx->Visual.rgbMode && ctx->Color.IndexMask==0) { + rasterMask |= MULTI_DRAW_BIT; /* all color index bits disabled */ + } + + if (ctx->FragmentProgram._Current) { + rasterMask |= FRAGPROG_BIT; + } + + if (ctx->ATIFragmentShader._Enabled) { + rasterMask |= ATIFRAGSHADER_BIT; + } + +#if CHAN_TYPE == GL_FLOAT + if (ctx->Color.ClampFragmentColor == GL_TRUE) { + rasterMask |= CLAMPING_BIT; + } +#endif + + SWRAST_CONTEXT(ctx)->_RasterMask = rasterMask; +} + + +/** + * Examine polygon cull state to compute the _BackfaceCullSign field. + * _BackfaceCullSign will be 0 if no culling, -1 if culling back-faces, + * and 1 if culling front-faces. The Polygon FrontFace state also + * factors in. + */ +static void +_swrast_update_polygon( GLcontext *ctx ) +{ + GLfloat backface_sign; + + if (ctx->Polygon.CullFlag) { + switch (ctx->Polygon.CullFaceMode) { + case GL_BACK: + backface_sign = -1.0; + break; + case GL_FRONT: + backface_sign = 1.0; + break; + case GL_FRONT_AND_BACK: + /* fallthrough */ + default: + backface_sign = 0.0; + } + } + else { + backface_sign = 0.0; + } + + SWRAST_CONTEXT(ctx)->_BackfaceCullSign = backface_sign; + + /* This is for front/back-face determination, but not for culling */ + SWRAST_CONTEXT(ctx)->_BackfaceSign + = (ctx->Polygon.FrontFace == GL_CW) ? -1.0 : 1.0; +} + + + +/** + * Update the _PreferPixelFog field to indicate if we need to compute + * fog blend factors (from the fog coords) per-fragment. + */ +static void +_swrast_update_fog_hint( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + swrast->_PreferPixelFog = (!swrast->AllowVertexFog || + ctx->FragmentProgram._Current || + (ctx->Hint.Fog == GL_NICEST && + swrast->AllowPixelFog)); +} + + + +/** + * Update the swrast->_TextureCombinePrimary flag. + */ +static void +_swrast_update_texture_env( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLuint i; + + swrast->_TextureCombinePrimary = GL_FALSE; + + for (i = 0; i < ctx->Const.MaxTextureUnits; i++) { + const struct gl_tex_env_combine_state *combine = + ctx->Texture.Unit[i]._CurrentCombine; + GLuint term; + for (term = 0; term < combine->_NumArgsRGB; term++) { + if (combine->SourceRGB[term] == GL_PRIMARY_COLOR) { + swrast->_TextureCombinePrimary = GL_TRUE; + return; + } + if (combine->SourceA[term] == GL_PRIMARY_COLOR) { + swrast->_TextureCombinePrimary = GL_TRUE; + return; + } + } + } +} + + +/** + * Determine if we can defer texturing/shading until after Z/stencil + * testing. This potentially allows us to skip texturing/shading for + * lots of fragments. + */ +static void +_swrast_update_deferred_texture(GLcontext *ctx) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + if (ctx->Color.AlphaEnabled) { + /* alpha test depends on post-texture/shader colors */ + swrast->_DeferredTexture = GL_FALSE; + } + else { + const struct gl_fragment_program *fprog + = ctx->FragmentProgram._Current; + if (fprog && (fprog->Base.OutputsWritten & (1 << FRAG_RESULT_DEPTH))) { + /* Z comes from fragment program/shader */ + swrast->_DeferredTexture = GL_FALSE; + } + else if (fprog && fprog->UsesKill) { + swrast->_DeferredTexture = GL_FALSE; + } + else if (ctx->Query.CurrentOcclusionObject) { + /* occlusion query depends on shader discard/kill results */ + swrast->_DeferredTexture = GL_FALSE; + } + else { + swrast->_DeferredTexture = GL_TRUE; + } + } +} + + +/** + * Update swrast->_FogColor and swrast->_FogEnable values. + */ +static void +_swrast_update_fog_state( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + const struct gl_fragment_program *fp = ctx->FragmentProgram._Current; + + /* determine if fog is needed, and if so, which fog mode */ + swrast->_FogEnabled = GL_FALSE; + if (fp && fp->Base.Target == GL_FRAGMENT_PROGRAM_ARB) { + if (fp->FogOption != GL_NONE) { + swrast->_FogEnabled = GL_TRUE; + swrast->_FogMode = fp->FogOption; + } + } + else if (ctx->Fog.Enabled) { + swrast->_FogEnabled = GL_TRUE; + swrast->_FogMode = ctx->Fog.Mode; + } +} + + +/** + * Update state for running fragment programs. Basically, load the + * program parameters with current state values. + */ +static void +_swrast_update_fragment_program(GLcontext *ctx, GLbitfield newState) +{ + const struct gl_fragment_program *fp = ctx->FragmentProgram._Current; + if (fp) { + _mesa_load_state_parameters(ctx, fp->Base.Parameters); + } +} + + +/** + * See if we can do early diffuse+specular (primary+secondary) color + * add per vertex instead of per-fragment. + */ +static void +_swrast_update_specular_vertex_add(GLcontext *ctx) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLboolean separateSpecular = ctx->Fog.ColorSumEnabled || + (ctx->Light.Enabled && + ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR); + + swrast->SpecularVertexAdd = (separateSpecular + && ctx->Texture._EnabledUnits == 0x0 + && !ctx->FragmentProgram._Current + && !ctx->ATIFragmentShader._Enabled); +} + + +#define _SWRAST_NEW_DERIVED (_SWRAST_NEW_RASTERMASK | \ + _NEW_PROGRAM_CONSTANTS | \ + _NEW_TEXTURE | \ + _NEW_HINT | \ + _NEW_POLYGON ) + +/* State referenced by _swrast_choose_triangle, _swrast_choose_line. + */ +#define _SWRAST_NEW_TRIANGLE (_SWRAST_NEW_DERIVED | \ + _NEW_RENDERMODE| \ + _NEW_POLYGON| \ + _NEW_DEPTH| \ + _NEW_STENCIL| \ + _NEW_COLOR| \ + _NEW_TEXTURE| \ + _SWRAST_NEW_RASTERMASK| \ + _NEW_LIGHT| \ + _NEW_FOG | \ + _DD_NEW_SEPARATE_SPECULAR) + +#define _SWRAST_NEW_LINE (_SWRAST_NEW_DERIVED | \ + _NEW_RENDERMODE| \ + _NEW_LINE| \ + _NEW_TEXTURE| \ + _NEW_LIGHT| \ + _NEW_FOG| \ + _NEW_DEPTH | \ + _DD_NEW_SEPARATE_SPECULAR) + +#define _SWRAST_NEW_POINT (_SWRAST_NEW_DERIVED | \ + _NEW_RENDERMODE | \ + _NEW_POINT | \ + _NEW_TEXTURE | \ + _NEW_LIGHT | \ + _NEW_FOG | \ + _DD_NEW_SEPARATE_SPECULAR) + +#define _SWRAST_NEW_TEXTURE_SAMPLE_FUNC _NEW_TEXTURE + +#define _SWRAST_NEW_TEXTURE_ENV_MODE _NEW_TEXTURE + +#define _SWRAST_NEW_BLEND_FUNC _NEW_COLOR + + + +/** + * Stub for swrast->Triangle to select a true triangle function + * after a state change. + */ +static void +_swrast_validate_triangle( GLcontext *ctx, + const SWvertex *v0, + const SWvertex *v1, + const SWvertex *v2 ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + + _swrast_validate_derived( ctx ); + swrast->choose_triangle( ctx ); + ASSERT(swrast->Triangle); + + if (swrast->SpecularVertexAdd) { + /* separate specular color, but no texture */ + swrast->SpecTriangle = swrast->Triangle; + swrast->Triangle = _swrast_add_spec_terms_triangle; + } + + swrast->Triangle( ctx, v0, v1, v2 ); +} + +/** + * Called via swrast->Line. Examine current GL state and choose a software + * line routine. Then call it. + */ +static void +_swrast_validate_line( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1 ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + + _swrast_validate_derived( ctx ); + swrast->choose_line( ctx ); + ASSERT(swrast->Line); + + if (swrast->SpecularVertexAdd) { + swrast->SpecLine = swrast->Line; + swrast->Line = _swrast_add_spec_terms_line; + } + + swrast->Line( ctx, v0, v1 ); +} + +/** + * Called via swrast->Point. Examine current GL state and choose a software + * point routine. Then call it. + */ +static void +_swrast_validate_point( GLcontext *ctx, const SWvertex *v0 ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + + _swrast_validate_derived( ctx ); + swrast->choose_point( ctx ); + + if (swrast->SpecularVertexAdd) { + swrast->SpecPoint = swrast->Point; + swrast->Point = _swrast_add_spec_terms_point; + } + + swrast->Point( ctx, v0 ); +} + + +/** + * Called via swrast->BlendFunc. Examine GL state to choose a blending + * function, then call it. + */ +static void _ASMAPI +_swrast_validate_blend_func(GLcontext *ctx, GLuint n, const GLubyte mask[], + GLvoid *src, const GLvoid *dst, + GLenum chanType ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + + _swrast_validate_derived( ctx ); /* why is this needed? */ + _swrast_choose_blend_func( ctx, chanType ); + + swrast->BlendFunc( ctx, n, mask, src, dst, chanType ); +} + + +/** + * Make sure we have texture image data for all the textures we may need + * for subsequent rendering. + */ +static void +_swrast_validate_texture_images(GLcontext *ctx) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLuint u; + + if (!swrast->ValidateTextureImage || !ctx->Texture._EnabledUnits) { + /* no textures enabled, or no way to validate images! */ + return; + } + + for (u = 0; u < ctx->Const.MaxTextureImageUnits; u++) { + if (ctx->Texture.Unit[u]._ReallyEnabled) { + struct gl_texture_object *texObj = ctx->Texture.Unit[u]._Current; + ASSERT(texObj); + if (texObj) { + GLuint numFaces = (texObj->Target == GL_TEXTURE_CUBE_MAP) ? 6 : 1; + GLuint face; + for (face = 0; face < numFaces; face++) { + GLint lvl; + for (lvl = texObj->BaseLevel; lvl <= texObj->_MaxLevel; lvl++) { + struct gl_texture_image *texImg = texObj->Image[face][lvl]; + if (texImg && !texImg->Data) { + swrast->ValidateTextureImage(ctx, texObj, face, lvl); + ASSERT(texObj->Image[face][lvl]->Data); + } + } + } + } + } + } +} + + +/** + * Free the texture image data attached to all currently enabled + * textures. Meant to be called by device drivers when transitioning + * from software to hardware rendering. + */ +void +_swrast_eject_texture_images(GLcontext *ctx) +{ + GLuint u; + + if (!ctx->Texture._EnabledUnits) { + /* no textures enabled */ + return; + } + + for (u = 0; u < ctx->Const.MaxTextureImageUnits; u++) { + if (ctx->Texture.Unit[u]._ReallyEnabled) { + struct gl_texture_object *texObj = ctx->Texture.Unit[u]._Current; + ASSERT(texObj); + if (texObj) { + GLuint numFaces = (texObj->Target == GL_TEXTURE_CUBE_MAP) ? 6 : 1; + GLuint face; + for (face = 0; face < numFaces; face++) { + GLint lvl; + for (lvl = texObj->BaseLevel; lvl <= texObj->_MaxLevel; lvl++) { + struct gl_texture_image *texImg = texObj->Image[face][lvl]; + if (texImg && texImg->Data) { + _mesa_free_texmemory(texImg->Data); + texImg->Data = NULL; + } + } + } + } + } + } +} + + + +static void +_swrast_sleep( GLcontext *ctx, GLbitfield new_state ) +{ + (void) ctx; (void) new_state; +} + + +static void +_swrast_invalidate_state( GLcontext *ctx, GLbitfield new_state ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLuint i; + + swrast->NewState |= new_state; + + /* After 10 statechanges without any swrast functions being called, + * put the module to sleep. + */ + if (++swrast->StateChanges > 10) { + swrast->InvalidateState = _swrast_sleep; + swrast->NewState = ~0; + new_state = ~0; + } + + if (new_state & swrast->InvalidateTriangleMask) + swrast->Triangle = _swrast_validate_triangle; + + if (new_state & swrast->InvalidateLineMask) + swrast->Line = _swrast_validate_line; + + if (new_state & swrast->InvalidatePointMask) + swrast->Point = _swrast_validate_point; + + if (new_state & _SWRAST_NEW_BLEND_FUNC) + swrast->BlendFunc = _swrast_validate_blend_func; + + if (new_state & _SWRAST_NEW_TEXTURE_SAMPLE_FUNC) + for (i = 0 ; i < ctx->Const.MaxTextureImageUnits ; i++) + swrast->TextureSample[i] = NULL; +} + + +void +_swrast_update_texture_samplers(GLcontext *ctx) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLuint u; + + if (!swrast) + return; /* pipe hack */ + + for (u = 0; u < ctx->Const.MaxTextureImageUnits; u++) { + const struct gl_texture_object *tObj = ctx->Texture.Unit[u]._Current; + /* Note: If tObj is NULL, the sample function will be a simple + * function that just returns opaque black (0,0,0,1). + */ + swrast->TextureSample[u] = _swrast_choose_texture_sample_func(ctx, tObj); + } +} + + +/** + * Update swrast->_ActiveAttribs, swrast->_NumActiveAttribs, + * swrast->_ActiveAtttribMask. + */ +static void +_swrast_update_active_attribs(GLcontext *ctx) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLuint attribsMask; + + /* + * Compute _ActiveAttribsMask = which fragment attributes are needed. + */ + if (ctx->FragmentProgram._Current) { + /* fragment program/shader */ + attribsMask = ctx->FragmentProgram._Current->Base.InputsRead; + attribsMask &= ~FRAG_BIT_WPOS; /* WPOS is always handled specially */ + } + else if (ctx->ATIFragmentShader._Enabled) { + attribsMask = ~0; /* XXX fix me */ + } + else { + /* fixed function */ + attribsMask = 0x0; + +#if CHAN_TYPE == GL_FLOAT + attribsMask |= FRAG_BIT_COL0; +#endif + + if (ctx->Fog.ColorSumEnabled || + (ctx->Light.Enabled && + ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) { + attribsMask |= FRAG_BIT_COL1; + } + + if (swrast->_FogEnabled) + attribsMask |= FRAG_BIT_FOGC; + + attribsMask |= (ctx->Texture._EnabledUnits << FRAG_ATTRIB_TEX0); + } + + swrast->_ActiveAttribMask = attribsMask; + + /* Update _ActiveAttribs[] list */ + { + GLuint i, num = 0; + for (i = 0; i < FRAG_ATTRIB_MAX; i++) { + if (attribsMask & (1 << i)) { + swrast->_ActiveAttribs[num++] = i; + /* how should this attribute be interpolated? */ + if (i == FRAG_ATTRIB_COL0 || i == FRAG_ATTRIB_COL1) + swrast->_InterpMode[i] = ctx->Light.ShadeModel; + else + swrast->_InterpMode[i] = GL_SMOOTH; + } + } + swrast->_NumActiveAttribs = num; + } +} + + +void +_swrast_validate_derived( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + + if (swrast->NewState) { + if (swrast->NewState & _NEW_POLYGON) + _swrast_update_polygon( ctx ); + + if (swrast->NewState & (_NEW_HINT | _NEW_PROGRAM)) + _swrast_update_fog_hint( ctx ); + + if (swrast->NewState & _SWRAST_NEW_TEXTURE_ENV_MODE) + _swrast_update_texture_env( ctx ); + + if (swrast->NewState & (_NEW_FOG | _NEW_PROGRAM)) + _swrast_update_fog_state( ctx ); + + if (swrast->NewState & (_NEW_PROGRAM_CONSTANTS | _NEW_PROGRAM)) + _swrast_update_fragment_program( ctx, swrast->NewState ); + + if (swrast->NewState & (_NEW_TEXTURE | _NEW_PROGRAM)) { + _swrast_update_texture_samplers( ctx ); + _swrast_validate_texture_images(ctx); + } + + if (swrast->NewState & (_NEW_COLOR | _NEW_PROGRAM)) + _swrast_update_deferred_texture(ctx); + + if (swrast->NewState & _SWRAST_NEW_RASTERMASK) + _swrast_update_rasterflags( ctx ); + + if (swrast->NewState & (_NEW_DEPTH | + _NEW_FOG | + _NEW_LIGHT | + _NEW_PROGRAM | + _NEW_TEXTURE)) + _swrast_update_active_attribs(ctx); + + if (swrast->NewState & (_NEW_FOG | + _NEW_PROGRAM | + _NEW_LIGHT | + _NEW_TEXTURE)) + _swrast_update_specular_vertex_add(ctx); + + swrast->NewState = 0; + swrast->StateChanges = 0; + swrast->InvalidateState = _swrast_invalidate_state; + } +} + +#define SWRAST_DEBUG 0 + +/* Public entrypoints: See also s_accum.c, s_bitmap.c, etc. + */ +void +_swrast_Quad( GLcontext *ctx, + const SWvertex *v0, const SWvertex *v1, + const SWvertex *v2, const SWvertex *v3 ) +{ + if (SWRAST_DEBUG) { + _mesa_debug(ctx, "_swrast_Quad\n"); + _swrast_print_vertex( ctx, v0 ); + _swrast_print_vertex( ctx, v1 ); + _swrast_print_vertex( ctx, v2 ); + _swrast_print_vertex( ctx, v3 ); + } + SWRAST_CONTEXT(ctx)->Triangle( ctx, v0, v1, v3 ); + SWRAST_CONTEXT(ctx)->Triangle( ctx, v1, v2, v3 ); +} + +void +_swrast_Triangle( GLcontext *ctx, const SWvertex *v0, + const SWvertex *v1, const SWvertex *v2 ) +{ + if (SWRAST_DEBUG) { + _mesa_debug(ctx, "_swrast_Triangle\n"); + _swrast_print_vertex( ctx, v0 ); + _swrast_print_vertex( ctx, v1 ); + _swrast_print_vertex( ctx, v2 ); + } + SWRAST_CONTEXT(ctx)->Triangle( ctx, v0, v1, v2 ); +} + +void +_swrast_Line( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1 ) +{ + if (SWRAST_DEBUG) { + _mesa_debug(ctx, "_swrast_Line\n"); + _swrast_print_vertex( ctx, v0 ); + _swrast_print_vertex( ctx, v1 ); + } + SWRAST_CONTEXT(ctx)->Line( ctx, v0, v1 ); +} + +void +_swrast_Point( GLcontext *ctx, const SWvertex *v0 ) +{ + if (SWRAST_DEBUG) { + _mesa_debug(ctx, "_swrast_Point\n"); + _swrast_print_vertex( ctx, v0 ); + } + SWRAST_CONTEXT(ctx)->Point( ctx, v0 ); +} + +void +_swrast_InvalidateState( GLcontext *ctx, GLbitfield new_state ) +{ + if (SWRAST_DEBUG) { + _mesa_debug(ctx, "_swrast_InvalidateState\n"); + } + SWRAST_CONTEXT(ctx)->InvalidateState( ctx, new_state ); +} + +void +_swrast_ResetLineStipple( GLcontext *ctx ) +{ + if (SWRAST_DEBUG) { + _mesa_debug(ctx, "_swrast_ResetLineStipple\n"); + } + SWRAST_CONTEXT(ctx)->StippleCounter = 0; +} + +void +_swrast_SetFacing(GLcontext *ctx, GLuint facing) +{ + SWRAST_CONTEXT(ctx)->PointLineFacing = facing; +} + +void +_swrast_allow_vertex_fog( GLcontext *ctx, GLboolean value ) +{ + if (SWRAST_DEBUG) { + _mesa_debug(ctx, "_swrast_allow_vertex_fog %d\n", value); + } + SWRAST_CONTEXT(ctx)->InvalidateState( ctx, _NEW_HINT ); + SWRAST_CONTEXT(ctx)->AllowVertexFog = value; +} + +void +_swrast_allow_pixel_fog( GLcontext *ctx, GLboolean value ) +{ + if (SWRAST_DEBUG) { + _mesa_debug(ctx, "_swrast_allow_pixel_fog %d\n", value); + } + SWRAST_CONTEXT(ctx)->InvalidateState( ctx, _NEW_HINT ); + SWRAST_CONTEXT(ctx)->AllowPixelFog = value; +} + + +GLboolean +_swrast_CreateContext( GLcontext *ctx ) +{ + GLuint i; + SWcontext *swrast = (SWcontext *)CALLOC(sizeof(SWcontext)); + + if (SWRAST_DEBUG) { + _mesa_debug(ctx, "_swrast_CreateContext\n"); + } + + if (!swrast) + return GL_FALSE; + + swrast->NewState = ~0; + + swrast->choose_point = _swrast_choose_point; + swrast->choose_line = _swrast_choose_line; + swrast->choose_triangle = _swrast_choose_triangle; + + swrast->InvalidatePointMask = _SWRAST_NEW_POINT; + swrast->InvalidateLineMask = _SWRAST_NEW_LINE; + swrast->InvalidateTriangleMask = _SWRAST_NEW_TRIANGLE; + + swrast->Point = _swrast_validate_point; + swrast->Line = _swrast_validate_line; + swrast->Triangle = _swrast_validate_triangle; + swrast->InvalidateState = _swrast_sleep; + swrast->BlendFunc = _swrast_validate_blend_func; + + swrast->AllowVertexFog = GL_TRUE; + swrast->AllowPixelFog = GL_TRUE; + + /* Optimized Accum buffer */ + swrast->_IntegerAccumMode = GL_FALSE; + swrast->_IntegerAccumScaler = 0.0; + + for (i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++) + swrast->TextureSample[i] = NULL; + + swrast->SpanArrays = MALLOC_STRUCT(sw_span_arrays); + if (!swrast->SpanArrays) { + FREE(swrast); + return GL_FALSE; + } + swrast->SpanArrays->ChanType = CHAN_TYPE; +#if CHAN_TYPE == GL_UNSIGNED_BYTE + swrast->SpanArrays->rgba = swrast->SpanArrays->rgba8; +#elif CHAN_TYPE == GL_UNSIGNED_SHORT + swrast->SpanArrays->rgba = swrast->SpanArrays->rgba16; +#else + swrast->SpanArrays->rgba = swrast->SpanArrays->attribs[FRAG_ATTRIB_COL0]; +#endif + + /* init point span buffer */ + swrast->PointSpan.primitive = GL_POINT; + swrast->PointSpan.end = 0; + swrast->PointSpan.facing = 0; + swrast->PointSpan.array = swrast->SpanArrays; + + swrast->TexelBuffer = (GLfloat *) MALLOC(ctx->Const.MaxTextureImageUnits * + MAX_WIDTH * 4 * sizeof(GLfloat)); + if (!swrast->TexelBuffer) { + FREE(swrast->SpanArrays); + FREE(swrast); + return GL_FALSE; + } + + ctx->swrast_context = swrast; + + return GL_TRUE; +} + +void +_swrast_DestroyContext( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + + if (SWRAST_DEBUG) { + _mesa_debug(ctx, "_swrast_DestroyContext\n"); + } + + FREE( swrast->SpanArrays ); + if (swrast->ZoomedArrays) + FREE( swrast->ZoomedArrays ); + FREE( swrast->TexelBuffer ); + FREE( swrast ); + + ctx->swrast_context = 0; +} + + +struct swrast_device_driver * +_swrast_GetDeviceDriverReference( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + return &swrast->Driver; +} + +void +_swrast_flush( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + /* flush any pending fragments from rendering points */ + if (swrast->PointSpan.end > 0) { + if (ctx->Visual.rgbMode) { + _swrast_write_rgba_span(ctx, &(swrast->PointSpan)); + } + else { + _swrast_write_index_span(ctx, &(swrast->PointSpan)); + } + swrast->PointSpan.end = 0; + } +} + +void +_swrast_render_primitive( GLcontext *ctx, GLenum prim ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + if (swrast->Primitive == GL_POINTS && prim != GL_POINTS) { + _swrast_flush(ctx); + } + swrast->Primitive = prim; +} + + +void +_swrast_render_start( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + if (swrast->Driver.SpanRenderStart) + swrast->Driver.SpanRenderStart( ctx ); + swrast->PointSpan.end = 0; +} + +void +_swrast_render_finish( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + if (swrast->Driver.SpanRenderFinish) + swrast->Driver.SpanRenderFinish( ctx ); + + _swrast_flush(ctx); +} + + +#define SWRAST_DEBUG_VERTICES 0 + +void +_swrast_print_vertex( GLcontext *ctx, const SWvertex *v ) +{ + GLuint i; + + if (SWRAST_DEBUG_VERTICES) { + _mesa_debug(ctx, "win %f %f %f %f\n", + v->attrib[FRAG_ATTRIB_WPOS][0], + v->attrib[FRAG_ATTRIB_WPOS][1], + v->attrib[FRAG_ATTRIB_WPOS][2], + v->attrib[FRAG_ATTRIB_WPOS][3]); + + for (i = 0 ; i < ctx->Const.MaxTextureCoordUnits ; i++) + if (ctx->Texture.Unit[i]._ReallyEnabled) + _mesa_debug(ctx, "texcoord[%d] %f %f %f %f\n", i, + v->attrib[FRAG_ATTRIB_TEX0 + i][0], + v->attrib[FRAG_ATTRIB_TEX0 + i][1], + v->attrib[FRAG_ATTRIB_TEX0 + i][2], + v->attrib[FRAG_ATTRIB_TEX0 + i][3]); + +#if CHAN_TYPE == GL_FLOAT + _mesa_debug(ctx, "color %f %f %f %f\n", + v->color[0], v->color[1], v->color[2], v->color[3]); +#else + _mesa_debug(ctx, "color %d %d %d %d\n", + v->color[0], v->color[1], v->color[2], v->color[3]); +#endif + _mesa_debug(ctx, "spec %g %g %g %g\n", + v->attrib[FRAG_ATTRIB_COL1][0], + v->attrib[FRAG_ATTRIB_COL1][1], + v->attrib[FRAG_ATTRIB_COL1][2], + v->attrib[FRAG_ATTRIB_COL1][3]); + _mesa_debug(ctx, "fog %f\n", v->attrib[FRAG_ATTRIB_FOGC][0]); + _mesa_debug(ctx, "index %d\n", v->attrib[FRAG_ATTRIB_CI][0]); + _mesa_debug(ctx, "pointsize %f\n", v->pointSize); + _mesa_debug(ctx, "\n"); + } +} diff --git a/mesalib/src/mesa/swrast/s_context.h b/mesalib/src/mesa/swrast/s_context.h new file mode 100644 index 000000000..9059f9b5e --- /dev/null +++ b/mesalib/src/mesa/swrast/s_context.h @@ -0,0 +1,348 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.3 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/** + * \file swrast/s_context.h + * \brief Software rasterization context and private types. + * \author Keith Whitwell <keith@tungstengraphics.com> + */ + +/** + * \mainpage swrast module + * + * This module, software rasterization, contains the software fallback + * routines for drawing points, lines, triangles, bitmaps and images. + * All rendering boils down to writing spans (arrays) of pixels with + * particular colors. The span-writing routines must be implemented + * by the device driver. + */ + + +#ifndef S_CONTEXT_H +#define S_CONTEXT_H + +#include "main/mtypes.h" +#include "shader/prog_execute.h" +#include "swrast.h" +#include "s_span.h" + + +typedef void (*texture_sample_func)(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]); + +typedef void (_ASMAPIP blend_func)( GLcontext *ctx, GLuint n, + const GLubyte mask[], + GLvoid *src, const GLvoid *dst, + GLenum chanType); + +typedef void (*swrast_point_func)( GLcontext *ctx, const SWvertex *); + +typedef void (*swrast_line_func)( GLcontext *ctx, + const SWvertex *, const SWvertex *); + +typedef void (*swrast_tri_func)( GLcontext *ctx, const SWvertex *, + const SWvertex *, const SWvertex *); + + +typedef void (*validate_texture_image_func)(GLcontext *ctx, + struct gl_texture_object *texObj, + GLuint face, GLuint level); + + +/** + * \defgroup Bitmasks + * Bitmasks to indicate which rasterization options are enabled + * (RasterMask) + */ +/*@{*/ +#define ALPHATEST_BIT 0x001 /**< Alpha-test pixels */ +#define BLEND_BIT 0x002 /**< Blend pixels */ +#define DEPTH_BIT 0x004 /**< Depth-test pixels */ +#define FOG_BIT 0x008 /**< Fog pixels */ +#define LOGIC_OP_BIT 0x010 /**< Apply logic op in software */ +#define CLIP_BIT 0x020 /**< Scissor or window clip pixels */ +#define STENCIL_BIT 0x040 /**< Stencil pixels */ +#define MASKING_BIT 0x080 /**< Do glColorMask or glIndexMask */ +#define MULTI_DRAW_BIT 0x400 /**< Write to more than one color- */ + /**< buffer or no buffers. */ +#define OCCLUSION_BIT 0x800 /**< GL_HP_occlusion_test enabled */ +#define TEXTURE_BIT 0x1000 /**< Texturing really enabled */ +#define FRAGPROG_BIT 0x2000 /**< Fragment program enabled */ +#define ATIFRAGSHADER_BIT 0x4000 /**< ATI Fragment shader enabled */ +#define CLAMPING_BIT 0x8000 /**< Clamp colors to [0,1] */ +/*@}*/ + +#define _SWRAST_NEW_RASTERMASK (_NEW_BUFFERS| \ + _NEW_SCISSOR| \ + _NEW_COLOR| \ + _NEW_DEPTH| \ + _NEW_FOG| \ + _NEW_PROGRAM| \ + _NEW_STENCIL| \ + _NEW_TEXTURE| \ + _NEW_VIEWPORT| \ + _NEW_DEPTH) + + +/** + * \struct SWcontext + * \brief Per-context state that's private to the software rasterizer module. + */ +typedef struct +{ + /** Driver interface: + */ + struct swrast_device_driver Driver; + + /** Configuration mechanisms to make software rasterizer match + * characteristics of the hardware rasterizer (if present): + */ + GLboolean AllowVertexFog; + GLboolean AllowPixelFog; + + /** Derived values, invalidated on statechanges, updated from + * _swrast_validate_derived(): + */ + GLbitfield _RasterMask; + GLfloat _BackfaceSign; /** +1 or -1 */ + GLfloat _BackfaceCullSign; /** +1, 0, or -1 */ + GLboolean _PreferPixelFog; /* Compute fog blend factor per fragment? */ + GLboolean _TextureCombinePrimary; + GLboolean _FogEnabled; + GLboolean _DeferredTexture; + GLenum _FogMode; /* either GL_FOG_MODE or fragment program's fog mode */ + + /** List/array of the fragment attributes to interpolate */ + GLuint _ActiveAttribs[FRAG_ATTRIB_MAX]; + /** Same info, but as a bitmask */ + GLbitfield _ActiveAttribMask; + /** Number of fragment attributes to interpolate */ + GLuint _NumActiveAttribs; + /** Indicates how each attrib is to be interpolated (lines/tris) */ + GLenum _InterpMode[FRAG_ATTRIB_MAX]; /* GL_FLAT or GL_SMOOTH (for now) */ + + /* Accum buffer temporaries. + */ + GLboolean _IntegerAccumMode; /**< Storing unscaled integers? */ + GLfloat _IntegerAccumScaler; /**< Implicit scale factor */ + + /* Working values: + */ + GLuint StippleCounter; /**< Line stipple counter */ + GLuint PointLineFacing; + GLbitfield NewState; + GLuint StateChanges; + GLenum Primitive; /* current primitive being drawn (ala glBegin) */ + GLboolean SpecularVertexAdd; /**< Add specular/secondary color per vertex */ + + void (*InvalidateState)( GLcontext *ctx, GLbitfield new_state ); + + /** + * When the NewState mask intersects these masks, we invalidate the + * Point/Line/Triangle function pointers below. + */ + /*@{*/ + GLbitfield InvalidatePointMask; + GLbitfield InvalidateLineMask; + GLbitfield InvalidateTriangleMask; + /*@}*/ + + /** + * Device drivers plug in functions for these callbacks. + * Will be called when the GL state change mask intersects the above masks. + */ + /*@{*/ + void (*choose_point)( GLcontext * ); + void (*choose_line)( GLcontext * ); + void (*choose_triangle)( GLcontext * ); + /*@}*/ + + /** + * Current point, line and triangle drawing functions. + */ + /*@{*/ + swrast_point_func Point; + swrast_line_func Line; + swrast_tri_func Triangle; + /*@}*/ + + /** + * Placeholders for when separate specular (or secondary color) is + * enabled but texturing is not. + */ + /*@{*/ + swrast_point_func SpecPoint; + swrast_line_func SpecLine; + swrast_tri_func SpecTriangle; + /*@}*/ + + /** + * Typically, we'll allocate a sw_span structure as a local variable + * and set its 'array' pointer to point to this object. The reason is + * this object is big and causes problems when allocated on the stack + * on some systems. + */ + SWspanarrays *SpanArrays; + SWspanarrays *ZoomedArrays; /**< For pixel zooming */ + + /** + * Used to buffer N GL_POINTS, instead of rendering one by one. + */ + SWspan PointSpan; + + /** Internal hooks, kept up to date by the same mechanism as above. + */ + blend_func BlendFunc; + texture_sample_func TextureSample[MAX_TEXTURE_IMAGE_UNITS]; + + /** Buffer for saving the sampled texture colors. + * Needed for GL_ARB_texture_env_crossbar implementation. + */ + GLfloat *TexelBuffer; + + validate_texture_image_func ValidateTextureImage; + + /** State used during execution of fragment programs */ + struct gl_program_machine FragProgMachine; + +} SWcontext; + + +extern void +_swrast_validate_derived( GLcontext *ctx ); + +extern void +_swrast_update_texture_samplers(GLcontext *ctx); + + +/** Return SWcontext for the given GLcontext */ +static INLINE SWcontext * +SWRAST_CONTEXT(GLcontext *ctx) +{ + return (SWcontext *) ctx->swrast_context; +} + +/** const version of above */ +static INLINE const SWcontext * +CONST_SWRAST_CONTEXT(const GLcontext *ctx) +{ + return (const SWcontext *) ctx->swrast_context; +} + + +/** + * Called prior to framebuffer reading/writing. + * For drivers that rely on swrast for fallback rendering, this is the + * driver's opportunity to map renderbuffers and textures. + */ +static INLINE void +swrast_render_start(GLcontext *ctx) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + if (swrast->Driver.SpanRenderStart) + swrast->Driver.SpanRenderStart(ctx); +} + + +/** Called after framebuffer reading/writing */ +static INLINE void +swrast_render_finish(GLcontext *ctx) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + if (swrast->Driver.SpanRenderFinish) + swrast->Driver.SpanRenderFinish(ctx); +} + + + +/** + * Size of an RGBA pixel, in bytes, for given datatype. + */ +#define RGBA_PIXEL_SIZE(TYPE) \ + ((TYPE == GL_UNSIGNED_BYTE) ? 4 * sizeof(GLubyte) : \ + ((TYPE == GL_UNSIGNED_SHORT) ? 4 * sizeof(GLushort) \ + : 4 * sizeof(GLfloat))) + + + +/* + * Fixed point arithmetic macros + */ +#ifndef FIXED_FRAC_BITS +#define FIXED_FRAC_BITS 11 +#endif + +#define FIXED_SHIFT FIXED_FRAC_BITS +#define FIXED_ONE (1 << FIXED_SHIFT) +#define FIXED_HALF (1 << (FIXED_SHIFT-1)) +#define FIXED_FRAC_MASK (FIXED_ONE - 1) +#define FIXED_INT_MASK (~FIXED_FRAC_MASK) +#define FIXED_EPSILON 1 +#define FIXED_SCALE ((float) FIXED_ONE) +#define FIXED_DBL_SCALE ((double) FIXED_ONE) +#define FloatToFixed(X) (IROUND((X) * FIXED_SCALE)) +#define FixedToDouble(X) ((X) * (1.0 / FIXED_DBL_SCALE)) +#define IntToFixed(I) ((I) << FIXED_SHIFT) +#define FixedToInt(X) ((X) >> FIXED_SHIFT) +#define FixedToUns(X) (((unsigned int)(X)) >> FIXED_SHIFT) +#define FixedCeil(X) (((X) + FIXED_ONE - FIXED_EPSILON) & FIXED_INT_MASK) +#define FixedFloor(X) ((X) & FIXED_INT_MASK) +#define FixedToFloat(X) ((X) * (1.0F / FIXED_SCALE)) +#define PosFloatToFixed(X) FloatToFixed(X) +#define SignedFloatToFixed(X) FloatToFixed(X) + + + +/* + * XXX these macros are just bandages for now in order to make + * CHAN_BITS==32 compile cleanly. + * These should probably go elsewhere at some point. + */ +#if CHAN_TYPE == GL_FLOAT +#define ChanToFixed(X) (X) +#define FixedToChan(X) (X) +#else +#define ChanToFixed(X) IntToFixed(X) +#define FixedToChan(X) FixedToInt(X) +#endif + + +/** + * For looping over fragment attributes in the pointe, line + * triangle rasterizers. + */ +#define ATTRIB_LOOP_BEGIN \ + { \ + GLuint a; \ + for (a = 0; a < swrast->_NumActiveAttribs; a++) { \ + const GLuint attr = swrast->_ActiveAttribs[a]; + +#define ATTRIB_LOOP_END } } + + + +#endif diff --git a/mesalib/src/mesa/swrast/s_copypix.c b/mesalib/src/mesa/swrast/s_copypix.c new file mode 100644 index 000000000..5ecfb1e90 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_copypix.c @@ -0,0 +1,932 @@ +/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/convolve.h" +#include "main/histogram.h" +#include "main/image.h" +#include "main/macros.h" +#include "main/imports.h" +#include "main/pixel.h" + +#include "s_context.h" +#include "s_depth.h" +#include "s_span.h" +#include "s_stencil.h" +#include "s_zoom.h" + + + +/** + * Determine if there's overlap in an image copy. + * This test also compensates for the fact that copies are done from + * bottom to top and overlaps can sometimes be handled correctly + * without making a temporary image copy. + * \return GL_TRUE if the regions overlap, GL_FALSE otherwise. + */ +static GLboolean +regions_overlap(GLint srcx, GLint srcy, + GLint dstx, GLint dsty, + GLint width, GLint height, + GLfloat zoomX, GLfloat zoomY) +{ + if (zoomX == 1.0 && zoomY == 1.0) { + /* no zoom */ + if (srcx >= dstx + width || (srcx + width <= dstx)) { + return GL_FALSE; + } + else if (srcy < dsty) { /* this is OK */ + return GL_FALSE; + } + else if (srcy > dsty + height) { + return GL_FALSE; + } + else { + return GL_TRUE; + } + } + else { + /* add one pixel of slop when zooming, just to be safe */ + if (srcx > (dstx + ((zoomX > 0.0F) ? (width * zoomX + 1.0F) : 0.0F))) { + /* src is completely right of dest */ + return GL_FALSE; + } + else if (srcx + width + 1.0F < dstx + ((zoomX > 0.0F) ? 0.0F : (width * zoomX))) { + /* src is completely left of dest */ + return GL_FALSE; + } + else if ((srcy < dsty) && (srcy + height < dsty + (height * zoomY))) { + /* src is completely below dest */ + return GL_FALSE; + } + else if ((srcy > dsty) && (srcy + height > dsty + (height * zoomY))) { + /* src is completely above dest */ + return GL_FALSE; + } + else { + return GL_TRUE; + } + } +} + + +/** + * RGBA copypixels with convolution. + */ +static void +copy_conv_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy, + GLint width, GLint height, GLint destx, GLint desty) +{ + GLint row; + const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; + const GLbitfield transferOps = ctx->_ImageTransferState; + const GLboolean sink = (ctx->Pixel.MinMaxEnabled && ctx->MinMax.Sink) + || (ctx->Pixel.HistogramEnabled && ctx->Histogram.Sink); + GLfloat *dest, *tmpImage, *convImage; + SWspan span; + + INIT_SPAN(span, GL_BITMAP); + _swrast_span_default_attribs(ctx, &span); + span.arrayMask = SPAN_RGBA; + span.arrayAttribs = FRAG_BIT_COL0; + + /* allocate space for GLfloat image */ + tmpImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat)); + if (!tmpImage) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); + return; + } + convImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat)); + if (!convImage) { + _mesa_free(tmpImage); + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); + return; + } + + /* read source image as float/RGBA */ + dest = tmpImage; + for (row = 0; row < height; row++) { + _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer, + width, srcx, srcy + row, GL_FLOAT, dest); + dest += 4 * width; + } + + /* do the image transfer ops which preceed convolution */ + for (row = 0; row < height; row++) { + GLfloat (*rgba)[4] = (GLfloat (*)[4]) (tmpImage + row * width * 4); + _mesa_apply_rgba_transfer_ops(ctx, + transferOps & IMAGE_PRE_CONVOLUTION_BITS, + width, rgba); + } + + /* do convolution */ + if (ctx->Pixel.Convolution2DEnabled) { + _mesa_convolve_2d_image(ctx, &width, &height, tmpImage, convImage); + } + else { + ASSERT(ctx->Pixel.Separable2DEnabled); + _mesa_convolve_sep_image(ctx, &width, &height, tmpImage, convImage); + } + _mesa_free(tmpImage); + + /* do remaining post-convolution image transfer ops */ + for (row = 0; row < height; row++) { + GLfloat (*rgba)[4] = (GLfloat (*)[4]) (convImage + row * width * 4); + _mesa_apply_rgba_transfer_ops(ctx, + transferOps & IMAGE_POST_CONVOLUTION_BITS, + width, rgba); + } + + if (!sink) { + /* write the new image */ + for (row = 0; row < height; row++) { + const GLfloat *src = convImage + row * width * 4; + GLfloat *rgba = (GLfloat *) span.array->attribs[FRAG_ATTRIB_COL0]; + + /* copy convolved colors into span array */ + _mesa_memcpy(rgba, src, width * 4 * sizeof(GLfloat)); + + /* write span */ + span.x = destx; + span.y = desty + row; + span.end = width; + span.array->ChanType = GL_FLOAT; + if (zoom) { + _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span, rgba); + } + else { + _swrast_write_rgba_span(ctx, &span); + } + } + /* restore this */ + span.array->ChanType = CHAN_TYPE; + } + + _mesa_free(convImage); +} + + +/** + * RGBA copypixels + */ +static void +copy_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy, + GLint width, GLint height, GLint destx, GLint desty) +{ + GLfloat *tmpImage, *p; + GLint sy, dy, stepy, row; + const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; + GLint overlapping; + GLuint transferOps = ctx->_ImageTransferState; + SWspan span; + + if (!ctx->ReadBuffer->_ColorReadBuffer) { + /* no readbuffer - OK */ + return; + } + + if (ctx->Pixel.Convolution2DEnabled || ctx->Pixel.Separable2DEnabled) { + copy_conv_rgba_pixels(ctx, srcx, srcy, width, height, destx, desty); + return; + } + else if (ctx->Pixel.Convolution1DEnabled) { + /* make sure we don't apply 1D convolution */ + transferOps &= ~(IMAGE_CONVOLUTION_BIT | + IMAGE_POST_CONVOLUTION_SCALE_BIAS); + } + + if (ctx->DrawBuffer == ctx->ReadBuffer) { + overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, + ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); + } + else { + overlapping = GL_FALSE; + } + + /* Determine if copy should be done bottom-to-top or top-to-bottom */ + if (!overlapping && srcy < desty) { + /* top-down max-to-min */ + sy = srcy + height - 1; + dy = desty + height - 1; + stepy = -1; + } + else { + /* bottom-up min-to-max */ + sy = srcy; + dy = desty; + stepy = 1; + } + + INIT_SPAN(span, GL_BITMAP); + _swrast_span_default_attribs(ctx, &span); + span.arrayMask = SPAN_RGBA; + span.arrayAttribs = FRAG_BIT_COL0; /* we'll fill in COL0 attrib values */ + + if (overlapping) { + tmpImage = (GLfloat *) _mesa_malloc(width * height * sizeof(GLfloat) * 4); + if (!tmpImage) { + _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); + return; + } + /* read the source image as RGBA/float */ + p = tmpImage; + for (row = 0; row < height; row++) { + _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, + width, srcx, sy + row, GL_FLOAT, p ); + p += width * 4; + } + p = tmpImage; + } + else { + tmpImage = NULL; /* silence compiler warnings */ + p = NULL; + } + + ASSERT(width < MAX_WIDTH); + + for (row = 0; row < height; row++, sy += stepy, dy += stepy) { + GLvoid *rgba = span.array->attribs[FRAG_ATTRIB_COL0]; + + /* Get row/span of source pixels */ + if (overlapping) { + /* get from buffered image */ + _mesa_memcpy(rgba, p, width * sizeof(GLfloat) * 4); + p += width * 4; + } + else { + /* get from framebuffer */ + _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, + width, srcx, sy, GL_FLOAT, rgba ); + } + + if (transferOps) { + _mesa_apply_rgba_transfer_ops(ctx, transferOps, width, + (GLfloat (*)[4]) rgba); + } + + /* Write color span */ + span.x = destx; + span.y = dy; + span.end = width; + span.array->ChanType = GL_FLOAT; + if (zoom) { + _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span, rgba); + } + else { + _swrast_write_rgba_span(ctx, &span); + } + } + + span.array->ChanType = CHAN_TYPE; /* restore */ + + if (overlapping) + _mesa_free(tmpImage); +} + + +static void +copy_ci_pixels( GLcontext *ctx, GLint srcx, GLint srcy, + GLint width, GLint height, + GLint destx, GLint desty ) +{ + GLuint *tmpImage,*p; + GLint sy, dy, stepy; + GLint j; + const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; + GLint overlapping; + SWspan span; + + if (!ctx->ReadBuffer->_ColorReadBuffer) { + /* no readbuffer - OK */ + return; + } + + INIT_SPAN(span, GL_BITMAP); + _swrast_span_default_attribs(ctx, &span); + span.arrayMask = SPAN_INDEX; + + if (ctx->DrawBuffer == ctx->ReadBuffer) { + overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, + ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); + } + else { + overlapping = GL_FALSE; + } + + /* Determine if copy should be bottom-to-top or top-to-bottom */ + if (!overlapping && srcy < desty) { + /* top-down max-to-min */ + sy = srcy + height - 1; + dy = desty + height - 1; + stepy = -1; + } + else { + /* bottom-up min-to-max */ + sy = srcy; + dy = desty; + stepy = 1; + } + + if (overlapping) { + GLint ssy = sy; + tmpImage = (GLuint *) _mesa_malloc(width * height * sizeof(GLuint)); + if (!tmpImage) { + _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); + return; + } + /* read the image */ + p = tmpImage; + for (j = 0; j < height; j++, ssy += stepy) { + _swrast_read_index_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, + width, srcx, ssy, p ); + p += width; + } + p = tmpImage; + } + else { + tmpImage = NULL; /* silence compiler warning */ + p = NULL; + } + + for (j = 0; j < height; j++, sy += stepy, dy += stepy) { + /* Get color indexes */ + if (overlapping) { + _mesa_memcpy(span.array->index, p, width * sizeof(GLuint)); + p += width; + } + else { + _swrast_read_index_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, + width, srcx, sy, span.array->index ); + } + + if (ctx->_ImageTransferState) + _mesa_apply_ci_transfer_ops(ctx, ctx->_ImageTransferState, + width, span.array->index); + + /* write color indexes */ + span.x = destx; + span.y = dy; + span.end = width; + if (zoom) + _swrast_write_zoomed_index_span(ctx, destx, desty, &span); + else + _swrast_write_index_span(ctx, &span); + } + + if (overlapping) + _mesa_free(tmpImage); +} + + +/** + * Convert floating point Z values to integer Z values with pixel transfer's + * Z scale and bias. + */ +static void +scale_and_bias_z(GLcontext *ctx, GLuint width, + const GLfloat depth[], GLuint z[]) +{ + const GLuint depthMax = ctx->DrawBuffer->_DepthMax; + GLuint i; + + if (depthMax <= 0xffffff && + ctx->Pixel.DepthScale == 1.0 && + ctx->Pixel.DepthBias == 0.0) { + /* no scale or bias and no clamping and no worry of overflow */ + const GLfloat depthMaxF = ctx->DrawBuffer->_DepthMaxF; + for (i = 0; i < width; i++) { + z[i] = (GLuint) (depth[i] * depthMaxF); + } + } + else { + /* need to be careful with overflow */ + const GLdouble depthMaxF = ctx->DrawBuffer->_DepthMaxF; + for (i = 0; i < width; i++) { + GLdouble d = depth[i] * ctx->Pixel.DepthScale + ctx->Pixel.DepthBias; + d = CLAMP(d, 0.0, 1.0) * depthMaxF; + if (d >= depthMaxF) + z[i] = depthMax; + else + z[i] = (GLuint) d; + } + } +} + + + +/* + * TODO: Optimize!!!! + */ +static void +copy_depth_pixels( GLcontext *ctx, GLint srcx, GLint srcy, + GLint width, GLint height, + GLint destx, GLint desty ) +{ + struct gl_framebuffer *fb = ctx->ReadBuffer; + struct gl_renderbuffer *readRb = fb->_DepthBuffer; + GLfloat *p, *tmpImage; + GLint sy, dy, stepy; + GLint j; + const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; + GLint overlapping; + SWspan span; + + if (!readRb) { + /* no readbuffer - OK */ + return; + } + + INIT_SPAN(span, GL_BITMAP); + _swrast_span_default_attribs(ctx, &span); + span.arrayMask = SPAN_Z; + + if (ctx->DrawBuffer == ctx->ReadBuffer) { + overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, + ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); + } + else { + overlapping = GL_FALSE; + } + + /* Determine if copy should be bottom-to-top or top-to-bottom */ + if (!overlapping && srcy < desty) { + /* top-down max-to-min */ + sy = srcy + height - 1; + dy = desty + height - 1; + stepy = -1; + } + else { + /* bottom-up min-to-max */ + sy = srcy; + dy = desty; + stepy = 1; + } + + if (overlapping) { + GLint ssy = sy; + tmpImage = (GLfloat *) _mesa_malloc(width * height * sizeof(GLfloat)); + if (!tmpImage) { + _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); + return; + } + p = tmpImage; + for (j = 0; j < height; j++, ssy += stepy) { + _swrast_read_depth_span_float(ctx, readRb, width, srcx, ssy, p); + p += width; + } + p = tmpImage; + } + else { + tmpImage = NULL; /* silence compiler warning */ + p = NULL; + } + + for (j = 0; j < height; j++, sy += stepy, dy += stepy) { + GLfloat depth[MAX_WIDTH]; + /* get depth values */ + if (overlapping) { + _mesa_memcpy(depth, p, width * sizeof(GLfloat)); + p += width; + } + else { + _swrast_read_depth_span_float(ctx, readRb, width, srcx, sy, depth); + } + + /* apply scale and bias */ + scale_and_bias_z(ctx, width, depth, span.array->z); + + /* write depth values */ + span.x = destx; + span.y = dy; + span.end = width; + if (fb->Visual.rgbMode) { + if (zoom) + _swrast_write_zoomed_depth_span(ctx, destx, desty, &span); + else + _swrast_write_rgba_span(ctx, &span); + } + else { + if (zoom) + _swrast_write_zoomed_depth_span(ctx, destx, desty, &span); + else + _swrast_write_index_span(ctx, &span); + } + } + + if (overlapping) + _mesa_free(tmpImage); +} + + + +static void +copy_stencil_pixels( GLcontext *ctx, GLint srcx, GLint srcy, + GLint width, GLint height, + GLint destx, GLint desty ) +{ + struct gl_framebuffer *fb = ctx->ReadBuffer; + struct gl_renderbuffer *rb = fb->_StencilBuffer; + GLint sy, dy, stepy; + GLint j; + GLstencil *p, *tmpImage; + const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; + GLint overlapping; + + if (!rb) { + /* no readbuffer - OK */ + return; + } + + if (ctx->DrawBuffer == ctx->ReadBuffer) { + overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, + ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); + } + else { + overlapping = GL_FALSE; + } + + /* Determine if copy should be bottom-to-top or top-to-bottom */ + if (!overlapping && srcy < desty) { + /* top-down max-to-min */ + sy = srcy + height - 1; + dy = desty + height - 1; + stepy = -1; + } + else { + /* bottom-up min-to-max */ + sy = srcy; + dy = desty; + stepy = 1; + } + + if (overlapping) { + GLint ssy = sy; + tmpImage = (GLstencil *) _mesa_malloc(width * height * sizeof(GLstencil)); + if (!tmpImage) { + _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); + return; + } + p = tmpImage; + for (j = 0; j < height; j++, ssy += stepy) { + _swrast_read_stencil_span( ctx, rb, width, srcx, ssy, p ); + p += width; + } + p = tmpImage; + } + else { + tmpImage = NULL; /* silence compiler warning */ + p = NULL; + } + + for (j = 0; j < height; j++, sy += stepy, dy += stepy) { + GLstencil stencil[MAX_WIDTH]; + + /* Get stencil values */ + if (overlapping) { + _mesa_memcpy(stencil, p, width * sizeof(GLstencil)); + p += width; + } + else { + _swrast_read_stencil_span( ctx, rb, width, srcx, sy, stencil ); + } + + _mesa_apply_stencil_transfer_ops(ctx, width, stencil); + + /* Write stencil values */ + if (zoom) { + _swrast_write_zoomed_stencil_span(ctx, destx, desty, width, + destx, dy, stencil); + } + else { + _swrast_write_stencil_span( ctx, width, destx, dy, stencil ); + } + } + + if (overlapping) + _mesa_free(tmpImage); +} + + +/** + * This isn't terribly efficient. If a driver really has combined + * depth/stencil buffers the driver should implement an optimized + * CopyPixels function. + */ +static void +copy_depth_stencil_pixels(GLcontext *ctx, + const GLint srcX, const GLint srcY, + const GLint width, const GLint height, + const GLint destX, const GLint destY) +{ + struct gl_renderbuffer *stencilReadRb, *depthReadRb, *depthDrawRb; + GLint sy, dy, stepy; + GLint j; + GLstencil *tempStencilImage = NULL, *stencilPtr = NULL; + GLfloat *tempDepthImage = NULL, *depthPtr = NULL; + const GLfloat depthScale = ctx->DrawBuffer->_DepthMaxF; + const GLuint stencilMask = ctx->Stencil.WriteMask[0]; + const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; + const GLboolean scaleOrBias + = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0; + GLint overlapping; + + depthDrawRb = ctx->DrawBuffer->_DepthBuffer; + depthReadRb = ctx->ReadBuffer->_DepthBuffer; + stencilReadRb = ctx->ReadBuffer->_StencilBuffer; + + ASSERT(depthDrawRb); + ASSERT(depthReadRb); + ASSERT(stencilReadRb); + + if (ctx->DrawBuffer == ctx->ReadBuffer) { + overlapping = regions_overlap(srcX, srcY, destX, destY, width, height, + ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); + } + else { + overlapping = GL_FALSE; + } + + /* Determine if copy should be bottom-to-top or top-to-bottom */ + if (!overlapping && srcY < destY) { + /* top-down max-to-min */ + sy = srcY + height - 1; + dy = destY + height - 1; + stepy = -1; + } + else { + /* bottom-up min-to-max */ + sy = srcY; + dy = destY; + stepy = 1; + } + + if (overlapping) { + GLint ssy = sy; + + if (stencilMask != 0x0) { + tempStencilImage + = (GLstencil *) _mesa_malloc(width * height * sizeof(GLstencil)); + if (!tempStencilImage) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); + return; + } + + /* get copy of stencil pixels */ + stencilPtr = tempStencilImage; + for (j = 0; j < height; j++, ssy += stepy) { + _swrast_read_stencil_span(ctx, stencilReadRb, + width, srcX, ssy, stencilPtr); + stencilPtr += width; + } + stencilPtr = tempStencilImage; + } + + if (ctx->Depth.Mask) { + tempDepthImage + = (GLfloat *) _mesa_malloc(width * height * sizeof(GLfloat)); + if (!tempDepthImage) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); + _mesa_free(tempStencilImage); + return; + } + + /* get copy of depth pixels */ + depthPtr = tempDepthImage; + for (j = 0; j < height; j++, ssy += stepy) { + _swrast_read_depth_span_float(ctx, depthReadRb, + width, srcX, ssy, depthPtr); + depthPtr += width; + } + depthPtr = tempDepthImage; + } + } + + for (j = 0; j < height; j++, sy += stepy, dy += stepy) { + if (stencilMask != 0x0) { + GLstencil stencil[MAX_WIDTH]; + + /* Get stencil values */ + if (overlapping) { + _mesa_memcpy(stencil, stencilPtr, width * sizeof(GLstencil)); + stencilPtr += width; + } + else { + _swrast_read_stencil_span(ctx, stencilReadRb, + width, srcX, sy, stencil); + } + + _mesa_apply_stencil_transfer_ops(ctx, width, stencil); + + /* Write values */ + if (zoom) { + _swrast_write_zoomed_stencil_span(ctx, destX, destY, width, + destX, dy, stencil); + } + else { + _swrast_write_stencil_span( ctx, width, destX, dy, stencil ); + } + } + + if (ctx->Depth.Mask) { + GLfloat depth[MAX_WIDTH]; + GLuint zVals32[MAX_WIDTH]; + GLushort zVals16[MAX_WIDTH]; + GLvoid *zVals; + GLuint zBytes; + + /* get depth values */ + if (overlapping) { + _mesa_memcpy(depth, depthPtr, width * sizeof(GLfloat)); + depthPtr += width; + } + else { + _swrast_read_depth_span_float(ctx, depthReadRb, + width, srcX, sy, depth); + } + + /* scale & bias */ + if (scaleOrBias) { + _mesa_scale_and_bias_depth(ctx, width, depth); + } + /* convert to integer Z values */ + if (depthDrawRb->DataType == GL_UNSIGNED_SHORT) { + GLint k; + for (k = 0; k < width; k++) + zVals16[k] = (GLushort) (depth[k] * depthScale); + zVals = zVals16; + zBytes = 2; + } + else { + GLint k; + for (k = 0; k < width; k++) + zVals32[k] = (GLuint) (depth[k] * depthScale); + zVals = zVals32; + zBytes = 4; + } + + /* Write values */ + if (zoom) { + _swrast_write_zoomed_z_span(ctx, destX, destY, width, + destX, dy, zVals); + } + else { + _swrast_put_row(ctx, depthDrawRb, width, destX, dy, zVals, zBytes); + } + } + } + + if (tempStencilImage) + _mesa_free(tempStencilImage); + + if (tempDepthImage) + _mesa_free(tempDepthImage); +} + + + +/** + * Try to do a fast copy pixels. + */ +static GLboolean +fast_copy_pixels(GLcontext *ctx, + GLint srcX, GLint srcY, GLsizei width, GLsizei height, + GLint dstX, GLint dstY, GLenum type) +{ + struct gl_framebuffer *srcFb = ctx->ReadBuffer; + struct gl_framebuffer *dstFb = ctx->DrawBuffer; + struct gl_renderbuffer *srcRb, *dstRb; + GLint row, yStep; + + if (SWRAST_CONTEXT(ctx)->_RasterMask != 0x0 || + ctx->Pixel.ZoomX != 1.0F || + ctx->Pixel.ZoomY != 1.0F || + ctx->_ImageTransferState) { + /* can't handle these */ + return GL_FALSE; + } + + if (type == GL_COLOR) { + if (dstFb->_NumColorDrawBuffers != 1) + return GL_FALSE; + srcRb = srcFb->_ColorReadBuffer; + dstRb = dstFb->_ColorDrawBuffers[0]; + } + else if (type == GL_STENCIL) { + srcRb = srcFb->_StencilBuffer; + dstRb = dstFb->_StencilBuffer; + } + else if (type == GL_DEPTH) { + srcRb = srcFb->_DepthBuffer; + dstRb = dstFb->_DepthBuffer; + } + else { + ASSERT(type == GL_DEPTH_STENCIL_EXT); + /* XXX correct? */ + srcRb = srcFb->Attachment[BUFFER_DEPTH].Renderbuffer; + dstRb = dstFb->Attachment[BUFFER_DEPTH].Renderbuffer; + } + + /* src and dst renderbuffers must be same format and type */ + if (!srcRb || !dstRb || + srcRb->DataType != dstRb->DataType || + srcRb->_BaseFormat != dstRb->_BaseFormat) { + return GL_FALSE; + } + + /* clipping not supported */ + if (srcX < 0 || srcX + width > (GLint) srcFb->Width || + srcY < 0 || srcY + height > (GLint) srcFb->Height || + dstX < dstFb->_Xmin || dstX + width > dstFb->_Xmax || + dstY < dstFb->_Ymin || dstY + height > dstFb->_Ymax) { + return GL_FALSE; + } + + /* overlapping src/dst doesn't matter, just determine Y direction */ + if (srcY < dstY) { + /* top-down max-to-min */ + srcY = srcY + height - 1; + dstY = dstY + height - 1; + yStep = -1; + } + else { + /* bottom-up min-to-max */ + yStep = 1; + } + + for (row = 0; row < height; row++) { + GLuint temp[MAX_WIDTH][4]; + srcRb->GetRow(ctx, srcRb, width, srcX, srcY, temp); + dstRb->PutRow(ctx, dstRb, width, dstX, dstY, temp, NULL); + srcY += yStep; + dstY += yStep; + } + + return GL_TRUE; +} + + +/** + * Do software-based glCopyPixels. + * By time we get here, all parameters will have been error-checked. + */ +void +_swrast_CopyPixels( GLcontext *ctx, + GLint srcx, GLint srcy, GLsizei width, GLsizei height, + GLint destx, GLint desty, GLenum type ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + swrast_render_start(ctx); + + if (swrast->NewState) + _swrast_validate_derived( ctx ); + + if (!fast_copy_pixels(ctx, srcx, srcy, width, height, destx, desty, type)) { + switch (type) { + case GL_COLOR: + if (ctx->Visual.rgbMode) { + copy_rgba_pixels( ctx, srcx, srcy, width, height, destx, desty ); + } + else { + copy_ci_pixels( ctx, srcx, srcy, width, height, destx, desty ); + } + break; + case GL_DEPTH: + copy_depth_pixels( ctx, srcx, srcy, width, height, destx, desty ); + break; + case GL_STENCIL: + copy_stencil_pixels( ctx, srcx, srcy, width, height, destx, desty ); + break; + case GL_DEPTH_STENCIL_EXT: + copy_depth_stencil_pixels(ctx, srcx, srcy, width, height, destx, desty); + break; + default: + _mesa_problem(ctx, "unexpected type in _swrast_CopyPixels"); + } + } + + swrast_render_finish(ctx); +} diff --git a/mesalib/src/mesa/swrast/s_depth.c b/mesalib/src/mesa/swrast/s_depth.c new file mode 100644 index 000000000..26e23f02d --- /dev/null +++ b/mesalib/src/mesa/swrast/s_depth.c @@ -0,0 +1,1429 @@ +/* + * Mesa 3-D graphics library + * Version: 7.2.1 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/macros.h" +#include "main/imports.h" +#include "main/fbobject.h" + +#include "s_depth.h" +#include "s_context.h" +#include "s_span.h" + + +/** + * Do depth test for a horizontal span of fragments. + * Input: zbuffer - array of z values in the zbuffer + * z - array of fragment z values + * Return: number of fragments which pass the test. + */ +static GLuint +depth_test_span16( GLcontext *ctx, GLuint n, + GLushort zbuffer[], const GLuint z[], GLubyte mask[] ) +{ + GLuint passed = 0; + + /* switch cases ordered from most frequent to less frequent */ + switch (ctx->Depth.Func) { + case GL_LESS: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + if (z[i] < zbuffer[i]) { + /* pass */ + zbuffer[i] = z[i]; + passed++; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + if (z[i] < zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_LEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] <= zbuffer[i]) { + zbuffer[i] = z[i]; + passed++; + } + else { + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] <= zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_GEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] >= zbuffer[i]) { + zbuffer[i] = z[i]; + passed++; + } + else { + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] >= zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_GREATER: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] > zbuffer[i]) { + zbuffer[i] = z[i]; + passed++; + } + else { + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] > zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_NOTEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] != zbuffer[i]) { + zbuffer[i] = z[i]; + passed++; + } + else { + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] != zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_EQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] == zbuffer[i]) { + zbuffer[i] = z[i]; + passed++; + } + else { + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] == zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_ALWAYS: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + zbuffer[i] = z[i]; + passed++; + } + } + } + else { + /* Don't update Z buffer or mask */ + passed = n; + } + break; + case GL_NEVER: + _mesa_bzero(mask, n * sizeof(GLubyte)); + break; + default: + _mesa_problem(ctx, "Bad depth func in depth_test_span16"); + } + + return passed; +} + + +static GLuint +depth_test_span32( GLcontext *ctx, GLuint n, + GLuint zbuffer[], const GLuint z[], GLubyte mask[] ) +{ + GLuint passed = 0; + + /* switch cases ordered from most frequent to less frequent */ + switch (ctx->Depth.Func) { + case GL_LESS: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + if (z[i] < zbuffer[i]) { + /* pass */ + zbuffer[i] = z[i]; + passed++; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + if (z[i] < zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_LEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] <= zbuffer[i]) { + zbuffer[i] = z[i]; + passed++; + } + else { + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] <= zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_GEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] >= zbuffer[i]) { + zbuffer[i] = z[i]; + passed++; + } + else { + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] >= zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_GREATER: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] > zbuffer[i]) { + zbuffer[i] = z[i]; + passed++; + } + else { + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] > zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_NOTEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] != zbuffer[i]) { + zbuffer[i] = z[i]; + passed++; + } + else { + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] != zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_EQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] == zbuffer[i]) { + zbuffer[i] = z[i]; + passed++; + } + else { + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + if (z[i] == zbuffer[i]) { + /* pass */ + passed++; + } + else { + mask[i] = 0; + } + } + } + } + break; + case GL_ALWAYS: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0;i<n;i++) { + if (mask[i]) { + zbuffer[i] = z[i]; + passed++; + } + } + } + else { + /* Don't update Z buffer or mask */ + passed = n; + } + break; + case GL_NEVER: + _mesa_bzero(mask, n * sizeof(GLubyte)); + break; + default: + _mesa_problem(ctx, "Bad depth func in depth_test_span32"); + } + + return passed; +} + + + +/* + * Apply depth test to span of fragments. + */ +static GLuint +depth_test_span( GLcontext *ctx, SWspan *span) +{ + struct gl_framebuffer *fb = ctx->DrawBuffer; + struct gl_renderbuffer *rb = fb->_DepthBuffer; + const GLint x = span->x; + const GLint y = span->y; + const GLuint count = span->end; + const GLuint *zValues = span->array->z; + GLubyte *mask = span->array->mask; + GLuint passed; + + ASSERT((span->arrayMask & SPAN_XY) == 0); + ASSERT(span->arrayMask & SPAN_Z); + + if (rb->GetPointer(ctx, rb, 0, 0)) { + /* Directly access buffer */ + if (rb->DataType == GL_UNSIGNED_SHORT) { + GLushort *zbuffer = (GLushort *) rb->GetPointer(ctx, rb, x, y); + passed = depth_test_span16(ctx, count, zbuffer, zValues, mask); + } + else { + GLuint *zbuffer = (GLuint *) rb->GetPointer(ctx, rb, x, y); + ASSERT(rb->DataType == GL_UNSIGNED_INT); + passed = depth_test_span32(ctx, count, zbuffer, zValues, mask); + } + } + else { + /* read depth values from buffer, test, write back */ + if (rb->DataType == GL_UNSIGNED_SHORT) { + GLushort zbuffer[MAX_WIDTH]; + rb->GetRow(ctx, rb, count, x, y, zbuffer); + passed = depth_test_span16(ctx, count, zbuffer, zValues, mask); + rb->PutRow(ctx, rb, count, x, y, zbuffer, mask); + } + else { + GLuint zbuffer[MAX_WIDTH]; + ASSERT(rb->DataType == GL_UNSIGNED_INT); + rb->GetRow(ctx, rb, count, x, y, zbuffer); + passed = depth_test_span32(ctx, count, zbuffer, zValues, mask); + rb->PutRow(ctx, rb, count, x, y, zbuffer, mask); + } + } + + if (passed < count) { + span->writeAll = GL_FALSE; + } + return passed; +} + + + +#define Z_ADDRESS(X, Y) (zStart + (Y) * stride + (X)) + + +/* + * Do depth testing for an array of fragments at assorted locations. + */ +static void +direct_depth_test_pixels16(GLcontext *ctx, GLushort *zStart, GLuint stride, + GLuint n, const GLint x[], const GLint y[], + const GLuint z[], GLubyte mask[] ) +{ + /* switch cases ordered from most frequent to less frequent */ + switch (ctx->Depth.Func) { + case GL_LESS: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] < *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] < *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_LEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] <= *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] <= *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_GEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] >= *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] >= *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_GREATER: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] > *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] > *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_NOTEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] != *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] != *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_EQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] == *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] == *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_ALWAYS: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLushort *zptr = Z_ADDRESS(x[i], y[i]); + *zptr = z[i]; + } + } + } + else { + /* Don't update Z buffer or mask */ + } + break; + case GL_NEVER: + /* depth test never passes */ + _mesa_bzero(mask, n * sizeof(GLubyte)); + break; + default: + _mesa_problem(ctx, "Bad depth func in direct_depth_test_pixels"); + } +} + + + +/* + * Do depth testing for an array of fragments with direct access to zbuffer. + */ +static void +direct_depth_test_pixels32(GLcontext *ctx, GLuint *zStart, GLuint stride, + GLuint n, const GLint x[], const GLint y[], + const GLuint z[], GLubyte mask[] ) +{ + /* switch cases ordered from most frequent to less frequent */ + switch (ctx->Depth.Func) { + case GL_LESS: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] < *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] < *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_LEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] <= *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] <= *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_GEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] >= *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] >= *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_GREATER: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] > *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] > *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_NOTEQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] != *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] != *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_EQUAL: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] == *zptr) { + /* pass */ + *zptr = z[i]; + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + else { + /* Don't update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + if (z[i] == *zptr) { + /* pass */ + } + else { + /* fail */ + mask[i] = 0; + } + } + } + } + break; + case GL_ALWAYS: + if (ctx->Depth.Mask) { + /* Update Z buffer */ + GLuint i; + for (i=0; i<n; i++) { + if (mask[i]) { + GLuint *zptr = Z_ADDRESS(x[i], y[i]); + *zptr = z[i]; + } + } + } + else { + /* Don't update Z buffer or mask */ + } + break; + case GL_NEVER: + /* depth test never passes */ + _mesa_bzero(mask, n * sizeof(GLubyte)); + break; + default: + _mesa_problem(ctx, "Bad depth func in direct_depth_test_pixels"); + } +} + + + + +static GLuint +depth_test_pixels( GLcontext *ctx, SWspan *span ) +{ + struct gl_framebuffer *fb = ctx->DrawBuffer; + struct gl_renderbuffer *rb = fb->_DepthBuffer; + const GLuint count = span->end; + const GLint *x = span->array->x; + const GLint *y = span->array->y; + const GLuint *z = span->array->z; + GLubyte *mask = span->array->mask; + + if (rb->GetPointer(ctx, rb, 0, 0)) { + /* Directly access values */ + if (rb->DataType == GL_UNSIGNED_SHORT) { + GLushort *zStart = (GLushort *) rb->Data; + GLuint stride = rb->Width; + direct_depth_test_pixels16(ctx, zStart, stride, count, x, y, z, mask); + } + else { + GLuint *zStart = (GLuint *) rb->Data; + GLuint stride = rb->Width; + ASSERT(rb->DataType == GL_UNSIGNED_INT); + direct_depth_test_pixels32(ctx, zStart, stride, count, x, y, z, mask); + } + } + else { + /* read depth values from buffer, test, write back */ + if (rb->DataType == GL_UNSIGNED_SHORT) { + GLushort zbuffer[MAX_WIDTH]; + _swrast_get_values(ctx, rb, count, x, y, zbuffer, sizeof(GLushort)); + depth_test_span16(ctx, count, zbuffer, z, mask); + rb->PutValues(ctx, rb, count, x, y, zbuffer, mask); + } + else { + GLuint zbuffer[MAX_WIDTH]; + ASSERT(rb->DataType == GL_UNSIGNED_INT); + _swrast_get_values(ctx, rb, count, x, y, zbuffer, sizeof(GLuint)); + depth_test_span32(ctx, count, zbuffer, z, mask); + rb->PutValues(ctx, rb, count, x, y, zbuffer, mask); + } + } + + return count; /* not really correct, but OK */ +} + + +/** + * Apply depth (Z) buffer testing to the span. + * \return approx number of pixels that passed (only zero is reliable) + */ +GLuint +_swrast_depth_test_span( GLcontext *ctx, SWspan *span) +{ + if (span->arrayMask & SPAN_XY) + return depth_test_pixels(ctx, span); + else + return depth_test_span(ctx, span); +} + + +/** + * GL_EXT_depth_bounds_test extension. + * Discard fragments depending on whether the corresponding Z-buffer + * values are outside the depth bounds test range. + * Note: we test the Z buffer values, not the fragment Z values! + * \return GL_TRUE if any fragments pass, GL_FALSE if no fragments pass + */ +GLboolean +_swrast_depth_bounds_test( GLcontext *ctx, SWspan *span ) +{ + struct gl_framebuffer *fb = ctx->DrawBuffer; + struct gl_renderbuffer *rb = fb->_DepthBuffer; + GLuint zMin = (GLuint) (ctx->Depth.BoundsMin * fb->_DepthMaxF + 0.5F); + GLuint zMax = (GLuint) (ctx->Depth.BoundsMax * fb->_DepthMaxF + 0.5F); + GLubyte *mask = span->array->mask; + const GLuint count = span->end; + GLuint i; + GLboolean anyPass = GL_FALSE; + + if (rb->DataType == GL_UNSIGNED_SHORT) { + /* get 16-bit values */ + GLushort zbuffer16[MAX_WIDTH], *zbuffer; + if (span->arrayMask & SPAN_XY) { + _swrast_get_values(ctx, rb, count, span->array->x, span->array->y, + zbuffer16, sizeof(GLushort)); + zbuffer = zbuffer16; + } + else { + zbuffer = (GLushort*) rb->GetPointer(ctx, rb, span->x, span->y); + if (!zbuffer) { + rb->GetRow(ctx, rb, count, span->x, span->y, zbuffer16); + zbuffer = zbuffer16; + } + } + assert(zbuffer); + + /* Now do the tests */ + for (i = 0; i < count; i++) { + if (mask[i]) { + if (zbuffer[i] < zMin || zbuffer[i] > zMax) + mask[i] = GL_FALSE; + else + anyPass = GL_TRUE; + } + } + } + else { + /* get 32-bit values */ + GLuint zbuffer32[MAX_WIDTH], *zbuffer; + ASSERT(rb->DataType == GL_UNSIGNED_INT); + if (span->arrayMask & SPAN_XY) { + _swrast_get_values(ctx, rb, count, span->array->x, span->array->y, + zbuffer32, sizeof(GLuint)); + zbuffer = zbuffer32; + } + else { + zbuffer = (GLuint*) rb->GetPointer(ctx, rb, span->x, span->y); + if (!zbuffer) { + rb->GetRow(ctx, rb, count, span->x, span->y, zbuffer32); + zbuffer = zbuffer32; + } + } + assert(zbuffer); + + /* Now do the tests */ + for (i = 0; i < count; i++) { + if (mask[i]) { + if (zbuffer[i] < zMin || zbuffer[i] > zMax) + mask[i] = GL_FALSE; + else + anyPass = GL_TRUE; + } + } + } + + return anyPass; +} + + + +/**********************************************************************/ +/***** Read Depth Buffer *****/ +/**********************************************************************/ + + +/** + * Read a span of depth values from the given depth renderbuffer, returning + * the values as GLfloats. + * This function does clipping to prevent reading outside the depth buffer's + * bounds. Though the clipping is redundant when we're called from + * _swrast_ReadPixels. + */ +void +_swrast_read_depth_span_float( GLcontext *ctx, struct gl_renderbuffer *rb, + GLint n, GLint x, GLint y, GLfloat depth[] ) +{ + const GLfloat scale = 1.0F / ctx->DrawBuffer->_DepthMaxF; + + if (!rb) { + /* really only doing this to prevent FP exceptions later */ + _mesa_bzero(depth, n * sizeof(GLfloat)); + } + + ASSERT(rb->_BaseFormat == GL_DEPTH_COMPONENT); + + if (y < 0 || y >= (GLint) rb->Height || + x + n <= 0 || x >= (GLint) rb->Width) { + /* span is completely outside framebuffer */ + _mesa_bzero(depth, n * sizeof(GLfloat)); + return; + } + + if (x < 0) { + GLint dx = -x; + GLint i; + for (i = 0; i < dx; i++) + depth[i] = 0.0; + x = 0; + n -= dx; + depth += dx; + } + if (x + n > (GLint) rb->Width) { + GLint dx = x + n - (GLint) rb->Width; + GLint i; + for (i = 0; i < dx; i++) + depth[n - i - 1] = 0.0; + n -= dx; + } + if (n <= 0) { + return; + } + + if (rb->DataType == GL_UNSIGNED_INT) { + GLuint temp[MAX_WIDTH]; + GLint i; + rb->GetRow(ctx, rb, n, x, y, temp); + for (i = 0; i < n; i++) { + depth[i] = temp[i] * scale; + } + } + else if (rb->DataType == GL_UNSIGNED_SHORT) { + GLushort temp[MAX_WIDTH]; + GLint i; + rb->GetRow(ctx, rb, n, x, y, temp); + for (i = 0; i < n; i++) { + depth[i] = temp[i] * scale; + } + } + else { + _mesa_problem(ctx, "Invalid depth renderbuffer data type"); + } +} + + +/** + * As above, but return 32-bit GLuint values. + */ +void +_swrast_read_depth_span_uint( GLcontext *ctx, struct gl_renderbuffer *rb, + GLint n, GLint x, GLint y, GLuint depth[] ) +{ + if (!rb) { + /* really only doing this to prevent FP exceptions later */ + _mesa_bzero(depth, n * sizeof(GLfloat)); + } + + ASSERT(rb->_BaseFormat == GL_DEPTH_COMPONENT); + + if (y < 0 || y >= (GLint) rb->Height || + x + n <= 0 || x >= (GLint) rb->Width) { + /* span is completely outside framebuffer */ + _mesa_bzero(depth, n * sizeof(GLfloat)); + return; + } + + if (x < 0) { + GLint dx = -x; + GLint i; + for (i = 0; i < dx; i++) + depth[i] = 0; + x = 0; + n -= dx; + depth += dx; + } + if (x + n > (GLint) rb->Width) { + GLint dx = x + n - (GLint) rb->Width; + GLint i; + for (i = 0; i < dx; i++) + depth[n - i - 1] = 0; + n -= dx; + } + if (n <= 0) { + return; + } + + if (rb->DataType == GL_UNSIGNED_INT) { + rb->GetRow(ctx, rb, n, x, y, depth); + if (rb->DepthBits < 32) { + GLuint shift = 32 - rb->DepthBits; + GLint i; + for (i = 0; i < n; i++) { + GLuint z = depth[i]; + depth[i] = z << shift; /* XXX lsb bits? */ + } + } + } + else if (rb->DataType == GL_UNSIGNED_SHORT) { + GLushort temp[MAX_WIDTH]; + GLint i; + rb->GetRow(ctx, rb, n, x, y, temp); + if (rb->DepthBits == 16) { + for (i = 0; i < n; i++) { + GLuint z = temp[i]; + depth[i] = (z << 16) | z; + } + } + else { + GLuint shift = 16 - rb->DepthBits; + for (i = 0; i < n; i++) { + GLuint z = temp[i]; + depth[i] = (z << (shift + 16)) | (z << shift); /* XXX lsb bits? */ + } + } + } + else { + _mesa_problem(ctx, "Invalid depth renderbuffer data type"); + } +} + + + +/** + * Clear the given z/depth renderbuffer. + */ +void +_swrast_clear_depth_buffer( GLcontext *ctx, struct gl_renderbuffer *rb ) +{ + GLuint clearValue; + GLint x, y, width, height; + + if (!rb || !ctx->Depth.Mask) { + /* no depth buffer, or writing to it is disabled */ + return; + } + + /* compute integer clearing value */ + if (ctx->Depth.Clear == 1.0) { + clearValue = ctx->DrawBuffer->_DepthMax; + } + else { + clearValue = (GLuint) (ctx->Depth.Clear * ctx->DrawBuffer->_DepthMaxF); + } + + assert(rb->_BaseFormat == GL_DEPTH_COMPONENT); + + /* compute region to clear */ + x = ctx->DrawBuffer->_Xmin; + y = ctx->DrawBuffer->_Ymin; + width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; + height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; + + if (rb->GetPointer(ctx, rb, 0, 0)) { + /* Direct buffer access is possible. Either this is just malloc'd + * memory, or perhaps the driver mmap'd the zbuffer memory. + */ + if (rb->DataType == GL_UNSIGNED_SHORT) { + if ((clearValue & 0xff) == ((clearValue >> 8) & 0xff) && + ((GLushort *) rb->GetPointer(ctx, rb, 0, 0) + width == + (GLushort *) rb->GetPointer(ctx, rb, 0, 1))) { + /* optimized case */ + GLushort *dst = (GLushort *) rb->GetPointer(ctx, rb, x, y); + GLuint len = width * height * sizeof(GLushort); + _mesa_memset(dst, (clearValue & 0xff), len); + } + else { + /* general case */ + GLint i, j; + for (i = 0; i < height; i++) { + GLushort *dst = (GLushort *) rb->GetPointer(ctx, rb, x, y + i); + for (j = 0; j < width; j++) { + dst[j] = clearValue; + } + } + } + } + else { + GLint i, j; + ASSERT(rb->DataType == GL_UNSIGNED_INT); + for (i = 0; i < height; i++) { + GLuint *dst = (GLuint *) rb->GetPointer(ctx, rb, x, y + i); + for (j = 0; j < width; j++) { + dst[j] = clearValue; + } + } + } + } + else { + /* Direct access not possible. Use PutRow to write new values. */ + if (rb->DataType == GL_UNSIGNED_SHORT) { + GLushort clearVal16 = (GLushort) (clearValue & 0xffff); + GLint i; + for (i = 0; i < height; i++) { + rb->PutMonoRow(ctx, rb, width, x, y + i, &clearVal16, NULL); + } + } + else if (rb->DataType == GL_UNSIGNED_INT) { + GLint i; + ASSERT(sizeof(clearValue) == sizeof(GLuint)); + for (i = 0; i < height; i++) { + rb->PutMonoRow(ctx, rb, width, x, y + i, &clearValue, NULL); + } + } + else { + _mesa_problem(ctx, "bad depth renderbuffer DataType"); + } + } +} diff --git a/mesalib/src/mesa/swrast/s_depth.h b/mesalib/src/mesa/swrast/s_depth.h new file mode 100644 index 000000000..368862568 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_depth.h @@ -0,0 +1,55 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.1 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_DEPTH_H +#define S_DEPTH_H + + +#include "s_context.h" + + +extern GLuint +_swrast_depth_test_span( GLcontext *ctx, SWspan *span); + + +extern GLboolean +_swrast_depth_bounds_test( GLcontext *ctx, SWspan *span ); + + +extern void +_swrast_read_depth_span_float( GLcontext *ctx, struct gl_renderbuffer *rb, + GLint n, GLint x, GLint y, GLfloat depth[] ); + + +extern void +_swrast_read_depth_span_uint( GLcontext *ctx, struct gl_renderbuffer *rb, + GLint n, GLint x, GLint y, GLuint depth[] ); + + +extern void +_swrast_clear_depth_buffer( GLcontext *ctx, struct gl_renderbuffer *rb ); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_drawpix.c b/mesalib/src/mesa/swrast/s_drawpix.c new file mode 100644 index 000000000..6970b2e9c --- /dev/null +++ b/mesalib/src/mesa/swrast/s_drawpix.c @@ -0,0 +1,898 @@ +/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/bufferobj.h" +#include "main/context.h" +#include "main/convolve.h" +#include "main/image.h" +#include "main/macros.h" +#include "main/imports.h" +#include "main/pixel.h" +#include "main/state.h" + +#include "s_context.h" +#include "s_span.h" +#include "s_stencil.h" +#include "s_zoom.h" + + + +/** + * Try to do a fast and simple RGB(a) glDrawPixels. + * Return: GL_TRUE if success, GL_FALSE if slow path must be used instead + */ +static GLboolean +fast_draw_rgba_pixels(GLcontext *ctx, GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum format, GLenum type, + const struct gl_pixelstore_attrib *userUnpack, + const GLvoid *pixels) +{ + const GLint imgX = x, imgY = y; + struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; + GLenum rbType; + SWcontext *swrast = SWRAST_CONTEXT(ctx); + SWspan span; + GLboolean simpleZoom; + GLint yStep; /* +1 or -1 */ + struct gl_pixelstore_attrib unpack; + GLint destX, destY, drawWidth, drawHeight; /* post clipping */ + + if (!rb) + return GL_TRUE; /* no-op */ + + rbType = rb->DataType; + + if ((swrast->_RasterMask & ~CLIP_BIT) || + ctx->Texture._EnabledCoordUnits || + userUnpack->SwapBytes || + ctx->_ImageTransferState) { + /* can't handle any of those conditions */ + return GL_FALSE; + } + + INIT_SPAN(span, GL_BITMAP); + span.arrayMask = SPAN_RGBA; + span.arrayAttribs = FRAG_BIT_COL0; + _swrast_span_default_attribs(ctx, &span); + + /* copy input params since clipping may change them */ + unpack = *userUnpack; + destX = x; + destY = y; + drawWidth = width; + drawHeight = height; + + /* check for simple zooming and clipping */ + if (ctx->Pixel.ZoomX == 1.0F && + (ctx->Pixel.ZoomY == 1.0F || ctx->Pixel.ZoomY == -1.0F)) { + if (!_mesa_clip_drawpixels(ctx, &destX, &destY, + &drawWidth, &drawHeight, &unpack)) { + /* image was completely clipped: no-op, all done */ + return GL_TRUE; + } + simpleZoom = GL_TRUE; + yStep = (GLint) ctx->Pixel.ZoomY; + ASSERT(yStep == 1 || yStep == -1); + } + else { + /* non-simple zooming */ + simpleZoom = GL_FALSE; + yStep = 1; + if (unpack.RowLength == 0) + unpack.RowLength = width; + } + + /* + * Ready to draw! + */ + + if (format == GL_RGBA && type == rbType) { + const GLubyte *src + = (const GLubyte *) _mesa_image_address2d(&unpack, pixels, width, + height, format, type, 0, 0); + const GLint srcStride = _mesa_image_row_stride(&unpack, width, + format, type); + if (simpleZoom) { + GLint row; + for (row = 0; row < drawHeight; row++) { + rb->PutRow(ctx, rb, drawWidth, destX, destY, src, NULL); + src += srcStride; + destY += yStep; + } + } + else { + /* with zooming */ + GLint row; + for (row = 0; row < drawHeight; row++) { + span.x = destX; + span.y = destY + row; + span.end = drawWidth; + span.array->ChanType = rbType; + _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span, src); + src += srcStride; + } + span.array->ChanType = CHAN_TYPE; + } + return GL_TRUE; + } + + if (format == GL_RGB && type == rbType) { + const GLubyte *src + = (const GLubyte *) _mesa_image_address2d(&unpack, pixels, width, + height, format, type, 0, 0); + const GLint srcStride = _mesa_image_row_stride(&unpack, width, + format, type); + if (simpleZoom) { + GLint row; + for (row = 0; row < drawHeight; row++) { + rb->PutRowRGB(ctx, rb, drawWidth, destX, destY, src, NULL); + src += srcStride; + destY += yStep; + } + } + else { + /* with zooming */ + GLint row; + for (row = 0; row < drawHeight; row++) { + span.x = destX; + span.y = destY; + span.end = drawWidth; + span.array->ChanType = rbType; + _swrast_write_zoomed_rgb_span(ctx, imgX, imgY, &span, src); + src += srcStride; + destY++; + } + span.array->ChanType = CHAN_TYPE; + } + return GL_TRUE; + } + + /* Remaining cases haven't been tested with alignment != 1 */ + if (userUnpack->Alignment != 1) + return GL_FALSE; + + if (format == GL_LUMINANCE && type == CHAN_TYPE && rbType == CHAN_TYPE) { + const GLchan *src = (const GLchan *) pixels + + (unpack.SkipRows * unpack.RowLength + unpack.SkipPixels); + if (simpleZoom) { + /* no zooming */ + GLint row; + ASSERT(drawWidth <= MAX_WIDTH); + for (row = 0; row < drawHeight; row++) { + GLchan rgb[MAX_WIDTH][3]; + GLint i; + for (i = 0;i<drawWidth;i++) { + rgb[i][0] = src[i]; + rgb[i][1] = src[i]; + rgb[i][2] = src[i]; + } + rb->PutRowRGB(ctx, rb, drawWidth, destX, destY, rgb, NULL); + src += unpack.RowLength; + destY += yStep; + } + } + else { + /* with zooming */ + GLint row; + ASSERT(drawWidth <= MAX_WIDTH); + for (row = 0; row < drawHeight; row++) { + GLchan rgb[MAX_WIDTH][3]; + GLint i; + for (i = 0;i<drawWidth;i++) { + rgb[i][0] = src[i]; + rgb[i][1] = src[i]; + rgb[i][2] = src[i]; + } + span.x = destX; + span.y = destY; + span.end = drawWidth; + _swrast_write_zoomed_rgb_span(ctx, imgX, imgY, &span, rgb); + src += unpack.RowLength; + destY++; + } + } + return GL_TRUE; + } + + if (format == GL_LUMINANCE_ALPHA && type == CHAN_TYPE && rbType == CHAN_TYPE) { + const GLchan *src = (const GLchan *) pixels + + (unpack.SkipRows * unpack.RowLength + unpack.SkipPixels)*2; + if (simpleZoom) { + GLint row; + ASSERT(drawWidth <= MAX_WIDTH); + for (row = 0; row < drawHeight; row++) { + GLint i; + const GLchan *ptr = src; + for (i = 0;i<drawWidth;i++) { + span.array->rgba[i][0] = *ptr; + span.array->rgba[i][1] = *ptr; + span.array->rgba[i][2] = *ptr++; + span.array->rgba[i][3] = *ptr++; + } + rb->PutRow(ctx, rb, drawWidth, destX, destY, + span.array->rgba, NULL); + src += unpack.RowLength*2; + destY += yStep; + } + } + else { + /* with zooming */ + GLint row; + ASSERT(drawWidth <= MAX_WIDTH); + for (row = 0; row < drawHeight; row++) { + const GLchan *ptr = src; + GLint i; + for (i = 0;i<drawWidth;i++) { + span.array->rgba[i][0] = *ptr; + span.array->rgba[i][1] = *ptr; + span.array->rgba[i][2] = *ptr++; + span.array->rgba[i][3] = *ptr++; + } + span.x = destX; + span.y = destY; + span.end = drawWidth; + _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span, + span.array->rgba); + src += unpack.RowLength*2; + destY++; + } + } + return GL_TRUE; + } + + if (format == GL_COLOR_INDEX && type == GL_UNSIGNED_BYTE) { + const GLubyte *src = (const GLubyte *) pixels + + unpack.SkipRows * unpack.RowLength + unpack.SkipPixels; + if (ctx->Visual.rgbMode && rbType == GL_UNSIGNED_BYTE) { + /* convert ubyte/CI data to ubyte/RGBA */ + if (simpleZoom) { + GLint row; + for (row = 0; row < drawHeight; row++) { + ASSERT(drawWidth <= MAX_WIDTH); + _mesa_map_ci8_to_rgba8(ctx, drawWidth, src, + span.array->rgba8); + rb->PutRow(ctx, rb, drawWidth, destX, destY, + span.array->rgba8, NULL); + src += unpack.RowLength; + destY += yStep; + } + } + else { + /* ubyte/CI to ubyte/RGBA with zooming */ + GLint row; + for (row = 0; row < drawHeight; row++) { + ASSERT(drawWidth <= MAX_WIDTH); + _mesa_map_ci8_to_rgba8(ctx, drawWidth, src, + span.array->rgba8); + span.x = destX; + span.y = destY; + span.end = drawWidth; + _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span, + span.array->rgba8); + src += unpack.RowLength; + destY++; + } + } + return GL_TRUE; + } + else if (!ctx->Visual.rgbMode && rbType == GL_UNSIGNED_INT) { + /* write CI data to CI frame buffer */ + GLint row; + if (simpleZoom) { + for (row = 0; row < drawHeight; row++) { + GLuint index32[MAX_WIDTH]; + GLint col; + for (col = 0; col < drawWidth; col++) + index32[col] = src[col]; + rb->PutRow(ctx, rb, drawWidth, destX, destY, index32, NULL); + src += unpack.RowLength; + destY += yStep; + } + return GL_TRUE; + } + } + } + + /* can't handle this pixel format and/or data type */ + return GL_FALSE; +} + + + +/* + * Draw color index image. + */ +static void +draw_index_pixels( GLcontext *ctx, GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum type, + const struct gl_pixelstore_attrib *unpack, + const GLvoid *pixels ) +{ + const GLint imgX = x, imgY = y; + const GLboolean zoom = ctx->Pixel.ZoomX!=1.0 || ctx->Pixel.ZoomY!=1.0; + GLint row, skipPixels; + SWspan span; + + INIT_SPAN(span, GL_BITMAP); + span.arrayMask = SPAN_INDEX; + _swrast_span_default_attribs(ctx, &span); + + /* + * General solution + */ + skipPixels = 0; + while (skipPixels < width) { + const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH); + ASSERT(spanWidth <= MAX_WIDTH); + for (row = 0; row < height; row++) { + const GLvoid *source = _mesa_image_address2d(unpack, pixels, + width, height, + GL_COLOR_INDEX, type, + row, skipPixels); + _mesa_unpack_index_span(ctx, spanWidth, GL_UNSIGNED_INT, + span.array->index, type, source, unpack, + ctx->_ImageTransferState); + + /* These may get changed during writing/clipping */ + span.x = x + skipPixels; + span.y = y + row; + span.end = spanWidth; + + if (zoom) + _swrast_write_zoomed_index_span(ctx, imgX, imgY, &span); + else + _swrast_write_index_span(ctx, &span); + } + skipPixels += spanWidth; + } +} + + + +/* + * Draw stencil image. + */ +static void +draw_stencil_pixels( GLcontext *ctx, GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum type, + const struct gl_pixelstore_attrib *unpack, + const GLvoid *pixels ) +{ + const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0; + GLint skipPixels; + + /* if width > MAX_WIDTH, have to process image in chunks */ + skipPixels = 0; + while (skipPixels < width) { + const GLint spanX = x + skipPixels; + const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH); + GLint row; + for (row = 0; row < height; row++) { + const GLint spanY = y + row; + GLstencil values[MAX_WIDTH]; + GLenum destType = (sizeof(GLstencil) == sizeof(GLubyte)) + ? GL_UNSIGNED_BYTE : GL_UNSIGNED_SHORT; + const GLvoid *source = _mesa_image_address2d(unpack, pixels, + width, height, + GL_COLOR_INDEX, type, + row, skipPixels); + _mesa_unpack_stencil_span(ctx, spanWidth, destType, values, + type, source, unpack, + ctx->_ImageTransferState); + if (zoom) { + _swrast_write_zoomed_stencil_span(ctx, x, y, spanWidth, + spanX, spanY, values); + } + else { + _swrast_write_stencil_span(ctx, spanWidth, spanX, spanY, values); + } + } + skipPixels += spanWidth; + } +} + + +/* + * Draw depth image. + */ +static void +draw_depth_pixels( GLcontext *ctx, GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum type, + const struct gl_pixelstore_attrib *unpack, + const GLvoid *pixels ) +{ + const GLboolean scaleOrBias + = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0; + const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0; + SWspan span; + + INIT_SPAN(span, GL_BITMAP); + span.arrayMask = SPAN_Z; + _swrast_span_default_attribs(ctx, &span); + + if (type == GL_UNSIGNED_SHORT + && ctx->DrawBuffer->Visual.depthBits == 16 + && !scaleOrBias + && !zoom + && ctx->Visual.rgbMode + && width <= MAX_WIDTH + && !unpack->SwapBytes) { + /* Special case: directly write 16-bit depth values */ + GLint row; + for (row = 0; row < height; row++) { + const GLushort *zSrc = (const GLushort *) + _mesa_image_address2d(unpack, pixels, width, height, + GL_DEPTH_COMPONENT, type, row, 0); + GLint i; + for (i = 0; i < width; i++) + span.array->z[i] = zSrc[i]; + span.x = x; + span.y = y + row; + span.end = width; + _swrast_write_rgba_span(ctx, &span); + } + } + else if (type == GL_UNSIGNED_INT + && !scaleOrBias + && !zoom + && ctx->Visual.rgbMode + && width <= MAX_WIDTH + && !unpack->SwapBytes) { + /* Special case: shift 32-bit values down to Visual.depthBits */ + const GLint shift = 32 - ctx->DrawBuffer->Visual.depthBits; + GLint row; + for (row = 0; row < height; row++) { + const GLuint *zSrc = (const GLuint *) + _mesa_image_address2d(unpack, pixels, width, height, + GL_DEPTH_COMPONENT, type, row, 0); + if (shift == 0) { + _mesa_memcpy(span.array->z, zSrc, width * sizeof(GLuint)); + } + else { + GLint col; + for (col = 0; col < width; col++) + span.array->z[col] = zSrc[col] >> shift; + } + span.x = x; + span.y = y + row; + span.end = width; + _swrast_write_rgba_span(ctx, &span); + } + } + else { + /* General case */ + const GLuint depthMax = ctx->DrawBuffer->_DepthMax; + GLint skipPixels = 0; + + /* in case width > MAX_WIDTH do the copy in chunks */ + while (skipPixels < width) { + const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH); + GLint row; + ASSERT(span.end <= MAX_WIDTH); + for (row = 0; row < height; row++) { + const GLvoid *zSrc = _mesa_image_address2d(unpack, + pixels, width, height, + GL_DEPTH_COMPONENT, type, + row, skipPixels); + + /* Set these for each row since the _swrast_write_* function may + * change them while clipping. + */ + span.x = x + skipPixels; + span.y = y + row; + span.end = spanWidth; + + _mesa_unpack_depth_span(ctx, spanWidth, + GL_UNSIGNED_INT, span.array->z, depthMax, + type, zSrc, unpack); + if (zoom) { + _swrast_write_zoomed_depth_span(ctx, x, y, &span); + } + else if (ctx->Visual.rgbMode) { + _swrast_write_rgba_span(ctx, &span); + } + else { + _swrast_write_index_span(ctx, &span); + } + } + skipPixels += spanWidth; + } + } +} + + + +/** + * Draw RGBA image. + */ +static void +draw_rgba_pixels( GLcontext *ctx, GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum format, GLenum type, + const struct gl_pixelstore_attrib *unpack, + const GLvoid *pixels ) +{ + const GLint imgX = x, imgY = y; + const GLboolean zoom = ctx->Pixel.ZoomX!=1.0 || ctx->Pixel.ZoomY!=1.0; + GLfloat *convImage = NULL; + GLbitfield transferOps = ctx->_ImageTransferState; + SWspan span; + + /* Try an optimized glDrawPixels first */ + if (fast_draw_rgba_pixels(ctx, x, y, width, height, format, type, + unpack, pixels)) { + return; + } + + INIT_SPAN(span, GL_BITMAP); + _swrast_span_default_attribs(ctx, &span); + span.arrayMask = SPAN_RGBA; + span.arrayAttribs = FRAG_BIT_COL0; /* we're fill in COL0 attrib values */ + + if (ctx->Pixel.Convolution2DEnabled || ctx->Pixel.Separable2DEnabled) { + /* Convolution has to be handled specially. We'll create an + * intermediate image, applying all pixel transfer operations + * up to convolution. Then we'll convolve the image. Then + * we'll proceed with the rest of the transfer operations and + * rasterize the image. + */ + GLint row; + GLfloat *dest, *tmpImage; + + tmpImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat)); + if (!tmpImage) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels"); + return; + } + convImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat)); + if (!convImage) { + _mesa_free(tmpImage); + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels"); + return; + } + + /* Unpack the image and apply transfer ops up to convolution */ + dest = tmpImage; + for (row = 0; row < height; row++) { + const GLvoid *source = _mesa_image_address2d(unpack, + pixels, width, height, format, type, row, 0); + _mesa_unpack_color_span_float(ctx, width, GL_RGBA, (GLfloat *) dest, + format, type, source, unpack, + transferOps & IMAGE_PRE_CONVOLUTION_BITS); + dest += width * 4; + } + + /* do convolution */ + if (ctx->Pixel.Convolution2DEnabled) { + _mesa_convolve_2d_image(ctx, &width, &height, tmpImage, convImage); + } + else { + ASSERT(ctx->Pixel.Separable2DEnabled); + _mesa_convolve_sep_image(ctx, &width, &height, tmpImage, convImage); + } + _mesa_free(tmpImage); + + /* continue transfer ops and draw the convolved image */ + unpack = &ctx->DefaultPacking; + pixels = convImage; + format = GL_RGBA; + type = GL_FLOAT; + transferOps &= IMAGE_POST_CONVOLUTION_BITS; + } + else if (ctx->Pixel.Convolution1DEnabled) { + /* we only want to apply 1D convolution to glTexImage1D */ + transferOps &= ~(IMAGE_CONVOLUTION_BIT | + IMAGE_POST_CONVOLUTION_SCALE_BIAS); + } + + if (ctx->DrawBuffer->_NumColorDrawBuffers > 0 && + ctx->DrawBuffer->_ColorDrawBuffers[0]->DataType != GL_FLOAT && + ctx->Color.ClampFragmentColor != GL_FALSE) { + /* need to clamp colors before applying fragment ops */ + transferOps |= IMAGE_CLAMP_BIT; + } + + /* + * General solution + */ + { + const GLboolean sink = (ctx->Pixel.MinMaxEnabled && ctx->MinMax.Sink) + || (ctx->Pixel.HistogramEnabled && ctx->Histogram.Sink); + const GLbitfield interpMask = span.interpMask; + const GLbitfield arrayMask = span.arrayMask; + const GLint srcStride + = _mesa_image_row_stride(unpack, width, format, type); + GLint skipPixels = 0; + /* use span array for temp color storage */ + GLfloat *rgba = (GLfloat *) span.array->attribs[FRAG_ATTRIB_COL0]; + + /* if the span is wider than MAX_WIDTH we have to do it in chunks */ + while (skipPixels < width) { + const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH); + const GLubyte *source + = (const GLubyte *) _mesa_image_address2d(unpack, pixels, + width, height, format, + type, 0, skipPixels); + GLint row; + + for (row = 0; row < height; row++) { + /* get image row as float/RGBA */ + _mesa_unpack_color_span_float(ctx, spanWidth, GL_RGBA, rgba, + format, type, source, unpack, + transferOps); + /* draw the span */ + if (!sink) { + /* Set these for each row since the _swrast_write_* functions + * may change them while clipping/rendering. + */ + span.array->ChanType = GL_FLOAT; + span.x = x + skipPixels; + span.y = y + row; + span.end = spanWidth; + span.arrayMask = arrayMask; + span.interpMask = interpMask; + if (zoom) { + _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span, rgba); + } + else { + _swrast_write_rgba_span(ctx, &span); + } + } + + source += srcStride; + } /* for row */ + + skipPixels += spanWidth; + } /* while skipPixels < width */ + + /* XXX this is ugly/temporary, to undo above change */ + span.array->ChanType = CHAN_TYPE; + } + + if (convImage) { + _mesa_free(convImage); + } +} + + +/** + * This is a bit different from drawing GL_DEPTH_COMPONENT pixels. + * The only per-pixel operations that apply are depth scale/bias, + * stencil offset/shift, GL_DEPTH_WRITEMASK and GL_STENCIL_WRITEMASK, + * and pixel zoom. + * Also, only the depth buffer and stencil buffers are touched, not the + * color buffer(s). + */ +static void +draw_depth_stencil_pixels(GLcontext *ctx, GLint x, GLint y, + GLsizei width, GLsizei height, GLenum type, + const struct gl_pixelstore_attrib *unpack, + const GLvoid *pixels) +{ + const GLint imgX = x, imgY = y; + const GLboolean scaleOrBias + = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0; + const GLuint depthMax = ctx->DrawBuffer->_DepthMax; + const GLuint stencilMask = ctx->Stencil.WriteMask[0]; + const GLuint stencilType = (STENCIL_BITS == 8) ? + GL_UNSIGNED_BYTE : GL_UNSIGNED_SHORT; + const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0; + struct gl_renderbuffer *depthRb, *stencilRb; + struct gl_pixelstore_attrib clippedUnpack = *unpack; + + if (!zoom) { + if (!_mesa_clip_drawpixels(ctx, &x, &y, &width, &height, + &clippedUnpack)) { + /* totally clipped */ + return; + } + } + + depthRb = ctx->ReadBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; + stencilRb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer; + ASSERT(depthRb); + ASSERT(stencilRb); + + if (depthRb->_BaseFormat == GL_DEPTH_STENCIL_EXT && + stencilRb->_BaseFormat == GL_DEPTH_STENCIL_EXT && + depthRb == stencilRb && + !scaleOrBias && + !zoom && + ctx->Depth.Mask && + (stencilMask & 0xff) == 0xff) { + /* This is the ideal case. + * Drawing GL_DEPTH_STENCIL pixels into a combined depth/stencil buffer. + * Plus, no pixel transfer ops, zooming, or masking needed. + */ + GLint i; + for (i = 0; i < height; i++) { + const GLuint *src = (const GLuint *) + _mesa_image_address2d(&clippedUnpack, pixels, width, height, + GL_DEPTH_STENCIL_EXT, type, i, 0); + depthRb->PutRow(ctx, depthRb, width, x, y + i, src, NULL); + } + } + else { + /* sub-optimal cases: + * Separate depth/stencil buffers, or pixel transfer ops required. + */ + /* XXX need to handle very wide images (skippixels) */ + GLint i; + + depthRb = ctx->DrawBuffer->_DepthBuffer; + stencilRb = ctx->DrawBuffer->_StencilBuffer; + + for (i = 0; i < height; i++) { + const GLuint *depthStencilSrc = (const GLuint *) + _mesa_image_address2d(&clippedUnpack, pixels, width, height, + GL_DEPTH_STENCIL_EXT, type, i, 0); + + if (ctx->Depth.Mask) { + if (!scaleOrBias && ctx->DrawBuffer->Visual.depthBits == 24) { + /* fast path 24-bit zbuffer */ + GLuint zValues[MAX_WIDTH]; + GLint j; + ASSERT(depthRb->DataType == GL_UNSIGNED_INT); + for (j = 0; j < width; j++) { + zValues[j] = depthStencilSrc[j] >> 8; + } + if (zoom) + _swrast_write_zoomed_z_span(ctx, imgX, imgY, width, + x, y + i, zValues); + else + depthRb->PutRow(ctx, depthRb, width, x, y + i, zValues,NULL); + } + else if (!scaleOrBias && ctx->DrawBuffer->Visual.depthBits == 16) { + /* fast path 16-bit zbuffer */ + GLushort zValues[MAX_WIDTH]; + GLint j; + ASSERT(depthRb->DataType == GL_UNSIGNED_SHORT); + for (j = 0; j < width; j++) { + zValues[j] = depthStencilSrc[j] >> 16; + } + if (zoom) + _swrast_write_zoomed_z_span(ctx, imgX, imgY, width, + x, y + i, zValues); + else + depthRb->PutRow(ctx, depthRb, width, x, y + i, zValues,NULL); + } + else { + /* general case */ + GLuint zValues[MAX_WIDTH]; /* 16 or 32-bit Z value storage */ + _mesa_unpack_depth_span(ctx, width, + depthRb->DataType, zValues, depthMax, + type, depthStencilSrc, &clippedUnpack); + if (zoom) { + _swrast_write_zoomed_z_span(ctx, imgX, imgY, width, x, + y + i, zValues); + } + else { + depthRb->PutRow(ctx, depthRb, width, x, y + i, zValues,NULL); + } + } + } + + if (stencilMask != 0x0) { + GLstencil stencilValues[MAX_WIDTH]; + /* get stencil values, with shift/offset/mapping */ + _mesa_unpack_stencil_span(ctx, width, stencilType, stencilValues, + type, depthStencilSrc, &clippedUnpack, + ctx->_ImageTransferState); + if (zoom) + _swrast_write_zoomed_stencil_span(ctx, imgX, imgY, width, + x, y + i, stencilValues); + else + _swrast_write_stencil_span(ctx, width, x, y + i, stencilValues); + } + } + } +} + + +/** + * Execute software-based glDrawPixels. + * By time we get here, all error checking will have been done. + */ +void +_swrast_DrawPixels( GLcontext *ctx, + GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum format, GLenum type, + const struct gl_pixelstore_attrib *unpack, + const GLvoid *pixels ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLboolean save_vp_override = ctx->VertexProgram._Overriden; + + /* We are creating fragments directly, without going through vertex + * programs. + * + * This override flag tells the fragment processing code that its input + * comes from a non-standard source, and it may therefore not rely on + * optimizations that assume e.g. constant color if there is no color + * vertex array. + */ + _mesa_set_vp_override(ctx, GL_TRUE); + + swrast_render_start(ctx); + + if (ctx->NewState) + _mesa_update_state(ctx); + + if (swrast->NewState) + _swrast_validate_derived( ctx ); + + pixels = _mesa_map_pbo_source(ctx, unpack, pixels); + if (!pixels) { + swrast_render_finish(ctx); + _mesa_set_vp_override(ctx, save_vp_override); + return; + } + + switch (format) { + case GL_STENCIL_INDEX: + draw_stencil_pixels( ctx, x, y, width, height, type, unpack, pixels ); + break; + case GL_DEPTH_COMPONENT: + draw_depth_pixels( ctx, x, y, width, height, type, unpack, pixels ); + break; + case GL_COLOR_INDEX: + if (ctx->Visual.rgbMode) + draw_rgba_pixels(ctx, x,y, width, height, format, type, unpack, pixels); + else + draw_index_pixels(ctx, x, y, width, height, type, unpack, pixels); + break; + case GL_RED: + case GL_GREEN: + case GL_BLUE: + case GL_ALPHA: + case GL_LUMINANCE: + case GL_LUMINANCE_ALPHA: + case GL_RGB: + case GL_BGR: + case GL_RGBA: + case GL_BGRA: + case GL_ABGR_EXT: + draw_rgba_pixels(ctx, x, y, width, height, format, type, unpack, pixels); + break; + case GL_DEPTH_STENCIL_EXT: + draw_depth_stencil_pixels(ctx, x, y, width, height, + type, unpack, pixels); + break; + default: + _mesa_problem(ctx, "unexpected format in _swrast_DrawPixels"); + /* don't return yet, clean-up */ + } + + swrast_render_finish(ctx); + _mesa_set_vp_override(ctx, save_vp_override); + + _mesa_unmap_pbo_source(ctx, unpack); +} diff --git a/mesalib/src/mesa/swrast/s_feedback.c b/mesalib/src/mesa/swrast/s_feedback.c new file mode 100644 index 000000000..47ed25ee1 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_feedback.c @@ -0,0 +1,140 @@ +/* + * Mesa 3-D graphics library + * Version: 7.0 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +#include "main/glheader.h" +#include "main/colormac.h" +#include "main/context.h" +#include "main/enums.h" +#include "main/feedback.h" +#include "main/macros.h" + +#include "s_context.h" +#include "s_feedback.h" +#include "s_triangle.h" + + + +static void +feedback_vertex(GLcontext * ctx, const SWvertex * v, const SWvertex * pv) +{ + GLfloat win[4]; + const GLfloat *vtc = v->attrib[FRAG_ATTRIB_TEX0]; + const GLfloat *color = v->attrib[FRAG_ATTRIB_COL0]; + + win[0] = v->attrib[FRAG_ATTRIB_WPOS][0]; + win[1] = v->attrib[FRAG_ATTRIB_WPOS][1]; + win[2] = v->attrib[FRAG_ATTRIB_WPOS][2] / ctx->DrawBuffer->_DepthMaxF; + win[3] = 1.0F / v->attrib[FRAG_ATTRIB_WPOS][3]; + + _mesa_feedback_vertex(ctx, win, color, v->attrib[FRAG_ATTRIB_CI][0], vtc); +} + + +/* + * Put triangle in feedback buffer. + */ +void +_swrast_feedback_triangle(GLcontext *ctx, const SWvertex *v0, + const SWvertex *v1, const SWvertex *v2) +{ + if (!_swrast_culltriangle(ctx, v0, v1, v2)) { + _mesa_feedback_token(ctx, (GLfloat) (GLint) GL_POLYGON_TOKEN); + _mesa_feedback_token(ctx, (GLfloat) 3); /* three vertices */ + + if (ctx->Light.ShadeModel == GL_SMOOTH) { + feedback_vertex(ctx, v0, v0); + feedback_vertex(ctx, v1, v1); + feedback_vertex(ctx, v2, v2); + } + else { + feedback_vertex(ctx, v0, v2); + feedback_vertex(ctx, v1, v2); + feedback_vertex(ctx, v2, v2); + } + } +} + + +void +_swrast_feedback_line(GLcontext *ctx, const SWvertex *v0, + const SWvertex *v1) +{ + GLenum token = GL_LINE_TOKEN; + SWcontext *swrast = SWRAST_CONTEXT(ctx); + + if (swrast->StippleCounter == 0) + token = GL_LINE_RESET_TOKEN; + + _mesa_feedback_token(ctx, (GLfloat) (GLint) token); + + if (ctx->Light.ShadeModel == GL_SMOOTH) { + feedback_vertex(ctx, v0, v0); + feedback_vertex(ctx, v1, v1); + } + else { + feedback_vertex(ctx, v0, v1); + feedback_vertex(ctx, v1, v1); + } + + swrast->StippleCounter++; +} + + +void +_swrast_feedback_point(GLcontext *ctx, const SWvertex *v) +{ + _mesa_feedback_token(ctx, (GLfloat) (GLint) GL_POINT_TOKEN); + feedback_vertex(ctx, v, v); +} + + +void +_swrast_select_triangle(GLcontext *ctx, const SWvertex *v0, + const SWvertex *v1, const SWvertex *v2) +{ + if (!_swrast_culltriangle(ctx, v0, v1, v2)) { + const GLfloat zs = 1.0F / ctx->DrawBuffer->_DepthMaxF; + + _mesa_update_hitflag( ctx, v0->attrib[FRAG_ATTRIB_WPOS][2] * zs ); + _mesa_update_hitflag( ctx, v1->attrib[FRAG_ATTRIB_WPOS][2] * zs ); + _mesa_update_hitflag( ctx, v2->attrib[FRAG_ATTRIB_WPOS][2] * zs ); + } +} + + +void +_swrast_select_line(GLcontext *ctx, const SWvertex *v0, const SWvertex *v1) +{ + const GLfloat zs = 1.0F / ctx->DrawBuffer->_DepthMaxF; + _mesa_update_hitflag( ctx, v0->attrib[FRAG_ATTRIB_WPOS][2] * zs ); + _mesa_update_hitflag( ctx, v1->attrib[FRAG_ATTRIB_WPOS][2] * zs ); +} + + +void +_swrast_select_point(GLcontext *ctx, const SWvertex *v) +{ + const GLfloat zs = 1.0F / ctx->DrawBuffer->_DepthMaxF; + _mesa_update_hitflag( ctx, v->attrib[FRAG_ATTRIB_WPOS][2] * zs ); +} diff --git a/mesalib/src/mesa/swrast/s_feedback.h b/mesalib/src/mesa/swrast/s_feedback.h new file mode 100644 index 000000000..9feab75db --- /dev/null +++ b/mesalib/src/mesa/swrast/s_feedback.h @@ -0,0 +1,50 @@ + +/* + * Mesa 3-D graphics library + * Version: 3.5 + * + * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_FEEDBACK_H +#define S_FEEDBACK_H + + +#include "swrast.h" + + +extern void _swrast_feedback_point( GLcontext *ctx, const SWvertex *v ); + +extern void _swrast_feedback_line( GLcontext *ctx, + const SWvertex *v1, const SWvertex *v2 ); + +extern void _swrast_feedback_triangle( GLcontext *ctx, const SWvertex *v0, + const SWvertex *v1, const SWvertex *v2 ); + +extern void _swrast_select_point( GLcontext *ctx, const SWvertex *v ); + +extern void _swrast_select_line( GLcontext *ctx, + const SWvertex *v1, const SWvertex *v2 ); + +extern void _swrast_select_triangle( GLcontext *ctx, const SWvertex *v0, + const SWvertex *v1, const SWvertex *v2 ); + +#endif diff --git a/mesalib/src/mesa/swrast/s_fog.c b/mesalib/src/mesa/swrast/s_fog.c new file mode 100644 index 000000000..77ed0cfef --- /dev/null +++ b/mesalib/src/mesa/swrast/s_fog.c @@ -0,0 +1,330 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.2 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/colormac.h" +#include "main/context.h" +#include "main/macros.h" + +#include "s_context.h" +#include "s_fog.h" + + +/** + * Used to convert current raster distance to a fog factor in [0,1]. + */ +GLfloat +_swrast_z_to_fogfactor(GLcontext *ctx, GLfloat z) +{ + GLfloat d, f; + + switch (ctx->Fog.Mode) { + case GL_LINEAR: + if (ctx->Fog.Start == ctx->Fog.End) + d = 1.0F; + else + d = 1.0F / (ctx->Fog.End - ctx->Fog.Start); + f = (ctx->Fog.End - z) * d; + return CLAMP(f, 0.0F, 1.0F); + case GL_EXP: + d = ctx->Fog.Density; + f = EXPF(-d * z); + f = CLAMP(f, 0.0F, 1.0F); + return f; + case GL_EXP2: + d = ctx->Fog.Density; + f = EXPF(-(d * d * z * z)); + f = CLAMP(f, 0.0F, 1.0F); + return f; + default: + _mesa_problem(ctx, "Bad fog mode in _swrast_z_to_fogfactor"); + return 0.0; + } +} + + +#define LINEAR_FOG(f, coord) f = (fogEnd - coord) * fogScale + +#define EXP_FOG(f, coord) f = EXPF(density * coord) + +#define EXP2_FOG(f, coord) \ +do { \ + GLfloat tmp = negDensitySquared * coord * coord; \ + if (tmp < FLT_MIN_10_EXP) \ + tmp = FLT_MIN_10_EXP; \ + f = EXPF(tmp); \ + } while(0) + + +#define BLEND_FOG(f, coord) f = coord + + + +/** + * Template code for computing fog blend factor and applying it to colors. + * \param TYPE either GLubyte, GLushort or GLfloat. + * \param COMPUTE_F code to compute the fog blend factor, f. + */ +#define FOG_LOOP(TYPE, FOG_FUNC) \ +if (span->arrayAttribs & FRAG_BIT_FOGC) { \ + GLuint i; \ + for (i = 0; i < span->end; i++) { \ + const GLfloat fogCoord = span->array->attribs[FRAG_ATTRIB_FOGC][i][0]; \ + const GLfloat c = FABSF(fogCoord); \ + GLfloat f, oneMinusF; \ + FOG_FUNC(f, c); \ + f = CLAMP(f, 0.0F, 1.0F); \ + oneMinusF = 1.0F - f; \ + rgba[i][RCOMP] = (TYPE) (f * rgba[i][RCOMP] + oneMinusF * rFog); \ + rgba[i][GCOMP] = (TYPE) (f * rgba[i][GCOMP] + oneMinusF * gFog); \ + rgba[i][BCOMP] = (TYPE) (f * rgba[i][BCOMP] + oneMinusF * bFog); \ + } \ +} \ +else { \ + const GLfloat fogStep = span->attrStepX[FRAG_ATTRIB_FOGC][0]; \ + GLfloat fogCoord = span->attrStart[FRAG_ATTRIB_FOGC][0]; \ + const GLfloat wStep = span->attrStepX[FRAG_ATTRIB_WPOS][3]; \ + GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3]; \ + GLuint i; \ + for (i = 0; i < span->end; i++) { \ + const GLfloat c = FABSF(fogCoord) / w; \ + GLfloat f, oneMinusF; \ + FOG_FUNC(f, c); \ + f = CLAMP(f, 0.0F, 1.0F); \ + oneMinusF = 1.0F - f; \ + rgba[i][RCOMP] = (TYPE) (f * rgba[i][RCOMP] + oneMinusF * rFog); \ + rgba[i][GCOMP] = (TYPE) (f * rgba[i][GCOMP] + oneMinusF * gFog); \ + rgba[i][BCOMP] = (TYPE) (f * rgba[i][BCOMP] + oneMinusF * bFog); \ + fogCoord += fogStep; \ + w += wStep; \ + } \ +} + +/* As above, but CI mode (XXX try to merge someday) */ +#define FOG_LOOP_CI(FOG_FUNC) \ +if (span->arrayAttribs & FRAG_BIT_FOGC) { \ + GLuint i; \ + for (i = 0; i < span->end; i++) { \ + const GLfloat fogCoord = span->array->attribs[FRAG_ATTRIB_FOGC][i][0]; \ + const GLfloat c = FABSF(fogCoord); \ + GLfloat f; \ + FOG_FUNC(f, c); \ + f = CLAMP(f, 0.0F, 1.0F); \ + index[i] = (GLuint) ((GLfloat) index[i] + (1.0F - f) * fogIndex); \ + } \ +} \ +else { \ + const GLfloat fogStep = span->attrStepX[FRAG_ATTRIB_FOGC][0]; \ + GLfloat fogCoord = span->attrStart[FRAG_ATTRIB_FOGC][0]; \ + const GLfloat wStep = span->attrStepX[FRAG_ATTRIB_WPOS][3]; \ + GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3]; \ + GLuint i; \ + for (i = 0; i < span->end; i++) { \ + const GLfloat c = FABSF(fogCoord) / w; \ + GLfloat f; \ + FOG_FUNC(f, c); \ + f = CLAMP(f, 0.0F, 1.0F); \ + index[i] = (GLuint) ((GLfloat) index[i] + (1.0F - f) * fogIndex); \ + fogCoord += fogStep; \ + w += wStep; \ + } \ +} + + + +/** + * Apply fog to a span of RGBA pixels. + * The fog value are either in the span->array->fog array or interpolated from + * the fog/fogStep values. + * They fog values are either fog coordinates (Z) or fog blend factors. + * _PreferPixelFog should be in sync with that state! + */ +void +_swrast_fog_rgba_span( const GLcontext *ctx, SWspan *span ) +{ + const SWcontext *swrast = CONST_SWRAST_CONTEXT(ctx); + GLfloat rFog, gFog, bFog; + + ASSERT(swrast->_FogEnabled); + ASSERT(span->arrayMask & SPAN_RGBA); + + /* compute (scaled) fog color */ + if (span->array->ChanType == GL_UNSIGNED_BYTE) { + rFog = ctx->Fog.Color[RCOMP] * 255.0; + gFog = ctx->Fog.Color[GCOMP] * 255.0; + bFog = ctx->Fog.Color[BCOMP] * 255.0; + } + else if (span->array->ChanType == GL_UNSIGNED_SHORT) { + rFog = ctx->Fog.Color[RCOMP] * 65535.0; + gFog = ctx->Fog.Color[GCOMP] * 65535.0; + bFog = ctx->Fog.Color[BCOMP] * 65535.0; + } + else { + rFog = ctx->Fog.Color[RCOMP]; + gFog = ctx->Fog.Color[GCOMP]; + bFog = ctx->Fog.Color[BCOMP]; + } + + if (swrast->_PreferPixelFog) { + /* The span's fog values are fog coordinates, now compute blend factors + * and blend the fragment colors with the fog color. + */ + switch (swrast->_FogMode) { + case GL_LINEAR: + { + const GLfloat fogEnd = ctx->Fog.End; + const GLfloat fogScale = (ctx->Fog.Start == ctx->Fog.End) + ? 1.0F : 1.0F / (ctx->Fog.End - ctx->Fog.Start); + if (span->array->ChanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = span->array->rgba8; + FOG_LOOP(GLubyte, LINEAR_FOG); + } + else if (span->array->ChanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = span->array->rgba16; + FOG_LOOP(GLushort, LINEAR_FOG); + } + else { + GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + ASSERT(span->array->ChanType == GL_FLOAT); + FOG_LOOP(GLfloat, LINEAR_FOG); + } + } + break; + + case GL_EXP: + { + const GLfloat density = -ctx->Fog.Density; + if (span->array->ChanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = span->array->rgba8; + FOG_LOOP(GLubyte, EXP_FOG); + } + else if (span->array->ChanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = span->array->rgba16; + FOG_LOOP(GLushort, EXP_FOG); + } + else { + GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + ASSERT(span->array->ChanType == GL_FLOAT); + FOG_LOOP(GLfloat, EXP_FOG); + } + } + break; + + case GL_EXP2: + { + const GLfloat negDensitySquared = -ctx->Fog.Density * ctx->Fog.Density; + if (span->array->ChanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = span->array->rgba8; + FOG_LOOP(GLubyte, EXP2_FOG); + } + else if (span->array->ChanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = span->array->rgba16; + FOG_LOOP(GLushort, EXP2_FOG); + } + else { + GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + ASSERT(span->array->ChanType == GL_FLOAT); + FOG_LOOP(GLfloat, EXP2_FOG); + } + } + break; + + default: + _mesa_problem(ctx, "Bad fog mode in _swrast_fog_rgba_span"); + return; + } + } + else { + /* The span's fog start/step/array values are blend factors in [0,1]. + * They were previously computed per-vertex. + */ + if (span->array->ChanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = span->array->rgba8; + FOG_LOOP(GLubyte, BLEND_FOG); + } + else if (span->array->ChanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = span->array->rgba16; + FOG_LOOP(GLushort, BLEND_FOG); + } + else { + GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + ASSERT(span->array->ChanType == GL_FLOAT); + FOG_LOOP(GLfloat, BLEND_FOG); + } + } +} + + +/** + * As above, but color index mode. + */ +void +_swrast_fog_ci_span( const GLcontext *ctx, SWspan *span ) +{ + const SWcontext *swrast = CONST_SWRAST_CONTEXT(ctx); + const GLuint fogIndex = (GLuint) ctx->Fog.Index; + GLuint *index = span->array->index; + + ASSERT(swrast->_FogEnabled); + ASSERT(span->arrayMask & SPAN_INDEX); + + /* we need to compute fog blend factors */ + if (swrast->_PreferPixelFog) { + /* The span's fog values are fog coordinates, now compute blend factors + * and blend the fragment colors with the fog color. + */ + switch (ctx->Fog.Mode) { + case GL_LINEAR: + { + const GLfloat fogEnd = ctx->Fog.End; + const GLfloat fogScale = (ctx->Fog.Start == ctx->Fog.End) + ? 1.0F : 1.0F / (ctx->Fog.End - ctx->Fog.Start); + FOG_LOOP_CI(LINEAR_FOG); + } + break; + case GL_EXP: + { + const GLfloat density = -ctx->Fog.Density; + FOG_LOOP_CI(EXP_FOG); + } + break; + case GL_EXP2: + { + const GLfloat negDensitySquared = -ctx->Fog.Density * ctx->Fog.Density; + FOG_LOOP_CI(EXP2_FOG); + } + break; + default: + _mesa_problem(ctx, "Bad fog mode in _swrast_fog_ci_span"); + return; + } + } + else { + /* The span's fog start/step/array values are blend factors in [0,1]. + * They were previously computed per-vertex. + */ + FOG_LOOP_CI(BLEND_FOG); + } +} diff --git a/mesalib/src/mesa/swrast/s_fog.h b/mesalib/src/mesa/swrast/s_fog.h new file mode 100644 index 000000000..50760d88a --- /dev/null +++ b/mesalib/src/mesa/swrast/s_fog.h @@ -0,0 +1,44 @@ + +/* + * Mesa 3-D graphics library + * Version: 4.1 + * + * Copyright (C) 1999-2002 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_FOG_H +#define S_FOG_H + + +#include "swrast.h" + + +extern GLfloat +_swrast_z_to_fogfactor(GLcontext *ctx, GLfloat z); + +extern void +_swrast_fog_rgba_span( const GLcontext *ctx, SWspan *span ); + +extern void +_swrast_fog_ci_span( const GLcontext *ctx, SWspan *span ); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_fragprog.c b/mesalib/src/mesa/swrast/s_fragprog.c new file mode 100644 index 000000000..77a77f0bc --- /dev/null +++ b/mesalib/src/mesa/swrast/s_fragprog.c @@ -0,0 +1,269 @@ +/* + * Mesa 3-D graphics library + * Version: 7.0.3 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +#include "main/glheader.h" +#include "main/colormac.h" +#include "main/context.h" +#include "main/texstate.h" +#include "shader/prog_instruction.h" + +#include "s_fragprog.h" +#include "s_span.h" + + +/** + * Apply texture object's swizzle (X/Y/Z/W/0/1) to incoming 'texel' + * and return results in 'colorOut'. + */ +static INLINE void +swizzle_texel(const GLfloat texel[4], GLfloat colorOut[4], GLuint swizzle) +{ + if (swizzle == SWIZZLE_NOOP) { + COPY_4V(colorOut, texel); + } + else { + GLfloat vector[6]; + vector[SWIZZLE_X] = texel[0]; + vector[SWIZZLE_Y] = texel[1]; + vector[SWIZZLE_Z] = texel[2]; + vector[SWIZZLE_W] = texel[3]; + vector[SWIZZLE_ZERO] = 0.0F; + vector[SWIZZLE_ONE] = 1.0F; + colorOut[0] = vector[GET_SWZ(swizzle, 0)]; + colorOut[1] = vector[GET_SWZ(swizzle, 1)]; + colorOut[2] = vector[GET_SWZ(swizzle, 2)]; + colorOut[3] = vector[GET_SWZ(swizzle, 3)]; + } +} + + +/** + * Fetch a texel with given lod. + * Called via machine->FetchTexelLod() + */ +static void +fetch_texel_lod( GLcontext *ctx, const GLfloat texcoord[4], GLfloat lambda, + GLuint unit, GLfloat color[4] ) +{ + const struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current; + + if (texObj) { + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLfloat rgba[4]; + + lambda = CLAMP(lambda, texObj->MinLod, texObj->MaxLod); + + swrast->TextureSample[unit](ctx, texObj, 1, + (const GLfloat (*)[4]) texcoord, + &lambda, &rgba); + swizzle_texel(rgba, color, texObj->_Swizzle); + } + else { + ASSIGN_4V(color, 0.0F, 0.0F, 0.0F, 1.0F); + } +} + + +/** + * Fetch a texel with the given partial derivatives to compute a level + * of detail in the mipmap. + * Called via machine->FetchTexelDeriv() + * \param lodBias the lod bias which may be specified by a TXB instruction, + * otherwise zero. + */ +static void +fetch_texel_deriv( GLcontext *ctx, const GLfloat texcoord[4], + const GLfloat texdx[4], const GLfloat texdy[4], + GLfloat lodBias, GLuint unit, GLfloat color[4] ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; + const struct gl_texture_object *texObj = texUnit->_Current; + + if (texObj) { + const struct gl_texture_image *texImg = + texObj->Image[0][texObj->BaseLevel]; + const GLfloat texW = (GLfloat) texImg->WidthScale; + const GLfloat texH = (GLfloat) texImg->HeightScale; + GLfloat lambda; + GLfloat rgba[4]; + + lambda = _swrast_compute_lambda(texdx[0], texdy[0], /* ds/dx, ds/dy */ + texdx[1], texdy[1], /* dt/dx, dt/dy */ + texdx[3], texdy[3], /* dq/dx, dq/dy */ + texW, texH, + texcoord[0], texcoord[1], texcoord[3], + 1.0F / texcoord[3]); + + lambda += lodBias + texUnit->LodBias + texObj->LodBias; + + lambda = CLAMP(lambda, texObj->MinLod, texObj->MaxLod); + + swrast->TextureSample[unit](ctx, texObj, 1, + (const GLfloat (*)[4]) texcoord, + &lambda, &rgba); + swizzle_texel(rgba, color, texObj->_Swizzle); + } + else { + ASSIGN_4V(color, 0.0F, 0.0F, 0.0F, 1.0F); + } +} + + +/** + * Initialize the virtual fragment program machine state prior to running + * fragment program on a fragment. This involves initializing the input + * registers, condition codes, etc. + * \param machine the virtual machine state to init + * \param program the fragment program we're about to run + * \param span the span of pixels we'll operate on + * \param col which element (column) of the span we'll operate on + */ +static void +init_machine(GLcontext *ctx, struct gl_program_machine *machine, + const struct gl_fragment_program *program, + const SWspan *span, GLuint col) +{ + if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) { + /* Clear temporary registers (undefined for ARB_f_p) */ + _mesa_bzero(machine->Temporaries, + MAX_PROGRAM_TEMPS * 4 * sizeof(GLfloat)); + } + + /* Setup pointer to input attributes */ + machine->Attribs = span->array->attribs; + + machine->DerivX = (GLfloat (*)[4]) span->attrStepX; + machine->DerivY = (GLfloat (*)[4]) span->attrStepY; + machine->NumDeriv = FRAG_ATTRIB_MAX; + + machine->Samplers = program->Base.SamplerUnits; + + /* if running a GLSL program (not ARB_fragment_program) */ + if (ctx->Shader.CurrentProgram) { + /* Store front/back facing value */ + machine->Attribs[FRAG_ATTRIB_FACE][col][0] = 1.0 - span->facing; + } + + machine->CurElement = col; + + /* init condition codes */ + machine->CondCodes[0] = COND_EQ; + machine->CondCodes[1] = COND_EQ; + machine->CondCodes[2] = COND_EQ; + machine->CondCodes[3] = COND_EQ; + + /* init call stack */ + machine->StackDepth = 0; + + machine->FetchTexelLod = fetch_texel_lod; + machine->FetchTexelDeriv = fetch_texel_deriv; +} + + +/** + * Run fragment program on the pixels in span from 'start' to 'end' - 1. + */ +static void +run_program(GLcontext *ctx, SWspan *span, GLuint start, GLuint end) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + const struct gl_fragment_program *program = ctx->FragmentProgram._Current; + const GLbitfield outputsWritten = program->Base.OutputsWritten; + struct gl_program_machine *machine = &swrast->FragProgMachine; + GLuint i; + + for (i = start; i < end; i++) { + if (span->array->mask[i]) { + init_machine(ctx, machine, program, span, i); + + if (_mesa_execute_program(ctx, &program->Base, machine)) { + + /* Store result color */ + if (outputsWritten & (1 << FRAG_RESULT_COLOR)) { + COPY_4V(span->array->attribs[FRAG_ATTRIB_COL0][i], + machine->Outputs[FRAG_RESULT_COLOR]); + } + else { + /* Multiple drawbuffers / render targets + * Note that colors beyond 0 and 1 will overwrite other + * attributes, such as FOGC, TEX0, TEX1, etc. That's OK. + */ + GLuint buf; + for (buf = 0; buf < ctx->DrawBuffer->_NumColorDrawBuffers; buf++) { + if (outputsWritten & (1 << (FRAG_RESULT_DATA0 + buf))) { + COPY_4V(span->array->attribs[FRAG_ATTRIB_COL0 + buf][i], + machine->Outputs[FRAG_RESULT_DATA0 + buf]); + } + } + } + + /* Store result depth/z */ + if (outputsWritten & (1 << FRAG_RESULT_DEPTH)) { + const GLfloat depth = machine->Outputs[FRAG_RESULT_DEPTH][2]; + if (depth <= 0.0) + span->array->z[i] = 0; + else if (depth >= 1.0) + span->array->z[i] = ctx->DrawBuffer->_DepthMax; + else + span->array->z[i] = IROUND(depth * ctx->DrawBuffer->_DepthMaxF); + } + } + else { + /* killed fragment */ + span->array->mask[i] = GL_FALSE; + span->writeAll = GL_FALSE; + } + } + } +} + + +/** + * Execute the current fragment program for all the fragments + * in the given span. + */ +void +_swrast_exec_fragment_program( GLcontext *ctx, SWspan *span ) +{ + const struct gl_fragment_program *program = ctx->FragmentProgram._Current; + + /* incoming colors should be floats */ + if (program->Base.InputsRead & FRAG_BIT_COL0) { + ASSERT(span->array->ChanType == GL_FLOAT); + } + + run_program(ctx, span, 0, span->end); + + if (program->Base.OutputsWritten & (1 << FRAG_RESULT_COLOR)) { + span->interpMask &= ~SPAN_RGBA; + span->arrayMask |= SPAN_RGBA; + } + + if (program->Base.OutputsWritten & (1 << FRAG_RESULT_DEPTH)) { + span->interpMask &= ~SPAN_Z; + span->arrayMask |= SPAN_Z; + } +} + diff --git a/mesalib/src/mesa/swrast/s_fragprog.h b/mesalib/src/mesa/swrast/s_fragprog.h new file mode 100644 index 000000000..e1b7e6791 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_fragprog.h @@ -0,0 +1,38 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.3 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_FRAGPROG_H +#define S_FRAGPROG_H + + +#include "s_context.h" + + +extern void +_swrast_exec_fragment_program(GLcontext *ctx, SWspan *span); + + +#endif /* S_FRAGPROG_H */ + diff --git a/mesalib/src/mesa/swrast/s_imaging.c b/mesalib/src/mesa/swrast/s_imaging.c new file mode 100644 index 000000000..3578b713f --- /dev/null +++ b/mesalib/src/mesa/swrast/s_imaging.c @@ -0,0 +1,196 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5 + * + * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +/* KW: Moved these here to remove knowledge of swrast from core mesa. + * Should probably pull the entire software implementation of these + * extensions into either swrast or a sister module. + */ + +#include "main/glheader.h" +#include "main/colortab.h" +#include "main/convolve.h" +#include "s_context.h" +#include "s_span.h" + + +void +_swrast_CopyColorTable( GLcontext *ctx, + GLenum target, GLenum internalformat, + GLint x, GLint y, GLsizei width) +{ + GLchan data[MAX_WIDTH][4]; + struct gl_buffer_object *bufferSave; + + if (!ctx->ReadBuffer->_ColorReadBuffer) { + /* no readbuffer - OK */ + return; + } + + if (width > MAX_WIDTH) + width = MAX_WIDTH; + + swrast_render_start(ctx); + + /* read the data from framebuffer */ + _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, + width, x, y, CHAN_TYPE, data ); + + swrast_render_finish(ctx); + + /* save PBO binding */ + bufferSave = ctx->Unpack.BufferObj; + ctx->Unpack.BufferObj = ctx->Shared->NullBufferObj; + + _mesa_ColorTable(target, internalformat, width, GL_RGBA, CHAN_TYPE, data); + + /* restore PBO binding */ + ctx->Unpack.BufferObj = bufferSave; +} + + +void +_swrast_CopyColorSubTable( GLcontext *ctx,GLenum target, GLsizei start, + GLint x, GLint y, GLsizei width) +{ + GLchan data[MAX_WIDTH][4]; + struct gl_buffer_object *bufferSave; + + if (!ctx->ReadBuffer->_ColorReadBuffer) { + /* no readbuffer - OK */ + return; + } + + if (width > MAX_WIDTH) + width = MAX_WIDTH; + + swrast_render_start(ctx); + + /* read the data from framebuffer */ + _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, + width, x, y, CHAN_TYPE, data ); + + swrast_render_finish(ctx); + + /* save PBO binding */ + bufferSave = ctx->Unpack.BufferObj; + ctx->Unpack.BufferObj = ctx->Shared->NullBufferObj; + + _mesa_ColorSubTable(target, start, width, GL_RGBA, CHAN_TYPE, data); + + /* restore PBO binding */ + ctx->Unpack.BufferObj = bufferSave; +} + + +void +_swrast_CopyConvolutionFilter1D(GLcontext *ctx, GLenum target, + GLenum internalFormat, + GLint x, GLint y, GLsizei width) +{ + GLchan rgba[MAX_CONVOLUTION_WIDTH][4]; + struct gl_buffer_object *bufferSave; + + if (!ctx->ReadBuffer->_ColorReadBuffer) { + /* no readbuffer - OK */ + return; + } + + swrast_render_start(ctx); + + /* read the data from framebuffer */ + _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, + width, x, y, CHAN_TYPE, rgba ); + + swrast_render_finish(ctx); + + /* save PBO binding */ + bufferSave = ctx->Unpack.BufferObj; + ctx->Unpack.BufferObj = ctx->Shared->NullBufferObj; + + /* store as convolution filter */ + _mesa_ConvolutionFilter1D(target, internalFormat, width, + GL_RGBA, CHAN_TYPE, rgba); + + /* restore PBO binding */ + ctx->Unpack.BufferObj = bufferSave; +} + + +void +_swrast_CopyConvolutionFilter2D(GLcontext *ctx, GLenum target, + GLenum internalFormat, + GLint x, GLint y, GLsizei width, GLsizei height) +{ + struct gl_pixelstore_attrib packSave; + GLchan rgba[MAX_CONVOLUTION_HEIGHT][MAX_CONVOLUTION_WIDTH][4]; + GLint i; + struct gl_buffer_object *bufferSave; + + if (!ctx->ReadBuffer->_ColorReadBuffer) { + /* no readbuffer - OK */ + return; + } + + swrast_render_start(ctx); + + /* read pixels from framebuffer */ + for (i = 0; i < height; i++) { + _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, + width, x, y + i, CHAN_TYPE, rgba[i] ); + } + + swrast_render_finish(ctx); + + /* + * HACK: save & restore context state so we can store this as a + * convolution filter via the GL api. Doesn't call any callbacks + * hanging off ctx->Unpack statechanges. + */ + + packSave = ctx->Unpack; /* save pixel packing params */ + + ctx->Unpack.Alignment = 1; + ctx->Unpack.RowLength = MAX_CONVOLUTION_WIDTH; + ctx->Unpack.SkipPixels = 0; + ctx->Unpack.SkipRows = 0; + ctx->Unpack.ImageHeight = 0; + ctx->Unpack.SkipImages = 0; + ctx->Unpack.SwapBytes = GL_FALSE; + ctx->Unpack.LsbFirst = GL_FALSE; + ctx->Unpack.BufferObj = ctx->Shared->NullBufferObj; + ctx->NewState |= _NEW_PACKUNPACK; + + /* save PBO binding */ + bufferSave = ctx->Unpack.BufferObj; + ctx->Unpack.BufferObj = ctx->Shared->NullBufferObj; + + _mesa_ConvolutionFilter2D(target, internalFormat, width, height, + GL_RGBA, CHAN_TYPE, rgba); + + /* restore PBO binding */ + ctx->Unpack.BufferObj = bufferSave; + + ctx->Unpack = packSave; /* restore pixel packing params */ + ctx->NewState |= _NEW_PACKUNPACK; +} diff --git a/mesalib/src/mesa/swrast/s_lines.c b/mesalib/src/mesa/swrast/s_lines.c new file mode 100644 index 000000000..23cb9b57e --- /dev/null +++ b/mesalib/src/mesa/swrast/s_lines.c @@ -0,0 +1,307 @@ +/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/macros.h" +#include "s_aaline.h" +#include "s_context.h" +#include "s_depth.h" +#include "s_feedback.h" +#include "s_lines.h" +#include "s_span.h" + + +/* + * Init the mask[] array to implement a line stipple. + */ +static void +compute_stipple_mask( GLcontext *ctx, GLuint len, GLubyte mask[] ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLuint i; + + for (i = 0; i < len; i++) { + GLuint bit = (swrast->StippleCounter / ctx->Line.StippleFactor) & 0xf; + if ((1 << bit) & ctx->Line.StipplePattern) { + mask[i] = GL_TRUE; + } + else { + mask[i] = GL_FALSE; + } + swrast->StippleCounter++; + } +} + + +/* + * To draw a wide line we can simply redraw the span N times, side by side. + */ +static void +draw_wide_line( GLcontext *ctx, SWspan *span, GLboolean xMajor ) +{ + const GLint width = (GLint) CLAMP(ctx->Line.Width, + ctx->Const.MinLineWidth, + ctx->Const.MaxLineWidth); + GLint start; + + ASSERT(span->end < MAX_WIDTH); + + if (width & 1) + start = width / 2; + else + start = width / 2 - 1; + + if (xMajor) { + GLint *y = span->array->y; + GLuint i; + GLint w; + for (w = 0; w < width; w++) { + if (w == 0) { + for (i = 0; i < span->end; i++) + y[i] -= start; + } + else { + for (i = 0; i < span->end; i++) + y[i]++; + } + if (ctx->Visual.rgbMode) + _swrast_write_rgba_span(ctx, span); + else + _swrast_write_index_span(ctx, span); + } + } + else { + GLint *x = span->array->x; + GLuint i; + GLint w; + for (w = 0; w < width; w++) { + if (w == 0) { + for (i = 0; i < span->end; i++) + x[i] -= start; + } + else { + for (i = 0; i < span->end; i++) + x[i]++; + } + if (ctx->Visual.rgbMode) + _swrast_write_rgba_span(ctx, span); + else + _swrast_write_index_span(ctx, span); + } + } +} + + + +/**********************************************************************/ +/***** Rasterization *****/ +/**********************************************************************/ + +/* Simple color index line (no stipple, width=1, no Z, no fog, no tex)*/ +#define NAME simple_no_z_ci_line +#define INTERP_INDEX +#define RENDER_SPAN(span) _swrast_write_index_span(ctx, &span) +#include "s_linetemp.h" + +/* Simple RGBA index line (no stipple, width=1, no Z, no fog, no tex)*/ +#define NAME simple_no_z_rgba_line +#define INTERP_RGBA +#define RENDER_SPAN(span) _swrast_write_rgba_span(ctx, &span); +#include "s_linetemp.h" + + +/* Z, fog, wide, stipple color index line */ +#define NAME ci_line +#define INTERP_INDEX +#define INTERP_Z +#define INTERP_ATTRIBS /* for fog */ +#define RENDER_SPAN(span) \ + if (ctx->Line.StippleFlag) { \ + span.arrayMask |= SPAN_MASK; \ + compute_stipple_mask(ctx, span.end, span.array->mask); \ + } \ + if (ctx->Line.Width > 1.0) { \ + draw_wide_line(ctx, &span, (GLboolean)(dx > dy)); \ + } \ + else { \ + _swrast_write_index_span(ctx, &span); \ + } +#include "s_linetemp.h" + + +/* Z, fog, wide, stipple RGBA line */ +#define NAME rgba_line +#define INTERP_RGBA +#define INTERP_Z +#define RENDER_SPAN(span) \ + if (ctx->Line.StippleFlag) { \ + span.arrayMask |= SPAN_MASK; \ + compute_stipple_mask(ctx, span.end, span.array->mask); \ + } \ + if (ctx->Line.Width > 1.0) { \ + draw_wide_line(ctx, &span, (GLboolean)(dx > dy)); \ + } \ + else { \ + _swrast_write_rgba_span(ctx, &span); \ + } +#include "s_linetemp.h" + + +/* General-purpose line (any/all features). */ +#define NAME general_line +#define INTERP_RGBA +#define INTERP_Z +#define INTERP_ATTRIBS +#define RENDER_SPAN(span) \ + if (ctx->Line.StippleFlag) { \ + span.arrayMask |= SPAN_MASK; \ + compute_stipple_mask(ctx, span.end, span.array->mask); \ + } \ + if (ctx->Line.Width > 1.0) { \ + draw_wide_line(ctx, &span, (GLboolean)(dx > dy)); \ + } \ + else { \ + _swrast_write_rgba_span(ctx, &span); \ + } +#include "s_linetemp.h" + + + +void +_swrast_add_spec_terms_line(GLcontext *ctx, + const SWvertex *v0, const SWvertex *v1) +{ + SWvertex *ncv0 = (SWvertex *)v0; + SWvertex *ncv1 = (SWvertex *)v1; + GLfloat rSum, gSum, bSum; + GLchan cSave[2][4]; + + /* save original colors */ + COPY_CHAN4(cSave[0], ncv0->color); + COPY_CHAN4(cSave[1], ncv1->color); + /* sum v0 */ + rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[FRAG_ATTRIB_COL1][0]; + gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[FRAG_ATTRIB_COL1][1]; + bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[FRAG_ATTRIB_COL1][2]; + UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum); + /* sum v1 */ + rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[FRAG_ATTRIB_COL1][0]; + gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[FRAG_ATTRIB_COL1][1]; + bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[FRAG_ATTRIB_COL1][2]; + UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum); + /* draw */ + SWRAST_CONTEXT(ctx)->SpecLine( ctx, ncv0, ncv1 ); + /* restore original colors */ + COPY_CHAN4( ncv0->attrib[FRAG_ATTRIB_COL0], cSave[0] ); + COPY_CHAN4( ncv1->attrib[FRAG_ATTRIB_COL0], cSave[1] ); +} + + + +#ifdef DEBUG + +/* record the current line function name */ +static const char *lineFuncName = NULL; + +#define USE(lineFunc) \ +do { \ + lineFuncName = #lineFunc; \ + /*_mesa_printf("%s\n", lineFuncName);*/ \ + swrast->Line = lineFunc; \ +} while (0) + +#else + +#define USE(lineFunc) swrast->Line = lineFunc + +#endif + + + +/** + * Determine which line drawing function to use given the current + * rendering context. + * + * Please update the summary flag _SWRAST_NEW_LINE if you add or remove + * tests to this code. + */ +void +_swrast_choose_line( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLboolean rgbmode = ctx->Visual.rgbMode; + GLboolean specular = (ctx->Fog.ColorSumEnabled || + (ctx->Light.Enabled && + ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)); + + if (ctx->RenderMode == GL_RENDER) { + if (ctx->Line.SmoothFlag) { + /* antialiased lines */ + _swrast_choose_aa_line_function(ctx); + ASSERT(swrast->Line); + } + else if (ctx->Texture._EnabledCoordUnits + || ctx->FragmentProgram._Current + || swrast->_FogEnabled + || specular) { + USE(general_line); + } + else if (ctx->Depth.Test + || ctx->Line.Width != 1.0 + || ctx->Line.StippleFlag) { + /* no texture, but Z, fog, width>1, stipple, etc. */ + if (rgbmode) +#if CHAN_BITS == 32 + USE(general_line); +#else + USE(rgba_line); +#endif + else + USE(ci_line); + } + else { + ASSERT(!ctx->Depth.Test); + ASSERT(ctx->Line.Width == 1.0); + /* simple lines */ + if (rgbmode) + USE(simple_no_z_rgba_line); + else + USE(simple_no_z_ci_line); + } + } + else if (ctx->RenderMode == GL_FEEDBACK) { + USE(_swrast_feedback_line); + } + else { + ASSERT(ctx->RenderMode == GL_SELECT); + USE(_swrast_select_line); + } +} diff --git a/mesalib/src/mesa/swrast/s_lines.h b/mesalib/src/mesa/swrast/s_lines.h new file mode 100644 index 000000000..22979a02b --- /dev/null +++ b/mesalib/src/mesa/swrast/s_lines.h @@ -0,0 +1,41 @@ + +/* + * Mesa 3-D graphics library + * Version: 3.5 + * + * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_LINES_H +#define S_LINES_H + +#include "swrast.h" + +void +_swrast_choose_line( GLcontext *ctx ); + +void +_swrast_add_spec_terms_line( GLcontext *ctx, + const SWvertex *v0, + const SWvertex *v1 ); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_linetemp.h b/mesalib/src/mesa/swrast/s_linetemp.h new file mode 100644 index 000000000..1abf8d6c7 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_linetemp.h @@ -0,0 +1,421 @@ +/* + * Mesa 3-D graphics library + * Version: 7.0 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/* + * Line Rasterizer Template + * + * This file is #include'd to generate custom line rasterizers. + * + * The following macros may be defined to indicate what auxillary information + * must be interplated along the line: + * INTERP_Z - if defined, interpolate Z values + * INTERP_RGBA - if defined, interpolate RGBA values + * INTERP_INDEX - if defined, interpolate color index values + * INTERP_ATTRIBS - if defined, interpolate attribs (texcoords, varying, etc) + * + * When one can directly address pixels in the color buffer the following + * macros can be defined and used to directly compute pixel addresses during + * rasterization (see pixelPtr): + * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint) + * BYTES_PER_ROW - number of bytes per row in the color buffer + * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where + * Y==0 at bottom of screen and increases upward. + * + * Similarly, for direct depth buffer access, this type is used for depth + * buffer addressing: + * DEPTH_TYPE - either GLushort or GLuint + * + * Optionally, one may provide one-time setup code + * SETUP_CODE - code which is to be executed once per line + * + * To actually "plot" each pixel the PLOT macro must be defined... + * PLOT(X,Y) - code to plot a pixel. Example: + * if (Z < *zPtr) { + * *zPtr = Z; + * color = pack_rgb( FixedToInt(r0), FixedToInt(g0), + * FixedToInt(b0) ); + * put_pixel( X, Y, color ); + * } + * + * This code was designed for the origin to be in the lower-left corner. + * + */ + + +static void +NAME( GLcontext *ctx, const SWvertex *vert0, const SWvertex *vert1 ) +{ + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + SWspan span; + GLuint interpFlags = 0; + GLint x0 = (GLint) vert0->attrib[FRAG_ATTRIB_WPOS][0]; + GLint x1 = (GLint) vert1->attrib[FRAG_ATTRIB_WPOS][0]; + GLint y0 = (GLint) vert0->attrib[FRAG_ATTRIB_WPOS][1]; + GLint y1 = (GLint) vert1->attrib[FRAG_ATTRIB_WPOS][1]; + GLint dx, dy; + GLint numPixels; + GLint xstep, ystep; +#if defined(DEPTH_TYPE) + const GLint depthBits = ctx->DrawBuffer->Visual.depthBits; + const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0; + struct gl_renderbuffer *zrb = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; +#define FixedToDepth(F) ((F) >> fixedToDepthShift) + GLint zPtrXstep, zPtrYstep; + DEPTH_TYPE *zPtr; +#elif defined(INTERP_Z) + const GLint depthBits = ctx->DrawBuffer->Visual.depthBits; +/*ctx->Visual.depthBits;*/ +#endif +#ifdef PIXEL_ADDRESS + PIXEL_TYPE *pixelPtr; + GLint pixelXstep, pixelYstep; +#endif + +#ifdef SETUP_CODE + SETUP_CODE +#endif + + (void) swrast; + + /* Cull primitives with malformed coordinates. + */ + { + GLfloat tmp = vert0->attrib[FRAG_ATTRIB_WPOS][0] + vert0->attrib[FRAG_ATTRIB_WPOS][1] + + vert1->attrib[FRAG_ATTRIB_WPOS][0] + vert1->attrib[FRAG_ATTRIB_WPOS][1]; + if (IS_INF_OR_NAN(tmp)) + return; + } + + /* + printf("%s():\n", __FUNCTION__); + printf(" (%f, %f, %f) -> (%f, %f, %f)\n", + vert0->attrib[FRAG_ATTRIB_WPOS][0], + vert0->attrib[FRAG_ATTRIB_WPOS][1], + vert0->attrib[FRAG_ATTRIB_WPOS][2], + vert1->attrib[FRAG_ATTRIB_WPOS][0], + vert1->attrib[FRAG_ATTRIB_WPOS][1], + vert1->attrib[FRAG_ATTRIB_WPOS][2]); + printf(" (%d, %d, %d) -> (%d, %d, %d)\n", + vert0->color[0], vert0->color[1], vert0->color[2], + vert1->color[0], vert1->color[1], vert1->color[2]); + printf(" (%d, %d, %d) -> (%d, %d, %d)\n", + vert0->specular[0], vert0->specular[1], vert0->specular[2], + vert1->specular[0], vert1->specular[1], vert1->specular[2]); + */ + +/* + * Despite being clipped to the view volume, the line's window coordinates + * may just lie outside the window bounds. That is, if the legal window + * coordinates are [0,W-1][0,H-1], it's possible for x==W and/or y==H. + * This quick and dirty code nudges the endpoints inside the window if + * necessary. + */ +#ifdef CLIP_HACK + { + GLint w = ctx->DrawBuffer->Width; + GLint h = ctx->DrawBuffer->Height; + if ((x0==w) | (x1==w)) { + if ((x0==w) & (x1==w)) + return; + x0 -= x0==w; + x1 -= x1==w; + } + if ((y0==h) | (y1==h)) { + if ((y0==h) & (y1==h)) + return; + y0 -= y0==h; + y1 -= y1==h; + } + } +#endif + + dx = x1 - x0; + dy = y1 - y0; + if (dx == 0 && dy == 0) + return; + + /* + printf("%s %d,%d %g %g %g %g %g %g %g %g\n", __FUNCTION__, dx, dy, + vert0->attrib[FRAG_ATTRIB_COL1][0], + vert0->attrib[FRAG_ATTRIB_COL1][1], + vert0->attrib[FRAG_ATTRIB_COL1][2], + vert0->attrib[FRAG_ATTRIB_COL1][3], + vert1->attrib[FRAG_ATTRIB_COL1][0], + vert1->attrib[FRAG_ATTRIB_COL1][1], + vert1->attrib[FRAG_ATTRIB_COL1][2], + vert1->attrib[FRAG_ATTRIB_COL1][3]); + */ + +#ifdef DEPTH_TYPE + zPtr = (DEPTH_TYPE *) zrb->GetPointer(ctx, zrb, x0, y0); +#endif +#ifdef PIXEL_ADDRESS + pixelPtr = (PIXEL_TYPE *) PIXEL_ADDRESS(x0,y0); +#endif + + if (dx<0) { + dx = -dx; /* make positive */ + xstep = -1; +#ifdef DEPTH_TYPE + zPtrXstep = -((GLint)sizeof(DEPTH_TYPE)); +#endif +#ifdef PIXEL_ADDRESS + pixelXstep = -((GLint)sizeof(PIXEL_TYPE)); +#endif + } + else { + xstep = 1; +#ifdef DEPTH_TYPE + zPtrXstep = ((GLint)sizeof(DEPTH_TYPE)); +#endif +#ifdef PIXEL_ADDRESS + pixelXstep = ((GLint)sizeof(PIXEL_TYPE)); +#endif + } + + if (dy<0) { + dy = -dy; /* make positive */ + ystep = -1; +#ifdef DEPTH_TYPE + zPtrYstep = -((GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE))); +#endif +#ifdef PIXEL_ADDRESS + pixelYstep = BYTES_PER_ROW; +#endif + } + else { + ystep = 1; +#ifdef DEPTH_TYPE + zPtrYstep = (GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE)); +#endif +#ifdef PIXEL_ADDRESS + pixelYstep = -(BYTES_PER_ROW); +#endif + } + + ASSERT(dx >= 0); + ASSERT(dy >= 0); + + numPixels = MAX2(dx, dy); + + /* + * Span setup: compute start and step values for all interpolated values. + */ +#ifdef INTERP_RGBA + interpFlags |= SPAN_RGBA; + if (ctx->Light.ShadeModel == GL_SMOOTH) { + span.red = ChanToFixed(vert0->color[0]); + span.green = ChanToFixed(vert0->color[1]); + span.blue = ChanToFixed(vert0->color[2]); + span.alpha = ChanToFixed(vert0->color[3]); + span.redStep = (ChanToFixed(vert1->color[0]) - span.red ) / numPixels; + span.greenStep = (ChanToFixed(vert1->color[1]) - span.green) / numPixels; + span.blueStep = (ChanToFixed(vert1->color[2]) - span.blue ) / numPixels; + span.alphaStep = (ChanToFixed(vert1->color[3]) - span.alpha) / numPixels; + } + else { + span.red = ChanToFixed(vert1->color[0]); + span.green = ChanToFixed(vert1->color[1]); + span.blue = ChanToFixed(vert1->color[2]); + span.alpha = ChanToFixed(vert1->color[3]); + span.redStep = 0; + span.greenStep = 0; + span.blueStep = 0; + span.alphaStep = 0; + } +#endif +#ifdef INTERP_INDEX + interpFlags |= SPAN_INDEX; + if (ctx->Light.ShadeModel == GL_SMOOTH) { + span.index = FloatToFixed(vert0->attrib[FRAG_ATTRIB_CI][0]); + span.indexStep = FloatToFixed( vert1->attrib[FRAG_ATTRIB_CI][0] + - vert0->attrib[FRAG_ATTRIB_CI][0]) / numPixels; + } + else { + span.index = FloatToFixed(vert1->attrib[FRAG_ATTRIB_CI][0]); + span.indexStep = 0; + } +#endif +#if defined(INTERP_Z) || defined(DEPTH_TYPE) + interpFlags |= SPAN_Z; + { + if (depthBits <= 16) { + span.z = FloatToFixed(vert0->attrib[FRAG_ATTRIB_WPOS][2]) + FIXED_HALF; + span.zStep = FloatToFixed( vert1->attrib[FRAG_ATTRIB_WPOS][2] + - vert0->attrib[FRAG_ATTRIB_WPOS][2]) / numPixels; + } + else { + /* don't use fixed point */ + span.z = (GLuint) vert0->attrib[FRAG_ATTRIB_WPOS][2]; + span.zStep = (GLint) (( vert1->attrib[FRAG_ATTRIB_WPOS][2] + - vert0->attrib[FRAG_ATTRIB_WPOS][2]) / numPixels); + } + } +#endif +#if defined(INTERP_ATTRIBS) + { + const GLfloat invLen = 1.0F / numPixels; + const GLfloat invw0 = vert0->attrib[FRAG_ATTRIB_WPOS][3]; + const GLfloat invw1 = vert1->attrib[FRAG_ATTRIB_WPOS][3]; + + span.attrStart[FRAG_ATTRIB_WPOS][3] = invw0; + span.attrStepX[FRAG_ATTRIB_WPOS][3] = (invw1 - invw0) * invLen; + span.attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0; + + ATTRIB_LOOP_BEGIN + if (swrast->_InterpMode[attr] == GL_FLAT) { + COPY_4V(span.attrStart[attr], vert1->attrib[attr]); + ASSIGN_4V(span.attrStepX[attr], 0.0, 0.0, 0.0, 0.0); + } + else { + GLuint c; + for (c = 0; c < 4; c++) { + float da; + span.attrStart[attr][c] = invw0 * vert0->attrib[attr][c]; + da = (invw1 * vert1->attrib[attr][c]) - span.attrStart[attr][c]; + span.attrStepX[attr][c] = da * invLen; + } + } + ASSIGN_4V(span.attrStepY[attr], 0.0, 0.0, 0.0, 0.0); + ATTRIB_LOOP_END + } +#endif + + INIT_SPAN(span, GL_LINE); + span.end = numPixels; + span.interpMask = interpFlags; + span.arrayMask = SPAN_XY; + + span.facing = swrast->PointLineFacing; + + + /* + * Draw + */ + + if (dx > dy) { + /*** X-major line ***/ + GLint i; + GLint errorInc = dy+dy; + GLint error = errorInc-dx; + GLint errorDec = error-dx; + + for (i = 0; i < dx; i++) { +#ifdef DEPTH_TYPE + GLuint Z = FixedToDepth(span.z); +#endif +#ifdef PLOT + PLOT( x0, y0 ); +#else + span.array->x[i] = x0; + span.array->y[i] = y0; +#endif + x0 += xstep; +#ifdef DEPTH_TYPE + zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep); + span.z += span.zStep; +#endif +#ifdef PIXEL_ADDRESS + pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep); +#endif + if (error < 0) { + error += errorInc; + } + else { + error += errorDec; + y0 += ystep; +#ifdef DEPTH_TYPE + zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep); +#endif +#ifdef PIXEL_ADDRESS + pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep); +#endif + } + } + } + else { + /*** Y-major line ***/ + GLint i; + GLint errorInc = dx+dx; + GLint error = errorInc-dy; + GLint errorDec = error-dy; + + for (i=0;i<dy;i++) { +#ifdef DEPTH_TYPE + GLuint Z = FixedToDepth(span.z); +#endif +#ifdef PLOT + PLOT( x0, y0 ); +#else + span.array->x[i] = x0; + span.array->y[i] = y0; +#endif + y0 += ystep; +#ifdef DEPTH_TYPE + zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep); + span.z += span.zStep; +#endif +#ifdef PIXEL_ADDRESS + pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep); +#endif + if (error<0) { + error += errorInc; + } + else { + error += errorDec; + x0 += xstep; +#ifdef DEPTH_TYPE + zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep); +#endif +#ifdef PIXEL_ADDRESS + pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep); +#endif + } + } + } + +#ifdef RENDER_SPAN + RENDER_SPAN( span ); +#endif + + (void)span; + +} + + +#undef NAME +#undef INTERP_Z +#undef INTERP_RGBA +#undef INTERP_ATTRIBS +#undef INTERP_INDEX +#undef PIXEL_ADDRESS +#undef PIXEL_TYPE +#undef DEPTH_TYPE +#undef BYTES_PER_ROW +#undef SETUP_CODE +#undef PLOT +#undef CLIP_HACK +#undef FixedToDepth +#undef RENDER_SPAN diff --git a/mesalib/src/mesa/swrast/s_logic.c b/mesalib/src/mesa/swrast/s_logic.c new file mode 100644 index 000000000..f0274b4c0 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_logic.c @@ -0,0 +1,246 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.2 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/imports.h" +#include "main/macros.h" + +#include "s_context.h" +#include "s_logic.h" +#include "s_span.h" + + +/** + * We do all logic ops on 4-byte GLuints. + * Depending on bytes per pixel, the mask array elements correspond to + * 1, 2 or 4 GLuints. + */ +#define LOGIC_OP_LOOP(MODE, MASKSTRIDE) \ +do { \ + GLuint i; \ + switch (MODE) { \ + case GL_CLEAR: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = 0; \ + } \ + } \ + break; \ + case GL_SET: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = ~0; \ + } \ + } \ + break; \ + case GL_COPY: \ + /* do nothing */ \ + break; \ + case GL_COPY_INVERTED: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = ~src[i]; \ + } \ + } \ + break; \ + case GL_NOOP: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = dest[i]; \ + } \ + } \ + break; \ + case GL_INVERT: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = ~dest[i]; \ + } \ + } \ + break; \ + case GL_AND: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] &= dest[i]; \ + } \ + } \ + break; \ + case GL_NAND: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = ~(src[i] & dest[i]); \ + } \ + } \ + break; \ + case GL_OR: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] |= dest[i]; \ + } \ + } \ + break; \ + case GL_NOR: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = ~(src[i] | dest[i]); \ + } \ + } \ + break; \ + case GL_XOR: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] ^= dest[i]; \ + } \ + } \ + break; \ + case GL_EQUIV: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = ~(src[i] ^ dest[i]); \ + } \ + } \ + break; \ + case GL_AND_REVERSE: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = src[i] & ~dest[i]; \ + } \ + } \ + break; \ + case GL_AND_INVERTED: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = ~src[i] & dest[i]; \ + } \ + } \ + break; \ + case GL_OR_REVERSE: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = src[i] | ~dest[i]; \ + } \ + } \ + break; \ + case GL_OR_INVERTED: \ + for (i = 0; i < n; i++) { \ + if (mask[i / MASKSTRIDE]) { \ + src[i] = ~src[i] | dest[i]; \ + } \ + } \ + break; \ + default: \ + _mesa_problem(ctx, "bad logicop mode");\ + } \ +} while (0) + + + +static INLINE void +logicop_uint1(GLcontext *ctx, GLuint n, GLuint src[], const GLuint dest[], + const GLubyte mask[]) +{ + LOGIC_OP_LOOP(ctx->Color.LogicOp, 1); +} + + +static INLINE void +logicop_uint2(GLcontext *ctx, GLuint n, GLuint src[], const GLuint dest[], + const GLubyte mask[]) +{ + LOGIC_OP_LOOP(ctx->Color.LogicOp, 2); +} + + +static INLINE void +logicop_uint4(GLcontext *ctx, GLuint n, GLuint src[], const GLuint dest[], + const GLubyte mask[]) +{ + LOGIC_OP_LOOP(ctx->Color.LogicOp, 4); +} + + + +/* + * Apply the current logic operator to a span of CI pixels. This is only + * used if the device driver can't do logic ops. + */ +void +_swrast_logicop_ci_span(GLcontext *ctx, struct gl_renderbuffer *rb, + SWspan *span) +{ + GLuint dest[MAX_WIDTH]; + GLuint *index = span->array->index; + + ASSERT(span->end < MAX_WIDTH); + ASSERT(rb->DataType == GL_UNSIGNED_INT); + + /* Read dest values from frame buffer */ + if (span->arrayMask & SPAN_XY) { + _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y, + dest, sizeof(GLuint)); + } + else { + rb->GetRow(ctx, rb, span->end, span->x, span->y, dest); + } + + logicop_uint1(ctx, span->end, index, dest, span->array->mask); +} + + +/** + * Apply the current logic operator to a span of RGBA pixels. + * We can handle horizontal runs of pixels (spans) or arrays of x/y + * pixel coordinates. + */ +void +_swrast_logicop_rgba_span(GLcontext *ctx, struct gl_renderbuffer *rb, + SWspan *span) +{ + void *rbPixels; + + ASSERT(span->end < MAX_WIDTH); + ASSERT(span->arrayMask & SPAN_RGBA); + ASSERT(rb->DataType == span->array->ChanType); + + rbPixels = _swrast_get_dest_rgba(ctx, rb, span); + + if (span->array->ChanType == GL_UNSIGNED_BYTE) { + /* treat 4*GLubyte as GLuint */ + logicop_uint1(ctx, span->end, + (GLuint *) span->array->rgba8, + (const GLuint *) rbPixels, span->array->mask); + } + else if (span->array->ChanType == GL_UNSIGNED_SHORT) { + /* treat 2*GLushort as GLuint */ + logicop_uint2(ctx, 2 * span->end, + (GLuint *) span->array->rgba16, + (const GLuint *) rbPixels, span->array->mask); + } + else { + logicop_uint4(ctx, 4 * span->end, + (GLuint *) span->array->attribs[FRAG_ATTRIB_COL0], + (const GLuint *) rbPixels, span->array->mask); + } +} diff --git a/mesalib/src/mesa/swrast/s_logic.h b/mesalib/src/mesa/swrast/s_logic.h new file mode 100644 index 000000000..ba20cd7b3 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_logic.h @@ -0,0 +1,43 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.2 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_LOGIC_H +#define S_LOGIC_H + + +#include "swrast.h" + + +extern void +_swrast_logicop_ci_span(GLcontext *ctx, struct gl_renderbuffer *rb, + SWspan *span); + + +extern void +_swrast_logicop_rgba_span(GLcontext *ctx, struct gl_renderbuffer *rb, + SWspan *span); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_masking.c b/mesalib/src/mesa/swrast/s_masking.c new file mode 100644 index 000000000..df779b073 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_masking.c @@ -0,0 +1,134 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.2 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/* + * Implement the effect of glColorMask and glIndexMask in software. + */ + + +#include "main/glheader.h" +#include "main/macros.h" + +#include "s_context.h" +#include "s_masking.h" +#include "s_span.h" + + +/** + * Apply the color mask to a span of rgba values. + */ +void +_swrast_mask_rgba_span(GLcontext *ctx, struct gl_renderbuffer *rb, + SWspan *span) +{ + const GLuint n = span->end; + void *rbPixels; + + ASSERT(n < MAX_WIDTH); + ASSERT(span->arrayMask & SPAN_RGBA); + ASSERT(rb->DataType == span->array->ChanType); + + rbPixels = _swrast_get_dest_rgba(ctx, rb, span); + + /* + * Do component masking. + * Note that we're not using span->array->mask[] here. We could... + */ + if (span->array->ChanType == GL_UNSIGNED_BYTE) { + /* treat 4xGLubyte as 1xGLuint */ + const GLuint srcMask = *((GLuint *) ctx->Color.ColorMask); + const GLuint dstMask = ~srcMask; + const GLuint *dst = (const GLuint *) rbPixels; + GLuint *src = (GLuint *) span->array->rgba8; + GLuint i; + for (i = 0; i < n; i++) { + src[i] = (src[i] & srcMask) | (dst[i] & dstMask); + } + } + else if (span->array->ChanType == GL_UNSIGNED_SHORT) { + /* 2-byte components */ + /* XXX try to use 64-bit arithmetic someday */ + const GLushort rMask = ctx->Color.ColorMask[RCOMP] ? 0xffff : 0x0; + const GLushort gMask = ctx->Color.ColorMask[GCOMP] ? 0xffff : 0x0; + const GLushort bMask = ctx->Color.ColorMask[BCOMP] ? 0xffff : 0x0; + const GLushort aMask = ctx->Color.ColorMask[ACOMP] ? 0xffff : 0x0; + const GLushort (*dst)[4] = (const GLushort (*)[4]) rbPixels; + GLushort (*src)[4] = span->array->rgba16; + GLuint i; + for (i = 0; i < n; i++) { + src[i][RCOMP] = (src[i][RCOMP] & rMask) | (dst[i][RCOMP] & ~rMask); + src[i][GCOMP] = (src[i][GCOMP] & gMask) | (dst[i][GCOMP] & ~gMask); + src[i][BCOMP] = (src[i][BCOMP] & bMask) | (dst[i][BCOMP] & ~bMask); + src[i][ACOMP] = (src[i][ACOMP] & aMask) | (dst[i][ACOMP] & ~aMask); + } + } + else { + /* 4-byte components */ + const GLuint rMask = ctx->Color.ColorMask[RCOMP] ? ~0x0 : 0x0; + const GLuint gMask = ctx->Color.ColorMask[GCOMP] ? ~0x0 : 0x0; + const GLuint bMask = ctx->Color.ColorMask[BCOMP] ? ~0x0 : 0x0; + const GLuint aMask = ctx->Color.ColorMask[ACOMP] ? ~0x0 : 0x0; + const GLuint (*dst)[4] = (const GLuint (*)[4]) rbPixels; + GLuint (*src)[4] = (GLuint (*)[4]) span->array->attribs[FRAG_ATTRIB_COL0]; + GLuint i; + for (i = 0; i < n; i++) { + src[i][RCOMP] = (src[i][RCOMP] & rMask) | (dst[i][RCOMP] & ~rMask); + src[i][GCOMP] = (src[i][GCOMP] & gMask) | (dst[i][GCOMP] & ~gMask); + src[i][BCOMP] = (src[i][BCOMP] & bMask) | (dst[i][BCOMP] & ~bMask); + src[i][ACOMP] = (src[i][ACOMP] & aMask) | (dst[i][ACOMP] & ~aMask); + } + } +} + + +/** + * Apply the index mask to a span of color index values. + */ +void +_swrast_mask_ci_span(GLcontext *ctx, struct gl_renderbuffer *rb, + SWspan *span) +{ + const GLuint srcMask = ctx->Color.IndexMask; + const GLuint dstMask = ~srcMask; + GLuint *index = span->array->index; + GLuint dest[MAX_WIDTH]; + GLuint i; + + ASSERT(span->arrayMask & SPAN_INDEX); + ASSERT(span->end <= MAX_WIDTH); + ASSERT(rb->DataType == GL_UNSIGNED_INT); + + if (span->arrayMask & SPAN_XY) { + _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y, + dest, sizeof(GLuint)); + } + else { + _swrast_read_index_span(ctx, rb, span->end, span->x, span->y, dest); + } + + for (i = 0; i < span->end; i++) { + index[i] = (index[i] & srcMask) | (dest[i] & dstMask); + } +} diff --git a/mesalib/src/mesa/swrast/s_masking.h b/mesalib/src/mesa/swrast/s_masking.h new file mode 100644 index 000000000..3260ca34e --- /dev/null +++ b/mesalib/src/mesa/swrast/s_masking.h @@ -0,0 +1,42 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.2 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_MASKING_H +#define S_MASKING_H + + +#include "swrast.h" + + +extern void +_swrast_mask_rgba_span(GLcontext *ctx, struct gl_renderbuffer *rb, + SWspan *span); + + +extern void +_swrast_mask_ci_span(GLcontext *ctx, struct gl_renderbuffer *rb, + SWspan *span); + +#endif diff --git a/mesalib/src/mesa/swrast/s_points.c b/mesalib/src/mesa/swrast/s_points.c new file mode 100644 index 000000000..50ec2063a --- /dev/null +++ b/mesalib/src/mesa/swrast/s_points.c @@ -0,0 +1,598 @@ +/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/colormac.h" +#include "main/context.h" +#include "main/macros.h" +#include "main/texstate.h" +#include "s_context.h" +#include "s_feedback.h" +#include "s_points.h" +#include "s_span.h" + + +/** + * Used to cull points with invalid coords + */ +#define CULL_INVALID(V) \ + do { \ + float tmp = (V)->attrib[FRAG_ATTRIB_WPOS][0] \ + + (V)->attrib[FRAG_ATTRIB_WPOS][1]; \ + if (IS_INF_OR_NAN(tmp)) \ + return; \ + } while(0) + + + +/** + * Get/compute the point size. + * The size may come from a vertex shader, or computed with attentuation + * or just the glPointSize value. + * Must also clamp to user-defined range and implmentation limits. + */ +static INLINE GLfloat +get_size(const GLcontext *ctx, const SWvertex *vert, GLboolean smoothed) +{ + GLfloat size; + + if (ctx->Point._Attenuated || ctx->VertexProgram.PointSizeEnabled) { + /* use vertex's point size */ + size = vert->pointSize; + } + else { + /* use constant point size */ + size = ctx->Point.Size; + } + /* always clamp to user-specified limits */ + size = CLAMP(size, ctx->Point.MinSize, ctx->Point.MaxSize); + /* clamp to implementation limits */ + if (smoothed) + size = CLAMP(size, ctx->Const.MinPointSizeAA, ctx->Const.MaxPointSizeAA); + else + size = CLAMP(size, ctx->Const.MinPointSize, ctx->Const.MaxPointSize); + + return size; +} + + +/** + * Draw a point sprite + */ +static void +sprite_point(GLcontext *ctx, const SWvertex *vert) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + SWspan span; + GLfloat size; + GLuint tCoords[MAX_TEXTURE_COORD_UNITS + 1]; + GLuint numTcoords = 0; + GLfloat t0, dtdy; + + CULL_INVALID(vert); + + /* z coord */ + if (ctx->DrawBuffer->Visual.depthBits <= 16) + span.z = FloatToFixed(vert->attrib[FRAG_ATTRIB_WPOS][2] + 0.5F); + else + span.z = (GLuint) (vert->attrib[FRAG_ATTRIB_WPOS][2] + 0.5F); + span.zStep = 0; + + size = get_size(ctx, vert, GL_FALSE); + + /* span init */ + INIT_SPAN(span, GL_POINT); + span.interpMask = SPAN_Z | SPAN_RGBA; + + span.facing = swrast->PointLineFacing; + + span.red = ChanToFixed(vert->color[0]); + span.green = ChanToFixed(vert->color[1]); + span.blue = ChanToFixed(vert->color[2]); + span.alpha = ChanToFixed(vert->color[3]); + span.redStep = 0; + span.greenStep = 0; + span.blueStep = 0; + span.alphaStep = 0; + + /* need these for fragment programs */ + span.attrStart[FRAG_ATTRIB_WPOS][3] = 1.0F; + span.attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0F; + span.attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0F; + + { + GLfloat s, r, dsdx; + + /* texcoord / pointcoord interpolants */ + s = 0.0; + dsdx = 1.0 / size; + if (ctx->Point.SpriteOrigin == GL_LOWER_LEFT) { + dtdy = 1.0 / size; + t0 = 0.5 * dtdy; + } + else { + /* GL_UPPER_LEFT */ + dtdy = -1.0 / size; + t0 = 1.0 + 0.5 * dtdy; + } + + ATTRIB_LOOP_BEGIN + if (attr >= FRAG_ATTRIB_TEX0 && attr <= FRAG_ATTRIB_TEX7) { + /* a texcoord attribute */ + const GLuint u = attr - FRAG_ATTRIB_TEX0; + ASSERT(u < Elements(ctx->Point.CoordReplace)); + if (ctx->Point.CoordReplace[u]) { + tCoords[numTcoords++] = attr; + + if (ctx->Point.SpriteRMode == GL_ZERO) + r = 0.0F; + else if (ctx->Point.SpriteRMode == GL_S) + r = vert->attrib[attr][0]; + else /* GL_R */ + r = vert->attrib[attr][2]; + + span.attrStart[attr][0] = s; + span.attrStart[attr][1] = 0.0; /* overwritten below */ + span.attrStart[attr][2] = r; + span.attrStart[attr][3] = 1.0; + + span.attrStepX[attr][0] = dsdx; + span.attrStepX[attr][1] = 0.0; + span.attrStepX[attr][2] = 0.0; + span.attrStepX[attr][3] = 0.0; + + span.attrStepY[attr][0] = 0.0; + span.attrStepY[attr][1] = dtdy; + span.attrStepY[attr][2] = 0.0; + span.attrStepY[attr][3] = 0.0; + + continue; + } + } + else if (attr == FRAG_ATTRIB_PNTC) { + /* GLSL gl_PointCoord.xy (.zw undefined) */ + span.attrStart[FRAG_ATTRIB_PNTC][0] = 0.0; + span.attrStart[FRAG_ATTRIB_PNTC][1] = 0.0; /* t0 set below */ + span.attrStepX[FRAG_ATTRIB_PNTC][0] = dsdx; + span.attrStepX[FRAG_ATTRIB_PNTC][1] = 0.0; + span.attrStepY[FRAG_ATTRIB_PNTC][0] = 0.0; + span.attrStepY[FRAG_ATTRIB_PNTC][1] = dtdy; + tCoords[numTcoords++] = FRAG_ATTRIB_PNTC; + continue; + } + /* use vertex's texcoord/attrib */ + COPY_4V(span.attrStart[attr], vert->attrib[attr]); + ASSIGN_4V(span.attrStepX[attr], 0, 0, 0, 0); + ASSIGN_4V(span.attrStepY[attr], 0, 0, 0, 0); + ATTRIB_LOOP_END; + } + + /* compute pos, bounds and render */ + { + const GLfloat x = vert->attrib[FRAG_ATTRIB_WPOS][0]; + const GLfloat y = vert->attrib[FRAG_ATTRIB_WPOS][1]; + GLint iSize = (GLint) (size + 0.5F); + GLint xmin, xmax, ymin, ymax, iy; + GLint iRadius; + GLfloat tcoord = t0; + + iSize = MAX2(1, iSize); + iRadius = iSize / 2; + + if (iSize & 1) { + /* odd size */ + xmin = (GLint) (x - iRadius); + xmax = (GLint) (x + iRadius); + ymin = (GLint) (y - iRadius); + ymax = (GLint) (y + iRadius); + } + else { + /* even size */ + /* 0.501 factor allows conformance to pass */ + xmin = (GLint) (x + 0.501) - iRadius; + xmax = xmin + iSize - 1; + ymin = (GLint) (y + 0.501) - iRadius; + ymax = ymin + iSize - 1; + } + + /* render spans */ + for (iy = ymin; iy <= ymax; iy++) { + GLuint i; + /* setup texcoord T for this row */ + for (i = 0; i < numTcoords; i++) { + span.attrStart[tCoords[i]][1] = tcoord; + } + + /* these might get changed by span clipping */ + span.x = xmin; + span.y = iy; + span.end = xmax - xmin + 1; + + _swrast_write_rgba_span(ctx, &span); + + tcoord += dtdy; + } + } +} + + +/** + * Draw smooth/antialiased point. RGB or CI mode. + */ +static void +smooth_point(GLcontext *ctx, const SWvertex *vert) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLboolean ciMode = !ctx->Visual.rgbMode; + SWspan span; + GLfloat size, alphaAtten; + + CULL_INVALID(vert); + + /* z coord */ + if (ctx->DrawBuffer->Visual.depthBits <= 16) + span.z = FloatToFixed(vert->attrib[FRAG_ATTRIB_WPOS][2] + 0.5F); + else + span.z = (GLuint) (vert->attrib[FRAG_ATTRIB_WPOS][2] + 0.5F); + span.zStep = 0; + + size = get_size(ctx, vert, GL_TRUE); + + /* alpha attenuation / fade factor */ + if (ctx->Multisample._Enabled) { + if (vert->pointSize >= ctx->Point.Threshold) { + alphaAtten = 1.0F; + } + else { + GLfloat dsize = vert->pointSize / ctx->Point.Threshold; + alphaAtten = dsize * dsize; + } + } + else { + alphaAtten = 1.0; + } + (void) alphaAtten; /* not used */ + + /* span init */ + INIT_SPAN(span, GL_POINT); + span.interpMask = SPAN_Z | SPAN_RGBA; + span.arrayMask = SPAN_COVERAGE | SPAN_MASK; + + span.facing = swrast->PointLineFacing; + + span.red = ChanToFixed(vert->color[0]); + span.green = ChanToFixed(vert->color[1]); + span.blue = ChanToFixed(vert->color[2]); + span.alpha = ChanToFixed(vert->color[3]); + span.redStep = 0; + span.greenStep = 0; + span.blueStep = 0; + span.alphaStep = 0; + + /* need these for fragment programs */ + span.attrStart[FRAG_ATTRIB_WPOS][3] = 1.0F; + span.attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0F; + span.attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0F; + + ATTRIB_LOOP_BEGIN + COPY_4V(span.attrStart[attr], vert->attrib[attr]); + ASSIGN_4V(span.attrStepX[attr], 0, 0, 0, 0); + ASSIGN_4V(span.attrStepY[attr], 0, 0, 0, 0); + ATTRIB_LOOP_END + + /* compute pos, bounds and render */ + { + const GLfloat x = vert->attrib[FRAG_ATTRIB_WPOS][0]; + const GLfloat y = vert->attrib[FRAG_ATTRIB_WPOS][1]; + const GLfloat radius = 0.5F * size; + const GLfloat rmin = radius - 0.7071F; /* 0.7071 = sqrt(2)/2 */ + const GLfloat rmax = radius + 0.7071F; + const GLfloat rmin2 = MAX2(0.0F, rmin * rmin); + const GLfloat rmax2 = rmax * rmax; + const GLfloat cscale = 1.0F / (rmax2 - rmin2); + const GLint xmin = (GLint) (x - radius); + const GLint xmax = (GLint) (x + radius); + const GLint ymin = (GLint) (y - radius); + const GLint ymax = (GLint) (y + radius); + GLint ix, iy; + + for (iy = ymin; iy <= ymax; iy++) { + + /* these might get changed by span clipping */ + span.x = xmin; + span.y = iy; + span.end = xmax - xmin + 1; + + /* compute coverage for each pixel in span */ + for (ix = xmin; ix <= xmax; ix++) { + const GLfloat dx = ix - x + 0.5F; + const GLfloat dy = iy - y + 0.5F; + const GLfloat dist2 = dx * dx + dy * dy; + GLfloat coverage; + + if (dist2 < rmax2) { + if (dist2 >= rmin2) { + /* compute partial coverage */ + coverage = 1.0F - (dist2 - rmin2) * cscale; + if (ciMode) { + /* coverage in [0,15] */ + coverage *= 15.0; + } + } + else { + /* full coverage */ + coverage = 1.0F; + } + span.array->mask[ix - xmin] = 1; + } + else { + /* zero coverage - fragment outside the radius */ + coverage = 0.0; + span.array->mask[ix - xmin] = 0; + } + span.array->coverage[ix - xmin] = coverage; + } + + /* render span */ + _swrast_write_rgba_span(ctx, &span); + + } + } +} + + +/** + * Draw large (size >= 1) non-AA point. RGB or CI mode. + */ +static void +large_point(GLcontext *ctx, const SWvertex *vert) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLboolean ciMode = !ctx->Visual.rgbMode; + SWspan span; + GLfloat size; + + CULL_INVALID(vert); + + /* z coord */ + if (ctx->DrawBuffer->Visual.depthBits <= 16) + span.z = FloatToFixed(vert->attrib[FRAG_ATTRIB_WPOS][2] + 0.5F); + else + span.z = (GLuint) (vert->attrib[FRAG_ATTRIB_WPOS][2] + 0.5F); + span.zStep = 0; + + size = get_size(ctx, vert, GL_FALSE); + + /* span init */ + INIT_SPAN(span, GL_POINT); + span.arrayMask = SPAN_XY; + span.facing = swrast->PointLineFacing; + + if (ciMode) { + span.interpMask = SPAN_Z | SPAN_INDEX; + span.index = FloatToFixed(vert->attrib[FRAG_ATTRIB_CI][0]); + span.indexStep = 0; + } + else { + span.interpMask = SPAN_Z | SPAN_RGBA; + span.red = ChanToFixed(vert->color[0]); + span.green = ChanToFixed(vert->color[1]); + span.blue = ChanToFixed(vert->color[2]); + span.alpha = ChanToFixed(vert->color[3]); + span.redStep = 0; + span.greenStep = 0; + span.blueStep = 0; + span.alphaStep = 0; + } + + /* need these for fragment programs */ + span.attrStart[FRAG_ATTRIB_WPOS][3] = 1.0F; + span.attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0F; + span.attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0F; + + ATTRIB_LOOP_BEGIN + COPY_4V(span.attrStart[attr], vert->attrib[attr]); + ASSIGN_4V(span.attrStepX[attr], 0, 0, 0, 0); + ASSIGN_4V(span.attrStepY[attr], 0, 0, 0, 0); + ATTRIB_LOOP_END + + /* compute pos, bounds and render */ + { + const GLfloat x = vert->attrib[FRAG_ATTRIB_WPOS][0]; + const GLfloat y = vert->attrib[FRAG_ATTRIB_WPOS][1]; + GLint iSize = (GLint) (size + 0.5F); + GLint xmin, xmax, ymin, ymax, ix, iy; + GLint iRadius; + + iSize = MAX2(1, iSize); + iRadius = iSize / 2; + + if (iSize & 1) { + /* odd size */ + xmin = (GLint) (x - iRadius); + xmax = (GLint) (x + iRadius); + ymin = (GLint) (y - iRadius); + ymax = (GLint) (y + iRadius); + } + else { + /* even size */ + /* 0.501 factor allows conformance to pass */ + xmin = (GLint) (x + 0.501) - iRadius; + xmax = xmin + iSize - 1; + ymin = (GLint) (y + 0.501) - iRadius; + ymax = ymin + iSize - 1; + } + + /* generate fragments */ + span.end = 0; + for (iy = ymin; iy <= ymax; iy++) { + for (ix = xmin; ix <= xmax; ix++) { + span.array->x[span.end] = ix; + span.array->y[span.end] = iy; + span.end++; + } + } + assert(span.end <= MAX_WIDTH); + _swrast_write_rgba_span(ctx, &span); + } +} + + +/** + * Draw size=1, single-pixel point + */ +static void +pixel_point(GLcontext *ctx, const SWvertex *vert) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLboolean ciMode = !ctx->Visual.rgbMode; + /* + * Note that unlike the other functions, we put single-pixel points + * into a special span array in order to render as many points as + * possible with a single _swrast_write_rgba_span() call. + */ + SWspan *span = &(swrast->PointSpan); + GLuint count; + + CULL_INVALID(vert); + + /* Span init */ + span->interpMask = 0; + span->arrayMask = SPAN_XY | SPAN_Z; + if (ciMode) + span->arrayMask |= SPAN_INDEX; + else + span->arrayMask |= SPAN_RGBA; + /*span->arrayMask |= SPAN_LAMBDA;*/ + span->arrayAttribs = swrast->_ActiveAttribMask; /* we'll produce these vals */ + + /* need these for fragment programs */ + span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0F; + span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0F; + span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0F; + + /* check if we need to flush */ + if (span->end >= MAX_WIDTH || + (swrast->_RasterMask & (BLEND_BIT | LOGIC_OP_BIT | MASKING_BIT)) || + span->facing != swrast->PointLineFacing) { + if (span->end > 0) { + if (ciMode) + _swrast_write_index_span(ctx, span); + else + _swrast_write_rgba_span(ctx, span); + span->end = 0; + } + } + + count = span->end; + + span->facing = swrast->PointLineFacing; + + /* fragment attributes */ + if (ciMode) { + span->array->index[count] = (GLuint) vert->attrib[FRAG_ATTRIB_CI][0]; + } + else { + span->array->rgba[count][RCOMP] = vert->color[0]; + span->array->rgba[count][GCOMP] = vert->color[1]; + span->array->rgba[count][BCOMP] = vert->color[2]; + span->array->rgba[count][ACOMP] = vert->color[3]; + } + ATTRIB_LOOP_BEGIN + COPY_4V(span->array->attribs[attr][count], vert->attrib[attr]); + ATTRIB_LOOP_END + + /* fragment position */ + span->array->x[count] = (GLint) vert->attrib[FRAG_ATTRIB_WPOS][0]; + span->array->y[count] = (GLint) vert->attrib[FRAG_ATTRIB_WPOS][1]; + span->array->z[count] = (GLint) (vert->attrib[FRAG_ATTRIB_WPOS][2] + 0.5F); + + span->end = count + 1; + ASSERT(span->end <= MAX_WIDTH); +} + + +/** + * Add specular color to primary color, draw point, restore original + * primary color. + */ +void +_swrast_add_spec_terms_point(GLcontext *ctx, const SWvertex *v0) +{ + SWvertex *ncv0 = (SWvertex *) v0; /* cast away const */ + GLfloat rSum, gSum, bSum; + GLchan cSave[4]; + + /* save */ + COPY_CHAN4(cSave, ncv0->color); + /* sum */ + rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[FRAG_ATTRIB_COL1][0]; + gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[FRAG_ATTRIB_COL1][1]; + bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[FRAG_ATTRIB_COL1][2]; + UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum); + /* draw */ + SWRAST_CONTEXT(ctx)->SpecPoint(ctx, ncv0); + /* restore */ + COPY_CHAN4(ncv0->color, cSave); +} + + +/** + * Examine current state to determine which point drawing function to use. + */ +void +_swrast_choose_point(GLcontext *ctx) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLfloat size = CLAMP(ctx->Point.Size, + ctx->Point.MinSize, + ctx->Point.MaxSize); + + if (ctx->RenderMode == GL_RENDER) { + if (ctx->Point.PointSprite) { + swrast->Point = sprite_point; + } + else if (ctx->Point.SmoothFlag) { + swrast->Point = smooth_point; + } + else if (size > 1.0 || + ctx->Point._Attenuated || + ctx->VertexProgram.PointSizeEnabled) { + swrast->Point = large_point; + } + else { + swrast->Point = pixel_point; + } + } + else if (ctx->RenderMode == GL_FEEDBACK) { + swrast->Point = _swrast_feedback_point; + } + else { + /* GL_SELECT mode */ + swrast->Point = _swrast_select_point; + } +} diff --git a/mesalib/src/mesa/swrast/s_points.h b/mesalib/src/mesa/swrast/s_points.h new file mode 100644 index 000000000..9e39c601e --- /dev/null +++ b/mesalib/src/mesa/swrast/s_points.h @@ -0,0 +1,39 @@ + +/* + * Mesa 3-D graphics library + * Version: 3.5 + * + * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_POINTS_H +#define S_POINTS_H + +#include "swrast.h" + +extern void +_swrast_choose_point( GLcontext *ctx ); + +extern void +_swrast_add_spec_terms_point( GLcontext *ctx, + const SWvertex *v0 ); + +#endif diff --git a/mesalib/src/mesa/swrast/s_readpix.c b/mesalib/src/mesa/swrast/s_readpix.c new file mode 100644 index 000000000..48b9408d2 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_readpix.c @@ -0,0 +1,620 @@ +/* + * Mesa 3-D graphics library + * Version: 7.0.3 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/bufferobj.h" +#include "main/colormac.h" +#include "main/convolve.h" +#include "main/context.h" +#include "main/feedback.h" +#include "main/image.h" +#include "main/macros.h" +#include "main/imports.h" +#include "main/pixel.h" +#include "main/state.h" + +#include "s_context.h" +#include "s_depth.h" +#include "s_span.h" +#include "s_stencil.h" + + +/* + * Read a block of color index pixels. + */ +static void +read_index_pixels( GLcontext *ctx, + GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum type, GLvoid *pixels, + const struct gl_pixelstore_attrib *packing ) +{ + struct gl_renderbuffer *rb = ctx->ReadBuffer->_ColorReadBuffer; + GLint i; + + if (!rb) + return; + + /* width should never be > MAX_WIDTH since we did clipping earlier */ + ASSERT(width <= MAX_WIDTH); + + /* process image row by row */ + for (i = 0; i < height; i++) { + GLuint index[MAX_WIDTH]; + GLvoid *dest; + ASSERT(rb->DataType == GL_UNSIGNED_INT); + rb->GetRow(ctx, rb, width, x, y + i, index); + + dest = _mesa_image_address2d(packing, pixels, width, height, + GL_COLOR_INDEX, type, i, 0); + + _mesa_pack_index_span(ctx, width, type, dest, index, + &ctx->Pack, ctx->_ImageTransferState); + } +} + + + +/** + * Read pixels for format=GL_DEPTH_COMPONENT. + */ +static void +read_depth_pixels( GLcontext *ctx, + GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum type, GLvoid *pixels, + const struct gl_pixelstore_attrib *packing ) +{ + struct gl_framebuffer *fb = ctx->ReadBuffer; + struct gl_renderbuffer *rb = fb->_DepthBuffer; + const GLboolean biasOrScale + = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0; + + if (!rb) + return; + + /* clipping should have been done already */ + ASSERT(x >= 0); + ASSERT(y >= 0); + ASSERT(x + width <= (GLint) rb->Width); + ASSERT(y + height <= (GLint) rb->Height); + /* width should never be > MAX_WIDTH since we did clipping earlier */ + ASSERT(width <= MAX_WIDTH); + + if (type == GL_UNSIGNED_SHORT && fb->Visual.depthBits == 16 + && !biasOrScale && !packing->SwapBytes) { + /* Special case: directly read 16-bit unsigned depth values. */ + GLint j; + ASSERT(rb->InternalFormat == GL_DEPTH_COMPONENT16); + ASSERT(rb->DataType == GL_UNSIGNED_SHORT); + for (j = 0; j < height; j++, y++) { + void *dest =_mesa_image_address2d(packing, pixels, width, height, + GL_DEPTH_COMPONENT, type, j, 0); + rb->GetRow(ctx, rb, width, x, y, dest); + } + } + else if (type == GL_UNSIGNED_INT && fb->Visual.depthBits == 24 + && !biasOrScale && !packing->SwapBytes) { + /* Special case: directly read 24-bit unsigned depth values. */ + GLint j; + ASSERT(rb->InternalFormat == GL_DEPTH_COMPONENT24); + ASSERT(rb->DataType == GL_UNSIGNED_INT); + for (j = 0; j < height; j++, y++) { + GLuint *dest = (GLuint *) + _mesa_image_address2d(packing, pixels, width, height, + GL_DEPTH_COMPONENT, type, j, 0); + GLint k; + rb->GetRow(ctx, rb, width, x, y, dest); + /* convert range from 24-bit to 32-bit */ + for (k = 0; k < width; k++) { + /* Note: put MSByte of 24-bit value into LSByte */ + dest[k] = (dest[k] << 8) | ((dest[k] >> 16) & 0xff); + } + } + } + else if (type == GL_UNSIGNED_INT && fb->Visual.depthBits == 32 + && !biasOrScale && !packing->SwapBytes) { + /* Special case: directly read 32-bit unsigned depth values. */ + GLint j; + ASSERT(rb->InternalFormat == GL_DEPTH_COMPONENT32); + ASSERT(rb->DataType == GL_UNSIGNED_INT); + for (j = 0; j < height; j++, y++) { + void *dest = _mesa_image_address2d(packing, pixels, width, height, + GL_DEPTH_COMPONENT, type, j, 0); + rb->GetRow(ctx, rb, width, x, y, dest); + } + } + else { + /* General case (slower) */ + GLint j; + for (j = 0; j < height; j++, y++) { + GLfloat depthValues[MAX_WIDTH]; + GLvoid *dest = _mesa_image_address2d(packing, pixels, width, height, + GL_DEPTH_COMPONENT, type, j, 0); + _swrast_read_depth_span_float(ctx, rb, width, x, y, depthValues); + _mesa_pack_depth_span(ctx, width, dest, type, depthValues, packing); + } + } +} + + +/** + * Read pixels for format=GL_STENCIL_INDEX. + */ +static void +read_stencil_pixels( GLcontext *ctx, + GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum type, GLvoid *pixels, + const struct gl_pixelstore_attrib *packing ) +{ + struct gl_framebuffer *fb = ctx->ReadBuffer; + struct gl_renderbuffer *rb = fb->_StencilBuffer; + GLint j; + + if (!rb) + return; + + /* width should never be > MAX_WIDTH since we did clipping earlier */ + ASSERT(width <= MAX_WIDTH); + + /* process image row by row */ + for (j=0;j<height;j++,y++) { + GLvoid *dest; + GLstencil stencil[MAX_WIDTH]; + + _swrast_read_stencil_span(ctx, rb, width, x, y, stencil); + + dest = _mesa_image_address2d(packing, pixels, width, height, + GL_STENCIL_INDEX, type, j, 0); + + _mesa_pack_stencil_span(ctx, width, type, dest, stencil, packing); + } +} + + + +/** + * Optimized glReadPixels for particular pixel formats when pixel + * scaling, biasing, mapping, etc. are disabled. + * \return GL_TRUE if success, GL_FALSE if unable to do the readpixels + */ +static GLboolean +fast_read_rgba_pixels( GLcontext *ctx, + GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum format, GLenum type, + GLvoid *pixels, + const struct gl_pixelstore_attrib *packing, + GLbitfield transferOps) +{ + struct gl_renderbuffer *rb = ctx->ReadBuffer->_ColorReadBuffer; + + if (!rb) + return GL_FALSE; + + ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB); + + /* clipping should have already been done */ + ASSERT(x + width <= (GLint) rb->Width); + ASSERT(y + height <= (GLint) rb->Height); + + /* check for things we can't handle here */ + if (transferOps || + packing->SwapBytes || + packing->LsbFirst) { + return GL_FALSE; + } + + if (format == GL_RGBA && rb->DataType == type) { + const GLint dstStride = _mesa_image_row_stride(packing, width, + format, type); + GLubyte *dest + = (GLubyte *) _mesa_image_address2d(packing, pixels, width, height, + format, type, 0, 0); + GLint row; + ASSERT(rb->GetRow); + for (row = 0; row < height; row++) { + rb->GetRow(ctx, rb, width, x, y + row, dest); + dest += dstStride; + } + return GL_TRUE; + } + + if (format == GL_RGB && + rb->DataType == GL_UNSIGNED_BYTE && + type == GL_UNSIGNED_BYTE) { + const GLint dstStride = _mesa_image_row_stride(packing, width, + format, type); + GLubyte *dest + = (GLubyte *) _mesa_image_address2d(packing, pixels, width, height, + format, type, 0, 0); + GLint row; + ASSERT(rb->GetRow); + for (row = 0; row < height; row++) { + GLubyte tempRow[MAX_WIDTH][4]; + GLint col; + rb->GetRow(ctx, rb, width, x, y + row, tempRow); + /* convert RGBA to RGB */ + for (col = 0; col < width; col++) { + dest[col * 3 + 0] = tempRow[col][0]; + dest[col * 3 + 1] = tempRow[col][1]; + dest[col * 3 + 2] = tempRow[col][2]; + } + dest += dstStride; + } + return GL_TRUE; + } + + /* not handled */ + return GL_FALSE; +} + + +/** + * When we're using a low-precision color buffer (like 16-bit 5/6/5) + * we have to adjust our color values a bit to pass conformance. + * The problem is when a 5 or 6-bit color value is convert to an 8-bit + * value and then a floating point value, the floating point values don't + * increment uniformly as the 5 or 6-bit value is incremented. + * + * This function adjusts floating point values to compensate. + */ +static void +adjust_colors(GLcontext *ctx, GLuint n, GLfloat rgba[][4]) +{ + const GLuint rShift = 8 - ctx->Visual.redBits; + const GLuint gShift = 8 - ctx->Visual.greenBits; + const GLuint bShift = 8 - ctx->Visual.blueBits; + const GLfloat rScale = 1.0F / (GLfloat) ((1 << ctx->Visual.redBits ) - 1); + const GLfloat gScale = 1.0F / (GLfloat) ((1 << ctx->Visual.greenBits) - 1); + const GLfloat bScale = 1.0F / (GLfloat) ((1 << ctx->Visual.blueBits ) - 1); + GLuint i; + for (i = 0; i < n; i++) { + GLint r, g, b; + /* convert float back to ubyte */ + CLAMPED_FLOAT_TO_UBYTE(r, rgba[i][RCOMP]); + CLAMPED_FLOAT_TO_UBYTE(g, rgba[i][GCOMP]); + CLAMPED_FLOAT_TO_UBYTE(b, rgba[i][BCOMP]); + /* using only the N most significant bits of the ubyte value, convert to + * float in [0,1]. + */ + rgba[i][RCOMP] = (GLfloat) (r >> rShift) * rScale; + rgba[i][GCOMP] = (GLfloat) (g >> gShift) * gScale; + rgba[i][BCOMP] = (GLfloat) (b >> bShift) * bScale; + } +} + + + +/* + * Read R, G, B, A, RGB, L, or LA pixels. + */ +static void +read_rgba_pixels( GLcontext *ctx, + GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum format, GLenum type, GLvoid *pixels, + const struct gl_pixelstore_attrib *packing ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLbitfield transferOps = ctx->_ImageTransferState; + struct gl_framebuffer *fb = ctx->ReadBuffer; + struct gl_renderbuffer *rb = fb->_ColorReadBuffer; + + if (!rb) + return; + + if (type == GL_FLOAT && ((ctx->Color.ClampReadColor == GL_TRUE) || + (ctx->Color.ClampReadColor == GL_FIXED_ONLY_ARB && + rb->DataType != GL_FLOAT))) + transferOps |= IMAGE_CLAMP_BIT; + + /* Try optimized path first */ + if (fast_read_rgba_pixels(ctx, x, y, width, height, + format, type, pixels, packing, transferOps)) { + return; /* done! */ + } + + /* width should never be > MAX_WIDTH since we did clipping earlier */ + ASSERT(width <= MAX_WIDTH); + + if (ctx->Pixel.Convolution2DEnabled || ctx->Pixel.Separable2DEnabled) { + GLfloat *dest, *src, *tmpImage, *convImage; + GLint row; + + tmpImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat)); + if (!tmpImage) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glReadPixels"); + return; + } + convImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat)); + if (!convImage) { + _mesa_free(tmpImage); + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glReadPixels"); + return; + } + + /* read full RGBA, FLOAT image */ + dest = tmpImage; + for (row = 0; row < height; row++, y++) { + if (fb->Visual.rgbMode) { + _swrast_read_rgba_span(ctx, rb, width, x, y, GL_FLOAT, dest); + } + else { + GLuint index[MAX_WIDTH]; + ASSERT(rb->DataType == GL_UNSIGNED_INT); + rb->GetRow(ctx, rb, width, x, y, index); + _mesa_apply_ci_transfer_ops(ctx, + transferOps & IMAGE_SHIFT_OFFSET_BIT, + width, index); + _mesa_map_ci_to_rgba(ctx, width, index, (GLfloat (*)[4]) dest); + } + _mesa_apply_rgba_transfer_ops(ctx, + transferOps & IMAGE_PRE_CONVOLUTION_BITS, + width, (GLfloat (*)[4]) dest); + dest += width * 4; + } + + /* do convolution */ + if (ctx->Pixel.Convolution2DEnabled) { + _mesa_convolve_2d_image(ctx, &width, &height, tmpImage, convImage); + } + else { + ASSERT(ctx->Pixel.Separable2DEnabled); + _mesa_convolve_sep_image(ctx, &width, &height, tmpImage, convImage); + } + _mesa_free(tmpImage); + + /* finish transfer ops and pack the resulting image */ + src = convImage; + for (row = 0; row < height; row++) { + GLvoid *dest; + dest = _mesa_image_address2d(packing, pixels, width, height, + format, type, row, 0); + _mesa_pack_rgba_span_float(ctx, width, (GLfloat (*)[4]) src, + format, type, dest, packing, + transferOps & IMAGE_POST_CONVOLUTION_BITS); + src += width * 4; + } + _mesa_free(convImage); + } + else { + /* no convolution */ + const GLint dstStride + = _mesa_image_row_stride(packing, width, format, type); + GLfloat (*rgba)[4] = swrast->SpanArrays->attribs[FRAG_ATTRIB_COL0]; + GLint row; + GLubyte *dst + = (GLubyte *) _mesa_image_address2d(packing, pixels, width, height, + format, type, 0, 0); + + /* make sure we don't apply 1D convolution */ + transferOps &= ~(IMAGE_CONVOLUTION_BIT | + IMAGE_POST_CONVOLUTION_SCALE_BIAS); + + for (row = 0; row < height; row++, y++) { + + /* Get float rgba pixels */ + if (fb->Visual.rgbMode) { + _swrast_read_rgba_span(ctx, rb, width, x, y, GL_FLOAT, rgba); + } + else { + /* read CI and convert to RGBA */ + GLuint index[MAX_WIDTH]; + ASSERT(rb->DataType == GL_UNSIGNED_INT); + rb->GetRow(ctx, rb, width, x, y, index); + _mesa_apply_ci_transfer_ops(ctx, + transferOps & IMAGE_SHIFT_OFFSET_BIT, + width, index); + _mesa_map_ci_to_rgba(ctx, width, index, rgba); + } + + /* apply fudge factor for shallow color buffers */ + if (fb->Visual.redBits < 8 || + fb->Visual.greenBits < 8 || + fb->Visual.blueBits < 8) { + adjust_colors(ctx, width, rgba); + } + + /* pack the row of RGBA pixels into user's buffer */ + _mesa_pack_rgba_span_float(ctx, width, rgba, format, type, dst, + packing, transferOps); + + dst += dstStride; + } + } +} + + +/** + * Read combined depth/stencil values. + * We'll have already done error checking to be sure the expected + * depth and stencil buffers really exist. + */ +static void +read_depth_stencil_pixels(GLcontext *ctx, + GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum type, GLvoid *pixels, + const struct gl_pixelstore_attrib *packing ) +{ + const GLboolean scaleOrBias + = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0; + const GLboolean stencilTransfer = ctx->Pixel.IndexShift + || ctx->Pixel.IndexOffset || ctx->Pixel.MapStencilFlag; + struct gl_renderbuffer *depthRb, *stencilRb; + + depthRb = ctx->ReadBuffer->_DepthBuffer; + stencilRb = ctx->ReadBuffer->_StencilBuffer; + + if (!depthRb || !stencilRb) + return; + + depthRb = ctx->ReadBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; + stencilRb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer; + + if (depthRb->_BaseFormat == GL_DEPTH_STENCIL_EXT && + stencilRb->_BaseFormat == GL_DEPTH_STENCIL_EXT && + depthRb == stencilRb && + !scaleOrBias && + !stencilTransfer) { + /* This is the ideal case. + * Reading GL_DEPTH_STENCIL pixels from combined depth/stencil buffer. + * Plus, no pixel transfer ops to worry about! + */ + GLint i; + GLint dstStride = _mesa_image_row_stride(packing, width, + GL_DEPTH_STENCIL_EXT, type); + GLubyte *dst = (GLubyte *) _mesa_image_address2d(packing, pixels, + width, height, + GL_DEPTH_STENCIL_EXT, + type, 0, 0); + for (i = 0; i < height; i++) { + depthRb->GetRow(ctx, depthRb, width, x, y + i, dst); + dst += dstStride; + } + } + else { + /* Reading GL_DEPTH_STENCIL pixels from separate depth/stencil buffers, + * or we need pixel transfer. + */ + GLint i; + depthRb = ctx->ReadBuffer->_DepthBuffer; + stencilRb = ctx->ReadBuffer->_StencilBuffer; + + for (i = 0; i < height; i++) { + GLstencil stencilVals[MAX_WIDTH]; + + GLuint *depthStencilDst = (GLuint *) + _mesa_image_address2d(packing, pixels, width, height, + GL_DEPTH_STENCIL_EXT, type, i, 0); + + _swrast_read_stencil_span(ctx, stencilRb, width, + x, y + i, stencilVals); + + if (!scaleOrBias && !stencilTransfer + && ctx->ReadBuffer->Visual.depthBits == 24) { + /* ideal case */ + GLuint zVals[MAX_WIDTH]; /* 24-bit values! */ + GLint j; + ASSERT(depthRb->DataType == GL_UNSIGNED_INT); + /* note, we've already been clipped */ + depthRb->GetRow(ctx, depthRb, width, x, y + i, zVals); + for (j = 0; j < width; j++) { + depthStencilDst[j] = (zVals[j] << 8) | (stencilVals[j] & 0xff); + } + } + else { + /* general case */ + GLfloat depthVals[MAX_WIDTH]; + _swrast_read_depth_span_float(ctx, depthRb, width, x, y + i, + depthVals); + _mesa_pack_depth_stencil_span(ctx, width, depthStencilDst, + depthVals, stencilVals, packing); + } + } + } +} + + + +/** + * Software fallback routine for ctx->Driver.ReadPixels(). + * By time we get here, all error checking will have been done. + */ +void +_swrast_ReadPixels( GLcontext *ctx, + GLint x, GLint y, GLsizei width, GLsizei height, + GLenum format, GLenum type, + const struct gl_pixelstore_attrib *packing, + GLvoid *pixels ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + struct gl_pixelstore_attrib clippedPacking = *packing; + + /* Need to do swrast_render_start() before clipping or anything else + * since this is where a driver may grab the hw lock and get an updated + * window size. + */ + swrast_render_start(ctx); + + if (ctx->NewState) + _mesa_update_state(ctx); + + if (swrast->NewState) + _swrast_validate_derived( ctx ); + + /* Do all needed clipping here, so that we can forget about it later */ + if (!_mesa_clip_readpixels(ctx, &x, &y, &width, &height, &clippedPacking)) { + /* The ReadPixels region is totally outside the window bounds */ + swrast_render_finish(ctx); + return; + } + + pixels = _mesa_map_pbo_dest(ctx, &clippedPacking, pixels); + if (!pixels) + return; + + switch (format) { + case GL_COLOR_INDEX: + read_index_pixels(ctx, x, y, width, height, type, pixels, + &clippedPacking); + break; + case GL_STENCIL_INDEX: + read_stencil_pixels(ctx, x, y, width, height, type, pixels, + &clippedPacking); + break; + case GL_DEPTH_COMPONENT: + read_depth_pixels(ctx, x, y, width, height, type, pixels, + &clippedPacking); + break; + case GL_RED: + case GL_GREEN: + case GL_BLUE: + case GL_ALPHA: + case GL_RGB: + case GL_LUMINANCE: + case GL_LUMINANCE_ALPHA: + case GL_RGBA: + case GL_BGR: + case GL_BGRA: + case GL_ABGR_EXT: + read_rgba_pixels(ctx, x, y, width, height, + format, type, pixels, &clippedPacking); + break; + case GL_DEPTH_STENCIL_EXT: + read_depth_stencil_pixels(ctx, x, y, width, height, + type, pixels, &clippedPacking); + break; + default: + _mesa_problem(ctx, "unexpected format in _swrast_ReadPixels"); + /* don't return yet, clean-up */ + } + + swrast_render_finish(ctx); + + _mesa_unmap_pbo_dest(ctx, &clippedPacking); +} diff --git a/mesalib/src/mesa/swrast/s_span.c b/mesalib/src/mesa/swrast/s_span.c new file mode 100644 index 000000000..0e2793b47 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_span.c @@ -0,0 +1,1795 @@ +/* + * Mesa 3-D graphics library + * Version: 7.5 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * Copyright (C) 2009 VMware, Inc. All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/** + * \file swrast/s_span.c + * \brief Span processing functions used by all rasterization functions. + * This is where all the per-fragment tests are performed + * \author Brian Paul + */ + +#include "main/glheader.h" +#include "main/colormac.h" +#include "main/context.h" +#include "main/macros.h" +#include "main/imports.h" +#include "main/image.h" + +#include "s_atifragshader.h" +#include "s_alpha.h" +#include "s_blend.h" +#include "s_context.h" +#include "s_depth.h" +#include "s_fog.h" +#include "s_logic.h" +#include "s_masking.h" +#include "s_fragprog.h" +#include "s_span.h" +#include "s_stencil.h" +#include "s_texcombine.h" + + +/** + * Set default fragment attributes for the span using the + * current raster values. Used prior to glDraw/CopyPixels + * and glBitmap. + */ +void +_swrast_span_default_attribs(GLcontext *ctx, SWspan *span) +{ + /* Z*/ + { + const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF; + if (ctx->DrawBuffer->Visual.depthBits <= 16) + span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F); + else { + GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax; + tmpf = MIN2(tmpf, depthMax); + span->z = (GLint)tmpf; + } + span->zStep = 0; + span->interpMask |= SPAN_Z; + } + + /* W (for perspective correction) */ + span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0; + span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0; + span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0; + + /* primary color, or color index */ + if (ctx->Visual.rgbMode) { + GLchan r, g, b, a; + UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]); + UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]); + UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]); + UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]); +#if CHAN_TYPE == GL_FLOAT + span->red = r; + span->green = g; + span->blue = b; + span->alpha = a; +#else + span->red = IntToFixed(r); + span->green = IntToFixed(g); + span->blue = IntToFixed(b); + span->alpha = IntToFixed(a); +#endif + span->redStep = 0; + span->greenStep = 0; + span->blueStep = 0; + span->alphaStep = 0; + span->interpMask |= SPAN_RGBA; + + COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor); + ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0); + ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0); + } + else { + span->index = FloatToFixed(ctx->Current.RasterIndex); + span->indexStep = 0; + span->interpMask |= SPAN_INDEX; + } + + /* Secondary color */ + if (ctx->Visual.rgbMode && (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)) + { + COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor); + ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0); + ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0); + } + + /* fog */ + { + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLfloat fogVal; /* a coord or a blend factor */ + if (swrast->_PreferPixelFog) { + /* fog blend factors will be computed from fog coordinates per pixel */ + fogVal = ctx->Current.RasterDistance; + } + else { + /* fog blend factor should be computed from fogcoord now */ + fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance); + } + span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal; + span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0; + span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0; + } + + /* texcoords */ + { + GLuint i; + for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) { + const GLuint attr = FRAG_ATTRIB_TEX0 + i; + const GLfloat *tc = ctx->Current.RasterTexCoords[i]; + if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) { + COPY_4V(span->attrStart[attr], tc); + } + else if (tc[3] > 0.0F) { + /* use (s/q, t/q, r/q, 1) */ + span->attrStart[attr][0] = tc[0] / tc[3]; + span->attrStart[attr][1] = tc[1] / tc[3]; + span->attrStart[attr][2] = tc[2] / tc[3]; + span->attrStart[attr][3] = 1.0; + } + else { + ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F); + } + ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F); + ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F); + } + } +} + + +/** + * Interpolate the active attributes (and'd with attrMask) to + * fill in span->array->attribs[]. + * Perspective correction will be done. The point/line/triangle function + * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]! + */ +static INLINE void +interpolate_active_attribs(GLcontext *ctx, SWspan *span, GLbitfield attrMask) +{ + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + + /* + * Don't overwrite existing array values, such as colors that may have + * been produced by glDraw/CopyPixels. + */ + attrMask &= ~span->arrayAttribs; + + ATTRIB_LOOP_BEGIN + if (attrMask & (1 << attr)) { + const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3]; + GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3]; + const GLfloat dv0dx = span->attrStepX[attr][0]; + const GLfloat dv1dx = span->attrStepX[attr][1]; + const GLfloat dv2dx = span->attrStepX[attr][2]; + const GLfloat dv3dx = span->attrStepX[attr][3]; + GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx; + GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx; + GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx; + GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx; + GLuint k; + for (k = 0; k < span->end; k++) { + const GLfloat invW = 1.0f / w; + span->array->attribs[attr][k][0] = v0 * invW; + span->array->attribs[attr][k][1] = v1 * invW; + span->array->attribs[attr][k][2] = v2 * invW; + span->array->attribs[attr][k][3] = v3 * invW; + v0 += dv0dx; + v1 += dv1dx; + v2 += dv2dx; + v3 += dv3dx; + w += dwdx; + } + ASSERT((span->arrayAttribs & (1 << attr)) == 0); + span->arrayAttribs |= (1 << attr); + } + ATTRIB_LOOP_END +} + + +/** + * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16) + * color array. + */ +static INLINE void +interpolate_int_colors(GLcontext *ctx, SWspan *span) +{ + const GLuint n = span->end; + GLuint i; + +#if CHAN_BITS != 32 + ASSERT(!(span->arrayMask & SPAN_RGBA)); +#endif + + switch (span->array->ChanType) { +#if CHAN_BITS != 32 + case GL_UNSIGNED_BYTE: + { + GLubyte (*rgba)[4] = span->array->rgba8; + if (span->interpMask & SPAN_FLAT) { + GLubyte color[4]; + color[RCOMP] = FixedToInt(span->red); + color[GCOMP] = FixedToInt(span->green); + color[BCOMP] = FixedToInt(span->blue); + color[ACOMP] = FixedToInt(span->alpha); + for (i = 0; i < n; i++) { + COPY_4UBV(rgba[i], color); + } + } + else { + GLfixed r = span->red; + GLfixed g = span->green; + GLfixed b = span->blue; + GLfixed a = span->alpha; + GLint dr = span->redStep; + GLint dg = span->greenStep; + GLint db = span->blueStep; + GLint da = span->alphaStep; + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = FixedToChan(r); + rgba[i][GCOMP] = FixedToChan(g); + rgba[i][BCOMP] = FixedToChan(b); + rgba[i][ACOMP] = FixedToChan(a); + r += dr; + g += dg; + b += db; + a += da; + } + } + } + break; + case GL_UNSIGNED_SHORT: + { + GLushort (*rgba)[4] = span->array->rgba16; + if (span->interpMask & SPAN_FLAT) { + GLushort color[4]; + color[RCOMP] = FixedToInt(span->red); + color[GCOMP] = FixedToInt(span->green); + color[BCOMP] = FixedToInt(span->blue); + color[ACOMP] = FixedToInt(span->alpha); + for (i = 0; i < n; i++) { + COPY_4V(rgba[i], color); + } + } + else { + GLushort (*rgba)[4] = span->array->rgba16; + GLfixed r, g, b, a; + GLint dr, dg, db, da; + r = span->red; + g = span->green; + b = span->blue; + a = span->alpha; + dr = span->redStep; + dg = span->greenStep; + db = span->blueStep; + da = span->alphaStep; + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = FixedToChan(r); + rgba[i][GCOMP] = FixedToChan(g); + rgba[i][BCOMP] = FixedToChan(b); + rgba[i][ACOMP] = FixedToChan(a); + r += dr; + g += dg; + b += db; + a += da; + } + } + } + break; +#endif + case GL_FLOAT: + interpolate_active_attribs(ctx, span, FRAG_BIT_COL0); + break; + default: + _mesa_problem(NULL, "bad datatype in interpolate_int_colors"); + } + span->arrayMask |= SPAN_RGBA; +} + + +/** + * Populate the FRAG_ATTRIB_COL0 array. + */ +static INLINE void +interpolate_float_colors(SWspan *span) +{ + GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + const GLuint n = span->end; + GLuint i; + + assert(!(span->arrayAttribs & FRAG_BIT_COL0)); + + if (span->arrayMask & SPAN_RGBA) { + /* convert array of int colors */ + for (i = 0; i < n; i++) { + col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]); + col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]); + col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]); + col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]); + } + } + else { + /* interpolate red/green/blue/alpha to get float colors */ + ASSERT(span->interpMask & SPAN_RGBA); + if (span->interpMask & SPAN_FLAT) { + GLfloat r = FixedToFloat(span->red); + GLfloat g = FixedToFloat(span->green); + GLfloat b = FixedToFloat(span->blue); + GLfloat a = FixedToFloat(span->alpha); + for (i = 0; i < n; i++) { + ASSIGN_4V(col0[i], r, g, b, a); + } + } + else { + GLfloat r = FixedToFloat(span->red); + GLfloat g = FixedToFloat(span->green); + GLfloat b = FixedToFloat(span->blue); + GLfloat a = FixedToFloat(span->alpha); + GLfloat dr = FixedToFloat(span->redStep); + GLfloat dg = FixedToFloat(span->greenStep); + GLfloat db = FixedToFloat(span->blueStep); + GLfloat da = FixedToFloat(span->alphaStep); + for (i = 0; i < n; i++) { + col0[i][0] = r; + col0[i][1] = g; + col0[i][2] = b; + col0[i][3] = a; + r += dr; + g += dg; + b += db; + a += da; + } + } + } + + span->arrayAttribs |= FRAG_BIT_COL0; + span->array->ChanType = GL_FLOAT; +} + + + +/* Fill in the span.color.index array from the interpolation values */ +static INLINE void +interpolate_indexes(GLcontext *ctx, SWspan *span) +{ + GLfixed index = span->index; + const GLint indexStep = span->indexStep; + const GLuint n = span->end; + GLuint *indexes = span->array->index; + GLuint i; + (void) ctx; + + ASSERT(!(span->arrayMask & SPAN_INDEX)); + + if ((span->interpMask & SPAN_FLAT) || (indexStep == 0)) { + /* constant color */ + index = FixedToInt(index); + for (i = 0; i < n; i++) { + indexes[i] = index; + } + } + else { + /* interpolate */ + for (i = 0; i < n; i++) { + indexes[i] = FixedToInt(index); + index += indexStep; + } + } + span->arrayMask |= SPAN_INDEX; + span->interpMask &= ~SPAN_INDEX; +} + + +/** + * Fill in the span.zArray array from the span->z, zStep values. + */ +void +_swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span ) +{ + const GLuint n = span->end; + GLuint i; + + ASSERT(!(span->arrayMask & SPAN_Z)); + + if (ctx->DrawBuffer->Visual.depthBits <= 16) { + GLfixed zval = span->z; + GLuint *z = span->array->z; + for (i = 0; i < n; i++) { + z[i] = FixedToInt(zval); + zval += span->zStep; + } + } + else { + /* Deep Z buffer, no fixed->int shift */ + GLuint zval = span->z; + GLuint *z = span->array->z; + for (i = 0; i < n; i++) { + z[i] = zval; + zval += span->zStep; + } + } + span->interpMask &= ~SPAN_Z; + span->arrayMask |= SPAN_Z; +} + + +/** + * Compute mipmap LOD from partial derivatives. + * This the ideal solution, as given in the OpenGL spec. + */ +GLfloat +_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy, + GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH, + GLfloat s, GLfloat t, GLfloat q, GLfloat invQ) +{ + GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ); + GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ); + GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ); + GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ); + GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx); + GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy); + GLfloat rho = MAX2(x, y); + GLfloat lambda = LOG2(rho); + return lambda; +} + + +/** + * Compute mipmap LOD from partial derivatives. + * This is a faster approximation than above function. + */ +#if 0 +GLfloat +_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy, + GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH, + GLfloat s, GLfloat t, GLfloat q, GLfloat invQ) +{ + GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ; + GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ; + GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ; + GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ; + GLfloat maxU, maxV, rho, lambda; + dsdx2 = FABSF(dsdx2); + dsdy2 = FABSF(dsdy2); + dtdx2 = FABSF(dtdx2); + dtdy2 = FABSF(dtdy2); + maxU = MAX2(dsdx2, dsdy2) * texW; + maxV = MAX2(dtdx2, dtdy2) * texH; + rho = MAX2(maxU, maxV); + lambda = LOG2(rho); + return lambda; +} +#endif + + +/** + * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the + * using the attrStart/Step values. + * + * This function only used during fixed-function fragment processing. + * + * Note: in the places where we divide by Q (or mult by invQ) we're + * really doing two things: perspective correction and texcoord + * projection. Remember, for texcoord (s,t,r,q) we need to index + * texels with (s/q, t/q, r/q). + */ +static void +interpolate_texcoords(GLcontext *ctx, SWspan *span) +{ + const GLuint maxUnit + = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1; + GLuint u; + + /* XXX CoordUnits vs. ImageUnits */ + for (u = 0; u < maxUnit; u++) { + if (ctx->Texture._EnabledCoordUnits & (1 << u)) { + const GLuint attr = FRAG_ATTRIB_TEX0 + u; + const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current; + GLfloat texW, texH; + GLboolean needLambda; + GLfloat (*texcoord)[4] = span->array->attribs[attr]; + GLfloat *lambda = span->array->lambda[u]; + const GLfloat dsdx = span->attrStepX[attr][0]; + const GLfloat dsdy = span->attrStepY[attr][0]; + const GLfloat dtdx = span->attrStepX[attr][1]; + const GLfloat dtdy = span->attrStepY[attr][1]; + const GLfloat drdx = span->attrStepX[attr][2]; + const GLfloat dqdx = span->attrStepX[attr][3]; + const GLfloat dqdy = span->attrStepY[attr][3]; + GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx; + GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx; + GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx; + GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx; + + if (obj) { + const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel]; + needLambda = (obj->MinFilter != obj->MagFilter) + || ctx->FragmentProgram._Current; + texW = img->WidthScale; + texH = img->HeightScale; + } + else { + /* using a fragment program */ + texW = 1.0; + texH = 1.0; + needLambda = GL_FALSE; + } + + if (needLambda) { + GLuint i; + if (ctx->FragmentProgram._Current + || ctx->ATIFragmentShader._Enabled) { + /* do perspective correction but don't divide s, t, r by q */ + const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3]; + GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx; + for (i = 0; i < span->end; i++) { + const GLfloat invW = 1.0F / w; + texcoord[i][0] = s * invW; + texcoord[i][1] = t * invW; + texcoord[i][2] = r * invW; + texcoord[i][3] = q * invW; + lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy, + dqdx, dqdy, texW, texH, + s, t, q, invW); + s += dsdx; + t += dtdx; + r += drdx; + q += dqdx; + w += dwdx; + } + } + else { + for (i = 0; i < span->end; i++) { + const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); + texcoord[i][0] = s * invQ; + texcoord[i][1] = t * invQ; + texcoord[i][2] = r * invQ; + texcoord[i][3] = q; + lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy, + dqdx, dqdy, texW, texH, + s, t, q, invQ); + s += dsdx; + t += dtdx; + r += drdx; + q += dqdx; + } + } + span->arrayMask |= SPAN_LAMBDA; + } + else { + GLuint i; + if (ctx->FragmentProgram._Current || + ctx->ATIFragmentShader._Enabled) { + /* do perspective correction but don't divide s, t, r by q */ + const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3]; + GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx; + for (i = 0; i < span->end; i++) { + const GLfloat invW = 1.0F / w; + texcoord[i][0] = s * invW; + texcoord[i][1] = t * invW; + texcoord[i][2] = r * invW; + texcoord[i][3] = q * invW; + lambda[i] = 0.0; + s += dsdx; + t += dtdx; + r += drdx; + q += dqdx; + w += dwdx; + } + } + else if (dqdx == 0.0F) { + /* Ortho projection or polygon's parallel to window X axis */ + const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); + for (i = 0; i < span->end; i++) { + texcoord[i][0] = s * invQ; + texcoord[i][1] = t * invQ; + texcoord[i][2] = r * invQ; + texcoord[i][3] = q; + lambda[i] = 0.0; + s += dsdx; + t += dtdx; + r += drdx; + } + } + else { + for (i = 0; i < span->end; i++) { + const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); + texcoord[i][0] = s * invQ; + texcoord[i][1] = t * invQ; + texcoord[i][2] = r * invQ; + texcoord[i][3] = q; + lambda[i] = 0.0; + s += dsdx; + t += dtdx; + r += drdx; + q += dqdx; + } + } + } /* lambda */ + } /* if */ + } /* for */ +} + + +/** + * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array. + */ +static INLINE void +interpolate_wpos(GLcontext *ctx, SWspan *span) +{ + GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS]; + GLuint i; + const GLfloat zScale = 1.0 / ctx->DrawBuffer->_DepthMaxF; + GLfloat w, dw; + + if (span->arrayMask & SPAN_XY) { + for (i = 0; i < span->end; i++) { + wpos[i][0] = (GLfloat) span->array->x[i]; + wpos[i][1] = (GLfloat) span->array->y[i]; + } + } + else { + for (i = 0; i < span->end; i++) { + wpos[i][0] = (GLfloat) span->x + i; + wpos[i][1] = (GLfloat) span->y; + } + } + + dw = span->attrStepX[FRAG_ATTRIB_WPOS][3]; + w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw; + for (i = 0; i < span->end; i++) { + wpos[i][2] = (GLfloat) span->array->z[i] * zScale; + wpos[i][3] = w; + w += dw; + } +} + + +/** + * Apply the current polygon stipple pattern to a span of pixels. + */ +static INLINE void +stipple_polygon_span(GLcontext *ctx, SWspan *span) +{ + GLubyte *mask = span->array->mask; + + ASSERT(ctx->Polygon.StippleFlag); + + if (span->arrayMask & SPAN_XY) { + /* arrays of x/y pixel coords */ + GLuint i; + for (i = 0; i < span->end; i++) { + const GLint col = span->array->x[i] % 32; + const GLint row = span->array->y[i] % 32; + const GLuint stipple = ctx->PolygonStipple[row]; + if (((1 << col) & stipple) == 0) { + mask[i] = 0; + } + } + } + else { + /* horizontal span of pixels */ + const GLuint highBit = 1 << 31; + const GLuint stipple = ctx->PolygonStipple[span->y % 32]; + GLuint i, m = highBit >> (GLuint) (span->x % 32); + for (i = 0; i < span->end; i++) { + if ((m & stipple) == 0) { + mask[i] = 0; + } + m = m >> 1; + if (m == 0) { + m = highBit; + } + } + } + span->writeAll = GL_FALSE; +} + + +/** + * Clip a pixel span to the current buffer/window boundaries: + * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish + * window clipping and scissoring. + * Return: GL_TRUE some pixels still visible + * GL_FALSE nothing visible + */ +static INLINE GLuint +clip_span( GLcontext *ctx, SWspan *span ) +{ + const GLint xmin = ctx->DrawBuffer->_Xmin; + const GLint xmax = ctx->DrawBuffer->_Xmax; + const GLint ymin = ctx->DrawBuffer->_Ymin; + const GLint ymax = ctx->DrawBuffer->_Ymax; + + span->leftClip = 0; + + if (span->arrayMask & SPAN_XY) { + /* arrays of x/y pixel coords */ + const GLint *x = span->array->x; + const GLint *y = span->array->y; + const GLint n = span->end; + GLubyte *mask = span->array->mask; + GLint i; + if (span->arrayMask & SPAN_MASK) { + /* note: using & intead of && to reduce branches */ + for (i = 0; i < n; i++) { + mask[i] &= (x[i] >= xmin) & (x[i] < xmax) + & (y[i] >= ymin) & (y[i] < ymax); + } + } + else { + /* note: using & intead of && to reduce branches */ + for (i = 0; i < n; i++) { + mask[i] = (x[i] >= xmin) & (x[i] < xmax) + & (y[i] >= ymin) & (y[i] < ymax); + } + } + return GL_TRUE; /* some pixels visible */ + } + else { + /* horizontal span of pixels */ + const GLint x = span->x; + const GLint y = span->y; + GLint n = span->end; + + /* Trivial rejection tests */ + if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) { + span->end = 0; + return GL_FALSE; /* all pixels clipped */ + } + + /* Clip to right */ + if (x + n > xmax) { + ASSERT(x < xmax); + n = span->end = xmax - x; + } + + /* Clip to the left */ + if (x < xmin) { + const GLint leftClip = xmin - x; + GLuint i; + + ASSERT(leftClip > 0); + ASSERT(x + n > xmin); + + /* Clip 'leftClip' pixels from the left side. + * The span->leftClip field will be applied when we interpolate + * fragment attributes. + * For arrays of values, shift them left. + */ + for (i = 0; i < FRAG_ATTRIB_MAX; i++) { + if (span->arrayAttribs & (1 << i)) { + /* shift array elements left by 'leftClip' */ + _mesa_memcpy(span->array->attribs[i], + span->array->attribs[i] + leftClip, + (n - leftClip) * 4 * sizeof(GLfloat)); + } + } + + span->leftClip = leftClip; + span->x = xmin; + span->end -= leftClip; + span->writeAll = GL_FALSE; + } + + ASSERT(span->x >= xmin); + ASSERT(span->x + span->end <= xmax); + ASSERT(span->y >= ymin); + ASSERT(span->y < ymax); + + return GL_TRUE; /* some pixels visible */ + } +} + + +/** + * Apply all the per-fragment opertions to a span of color index fragments + * and write them to the enabled color drawbuffers. + * The 'span' parameter can be considered to be const. Note that + * span->interpMask and span->arrayMask may be changed but will be restored + * to their original values before returning. + */ +void +_swrast_write_index_span( GLcontext *ctx, SWspan *span) +{ + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLbitfield origInterpMask = span->interpMask; + const GLbitfield origArrayMask = span->arrayMask; + struct gl_framebuffer *fb = ctx->DrawBuffer; + + ASSERT(span->end <= MAX_WIDTH); + ASSERT(span->primitive == GL_POINT || span->primitive == GL_LINE || + span->primitive == GL_POLYGON || span->primitive == GL_BITMAP); + ASSERT((span->interpMask | span->arrayMask) & SPAN_INDEX); + /* + ASSERT((span->interpMask & span->arrayMask) == 0); + */ + + if (span->arrayMask & SPAN_MASK) { + /* mask was initialized by caller, probably glBitmap */ + span->writeAll = GL_FALSE; + } + else { + _mesa_memset(span->array->mask, 1, span->end); + span->writeAll = GL_TRUE; + } + + /* Clipping */ + if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) { + if (!clip_span(ctx, span)) { + return; + } + } + + if (!(span->arrayMask & SPAN_MASK)) { + /* post-clip sanity check */ + assert(span->x >= 0); + assert(span->y >= 0); + } + + /* Depth bounds test */ + if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) { + if (!_swrast_depth_bounds_test(ctx, span)) { + return; + } + } + +#ifdef DEBUG + /* Make sure all fragments are within window bounds */ + if (span->arrayMask & SPAN_XY) { + GLuint i; + for (i = 0; i < span->end; i++) { + if (span->array->mask[i]) { + assert(span->array->x[i] >= fb->_Xmin); + assert(span->array->x[i] < fb->_Xmax); + assert(span->array->y[i] >= fb->_Ymin); + assert(span->array->y[i] < fb->_Ymax); + } + } + } +#endif + + /* Polygon Stippling */ + if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) { + stipple_polygon_span(ctx, span); + } + + /* Stencil and Z testing */ + if (ctx->Stencil._Enabled || ctx->Depth.Test) { + if (!(span->arrayMask & SPAN_Z)) + _swrast_span_interpolate_z(ctx, span); + + if (ctx->Stencil._Enabled) { + if (!_swrast_stencil_and_ztest_span(ctx, span)) { + span->arrayMask = origArrayMask; + return; + } + } + else { + ASSERT(ctx->Depth.Test); + if (!_swrast_depth_test_span(ctx, span)) { + span->interpMask = origInterpMask; + span->arrayMask = origArrayMask; + return; + } + } + } + +#if FEATURE_ARB_occlusion_query + if (ctx->Query.CurrentOcclusionObject) { + /* update count of 'passed' fragments */ + struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; + GLuint i; + for (i = 0; i < span->end; i++) + q->Result += span->array->mask[i]; + } +#endif + + /* we have to wait until after occlusion to do this test */ + if (ctx->Color.IndexMask == 0) { + /* write no pixels */ + span->arrayMask = origArrayMask; + return; + } + + /* Interpolate the color indexes if needed */ + if (swrast->_FogEnabled || + ctx->Color.IndexLogicOpEnabled || + ctx->Color.IndexMask != 0xffffffff || + (span->arrayMask & SPAN_COVERAGE)) { + if (!(span->arrayMask & SPAN_INDEX) /*span->interpMask & SPAN_INDEX*/) { + interpolate_indexes(ctx, span); + } + } + + /* Fog */ + if (swrast->_FogEnabled) { + _swrast_fog_ci_span(ctx, span); + } + + /* Antialias coverage application */ + if (span->arrayMask & SPAN_COVERAGE) { + const GLfloat *coverage = span->array->coverage; + GLuint *index = span->array->index; + GLuint i; + for (i = 0; i < span->end; i++) { + ASSERT(coverage[i] < 16); + index[i] = (index[i] & ~0xf) | ((GLuint) coverage[i]); + } + } + + /* + * Write to renderbuffers + */ + { + const GLuint numBuffers = fb->_NumColorDrawBuffers; + GLuint buf; + + for (buf = 0; buf < numBuffers; buf++) { + struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf]; + GLuint indexSave[MAX_WIDTH]; + + ASSERT(rb->_BaseFormat == GL_COLOR_INDEX); + + if (numBuffers > 1) { + /* save indexes for second, third renderbuffer writes */ + _mesa_memcpy(indexSave, span->array->index, + span->end * sizeof(indexSave[0])); + } + + if (ctx->Color.IndexLogicOpEnabled) { + _swrast_logicop_ci_span(ctx, rb, span); + } + + if (ctx->Color.IndexMask != 0xffffffff) { + _swrast_mask_ci_span(ctx, rb, span); + } + + if (!(span->arrayMask & SPAN_INDEX) && span->indexStep == 0) { + /* all fragments have same color index */ + GLubyte index8; + GLushort index16; + GLuint index32; + void *value; + + if (rb->DataType == GL_UNSIGNED_BYTE) { + index8 = FixedToInt(span->index); + value = &index8; + } + else if (rb->DataType == GL_UNSIGNED_SHORT) { + index16 = FixedToInt(span->index); + value = &index16; + } + else { + ASSERT(rb->DataType == GL_UNSIGNED_INT); + index32 = FixedToInt(span->index); + value = &index32; + } + + if (span->arrayMask & SPAN_XY) { + rb->PutMonoValues(ctx, rb, span->end, span->array->x, + span->array->y, value, span->array->mask); + } + else { + rb->PutMonoRow(ctx, rb, span->end, span->x, span->y, + value, span->array->mask); + } + } + else { + /* each fragment is a different color */ + GLubyte index8[MAX_WIDTH]; + GLushort index16[MAX_WIDTH]; + void *values; + + if (rb->DataType == GL_UNSIGNED_BYTE) { + GLuint k; + for (k = 0; k < span->end; k++) { + index8[k] = (GLubyte) span->array->index[k]; + } + values = index8; + } + else if (rb->DataType == GL_UNSIGNED_SHORT) { + GLuint k; + for (k = 0; k < span->end; k++) { + index16[k] = (GLushort) span->array->index[k]; + } + values = index16; + } + else { + ASSERT(rb->DataType == GL_UNSIGNED_INT); + values = span->array->index; + } + + if (span->arrayMask & SPAN_XY) { + rb->PutValues(ctx, rb, span->end, + span->array->x, span->array->y, + values, span->array->mask); + } + else { + rb->PutRow(ctx, rb, span->end, span->x, span->y, + values, span->array->mask); + } + } + + if (buf + 1 < numBuffers) { + /* restore original span values */ + _mesa_memcpy(span->array->index, indexSave, + span->end * sizeof(indexSave[0])); + } + } /* for buf */ + } + + span->interpMask = origInterpMask; + span->arrayMask = origArrayMask; +} + + +/** + * Add specular colors to primary colors. + * Only called during fixed-function operation. + * Result is float color array (FRAG_ATTRIB_COL0). + */ +static INLINE void +add_specular(GLcontext *ctx, SWspan *span) +{ + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLubyte *mask = span->array->mask; + GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1]; + GLuint i; + + ASSERT(!ctx->FragmentProgram._Current); + ASSERT(span->arrayMask & SPAN_RGBA); + ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1); + (void) swrast; /* silence warning */ + + if (span->array->ChanType == GL_FLOAT) { + if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { + interpolate_active_attribs(ctx, span, FRAG_BIT_COL0); + } + } + else { + /* need float colors */ + if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { + interpolate_float_colors(span); + } + } + + if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) { + /* XXX could avoid this and interpolate COL1 in the loop below */ + interpolate_active_attribs(ctx, span, FRAG_BIT_COL1); + } + + ASSERT(span->arrayAttribs & FRAG_BIT_COL0); + ASSERT(span->arrayAttribs & FRAG_BIT_COL1); + + for (i = 0; i < span->end; i++) { + if (mask[i]) { + col0[i][0] += col1[i][0]; + col0[i][1] += col1[i][1]; + col0[i][2] += col1[i][2]; + } + } + + span->array->ChanType = GL_FLOAT; +} + + +/** + * Apply antialiasing coverage value to alpha values. + */ +static INLINE void +apply_aa_coverage(SWspan *span) +{ + const GLfloat *coverage = span->array->coverage; + GLuint i; + if (span->array->ChanType == GL_UNSIGNED_BYTE) { + GLubyte (*rgba)[4] = span->array->rgba8; + for (i = 0; i < span->end; i++) { + const GLfloat a = rgba[i][ACOMP] * coverage[i]; + rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0); + ASSERT(coverage[i] >= 0.0); + ASSERT(coverage[i] <= 1.0); + } + } + else if (span->array->ChanType == GL_UNSIGNED_SHORT) { + GLushort (*rgba)[4] = span->array->rgba16; + for (i = 0; i < span->end; i++) { + const GLfloat a = rgba[i][ACOMP] * coverage[i]; + rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0); + } + } + else { + GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + for (i = 0; i < span->end; i++) { + rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i]; + /* clamp later */ + } + } +} + + +/** + * Clamp span's float colors to [0,1] + */ +static INLINE void +clamp_colors(SWspan *span) +{ + GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; + GLuint i; + ASSERT(span->array->ChanType == GL_FLOAT); + for (i = 0; i < span->end; i++) { + rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F); + rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F); + rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F); + rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F); + } +} + + +/** + * Convert the span's color arrays to the given type. + * The only way 'output' can be greater than zero is when we have a fragment + * program that writes to gl_FragData[1] or higher. + * \param output which fragment program color output is being processed + */ +static INLINE void +convert_color_type(SWspan *span, GLenum newType, GLuint output) +{ + GLvoid *src, *dst; + + if (output > 0 || span->array->ChanType == GL_FLOAT) { + src = span->array->attribs[FRAG_ATTRIB_COL0 + output]; + span->array->ChanType = GL_FLOAT; + } + else if (span->array->ChanType == GL_UNSIGNED_BYTE) { + src = span->array->rgba8; + } + else { + ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT); + src = span->array->rgba16; + } + + if (newType == GL_UNSIGNED_BYTE) { + dst = span->array->rgba8; + } + else if (newType == GL_UNSIGNED_SHORT) { + dst = span->array->rgba16; + } + else { + dst = span->array->attribs[FRAG_ATTRIB_COL0]; + } + + _mesa_convert_colors(span->array->ChanType, src, + newType, dst, + span->end, span->array->mask); + + span->array->ChanType = newType; + span->array->rgba = dst; +} + + + +/** + * Apply fragment shader, fragment program or normal texturing to span. + */ +static INLINE void +shade_texture_span(GLcontext *ctx, SWspan *span) +{ + GLbitfield inputsRead; + + /* Determine which fragment attributes are actually needed */ + if (ctx->FragmentProgram._Current) { + inputsRead = ctx->FragmentProgram._Current->Base.InputsRead; + } + else { + /* XXX we could be a bit smarter about this */ + inputsRead = ~0; + } + + if (ctx->FragmentProgram._Current || + ctx->ATIFragmentShader._Enabled) { + /* programmable shading */ + if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) { + convert_color_type(span, GL_FLOAT, 0); + } + if (span->primitive != GL_POINT || + (span->interpMask & SPAN_RGBA) || + ctx->Point.PointSprite) { + /* for single-pixel points, we populated the arrays already */ + interpolate_active_attribs(ctx, span, ~0); + } + span->array->ChanType = GL_FLOAT; + + if (!(span->arrayMask & SPAN_Z)) + _swrast_span_interpolate_z (ctx, span); + +#if 0 + if (inputsRead & FRAG_BIT_WPOS) +#else + /* XXX always interpolate wpos so that DDX/DDY work */ +#endif + interpolate_wpos(ctx, span); + + /* Run fragment program/shader now */ + if (ctx->FragmentProgram._Current) { + _swrast_exec_fragment_program(ctx, span); + } + else { + ASSERT(ctx->ATIFragmentShader._Enabled); + _swrast_exec_fragment_shader(ctx, span); + } + } + else if (ctx->Texture._EnabledCoordUnits) { + /* conventional texturing */ + +#if CHAN_BITS == 32 + if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { + interpolate_int_colors(ctx, span); + } +#else + if (!(span->arrayMask & SPAN_RGBA)) + interpolate_int_colors(ctx, span); +#endif + if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0) + interpolate_texcoords(ctx, span); + + _swrast_texture_span(ctx, span); + } +} + + + +/** + * Apply all the per-fragment operations to a span. + * This now includes texturing (_swrast_write_texture_span() is history). + * This function may modify any of the array values in the span. + * span->interpMask and span->arrayMask may be changed but will be restored + * to their original values before returning. + */ +void +_swrast_write_rgba_span( GLcontext *ctx, SWspan *span) +{ + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLuint colorMask = *((GLuint *) ctx->Color.ColorMask); + const GLbitfield origInterpMask = span->interpMask; + const GLbitfield origArrayMask = span->arrayMask; + const GLbitfield origArrayAttribs = span->arrayAttribs; + const GLenum origChanType = span->array->ChanType; + void * const origRgba = span->array->rgba; + const GLboolean shader = (ctx->FragmentProgram._Current + || ctx->ATIFragmentShader._Enabled); + const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits; + struct gl_framebuffer *fb = ctx->DrawBuffer; + + /* + printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__, + span->interpMask, span->arrayMask); + */ + + ASSERT(span->primitive == GL_POINT || + span->primitive == GL_LINE || + span->primitive == GL_POLYGON || + span->primitive == GL_BITMAP); + + /* Fragment write masks */ + if (span->arrayMask & SPAN_MASK) { + /* mask was initialized by caller, probably glBitmap */ + span->writeAll = GL_FALSE; + } + else { + _mesa_memset(span->array->mask, 1, span->end); + span->writeAll = GL_TRUE; + } + + /* Clip to window/scissor box */ + if (!clip_span(ctx, span)) { + return; + } + + ASSERT(span->end <= MAX_WIDTH); + +#ifdef DEBUG + /* Make sure all fragments are within window bounds */ + if (span->arrayMask & SPAN_XY) { + /* array of pixel locations */ + GLuint i; + for (i = 0; i < span->end; i++) { + if (span->array->mask[i]) { + assert(span->array->x[i] >= fb->_Xmin); + assert(span->array->x[i] < fb->_Xmax); + assert(span->array->y[i] >= fb->_Ymin); + assert(span->array->y[i] < fb->_Ymax); + } + } + } +#endif + + /* Polygon Stippling */ + if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) { + stipple_polygon_span(ctx, span); + } + + /* This is the normal place to compute the fragment color/Z + * from texturing or shading. + */ + if (shaderOrTexture && !swrast->_DeferredTexture) { + shade_texture_span(ctx, span); + } + + /* Do the alpha test */ + if (ctx->Color.AlphaEnabled) { + if (!_swrast_alpha_test(ctx, span)) { + /* all fragments failed test */ + goto end; + } + } + + /* Stencil and Z testing */ + if (ctx->Stencil._Enabled || ctx->Depth.Test) { + if (!(span->arrayMask & SPAN_Z)) + _swrast_span_interpolate_z(ctx, span); + if (ctx->Stencil._Enabled) { + /* Combined Z/stencil tests */ + if (!_swrast_stencil_and_ztest_span(ctx, span)) { + /* all fragments failed test */ + goto end; + } + } + else if (fb->Visual.depthBits > 0) { + /* Just regular depth testing */ + ASSERT(ctx->Depth.Test); + ASSERT(span->arrayMask & SPAN_Z); + if (!_swrast_depth_test_span(ctx, span)) { + /* all fragments failed test */ + goto end; + } + } + } + +#if FEATURE_ARB_occlusion_query + if (ctx->Query.CurrentOcclusionObject) { + /* update count of 'passed' fragments */ + struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; + GLuint i; + for (i = 0; i < span->end; i++) + q->Result += span->array->mask[i]; + } +#endif + + /* We had to wait until now to check for glColorMask(0,0,0,0) because of + * the occlusion test. + */ + if (colorMask == 0x0) { + /* no colors to write */ + goto end; + } + + /* If we were able to defer fragment color computation to now, there's + * a good chance that many fragments will have already been killed by + * Z/stencil testing. + */ + if (shaderOrTexture && swrast->_DeferredTexture) { + shade_texture_span(ctx, span); + } + +#if CHAN_BITS == 32 + if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { + interpolate_active_attribs(ctx, span, FRAG_BIT_COL0); + } +#else + if ((span->arrayMask & SPAN_RGBA) == 0) { + interpolate_int_colors(ctx, span); + } +#endif + + ASSERT(span->arrayMask & SPAN_RGBA); + + if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) { + /* Add primary and specular (diffuse + specular) colors */ + if (!shader) { + if (ctx->Fog.ColorSumEnabled || + (ctx->Light.Enabled && + ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) { + add_specular(ctx, span); + } + } + } + + /* Fog */ + if (swrast->_FogEnabled) { + _swrast_fog_rgba_span(ctx, span); + } + + /* Antialias coverage application */ + if (span->arrayMask & SPAN_COVERAGE) { + apply_aa_coverage(span); + } + + /* Clamp color/alpha values over the range [0.0, 1.0] before storage */ + if (ctx->Color.ClampFragmentColor == GL_TRUE && + span->array->ChanType == GL_FLOAT) { + clamp_colors(span); + } + + /* + * Write to renderbuffers. + * Depending on glDrawBuffer() state and the which color outputs are + * written by the fragment shader, we may either replicate one color to + * all renderbuffers or write a different color to each renderbuffer. + * multiFragOutputs=TRUE for the later case. + */ + { + const GLuint numBuffers = fb->_NumColorDrawBuffers; + const struct gl_fragment_program *fp = ctx->FragmentProgram._Current; + const GLboolean multiFragOutputs = + (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0)); + GLuint buf; + + for (buf = 0; buf < numBuffers; buf++) { + struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf]; + + /* color[fragOutput] will be written to buffer[buf] */ + + if (rb) { + GLchan rgbaSave[MAX_WIDTH][4]; + const GLuint fragOutput = multiFragOutputs ? buf : 0; + + if (rb->DataType != span->array->ChanType || fragOutput > 0) { + convert_color_type(span, rb->DataType, fragOutput); + } + + if (!multiFragOutputs && numBuffers > 1) { + /* save colors for second, third renderbuffer writes */ + _mesa_memcpy(rgbaSave, span->array->rgba, + 4 * span->end * sizeof(GLchan)); + } + + ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB); + + if (ctx->Color._LogicOpEnabled) { + _swrast_logicop_rgba_span(ctx, rb, span); + } + else if (ctx->Color.BlendEnabled) { + _swrast_blend_span(ctx, rb, span); + } + + if (colorMask != 0xffffffff) { + _swrast_mask_rgba_span(ctx, rb, span); + } + + if (span->arrayMask & SPAN_XY) { + /* array of pixel coords */ + ASSERT(rb->PutValues); + rb->PutValues(ctx, rb, span->end, + span->array->x, span->array->y, + span->array->rgba, span->array->mask); + } + else { + /* horizontal run of pixels */ + ASSERT(rb->PutRow); + rb->PutRow(ctx, rb, span->end, span->x, span->y, + span->array->rgba, + span->writeAll ? NULL: span->array->mask); + } + + if (!multiFragOutputs && numBuffers > 1) { + /* restore original span values */ + _mesa_memcpy(span->array->rgba, rgbaSave, + 4 * span->end * sizeof(GLchan)); + } + + } /* if rb */ + } /* for buf */ + } + +end: + /* restore these values before returning */ + span->interpMask = origInterpMask; + span->arrayMask = origArrayMask; + span->arrayAttribs = origArrayAttribs; + span->array->ChanType = origChanType; + span->array->rgba = origRgba; +} + + +/** + * Read RGBA pixels from a renderbuffer. Clipping will be done to prevent + * reading ouside the buffer's boundaries. + * \param dstType datatype for returned colors + * \param rgba the returned colors + */ +void +_swrast_read_rgba_span( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint n, GLint x, GLint y, GLenum dstType, + GLvoid *rgba) +{ + const GLint bufWidth = (GLint) rb->Width; + const GLint bufHeight = (GLint) rb->Height; + + if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) { + /* completely above, below, or right */ + /* XXX maybe leave rgba values undefined? */ + _mesa_bzero(rgba, 4 * n * sizeof(GLchan)); + } + else { + GLint skip, length; + if (x < 0) { + /* left edge clipping */ + skip = -x; + length = (GLint) n - skip; + if (length < 0) { + /* completely left of window */ + return; + } + if (length > bufWidth) { + length = bufWidth; + } + } + else if ((GLint) (x + n) > bufWidth) { + /* right edge clipping */ + skip = 0; + length = bufWidth - x; + if (length < 0) { + /* completely to right of window */ + return; + } + } + else { + /* no clipping */ + skip = 0; + length = (GLint) n; + } + + ASSERT(rb); + ASSERT(rb->GetRow); + ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA); + + if (rb->DataType == dstType) { + rb->GetRow(ctx, rb, length, x + skip, y, + (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType)); + } + else { + GLuint temp[MAX_WIDTH * 4]; + rb->GetRow(ctx, rb, length, x + skip, y, temp); + _mesa_convert_colors(rb->DataType, temp, + dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType), + length, NULL); + } + } +} + + +/** + * Read CI pixels from a renderbuffer. Clipping will be done to prevent + * reading ouside the buffer's boundaries. + */ +void +_swrast_read_index_span( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint n, GLint x, GLint y, GLuint index[] ) +{ + const GLint bufWidth = (GLint) rb->Width; + const GLint bufHeight = (GLint) rb->Height; + + if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) { + /* completely above, below, or right */ + _mesa_bzero(index, n * sizeof(GLuint)); + } + else { + GLint skip, length; + if (x < 0) { + /* left edge clipping */ + skip = -x; + length = (GLint) n - skip; + if (length < 0) { + /* completely left of window */ + return; + } + if (length > bufWidth) { + length = bufWidth; + } + } + else if ((GLint) (x + n) > bufWidth) { + /* right edge clipping */ + skip = 0; + length = bufWidth - x; + if (length < 0) { + /* completely to right of window */ + return; + } + } + else { + /* no clipping */ + skip = 0; + length = (GLint) n; + } + + ASSERT(rb->GetRow); + ASSERT(rb->_BaseFormat == GL_COLOR_INDEX); + + if (rb->DataType == GL_UNSIGNED_BYTE) { + GLubyte index8[MAX_WIDTH]; + GLint i; + rb->GetRow(ctx, rb, length, x + skip, y, index8); + for (i = 0; i < length; i++) + index[skip + i] = index8[i]; + } + else if (rb->DataType == GL_UNSIGNED_SHORT) { + GLushort index16[MAX_WIDTH]; + GLint i; + rb->GetRow(ctx, rb, length, x + skip, y, index16); + for (i = 0; i < length; i++) + index[skip + i] = index16[i]; + } + else if (rb->DataType == GL_UNSIGNED_INT) { + rb->GetRow(ctx, rb, length, x + skip, y, index + skip); + } + } +} + + +/** + * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid + * reading values outside the buffer bounds. + * We can use this for reading any format/type of renderbuffer. + * \param valueSize is the size in bytes of each value (pixel) put into the + * values array. + */ +void +_swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, const GLint x[], const GLint y[], + void *values, GLuint valueSize) +{ + GLuint i, inCount = 0, inStart = 0; + + for (i = 0; i < count; i++) { + if (x[i] >= 0 && y[i] >= 0 && + x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) { + /* inside */ + if (inCount == 0) + inStart = i; + inCount++; + } + else { + if (inCount > 0) { + /* read [inStart, inStart + inCount) */ + rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart, + (GLubyte *) values + inStart * valueSize); + inCount = 0; + } + } + } + if (inCount > 0) { + /* read last values */ + rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart, + (GLubyte *) values + inStart * valueSize); + } +} + + +/** + * Wrapper for gl_renderbuffer::PutRow() which does clipping. + * \param valueSize size of each value (pixel) in bytes + */ +void +_swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, GLint x, GLint y, + const GLvoid *values, GLuint valueSize) +{ + GLint skip = 0; + + if (y < 0 || y >= (GLint) rb->Height) + return; /* above or below */ + + if (x + (GLint) count <= 0 || x >= (GLint) rb->Width) + return; /* entirely left or right */ + + if ((GLint) (x + count) > (GLint) rb->Width) { + /* right clip */ + GLint clip = x + count - rb->Width; + count -= clip; + } + + if (x < 0) { + /* left clip */ + skip = -x; + x = 0; + count -= skip; + } + + rb->PutRow(ctx, rb, count, x, y, + (const GLubyte *) values + skip * valueSize, NULL); +} + + +/** + * Wrapper for gl_renderbuffer::GetRow() which does clipping. + * \param valueSize size of each value (pixel) in bytes + */ +void +_swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, GLint x, GLint y, + GLvoid *values, GLuint valueSize) +{ + GLint skip = 0; + + if (y < 0 || y >= (GLint) rb->Height) + return; /* above or below */ + + if (x + (GLint) count <= 0 || x >= (GLint) rb->Width) + return; /* entirely left or right */ + + if (x + count > rb->Width) { + /* right clip */ + GLint clip = x + count - rb->Width; + count -= clip; + } + + if (x < 0) { + /* left clip */ + skip = -x; + x = 0; + count -= skip; + } + + rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize); +} + + +/** + * Get RGBA pixels from the given renderbuffer. Put the pixel colors into + * the span's specular color arrays. The specular color arrays should no + * longer be needed by time this function is called. + * Used by blending, logicop and masking functions. + * \return pointer to the colors we read. + */ +void * +_swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb, + SWspan *span) +{ + const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType); + void *rbPixels; + + /* + * Point rbPixels to a temporary space (use specular color arrays). + */ + rbPixels = span->array->attribs[FRAG_ATTRIB_COL1]; + + /* Get destination values from renderbuffer */ + if (span->arrayMask & SPAN_XY) { + _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y, + rbPixels, pixelSize); + } + else { + _swrast_get_row(ctx, rb, span->end, span->x, span->y, + rbPixels, pixelSize); + } + + return rbPixels; +} diff --git a/mesalib/src/mesa/swrast/s_span.h b/mesalib/src/mesa/swrast/s_span.h new file mode 100644 index 000000000..0eabae20e --- /dev/null +++ b/mesalib/src/mesa/swrast/s_span.h @@ -0,0 +1,226 @@ +/* + * Mesa 3-D graphics library + * Version: 7.5 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * Copyright (C) 2009 VMware, Inc. All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_SPAN_H +#define S_SPAN_H + + +#include "swrast.h" + + +/** + * \defgroup SpanFlags + * Special bitflags to describe span data. + * + * In general, the point/line/triangle functions interpolate/emit the + * attributes specified by swrast->_ActiveAttribs (i.e. FRAT_BIT_* values). + * Some things don't fit into that, though, so we have these flags. + */ +/*@{*/ +#define SPAN_RGBA 0x01 /**< interpMask and arrayMask */ +#define SPAN_INDEX 0x02 /**< interpMask and arrayMask */ +#define SPAN_Z 0x04 /**< interpMask and arrayMask */ +#define SPAN_FLAT 0x08 /**< interpMask: flat shading? */ +#define SPAN_XY 0x10 /**< array.x[], y[] valid? */ +#define SPAN_MASK 0x20 /**< was array.mask[] filled in by caller? */ +#define SPAN_LAMBDA 0x40 /**< array.lambda[] valid? */ +#define SPAN_COVERAGE 0x80 /**< array.coverage[] valid? */ +/*@}*/ + + +/** + * \sw_span_arrays + * \brief Arrays of fragment values. + * + * These will either be computed from the span x/xStep values or + * filled in by glDraw/CopyPixels, etc. + * These arrays are separated out of sw_span to conserve memory. + */ +typedef struct sw_span_arrays +{ + /** Per-fragment attributes (indexed by FRAG_ATTRIB_* tokens) */ + /* XXX someday look at transposing first two indexes for better memory + * access pattern. + */ + GLfloat attribs[FRAG_ATTRIB_MAX][MAX_WIDTH][4]; + + /** This mask indicates which fragments are alive or culled */ + GLubyte mask[MAX_WIDTH]; + + GLenum ChanType; /**< Color channel type, GL_UNSIGNED_BYTE, GL_FLOAT */ + + /** Attribute arrays that don't fit into attribs[] array above */ + /*@{*/ + GLubyte rgba8[MAX_WIDTH][4]; + GLushort rgba16[MAX_WIDTH][4]; + GLchan (*rgba)[4]; /** either == rgba8 or rgba16 */ + GLint x[MAX_WIDTH]; /**< fragment X coords */ + GLint y[MAX_WIDTH]; /**< fragment Y coords */ + GLuint z[MAX_WIDTH]; /**< fragment Z coords */ + GLuint index[MAX_WIDTH]; /**< Color indexes */ + GLfloat lambda[MAX_TEXTURE_COORD_UNITS][MAX_WIDTH]; /**< Texture LOD */ + GLfloat coverage[MAX_WIDTH]; /**< Fragment coverage for AA/smoothing */ + /*@}*/ +} SWspanarrays; + + +/** + * The SWspan structure describes the colors, Z, fogcoord, texcoords, + * etc for either a horizontal run or an array of independent pixels. + * We can either specify a base/step to indicate interpolated values, or + * fill in explicit arrays of values. The interpMask and arrayMask bitfields + * indicate which attributes are active interpolants or arrays, respectively. + * + * It would be interesting to experiment with multiprocessor rasterization + * with this structure. The triangle rasterizer could simply emit a + * stream of these structures which would be consumed by one or more + * span-processing threads which could run in parallel. + */ +typedef struct sw_span +{ + /** Coord of first fragment in horizontal span/run */ + GLint x, y; + + /** Number of fragments in the span */ + GLuint end; + + /** for clipping left edge of spans */ + GLuint leftClip; + + /** This flag indicates that mask[] array is effectively filled with ones */ + GLboolean writeAll; + + /** either GL_POLYGON, GL_LINE, GL_POLYGON, GL_BITMAP */ + GLenum primitive; + + /** 0 = front-facing span, 1 = back-facing span (for two-sided stencil) */ + GLuint facing; + + /** + * This bitmask (of \link SpanFlags SPAN_* flags\endlink) indicates + * which of the attrStart/StepX/StepY variables are relevant. + */ + GLbitfield interpMask; + + /** Fragment attribute interpolants */ + GLfloat attrStart[FRAG_ATTRIB_MAX][4]; /**< initial value */ + GLfloat attrStepX[FRAG_ATTRIB_MAX][4]; /**< dvalue/dx */ + GLfloat attrStepY[FRAG_ATTRIB_MAX][4]; /**< dvalue/dy */ + + /* XXX the rest of these will go away eventually... */ + + /* For horizontal spans, step is the partial derivative wrt X. + * For lines, step is the delta from one fragment to the next. + */ + GLfixed red, redStep; + GLfixed green, greenStep; + GLfixed blue, blueStep; + GLfixed alpha, alphaStep; + GLfixed index, indexStep; + GLfixed z, zStep; /**< XXX z should probably be GLuint */ + GLfixed intTex[2], intTexStep[2]; /**< (s,t) for unit[0] only */ + + /** + * This bitmask (of \link SpanFlags SPAN_* flags\endlink) indicates + * which of the fragment arrays in the span_arrays struct are relevant. + */ + GLbitfield arrayMask; + + GLbitfield arrayAttribs; + + /** + * We store the arrays of fragment values in a separate struct so + * that we can allocate sw_span structs on the stack without using + * a lot of memory. The span_arrays struct is about 1.4MB while the + * sw_span struct is only about 512 bytes. + */ + SWspanarrays *array; +} SWspan; + + + +#define INIT_SPAN(S, PRIMITIVE) \ +do { \ + (S).primitive = (PRIMITIVE); \ + (S).interpMask = 0x0; \ + (S).arrayMask = 0x0; \ + (S).arrayAttribs = 0x0; \ + (S).end = 0; \ + (S).leftClip = 0; \ + (S).facing = 0; \ + (S).array = SWRAST_CONTEXT(ctx)->SpanArrays; \ +} while (0) + + + +extern void +_swrast_span_default_attribs(GLcontext *ctx, SWspan *span); + +extern void +_swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span ); + +extern GLfloat +_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy, + GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH, + GLfloat s, GLfloat t, GLfloat q, GLfloat invQ); + +extern void +_swrast_write_index_span( GLcontext *ctx, SWspan *span); + + +extern void +_swrast_write_rgba_span( GLcontext *ctx, SWspan *span); + + +extern void +_swrast_read_rgba_span(GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint n, GLint x, GLint y, GLenum type, GLvoid *rgba); + +extern void +_swrast_read_index_span( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint n, GLint x, GLint y, GLuint indx[] ); + +extern void +_swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, const GLint x[], const GLint y[], + void *values, GLuint valueSize); + +extern void +_swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, GLint x, GLint y, + const GLvoid *values, GLuint valueSize); + +extern void +_swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, GLint x, GLint y, + GLvoid *values, GLuint valueSize); + + +extern void * +_swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb, + SWspan *span); + +#endif diff --git a/mesalib/src/mesa/swrast/s_spantemp.h b/mesalib/src/mesa/swrast/s_spantemp.h new file mode 100644 index 000000000..bab2ca737 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_spantemp.h @@ -0,0 +1,235 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.1 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/* + * Templates for the span/pixel-array write/read functions called via + * the gl_renderbuffer's GetRow, GetValues, PutRow, PutMonoRow, PutValues + * and PutMonoValues functions. + * + * Define the following macros before including this file: + * NAME(BASE) to generate the function name (i.e. add prefix or suffix) + * RB_TYPE the renderbuffer DataType + * CI_MODE if set, color index mode, else RGBA + * SPAN_VARS to declare any local variables + * INIT_PIXEL_PTR(P, X, Y) to initialize a pointer to a pixel + * INC_PIXEL_PTR(P) to increment a pixel pointer by one pixel + * STORE_PIXEL(DST, X, Y, VALUE) to store pixel values in buffer + * FETCH_PIXEL(DST, SRC) to fetch pixel values from buffer + * + * Note that in the STORE_PIXEL macros, we also pass in the (X,Y) coordinates + * for the pixels to be stored. This is useful when dithering and probably + * ignored otherwise. + */ + +#include "main/macros.h" + + +#ifdef CI_MODE +#define RB_COMPONENTS 1 +#elif !defined(RB_COMPONENTS) +#define RB_COMPONENTS 4 +#endif + + +static void +NAME(get_row)( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, GLint x, GLint y, void *values ) +{ +#ifdef SPAN_VARS + SPAN_VARS +#endif +#ifdef CI_MODE + RB_TYPE *dest = (RB_TYPE *) values; +#else + RB_TYPE (*dest)[RB_COMPONENTS] = (RB_TYPE (*)[RB_COMPONENTS]) values; +#endif + GLuint i; + INIT_PIXEL_PTR(pixel, x, y); + for (i = 0; i < count; i++) { + FETCH_PIXEL(dest[i], pixel); + INC_PIXEL_PTR(pixel); + } + (void) rb; +} + + +static void +NAME(get_values)( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, const GLint x[], const GLint y[], void *values ) +{ +#ifdef SPAN_VARS + SPAN_VARS +#endif +#ifdef CI_MODE + RB_TYPE *dest = (RB_TYPE *) values; +#else + RB_TYPE (*dest)[RB_COMPONENTS] = (RB_TYPE (*)[RB_COMPONENTS]) values; +#endif + GLuint i; + for (i = 0; i < count; i++) { + INIT_PIXEL_PTR(pixel, x[i], y[i]); + FETCH_PIXEL(dest[i], pixel); + } + (void) rb; +} + + +static void +NAME(put_row)( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, GLint x, GLint y, + const void *values, const GLubyte mask[] ) +{ +#ifdef SPAN_VARS + SPAN_VARS +#endif + const RB_TYPE (*src)[RB_COMPONENTS] = (const RB_TYPE (*)[RB_COMPONENTS]) values; + GLuint i; + INIT_PIXEL_PTR(pixel, x, y); + if (mask) { + for (i = 0; i < count; i++) { + if (mask[i]) { + STORE_PIXEL(pixel, x + i, y, src[i]); + } + INC_PIXEL_PTR(pixel); + } + } + else { + for (i = 0; i < count; i++) { + STORE_PIXEL(pixel, x + i, y, src[i]); + INC_PIXEL_PTR(pixel); + } + } + (void) rb; +} + + +#if !defined(CI_MODE) +static void +NAME(put_row_rgb)( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, GLint x, GLint y, + const void *values, const GLubyte mask[] ) +{ +#ifdef SPAN_VARS + SPAN_VARS +#endif + const RB_TYPE (*src)[3] = (const RB_TYPE (*)[3]) values; + GLuint i; + INIT_PIXEL_PTR(pixel, x, y); + for (i = 0; i < count; i++) { + if (!mask || mask[i]) { +#ifdef STORE_PIXEL_RGB + STORE_PIXEL_RGB(pixel, x + i, y, src[i]); +#else + STORE_PIXEL(pixel, x + i, y, src[i]); +#endif + } + INC_PIXEL_PTR(pixel); + } + (void) rb; +} +#endif + + +static void +NAME(put_mono_row)( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, GLint x, GLint y, + const void *value, const GLubyte mask[] ) +{ +#ifdef SPAN_VARS + SPAN_VARS +#endif + const RB_TYPE *src = (const RB_TYPE *) value; + GLuint i; + INIT_PIXEL_PTR(pixel, x, y); + if (mask) { + for (i = 0; i < count; i++) { + if (mask[i]) { + STORE_PIXEL(pixel, x + i, y, src); + } + INC_PIXEL_PTR(pixel); + } + } + else { + for (i = 0; i < count; i++) { + STORE_PIXEL(pixel, x + i, y, src); + INC_PIXEL_PTR(pixel); + } + } + (void) rb; +} + + +static void +NAME(put_values)( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, const GLint x[], const GLint y[], + const void *values, const GLubyte mask[] ) +{ +#ifdef SPAN_VARS + SPAN_VARS +#endif + const RB_TYPE (*src)[RB_COMPONENTS] = (const RB_TYPE (*)[RB_COMPONENTS]) values; + GLuint i; + ASSERT(mask); + for (i = 0; i < count; i++) { + if (mask[i]) { + INIT_PIXEL_PTR(pixel, x[i], y[i]); + STORE_PIXEL(pixel, x[i], y[i], src[i]); + } + } + (void) rb; +} + + +static void +NAME(put_mono_values)( GLcontext *ctx, struct gl_renderbuffer *rb, + GLuint count, const GLint x[], const GLint y[], + const void *value, const GLubyte mask[] ) +{ +#ifdef SPAN_VARS + SPAN_VARS +#endif + const RB_TYPE *src = (const RB_TYPE *) value; + GLuint i; + ASSERT(mask); + for (i = 0; i < count; i++) { + if (mask[i]) { + INIT_PIXEL_PTR(pixel, x[i], y[i]); + STORE_PIXEL(pixel, x[i], y[i], src); + } + } + (void) rb; +} + + +#undef NAME +#undef RB_TYPE +#undef RB_COMPONENTS +#undef CI_MODE +#undef SPAN_VARS +#undef INIT_PIXEL_PTR +#undef INC_PIXEL_PTR +#undef STORE_PIXEL +#undef STORE_PIXEL_RGB +#undef FETCH_PIXEL diff --git a/mesalib/src/mesa/swrast/s_stencil.c b/mesalib/src/mesa/swrast/s_stencil.c new file mode 100644 index 000000000..e9e9d3a4f --- /dev/null +++ b/mesalib/src/mesa/swrast/s_stencil.c @@ -0,0 +1,1245 @@ +/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/imports.h" + +#include "s_context.h" +#include "s_depth.h" +#include "s_stencil.h" +#include "s_span.h" + + + +/* Stencil Logic: + +IF stencil test fails THEN + Apply fail-op to stencil value + Don't write the pixel (RGBA,Z) +ELSE + IF doing depth test && depth test fails THEN + Apply zfail-op to stencil value + Write RGBA and Z to appropriate buffers + ELSE + Apply zpass-op to stencil value +ENDIF + +*/ + + +/** + * Apply the given stencil operator to the array of stencil values. + * Don't touch stencil[i] if mask[i] is zero. + * Input: n - size of stencil array + * oper - the stencil buffer operator + * face - 0 or 1 for front or back face operation + * stencil - array of stencil values + * mask - array [n] of flag: 1=apply operator, 0=don't apply operator + * Output: stencil - modified values + */ +static void +apply_stencil_op( const GLcontext *ctx, GLenum oper, GLuint face, + GLuint n, GLstencil stencil[], const GLubyte mask[] ) +{ + const GLstencil ref = ctx->Stencil.Ref[face]; + const GLstencil wrtmask = ctx->Stencil.WriteMask[face]; + const GLstencil invmask = (GLstencil) (~wrtmask); + const GLstencil stencilMax = (1 << ctx->DrawBuffer->Visual.stencilBits) - 1; + GLuint i; + + switch (oper) { + case GL_KEEP: + /* do nothing */ + break; + case GL_ZERO: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + stencil[i] = 0; + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + stencil[i] = (GLstencil) (stencil[i] & invmask); + } + } + } + break; + case GL_REPLACE: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + stencil[i] = ref; + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil s = stencil[i]; + stencil[i] = (GLstencil) ((invmask & s ) | (wrtmask & ref)); + } + } + } + break; + case GL_INCR: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil s = stencil[i]; + if (s < stencilMax) { + stencil[i] = (GLstencil) (s+1); + } + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + /* VERIFY logic of adding 1 to a write-masked value */ + GLstencil s = stencil[i]; + if (s < stencilMax) { + stencil[i] = (GLstencil) ((invmask & s) | (wrtmask & (s+1))); + } + } + } + } + break; + case GL_DECR: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil s = stencil[i]; + if (s>0) { + stencil[i] = (GLstencil) (s-1); + } + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + /* VERIFY logic of subtracting 1 to a write-masked value */ + GLstencil s = stencil[i]; + if (s>0) { + stencil[i] = (GLstencil) ((invmask & s) | (wrtmask & (s-1))); + } + } + } + } + break; + case GL_INCR_WRAP_EXT: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + stencil[i]++; + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil s = stencil[i]; + stencil[i] = (GLstencil) ((invmask & s) | (wrtmask & (s+1))); + } + } + } + break; + case GL_DECR_WRAP_EXT: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + stencil[i]--; + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil s = stencil[i]; + stencil[i] = (GLstencil) ((invmask & s) | (wrtmask & (s-1))); + } + } + } + break; + case GL_INVERT: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil s = stencil[i]; + stencil[i] = (GLstencil) ~s; + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil s = stencil[i]; + stencil[i] = (GLstencil) ((invmask & s) | (wrtmask & ~s)); + } + } + } + break; + default: + _mesa_problem(ctx, "Bad stencil op in apply_stencil_op"); + } +} + + + + +/** + * Apply stencil test to an array of stencil values (before depth buffering). + * Input: face - 0 or 1 for front or back-face polygons + * n - number of pixels in the array + * stencil - array of [n] stencil values + * mask - array [n] of flag: 0=skip the pixel, 1=stencil the pixel + * Output: mask - pixels which fail the stencil test will have their + * mask flag set to 0. + * stencil - updated stencil values (where the test passed) + * Return: GL_FALSE = all pixels failed, GL_TRUE = zero or more pixels passed. + */ +static GLboolean +do_stencil_test( GLcontext *ctx, GLuint face, GLuint n, GLstencil stencil[], + GLubyte mask[] ) +{ + GLubyte fail[MAX_WIDTH]; + GLboolean allfail = GL_FALSE; + GLuint i; + const GLuint valueMask = ctx->Stencil.ValueMask[face]; + const GLstencil r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); + GLstencil s; + + ASSERT(n <= MAX_WIDTH); + + /* + * Perform stencil test. The results of this operation are stored + * in the fail[] array: + * IF fail[i] is non-zero THEN + * the stencil fail operator is to be applied + * ELSE + * the stencil fail operator is not to be applied + * ENDIF + */ + switch (ctx->Stencil.Function[face]) { + case GL_NEVER: + /* never pass; always fail */ + for (i=0;i<n;i++) { + if (mask[i]) { + mask[i] = 0; + fail[i] = 1; + } + else { + fail[i] = 0; + } + } + allfail = GL_TRUE; + break; + case GL_LESS: + for (i=0;i<n;i++) { + if (mask[i]) { + s = (GLstencil) (stencil[i] & valueMask); + if (r < s) { + /* passed */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_LEQUAL: + for (i=0;i<n;i++) { + if (mask[i]) { + s = (GLstencil) (stencil[i] & valueMask); + if (r <= s) { + /* pass */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_GREATER: + for (i=0;i<n;i++) { + if (mask[i]) { + s = (GLstencil) (stencil[i] & valueMask); + if (r > s) { + /* passed */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_GEQUAL: + for (i=0;i<n;i++) { + if (mask[i]) { + s = (GLstencil) (stencil[i] & valueMask); + if (r >= s) { + /* passed */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_EQUAL: + for (i=0;i<n;i++) { + if (mask[i]) { + s = (GLstencil) (stencil[i] & valueMask); + if (r == s) { + /* passed */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_NOTEQUAL: + for (i=0;i<n;i++) { + if (mask[i]) { + s = (GLstencil) (stencil[i] & valueMask); + if (r != s) { + /* passed */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_ALWAYS: + /* always pass */ + for (i=0;i<n;i++) { + fail[i] = 0; + } + break; + default: + _mesa_problem(ctx, "Bad stencil func in gl_stencil_span"); + return 0; + } + + if (ctx->Stencil.FailFunc[face] != GL_KEEP) { + apply_stencil_op( ctx, ctx->Stencil.FailFunc[face], face, n, stencil, fail ); + } + + return !allfail; +} + + +/** + * Compute the zpass/zfail masks by comparing the pre- and post-depth test + * masks. + */ +static INLINE void +compute_pass_fail_masks(GLuint n, const GLubyte origMask[], + const GLubyte newMask[], + GLubyte passMask[], GLubyte failMask[]) +{ + GLuint i; + for (i = 0; i < n; i++) { + ASSERT(newMask[i] == 0 || newMask[i] == 1); + passMask[i] = origMask[i] & newMask[i]; + failMask[i] = origMask[i] & (newMask[i] ^ 1); + } +} + + +/** + * Apply stencil and depth testing to the span of pixels. + * Both software and hardware stencil buffers are acceptable. + * Input: n - number of pixels in the span + * x, y - location of leftmost pixel in span + * z - array [n] of z values + * mask - array [n] of flags (1=test this pixel, 0=skip the pixel) + * Output: mask - array [n] of flags (1=stencil and depth test passed) + * Return: GL_FALSE - all fragments failed the testing + * GL_TRUE - one or more fragments passed the testing + * + */ +static GLboolean +stencil_and_ztest_span(GLcontext *ctx, SWspan *span, GLuint face) +{ + struct gl_framebuffer *fb = ctx->DrawBuffer; + struct gl_renderbuffer *rb = fb->_StencilBuffer; + GLstencil stencilRow[MAX_WIDTH]; + GLstencil *stencil; + const GLuint n = span->end; + const GLint x = span->x; + const GLint y = span->y; + GLubyte *mask = span->array->mask; + + ASSERT((span->arrayMask & SPAN_XY) == 0); + ASSERT(ctx->Stencil.Enabled); + ASSERT(n <= MAX_WIDTH); +#ifdef DEBUG + if (ctx->Depth.Test) { + ASSERT(span->arrayMask & SPAN_Z); + } +#endif + + stencil = (GLstencil *) rb->GetPointer(ctx, rb, x, y); + if (!stencil) { + rb->GetRow(ctx, rb, n, x, y, stencilRow); + stencil = stencilRow; + } + + /* + * Apply the stencil test to the fragments. + * failMask[i] is 1 if the stencil test failed. + */ + if (do_stencil_test( ctx, face, n, stencil, mask ) == GL_FALSE) { + /* all fragments failed the stencil test, we're done. */ + span->writeAll = GL_FALSE; + if (!rb->GetPointer(ctx, rb, 0, 0)) { + /* put updated stencil values into buffer */ + rb->PutRow(ctx, rb, n, x, y, stencil, NULL); + } + return GL_FALSE; + } + + /* + * Some fragments passed the stencil test, apply depth test to them + * and apply Zpass and Zfail stencil ops. + */ + if (ctx->Depth.Test == GL_FALSE) { + /* + * No depth buffer, just apply zpass stencil function to active pixels. + */ + apply_stencil_op( ctx, ctx->Stencil.ZPassFunc[face], face, n, stencil, mask ); + } + else { + /* + * Perform depth buffering, then apply zpass or zfail stencil function. + */ + GLubyte passMask[MAX_WIDTH], failMask[MAX_WIDTH], origMask[MAX_WIDTH]; + + /* save the current mask bits */ + _mesa_memcpy(origMask, mask, n * sizeof(GLubyte)); + + /* apply the depth test */ + _swrast_depth_test_span(ctx, span); + + compute_pass_fail_masks(n, origMask, mask, passMask, failMask); + + /* apply the pass and fail operations */ + if (ctx->Stencil.ZFailFunc[face] != GL_KEEP) { + apply_stencil_op( ctx, ctx->Stencil.ZFailFunc[face], face, + n, stencil, failMask ); + } + if (ctx->Stencil.ZPassFunc[face] != GL_KEEP) { + apply_stencil_op( ctx, ctx->Stencil.ZPassFunc[face], face, + n, stencil, passMask ); + } + } + + /* + * Write updated stencil values back into hardware stencil buffer. + */ + if (!rb->GetPointer(ctx, rb, 0, 0)) { + rb->PutRow(ctx, rb, n, x, y, stencil, NULL); + } + + span->writeAll = GL_FALSE; + + return GL_TRUE; /* one or more fragments passed both tests */ +} + + + +/* + * Return the address of a stencil buffer value given the window coords: + */ +#define STENCIL_ADDRESS(X, Y) (stencilStart + (Y) * stride + (X)) + + + +/** + * Apply the given stencil operator for each pixel in the array whose + * mask flag is set. + * \note This is for software stencil buffers only. + * Input: n - number of pixels in the span + * x, y - array of [n] pixels + * operator - the stencil buffer operator + * mask - array [n] of flag: 1=apply operator, 0=don't apply operator + */ +static void +apply_stencil_op_to_pixels( GLcontext *ctx, + GLuint n, const GLint x[], const GLint y[], + GLenum oper, GLuint face, const GLubyte mask[] ) +{ + struct gl_framebuffer *fb = ctx->DrawBuffer; + struct gl_renderbuffer *rb = fb->_StencilBuffer; + const GLstencil stencilMax = (1 << fb->Visual.stencilBits) - 1; + const GLstencil ref = ctx->Stencil.Ref[face]; + const GLstencil wrtmask = ctx->Stencil.WriteMask[face]; + const GLstencil invmask = (GLstencil) (~wrtmask); + GLuint i; + GLstencil *stencilStart = (GLubyte *) rb->Data; + const GLuint stride = rb->Width; + + ASSERT(rb->GetPointer(ctx, rb, 0, 0)); + ASSERT(sizeof(GLstencil) == 1); + + switch (oper) { + case GL_KEEP: + /* do nothing */ + break; + case GL_ZERO: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + *sptr = 0; + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + *sptr = (GLstencil) (invmask & *sptr); + } + } + } + break; + case GL_REPLACE: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + *sptr = ref; + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + *sptr = (GLstencil) ((invmask & *sptr ) | (wrtmask & ref)); + } + } + } + break; + case GL_INCR: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + if (*sptr < stencilMax) { + *sptr = (GLstencil) (*sptr + 1); + } + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + if (*sptr < stencilMax) { + *sptr = (GLstencil) ((invmask & *sptr) | (wrtmask & (*sptr+1))); + } + } + } + } + break; + case GL_DECR: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + if (*sptr>0) { + *sptr = (GLstencil) (*sptr - 1); + } + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + if (*sptr>0) { + *sptr = (GLstencil) ((invmask & *sptr) | (wrtmask & (*sptr-1))); + } + } + } + } + break; + case GL_INCR_WRAP_EXT: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + *sptr = (GLstencil) (*sptr + 1); + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + *sptr = (GLstencil) ((invmask & *sptr) | (wrtmask & (*sptr+1))); + } + } + } + break; + case GL_DECR_WRAP_EXT: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + *sptr = (GLstencil) (*sptr - 1); + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + *sptr = (GLstencil) ((invmask & *sptr) | (wrtmask & (*sptr-1))); + } + } + } + break; + case GL_INVERT: + if (invmask==0) { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + *sptr = (GLstencil) (~*sptr); + } + } + } + else { + for (i=0;i<n;i++) { + if (mask[i]) { + GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); + *sptr = (GLstencil) ((invmask & *sptr) | (wrtmask & ~*sptr)); + } + } + } + break; + default: + _mesa_problem(ctx, "Bad stencilop in apply_stencil_op_to_pixels"); + } +} + + + +/** + * Apply stencil test to an array of pixels before depth buffering. + * + * \note Used for software stencil buffer only. + * Input: n - number of pixels in the span + * x, y - array of [n] pixels to stencil + * mask - array [n] of flag: 0=skip the pixel, 1=stencil the pixel + * Output: mask - pixels which fail the stencil test will have their + * mask flag set to 0. + * \return GL_FALSE = all pixels failed, GL_TRUE = zero or more pixels passed. + */ +static GLboolean +stencil_test_pixels( GLcontext *ctx, GLuint face, GLuint n, + const GLint x[], const GLint y[], GLubyte mask[] ) +{ + const struct gl_framebuffer *fb = ctx->DrawBuffer; + struct gl_renderbuffer *rb = fb->_StencilBuffer; + GLubyte fail[MAX_WIDTH]; + GLstencil r, s; + GLuint i; + GLboolean allfail = GL_FALSE; + const GLuint valueMask = ctx->Stencil.ValueMask[face]; + const GLstencil *stencilStart = (GLstencil *) rb->Data; + const GLuint stride = rb->Width; + + ASSERT(rb->GetPointer(ctx, rb, 0, 0)); + ASSERT(sizeof(GLstencil) == 1); + + /* + * Perform stencil test. The results of this operation are stored + * in the fail[] array: + * IF fail[i] is non-zero THEN + * the stencil fail operator is to be applied + * ELSE + * the stencil fail operator is not to be applied + * ENDIF + */ + + switch (ctx->Stencil.Function[face]) { + case GL_NEVER: + /* always fail */ + for (i=0;i<n;i++) { + if (mask[i]) { + mask[i] = 0; + fail[i] = 1; + } + else { + fail[i] = 0; + } + } + allfail = GL_TRUE; + break; + case GL_LESS: + r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); + for (i=0;i<n;i++) { + if (mask[i]) { + const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); + s = (GLstencil) (*sptr & valueMask); + if (r < s) { + /* passed */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_LEQUAL: + r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); + for (i=0;i<n;i++) { + if (mask[i]) { + const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); + s = (GLstencil) (*sptr & valueMask); + if (r <= s) { + /* pass */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_GREATER: + r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); + for (i=0;i<n;i++) { + if (mask[i]) { + const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); + s = (GLstencil) (*sptr & valueMask); + if (r > s) { + /* passed */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_GEQUAL: + r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); + for (i=0;i<n;i++) { + if (mask[i]) { + const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); + s = (GLstencil) (*sptr & valueMask); + if (r >= s) { + /* passed */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_EQUAL: + r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); + for (i=0;i<n;i++) { + if (mask[i]) { + const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); + s = (GLstencil) (*sptr & valueMask); + if (r == s) { + /* passed */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_NOTEQUAL: + r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); + for (i=0;i<n;i++) { + if (mask[i]) { + const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); + s = (GLstencil) (*sptr & valueMask); + if (r != s) { + /* passed */ + fail[i] = 0; + } + else { + fail[i] = 1; + mask[i] = 0; + } + } + else { + fail[i] = 0; + } + } + break; + case GL_ALWAYS: + /* always pass */ + for (i=0;i<n;i++) { + fail[i] = 0; + } + break; + default: + _mesa_problem(ctx, "Bad stencil func in gl_stencil_pixels"); + return 0; + } + + if (ctx->Stencil.FailFunc[face] != GL_KEEP) { + apply_stencil_op_to_pixels( ctx, n, x, y, ctx->Stencil.FailFunc[face], + face, fail ); + } + + return !allfail; +} + + + + +/** + * Apply stencil and depth testing to an array of pixels. + * This is used both for software and hardware stencil buffers. + * + * The comments in this function are a bit sparse but the code is + * almost identical to stencil_and_ztest_span(), which is well + * commented. + * + * Input: n - number of pixels in the array + * x, y - array of [n] pixel positions + * z - array [n] of z values + * mask - array [n] of flags (1=test this pixel, 0=skip the pixel) + * Output: mask - array [n] of flags (1=stencil and depth test passed) + * Return: GL_FALSE - all fragments failed the testing + * GL_TRUE - one or more fragments passed the testing + */ +static GLboolean +stencil_and_ztest_pixels( GLcontext *ctx, SWspan *span, GLuint face ) +{ + GLubyte passMask[MAX_WIDTH], failMask[MAX_WIDTH], origMask[MAX_WIDTH]; + struct gl_framebuffer *fb = ctx->DrawBuffer; + struct gl_renderbuffer *rb = fb->_StencilBuffer; + const GLuint n = span->end; + const GLint *x = span->array->x; + const GLint *y = span->array->y; + GLubyte *mask = span->array->mask; + + ASSERT(span->arrayMask & SPAN_XY); + ASSERT(ctx->Stencil.Enabled); + ASSERT(n <= MAX_WIDTH); + + if (!rb->GetPointer(ctx, rb, 0, 0)) { + /* No direct access */ + GLstencil stencil[MAX_WIDTH]; + + ASSERT(rb->DataType == GL_UNSIGNED_BYTE); + _swrast_get_values(ctx, rb, n, x, y, stencil, sizeof(GLubyte)); + + _mesa_memcpy(origMask, mask, n * sizeof(GLubyte)); + + (void) do_stencil_test(ctx, face, n, stencil, mask); + + if (ctx->Depth.Test == GL_FALSE) { + apply_stencil_op(ctx, ctx->Stencil.ZPassFunc[face], face, + n, stencil, mask); + } + else { + GLubyte tmpMask[MAX_WIDTH]; + _mesa_memcpy(tmpMask, mask, n * sizeof(GLubyte)); + + _swrast_depth_test_span(ctx, span); + + compute_pass_fail_masks(n, tmpMask, mask, passMask, failMask); + + if (ctx->Stencil.ZFailFunc[face] != GL_KEEP) { + apply_stencil_op(ctx, ctx->Stencil.ZFailFunc[face], face, + n, stencil, failMask); + } + if (ctx->Stencil.ZPassFunc[face] != GL_KEEP) { + apply_stencil_op(ctx, ctx->Stencil.ZPassFunc[face], face, + n, stencil, passMask); + } + } + + /* Write updated stencil values into hardware stencil buffer */ + rb->PutValues(ctx, rb, n, x, y, stencil, origMask); + + return GL_TRUE; + } + else { + /* Direct access to stencil buffer */ + + if (stencil_test_pixels(ctx, face, n, x, y, mask) == GL_FALSE) { + /* all fragments failed the stencil test, we're done. */ + return GL_FALSE; + } + + if (ctx->Depth.Test==GL_FALSE) { + apply_stencil_op_to_pixels(ctx, n, x, y, + ctx->Stencil.ZPassFunc[face], face, mask); + } + else { + _mesa_memcpy(origMask, mask, n * sizeof(GLubyte)); + + _swrast_depth_test_span(ctx, span); + + compute_pass_fail_masks(n, origMask, mask, passMask, failMask); + + if (ctx->Stencil.ZFailFunc[face] != GL_KEEP) { + apply_stencil_op_to_pixels(ctx, n, x, y, + ctx->Stencil.ZFailFunc[face], + face, failMask); + } + if (ctx->Stencil.ZPassFunc[face] != GL_KEEP) { + apply_stencil_op_to_pixels(ctx, n, x, y, + ctx->Stencil.ZPassFunc[face], + face, passMask); + } + } + + return GL_TRUE; /* one or more fragments passed both tests */ + } +} + + +/** + * /return GL_TRUE = one or more fragments passed, + * GL_FALSE = all fragments failed. + */ +GLboolean +_swrast_stencil_and_ztest_span(GLcontext *ctx, SWspan *span) +{ + const GLuint face = (span->facing == 0) ? 0 : ctx->Stencil._BackFace; + + if (span->arrayMask & SPAN_XY) + return stencil_and_ztest_pixels(ctx, span, face); + else + return stencil_and_ztest_span(ctx, span, face); +} + + +#if 0 +GLuint +clip_span(GLuint bufferWidth, GLuint bufferHeight, + GLint x, GLint y, GLuint *count) +{ + GLuint n = *count; + GLuint skipPixels = 0; + + if (y < 0 || y >= bufferHeight || x + n <= 0 || x >= bufferWidth) { + /* totally out of bounds */ + n = 0; + } + else { + /* left clip */ + if (x < 0) { + skipPixels = -x; + x = 0; + n -= skipPixels; + } + /* right clip */ + if (x + n > bufferWidth) { + GLint dx = x + n - bufferWidth; + n -= dx; + } + } + + *count = n; + + return skipPixels; +} +#endif + + +/** + * Return a span of stencil values from the stencil buffer. + * Used for glRead/CopyPixels + * Input: n - how many pixels + * x,y - location of first pixel + * Output: stencil - the array of stencil values + */ +void +_swrast_read_stencil_span(GLcontext *ctx, struct gl_renderbuffer *rb, + GLint n, GLint x, GLint y, GLstencil stencil[]) +{ + if (y < 0 || y >= (GLint) rb->Height || + x + n <= 0 || x >= (GLint) rb->Width) { + /* span is completely outside framebuffer */ + return; /* undefined values OK */ + } + + if (x < 0) { + GLint dx = -x; + x = 0; + n -= dx; + stencil += dx; + } + if (x + n > (GLint) rb->Width) { + GLint dx = x + n - rb->Width; + n -= dx; + } + if (n <= 0) { + return; + } + + rb->GetRow(ctx, rb, n, x, y, stencil); +} + + + +/** + * Write a span of stencil values to the stencil buffer. This function + * applies the stencil write mask when needed. + * Used for glDraw/CopyPixels + * Input: n - how many pixels + * x, y - location of first pixel + * stencil - the array of stencil values + */ +void +_swrast_write_stencil_span(GLcontext *ctx, GLint n, GLint x, GLint y, + const GLstencil stencil[] ) +{ + struct gl_framebuffer *fb = ctx->DrawBuffer; + struct gl_renderbuffer *rb = fb->_StencilBuffer; + const GLuint stencilMax = (1 << fb->Visual.stencilBits) - 1; + const GLuint stencilMask = ctx->Stencil.WriteMask[0]; + + if (y < 0 || y >= (GLint) rb->Height || + x + n <= 0 || x >= (GLint) rb->Width) { + /* span is completely outside framebuffer */ + return; /* undefined values OK */ + } + if (x < 0) { + GLint dx = -x; + x = 0; + n -= dx; + stencil += dx; + } + if (x + n > (GLint) rb->Width) { + GLint dx = x + n - rb->Width; + n -= dx; + } + if (n <= 0) { + return; + } + + if ((stencilMask & stencilMax) != stencilMax) { + /* need to apply writemask */ + GLstencil destVals[MAX_WIDTH], newVals[MAX_WIDTH]; + GLint i; + rb->GetRow(ctx, rb, n, x, y, destVals); + for (i = 0; i < n; i++) { + newVals[i] + = (stencil[i] & stencilMask) | (destVals[i] & ~stencilMask); + } + rb->PutRow(ctx, rb, n, x, y, newVals, NULL); + } + else { + rb->PutRow(ctx, rb, n, x, y, stencil, NULL); + } +} + + + +/** + * Clear the stencil buffer. + */ +void +_swrast_clear_stencil_buffer( GLcontext *ctx, struct gl_renderbuffer *rb ) +{ + const GLubyte stencilBits = ctx->DrawBuffer->Visual.stencilBits; + const GLuint mask = ctx->Stencil.WriteMask[0]; + const GLuint invMask = ~mask; + const GLuint clearVal = (ctx->Stencil.Clear & mask); + const GLuint stencilMax = (1 << stencilBits) - 1; + GLint x, y, width, height; + + if (!rb || mask == 0) + return; + + ASSERT(rb->DataType == GL_UNSIGNED_BYTE || + rb->DataType == GL_UNSIGNED_SHORT); + + ASSERT(rb->_BaseFormat == GL_STENCIL_INDEX); + + /* compute region to clear */ + x = ctx->DrawBuffer->_Xmin; + y = ctx->DrawBuffer->_Ymin; + width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; + height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; + + if (rb->GetPointer(ctx, rb, 0, 0)) { + /* Direct buffer access */ + if ((mask & stencilMax) != stencilMax) { + /* need to mask the clear */ + if (rb->DataType == GL_UNSIGNED_BYTE) { + GLint i, j; + for (i = 0; i < height; i++) { + GLubyte *stencil = (GLubyte*) rb->GetPointer(ctx, rb, x, y + i); + for (j = 0; j < width; j++) { + stencil[j] = (stencil[j] & invMask) | clearVal; + } + } + } + else { + GLint i, j; + for (i = 0; i < height; i++) { + GLushort *stencil = (GLushort*) rb->GetPointer(ctx, rb, x, y + i); + for (j = 0; j < width; j++) { + stencil[j] = (stencil[j] & invMask) | clearVal; + } + } + } + } + else { + /* no bit masking */ + if (width == (GLint) rb->Width && rb->DataType == GL_UNSIGNED_BYTE) { + /* optimized case */ + /* Note: bottom-to-top raster assumed! */ + GLubyte *stencil = (GLubyte *) rb->GetPointer(ctx, rb, x, y); + GLuint len = width * height * sizeof(GLubyte); + _mesa_memset(stencil, clearVal, len); + } + else { + /* general case */ + GLint i; + for (i = 0; i < height; i++) { + GLvoid *stencil = rb->GetPointer(ctx, rb, x, y + i); + if (rb->DataType == GL_UNSIGNED_BYTE) { + _mesa_memset(stencil, clearVal, width); + } + else { + _mesa_memset16((short unsigned int*) stencil, clearVal, width); + } + } + } + } + } + else { + /* no direct access */ + if ((mask & stencilMax) != stencilMax) { + /* need to mask the clear */ + if (rb->DataType == GL_UNSIGNED_BYTE) { + GLint i, j; + for (i = 0; i < height; i++) { + GLubyte stencil[MAX_WIDTH]; + rb->GetRow(ctx, rb, width, x, y + i, stencil); + for (j = 0; j < width; j++) { + stencil[j] = (stencil[j] & invMask) | clearVal; + } + rb->PutRow(ctx, rb, width, x, y + i, stencil, NULL); + } + } + else { + GLint i, j; + for (i = 0; i < height; i++) { + GLushort stencil[MAX_WIDTH]; + rb->GetRow(ctx, rb, width, x, y + i, stencil); + for (j = 0; j < width; j++) { + stencil[j] = (stencil[j] & invMask) | clearVal; + } + rb->PutRow(ctx, rb, width, x, y + i, stencil, NULL); + } + } + } + else { + /* no bit masking */ + const GLubyte clear8 = (GLubyte) clearVal; + const GLushort clear16 = (GLushort) clearVal; + const void *clear; + GLint i; + if (rb->DataType == GL_UNSIGNED_BYTE) { + clear = &clear8; + } + else { + clear = &clear16; + } + for (i = 0; i < height; i++) { + rb->PutMonoRow(ctx, rb, width, x, y + i, clear, NULL); + } + } + } +} diff --git a/mesalib/src/mesa/swrast/s_stencil.h b/mesalib/src/mesa/swrast/s_stencil.h new file mode 100644 index 000000000..cd6cbc57b --- /dev/null +++ b/mesalib/src/mesa/swrast/s_stencil.h @@ -0,0 +1,52 @@ +/* + * Mesa 3-D graphics library + * Version: 6.3 + * + * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_STENCIL_H +#define S_STENCIL_H + + +#include "swrast.h" + + + +extern GLboolean +_swrast_stencil_and_ztest_span(GLcontext *ctx, SWspan *span); + + +extern void +_swrast_read_stencil_span(GLcontext *ctx, struct gl_renderbuffer *rb, + GLint n, GLint x, GLint y, GLstencil stencil[]); + + +extern void +_swrast_write_stencil_span( GLcontext *ctx, GLint n, GLint x, GLint y, + const GLstencil stencil[] ); + + +extern void +_swrast_clear_stencil_buffer( GLcontext *ctx, struct gl_renderbuffer *rb ); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_texcombine.c b/mesalib/src/mesa/swrast/s_texcombine.c new file mode 100644 index 000000000..889164b98 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_texcombine.c @@ -0,0 +1,710 @@ +/* + * Mesa 3-D graphics library + * Version: 7.5 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * Copyright (C) 2009 VMware, Inc. All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/image.h" +#include "main/imports.h" +#include "main/pixel.h" +#include "shader/prog_instruction.h" + +#include "s_context.h" +#include "s_texcombine.h" + + +/** + * Pointer to array of float[4] + * This type makes the code below more concise and avoids a lot of casting. + */ +typedef float (*float4_array)[4]; + + +/** + * Return array of texels for given unit. + */ +static INLINE float4_array +get_texel_array(SWcontext *swrast, GLuint unit) +{ + return (float4_array) (swrast->TexelBuffer + unit * MAX_WIDTH * 4); +} + + + +/** + * Do texture application for: + * GL_EXT_texture_env_combine + * GL_ARB_texture_env_combine + * GL_EXT_texture_env_dot3 + * GL_ARB_texture_env_dot3 + * GL_ATI_texture_env_combine3 + * GL_NV_texture_env_combine4 + * conventional GL texture env modes + * + * \param ctx rendering context + * \param unit the texture combiner unit + * \param n number of fragments to process (span width) + * \param primary_rgba incoming fragment color array + * \param texelBuffer pointer to texel colors for all texture units + * + * \param rgba incoming/result fragment colors + */ +static void +texture_combine( GLcontext *ctx, GLuint unit, GLuint n, + const float4_array primary_rgba, + const GLfloat *texelBuffer, + GLchan (*rgbaChan)[4] ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]); + const struct gl_tex_env_combine_state *combine = textureUnit->_CurrentCombine; + float4_array argRGB[MAX_COMBINER_TERMS]; + float4_array argA[MAX_COMBINER_TERMS]; + const GLfloat scaleRGB = (GLfloat) (1 << combine->ScaleShiftRGB); + const GLfloat scaleA = (GLfloat) (1 << combine->ScaleShiftA); + const GLuint numArgsRGB = combine->_NumArgsRGB; + const GLuint numArgsA = combine->_NumArgsA; + GLfloat ccolor[MAX_COMBINER_TERMS][MAX_WIDTH][4]; /* temp color buffers */ + GLfloat rgba[MAX_WIDTH][4]; + GLuint i, term; + + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = CHAN_TO_FLOAT(rgbaChan[i][RCOMP]); + rgba[i][GCOMP] = CHAN_TO_FLOAT(rgbaChan[i][GCOMP]); + rgba[i][BCOMP] = CHAN_TO_FLOAT(rgbaChan[i][BCOMP]); + rgba[i][ACOMP] = CHAN_TO_FLOAT(rgbaChan[i][ACOMP]); + } + + /* + printf("modeRGB 0x%x modeA 0x%x srcRGB1 0x%x srcA1 0x%x srcRGB2 0x%x srcA2 0x%x\n", + combine->ModeRGB, + combine->ModeA, + combine->SourceRGB[0], + combine->SourceA[0], + combine->SourceRGB[1], + combine->SourceA[1]); + */ + + /* + * Do operand setup for up to 4 operands. Loop over the terms. + */ + for (term = 0; term < numArgsRGB; term++) { + const GLenum srcRGB = combine->SourceRGB[term]; + const GLenum operandRGB = combine->OperandRGB[term]; + + switch (srcRGB) { + case GL_TEXTURE: + argRGB[term] = get_texel_array(swrast, unit); + break; + case GL_PRIMARY_COLOR: + argRGB[term] = primary_rgba; + break; + case GL_PREVIOUS: + argRGB[term] = rgba; + break; + case GL_CONSTANT: + { + float4_array c = ccolor[term]; + GLfloat red = textureUnit->EnvColor[0]; + GLfloat green = textureUnit->EnvColor[1]; + GLfloat blue = textureUnit->EnvColor[2]; + GLfloat alpha = textureUnit->EnvColor[3]; + for (i = 0; i < n; i++) { + ASSIGN_4V(c[i], red, green, blue, alpha); + } + argRGB[term] = ccolor[term]; + } + break; + /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources. + */ + case GL_ZERO: + { + float4_array c = ccolor[term]; + for (i = 0; i < n; i++) { + ASSIGN_4V(c[i], 0.0F, 0.0F, 0.0F, 0.0F); + } + argRGB[term] = ccolor[term]; + } + break; + case GL_ONE: + { + float4_array c = ccolor[term]; + for (i = 0; i < n; i++) { + ASSIGN_4V(c[i], 1.0F, 1.0F, 1.0F, 1.0F); + } + argRGB[term] = ccolor[term]; + } + break; + default: + /* ARB_texture_env_crossbar source */ + { + const GLuint srcUnit = srcRGB - GL_TEXTURE0; + ASSERT(srcUnit < ctx->Const.MaxTextureUnits); + if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) + return; + argRGB[term] = get_texel_array(swrast, srcUnit); + } + } + + if (operandRGB != GL_SRC_COLOR) { + float4_array src = argRGB[term]; + float4_array dst = ccolor[term]; + + /* point to new arg[term] storage */ + argRGB[term] = ccolor[term]; + + switch (operandRGB) { + case GL_ONE_MINUS_SRC_COLOR: + for (i = 0; i < n; i++) { + dst[i][RCOMP] = 1.0F - src[i][RCOMP]; + dst[i][GCOMP] = 1.0F - src[i][GCOMP]; + dst[i][BCOMP] = 1.0F - src[i][BCOMP]; + } + break; + case GL_SRC_ALPHA: + for (i = 0; i < n; i++) { + dst[i][RCOMP] = + dst[i][GCOMP] = + dst[i][BCOMP] = src[i][ACOMP]; + } + break; + case GL_ONE_MINUS_SRC_ALPHA: + for (i = 0; i < n; i++) { + dst[i][RCOMP] = + dst[i][GCOMP] = + dst[i][BCOMP] = 1.0F - src[i][ACOMP]; + } + break; + default: + _mesa_problem(ctx, "Bad operandRGB"); + } + } + } + + /* + * Set up the argA[term] pointers + */ + for (term = 0; term < numArgsA; term++) { + const GLenum srcA = combine->SourceA[term]; + const GLenum operandA = combine->OperandA[term]; + + switch (srcA) { + case GL_TEXTURE: + argA[term] = get_texel_array(swrast, unit); + break; + case GL_PRIMARY_COLOR: + argA[term] = primary_rgba; + break; + case GL_PREVIOUS: + argA[term] = rgba; + break; + case GL_CONSTANT: + { + float4_array c = ccolor[term]; + GLfloat alpha = textureUnit->EnvColor[3]; + for (i = 0; i < n; i++) + c[i][ACOMP] = alpha; + argA[term] = ccolor[term]; + } + break; + /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources. + */ + case GL_ZERO: + { + float4_array c = ccolor[term]; + for (i = 0; i < n; i++) + c[i][ACOMP] = 0.0F; + argA[term] = ccolor[term]; + } + break; + case GL_ONE: + { + float4_array c = ccolor[term]; + for (i = 0; i < n; i++) + c[i][ACOMP] = 1.0F; + argA[term] = ccolor[term]; + } + break; + default: + /* ARB_texture_env_crossbar source */ + { + const GLuint srcUnit = srcA - GL_TEXTURE0; + ASSERT(srcUnit < ctx->Const.MaxTextureUnits); + if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) + return; + argA[term] = get_texel_array(swrast, srcUnit); + } + } + + if (operandA == GL_ONE_MINUS_SRC_ALPHA) { + float4_array src = argA[term]; + float4_array dst = ccolor[term]; + argA[term] = ccolor[term]; + for (i = 0; i < n; i++) { + dst[i][ACOMP] = 1.0F - src[i][ACOMP]; + } + } + } + + /* RGB channel combine */ + { + float4_array arg0 = argRGB[0]; + float4_array arg1 = argRGB[1]; + float4_array arg2 = argRGB[2]; + float4_array arg3 = argRGB[3]; + + switch (combine->ModeRGB) { + case GL_REPLACE: + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = arg0[i][RCOMP] * scaleRGB; + rgba[i][GCOMP] = arg0[i][GCOMP] * scaleRGB; + rgba[i][BCOMP] = arg0[i][BCOMP] * scaleRGB; + } + break; + case GL_MODULATE: + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * scaleRGB; + rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * scaleRGB; + rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * scaleRGB; + } + break; + case GL_ADD: + if (textureUnit->EnvMode == GL_COMBINE4_NV) { + /* (a * b) + (c * d) */ + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] + + arg2[i][RCOMP] * arg3[i][RCOMP]) * scaleRGB; + rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] + + arg2[i][GCOMP] * arg3[i][GCOMP]) * scaleRGB; + rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] + + arg2[i][BCOMP] * arg3[i][BCOMP]) * scaleRGB; + } + } + else { + /* 2-term addition */ + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * scaleRGB; + rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * scaleRGB; + rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * scaleRGB; + } + } + break; + case GL_ADD_SIGNED: + if (textureUnit->EnvMode == GL_COMBINE4_NV) { + /* (a * b) + (c * d) - 0.5 */ + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] + + arg2[i][RCOMP] * arg3[i][RCOMP] - 0.5) * scaleRGB; + rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] + + arg2[i][GCOMP] * arg3[i][GCOMP] - 0.5) * scaleRGB; + rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] + + arg2[i][BCOMP] * arg3[i][BCOMP] - 0.5) * scaleRGB; + } + } + else { + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5) * scaleRGB; + rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5) * scaleRGB; + rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5) * scaleRGB; + } + } + break; + case GL_INTERPOLATE: + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] + + arg1[i][RCOMP] * (1.0F - arg2[i][RCOMP])) * scaleRGB; + rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] + + arg1[i][GCOMP] * (1.0F - arg2[i][GCOMP])) * scaleRGB; + rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] + + arg1[i][BCOMP] * (1.0F - arg2[i][BCOMP])) * scaleRGB; + } + break; + case GL_SUBTRACT: + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * scaleRGB; + rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * scaleRGB; + rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * scaleRGB; + } + break; + case GL_DOT3_RGB_EXT: + case GL_DOT3_RGBA_EXT: + /* Do not scale the result by 1 2 or 4 */ + for (i = 0; i < n; i++) { + GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) + + (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) + + (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F)) + * 4.0F; + dot = CLAMP(dot, 0.0F, 1.0F); + rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot; + } + break; + case GL_DOT3_RGB: + case GL_DOT3_RGBA: + /* DO scale the result by 1 2 or 4 */ + for (i = 0; i < n; i++) { + GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) + + (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) + + (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F)) + * 4.0F * scaleRGB; + dot = CLAMP(dot, 0.0, 1.0F); + rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot; + } + break; + case GL_MODULATE_ADD_ATI: + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + + arg1[i][RCOMP]) * scaleRGB; + rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + + arg1[i][GCOMP]) * scaleRGB; + rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + + arg1[i][BCOMP]) * scaleRGB; + } + break; + case GL_MODULATE_SIGNED_ADD_ATI: + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + + arg1[i][RCOMP] - 0.5) * scaleRGB; + rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + + arg1[i][GCOMP] - 0.5) * scaleRGB; + rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + + arg1[i][BCOMP] - 0.5) * scaleRGB; + } + break; + case GL_MODULATE_SUBTRACT_ATI: + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) - + arg1[i][RCOMP]) * scaleRGB; + rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) - + arg1[i][GCOMP]) * scaleRGB; + rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) - + arg1[i][BCOMP]) * scaleRGB; + } + break; + case GL_BUMP_ENVMAP_ATI: + /* this produces a fixed rgba color, and the coord calc is done elsewhere */ + for (i = 0; i < n; i++) { + /* rgba result is 0,0,0,1 */ + rgba[i][RCOMP] = 0.0; + rgba[i][GCOMP] = 0.0; + rgba[i][BCOMP] = 0.0; + rgba[i][ACOMP] = 1.0; + } + return; /* no alpha processing */ + default: + _mesa_problem(ctx, "invalid combine mode"); + } + } + + /* Alpha channel combine */ + { + float4_array arg0 = argA[0]; + float4_array arg1 = argA[1]; + float4_array arg2 = argA[2]; + float4_array arg3 = argA[3]; + + switch (combine->ModeA) { + case GL_REPLACE: + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = arg0[i][ACOMP] * scaleA; + } + break; + case GL_MODULATE: + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * scaleA; + } + break; + case GL_ADD: + if (textureUnit->EnvMode == GL_COMBINE4_NV) { + /* (a * b) + (c * d) */ + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] + + arg2[i][ACOMP] * arg3[i][ACOMP]) * scaleA; + } + } + else { + /* two-term add */ + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * scaleA; + } + } + break; + case GL_ADD_SIGNED: + if (textureUnit->EnvMode == GL_COMBINE4_NV) { + /* (a * b) + (c * d) - 0.5 */ + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] + + arg2[i][ACOMP] * arg3[i][ACOMP] - + 0.5) * scaleA; + } + } + else { + /* a + b - 0.5 */ + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * scaleA; + } + } + break; + case GL_INTERPOLATE: + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = (arg0[i][ACOMP] * arg2[i][ACOMP] + + arg1[i][ACOMP] * (1.0F - arg2[i][ACOMP])) + * scaleA; + } + break; + case GL_SUBTRACT: + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * scaleA; + } + break; + case GL_MODULATE_ADD_ATI: + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + + arg1[i][ACOMP]) * scaleA; + } + break; + case GL_MODULATE_SIGNED_ADD_ATI: + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + + arg1[i][ACOMP] - 0.5F) * scaleA; + } + break; + case GL_MODULATE_SUBTRACT_ATI: + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + - arg1[i][ACOMP]) * scaleA; + } + break; + default: + _mesa_problem(ctx, "invalid combine mode"); + } + } + + /* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining. + * This is kind of a kludge. It would have been better if the spec + * were written such that the GL_COMBINE_ALPHA value could be set to + * GL_DOT3. + */ + if (combine->ModeRGB == GL_DOT3_RGBA_EXT || + combine->ModeRGB == GL_DOT3_RGBA) { + for (i = 0; i < n; i++) { + rgba[i][ACOMP] = rgba[i][RCOMP]; + } + } + + for (i = 0; i < n; i++) { + UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][RCOMP], rgba[i][RCOMP]); + UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][GCOMP], rgba[i][GCOMP]); + UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][BCOMP], rgba[i][BCOMP]); + UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][ACOMP], rgba[i][ACOMP]); + } +} + + +/** + * Apply X/Y/Z/W/0/1 swizzle to an array of colors/texels. + * See GL_EXT_texture_swizzle. + */ +static void +swizzle_texels(GLuint swizzle, GLuint count, float4_array texels) +{ + const GLuint swzR = GET_SWZ(swizzle, 0); + const GLuint swzG = GET_SWZ(swizzle, 1); + const GLuint swzB = GET_SWZ(swizzle, 2); + const GLuint swzA = GET_SWZ(swizzle, 3); + GLfloat vector[6]; + GLuint i; + + vector[SWIZZLE_ZERO] = 0; + vector[SWIZZLE_ONE] = 1.0F; + + for (i = 0; i < count; i++) { + vector[SWIZZLE_X] = texels[i][0]; + vector[SWIZZLE_Y] = texels[i][1]; + vector[SWIZZLE_Z] = texels[i][2]; + vector[SWIZZLE_W] = texels[i][3]; + texels[i][RCOMP] = vector[swzR]; + texels[i][GCOMP] = vector[swzG]; + texels[i][BCOMP] = vector[swzB]; + texels[i][ACOMP] = vector[swzA]; + } +} + + +/** + * Apply texture mapping to a span of fragments. + */ +void +_swrast_texture_span( GLcontext *ctx, SWspan *span ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLfloat primary_rgba[MAX_WIDTH][4]; + GLuint unit; + + ASSERT(span->end <= MAX_WIDTH); + + /* + * Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR) + */ + if (swrast->_TextureCombinePrimary) { + GLuint i; + for (i = 0; i < span->end; i++) { + primary_rgba[i][RCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][RCOMP]); + primary_rgba[i][GCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][GCOMP]); + primary_rgba[i][BCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][BCOMP]); + primary_rgba[i][ACOMP] = CHAN_TO_FLOAT(span->array->rgba[i][ACOMP]); + } + } + + /* First must sample all bump maps */ + for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { + const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; + + if (texUnit->_ReallyEnabled && + texUnit->_CurrentCombine->ModeRGB == GL_BUMP_ENVMAP_ATI) { + const GLfloat (*texcoords)[4] = (const GLfloat (*)[4]) + span->array->attribs[FRAG_ATTRIB_TEX0 + unit]; + float4_array targetcoords = + span->array->attribs[FRAG_ATTRIB_TEX0 + + ctx->Texture.Unit[unit].BumpTarget - GL_TEXTURE0]; + + const struct gl_texture_object *curObj = texUnit->_Current; + GLfloat *lambda = span->array->lambda[unit]; + float4_array texels = get_texel_array(swrast, unit); + GLuint i; + GLfloat rotMatrix00 = ctx->Texture.Unit[unit].RotMatrix[0]; + GLfloat rotMatrix01 = ctx->Texture.Unit[unit].RotMatrix[1]; + GLfloat rotMatrix10 = ctx->Texture.Unit[unit].RotMatrix[2]; + GLfloat rotMatrix11 = ctx->Texture.Unit[unit].RotMatrix[3]; + + /* adjust texture lod (lambda) */ + if (span->arrayMask & SPAN_LAMBDA) { + if (texUnit->LodBias + curObj->LodBias != 0.0F) { + /* apply LOD bias, but don't clamp yet */ + const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias, + -ctx->Const.MaxTextureLodBias, + ctx->Const.MaxTextureLodBias); + GLuint i; + for (i = 0; i < span->end; i++) { + lambda[i] += bias; + } + } + + if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) { + /* apply LOD clamping to lambda */ + const GLfloat min = curObj->MinLod; + const GLfloat max = curObj->MaxLod; + GLuint i; + for (i = 0; i < span->end; i++) { + GLfloat l = lambda[i]; + lambda[i] = CLAMP(l, min, max); + } + } + } + + /* Sample the texture (span->end = number of fragments) */ + swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end, + texcoords, lambda, texels ); + + /* manipulate the span values of the bump target + not sure this can work correctly even ignoring + the problem that channel is unsigned */ + for (i = 0; i < span->end; i++) { + targetcoords[i][0] += (texels[i][0] * rotMatrix00 + texels[i][1] * + rotMatrix01) / targetcoords[i][3]; + targetcoords[i][1] += (texels[i][0] * rotMatrix10 + texels[i][1] * + rotMatrix11) / targetcoords[i][3]; + } + } + } + + /* + * Must do all texture sampling before combining in order to + * accomodate GL_ARB_texture_env_crossbar. + */ + for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { + const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; + if (texUnit->_ReallyEnabled && + texUnit->_CurrentCombine->ModeRGB != GL_BUMP_ENVMAP_ATI) { + const GLfloat (*texcoords)[4] = (const GLfloat (*)[4]) + span->array->attribs[FRAG_ATTRIB_TEX0 + unit]; + const struct gl_texture_object *curObj = texUnit->_Current; + GLfloat *lambda = span->array->lambda[unit]; + float4_array texels = get_texel_array(swrast, unit); + + /* adjust texture lod (lambda) */ + if (span->arrayMask & SPAN_LAMBDA) { + if (texUnit->LodBias + curObj->LodBias != 0.0F) { + /* apply LOD bias, but don't clamp yet */ + const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias, + -ctx->Const.MaxTextureLodBias, + ctx->Const.MaxTextureLodBias); + GLuint i; + for (i = 0; i < span->end; i++) { + lambda[i] += bias; + } + } + + if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) { + /* apply LOD clamping to lambda */ + const GLfloat min = curObj->MinLod; + const GLfloat max = curObj->MaxLod; + GLuint i; + for (i = 0; i < span->end; i++) { + GLfloat l = lambda[i]; + lambda[i] = CLAMP(l, min, max); + } + } + } + + /* Sample the texture (span->end = number of fragments) */ + swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end, + texcoords, lambda, texels ); + + /* GL_SGI_texture_color_table */ + if (texUnit->ColorTableEnabled) { + _mesa_lookup_rgba_float(&texUnit->ColorTable, span->end, texels); + } + + /* GL_EXT_texture_swizzle */ + if (curObj->_Swizzle != SWIZZLE_NOOP) { + swizzle_texels(curObj->_Swizzle, span->end, texels); + } + } + } + + /* + * OK, now apply the texture (aka texture combine/blend). + * We modify the span->color.rgba values. + */ + for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { + if (ctx->Texture.Unit[unit]._ReallyEnabled) { + texture_combine( ctx, unit, span->end, + primary_rgba, + swrast->TexelBuffer, + span->array->rgba ); + } + } +} diff --git a/mesalib/src/mesa/swrast/s_texcombine.h b/mesalib/src/mesa/swrast/s_texcombine.h new file mode 100644 index 000000000..9ed96efb8 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_texcombine.h @@ -0,0 +1,35 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5 + * + * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_TEXCOMBINE_H +#define S_TEXCOMBINE_H + + +#include "swrast.h" + +extern void +_swrast_texture_span( GLcontext *ctx, SWspan *span ); + +#endif diff --git a/mesalib/src/mesa/swrast/s_texfilter.c b/mesalib/src/mesa/swrast/s_texfilter.c new file mode 100644 index 000000000..efe6f2347 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_texfilter.c @@ -0,0 +1,3266 @@ +/* + * Mesa 3-D graphics library + * Version: 7.3 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/imports.h" +#include "main/texformat.h" + +#include "s_context.h" +#include "s_texfilter.h" + + +/* + * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes + * see 1-pixel bands of improperly weighted linear-filtered textures. + * The tests/texwrap.c demo is a good test. + * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0. + * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x). + */ +#define FRAC(f) ((f) - IFLOOR(f)) + + + +/** + * Linear interpolation macro + */ +#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) ) + + +/** + * Do 2D/biliner interpolation of float values. + * v00, v10, v01 and v11 are typically four texture samples in a square/box. + * a and b are the horizontal and vertical interpolants. + * It's important that this function is inlined when compiled with + * optimization! If we find that's not true on some systems, convert + * to a macro. + */ +static INLINE GLfloat +lerp_2d(GLfloat a, GLfloat b, + GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11) +{ + const GLfloat temp0 = LERP(a, v00, v10); + const GLfloat temp1 = LERP(a, v01, v11); + return LERP(b, temp0, temp1); +} + + +/** + * Do 3D/trilinear interpolation of float values. + * \sa lerp_2d + */ +static INLINE GLfloat +lerp_3d(GLfloat a, GLfloat b, GLfloat c, + GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110, + GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111) +{ + const GLfloat temp00 = LERP(a, v000, v100); + const GLfloat temp10 = LERP(a, v010, v110); + const GLfloat temp01 = LERP(a, v001, v101); + const GLfloat temp11 = LERP(a, v011, v111); + const GLfloat temp0 = LERP(b, temp00, temp10); + const GLfloat temp1 = LERP(b, temp01, temp11); + return LERP(c, temp0, temp1); +} + + +/** + * Do linear interpolation of colors. + */ +static INLINE void +lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4]) +{ + result[0] = LERP(t, a[0], b[0]); + result[1] = LERP(t, a[1], b[1]); + result[2] = LERP(t, a[2], b[2]); + result[3] = LERP(t, a[3], b[3]); +} + + +/** + * Do bilinear interpolation of colors. + */ +static INLINE void +lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b, + const GLfloat t00[4], const GLfloat t10[4], + const GLfloat t01[4], const GLfloat t11[4]) +{ + result[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]); + result[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]); + result[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]); + result[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]); +} + + +/** + * Do trilinear interpolation of colors. + */ +static INLINE void +lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c, + const GLfloat t000[4], const GLfloat t100[4], + const GLfloat t010[4], const GLfloat t110[4], + const GLfloat t001[4], const GLfloat t101[4], + const GLfloat t011[4], const GLfloat t111[4]) +{ + GLuint k; + /* compiler should unroll these short loops */ + for (k = 0; k < 4; k++) { + result[k] = lerp_3d(a, b, c, t000[k], t100[k], t010[k], t110[k], + t001[k], t101[k], t011[k], t111[k]); + } +} + + +/** + * If A is a signed integer, A % B doesn't give the right value for A < 0 + * (in terms of texture repeat). Just casting to unsigned fixes that. + */ +#define REMAINDER(A, B) (((A) + (B) * 1024) % (B)) + + +/** + * Used to compute texel locations for linear sampling. + * Input: + * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER + * s = texcoord in [0,1] + * size = width (or height or depth) of texture + * Output: + * i0, i1 = returns two nearest texel indexes + * weight = returns blend factor between texels + */ +static INLINE void +linear_texel_locations(GLenum wrapMode, + const struct gl_texture_image *img, + GLint size, GLfloat s, + GLint *i0, GLint *i1, GLfloat *weight) +{ + GLfloat u; + switch (wrapMode) { + case GL_REPEAT: + u = s * size - 0.5F; + if (img->_IsPowerOfTwo) { + *i0 = IFLOOR(u) & (size - 1); + *i1 = (*i0 + 1) & (size - 1); + } + else { + *i0 = REMAINDER(IFLOOR(u), size); + *i1 = REMAINDER(*i0 + 1, size); + } + break; + case GL_CLAMP_TO_EDGE: + if (s <= 0.0F) + u = 0.0F; + else if (s >= 1.0F) + u = (GLfloat) size; + else + u = s * size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + if (*i0 < 0) + *i0 = 0; + if (*i1 >= (GLint) size) + *i1 = size - 1; + break; + case GL_CLAMP_TO_BORDER: + { + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + if (s <= min) + u = min * size; + else if (s >= max) + u = max * size; + else + u = s * size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + } + break; + case GL_MIRRORED_REPEAT: + { + const GLint flr = IFLOOR(s); + if (flr & 1) + u = 1.0F - (s - (GLfloat) flr); + else + u = s - (GLfloat) flr; + u = (u * size) - 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + if (*i0 < 0) + *i0 = 0; + if (*i1 >= (GLint) size) + *i1 = size - 1; + } + break; + case GL_MIRROR_CLAMP_EXT: + u = FABSF(s); + if (u >= 1.0F) + u = (GLfloat) size; + else + u *= size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + break; + case GL_MIRROR_CLAMP_TO_EDGE_EXT: + u = FABSF(s); + if (u >= 1.0F) + u = (GLfloat) size; + else + u *= size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + if (*i0 < 0) + *i0 = 0; + if (*i1 >= (GLint) size) + *i1 = size - 1; + break; + case GL_MIRROR_CLAMP_TO_BORDER_EXT: + { + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + u = FABSF(s); + if (u <= min) + u = min * size; + else if (u >= max) + u = max * size; + else + u *= size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + } + break; + case GL_CLAMP: + if (s <= 0.0F) + u = 0.0F; + else if (s >= 1.0F) + u = (GLfloat) size; + else + u = s * size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + break; + default: + _mesa_problem(NULL, "Bad wrap mode"); + u = 0.0F; + } + *weight = FRAC(u); +} + + +/** + * Used to compute texel location for nearest sampling. + */ +static INLINE GLint +nearest_texel_location(GLenum wrapMode, + const struct gl_texture_image *img, + GLint size, GLfloat s) +{ + GLint i; + + switch (wrapMode) { + case GL_REPEAT: + /* s limited to [0,1) */ + /* i limited to [0,size-1] */ + i = IFLOOR(s * size); + if (img->_IsPowerOfTwo) + i &= (size - 1); + else + i = REMAINDER(i, size); + return i; + case GL_CLAMP_TO_EDGE: + { + /* s limited to [min,max] */ + /* i limited to [0, size-1] */ + const GLfloat min = 1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + if (s < min) + i = 0; + else if (s > max) + i = size - 1; + else + i = IFLOOR(s * size); + } + return i; + case GL_CLAMP_TO_BORDER: + { + /* s limited to [min,max] */ + /* i limited to [-1, size] */ + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + if (s <= min) + i = -1; + else if (s >= max) + i = size; + else + i = IFLOOR(s * size); + } + return i; + case GL_MIRRORED_REPEAT: + { + const GLfloat min = 1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + const GLint flr = IFLOOR(s); + GLfloat u; + if (flr & 1) + u = 1.0F - (s - (GLfloat) flr); + else + u = s - (GLfloat) flr; + if (u < min) + i = 0; + else if (u > max) + i = size - 1; + else + i = IFLOOR(u * size); + } + return i; + case GL_MIRROR_CLAMP_EXT: + { + /* s limited to [0,1] */ + /* i limited to [0,size-1] */ + const GLfloat u = FABSF(s); + if (u <= 0.0F) + i = 0; + else if (u >= 1.0F) + i = size - 1; + else + i = IFLOOR(u * size); + } + return i; + case GL_MIRROR_CLAMP_TO_EDGE_EXT: + { + /* s limited to [min,max] */ + /* i limited to [0, size-1] */ + const GLfloat min = 1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + const GLfloat u = FABSF(s); + if (u < min) + i = 0; + else if (u > max) + i = size - 1; + else + i = IFLOOR(u * size); + } + return i; + case GL_MIRROR_CLAMP_TO_BORDER_EXT: + { + /* s limited to [min,max] */ + /* i limited to [0, size-1] */ + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + const GLfloat u = FABSF(s); + if (u < min) + i = -1; + else if (u > max) + i = size; + else + i = IFLOOR(u * size); + } + return i; + case GL_CLAMP: + /* s limited to [0,1] */ + /* i limited to [0,size-1] */ + if (s <= 0.0F) + i = 0; + else if (s >= 1.0F) + i = size - 1; + else + i = IFLOOR(s * size); + return i; + default: + _mesa_problem(NULL, "Bad wrap mode"); + return 0; + } +} + + +/* Power of two image sizes only */ +static INLINE void +linear_repeat_texel_location(GLuint size, GLfloat s, + GLint *i0, GLint *i1, GLfloat *weight) +{ + GLfloat u = s * size - 0.5F; + *i0 = IFLOOR(u) & (size - 1); + *i1 = (*i0 + 1) & (size - 1); + *weight = FRAC(u); +} + + +/** + * Do clamp/wrap for a texture rectangle coord, GL_NEAREST filter mode. + */ +static INLINE GLint +clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max) +{ + switch (wrapMode) { + case GL_CLAMP: + return IFLOOR( CLAMP(coord, 0.0F, max - 1) ); + case GL_CLAMP_TO_EDGE: + return IFLOOR( CLAMP(coord, 0.5F, max - 0.5F) ); + case GL_CLAMP_TO_BORDER: + return IFLOOR( CLAMP(coord, -0.5F, max + 0.5F) ); + default: + _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_nearest"); + return 0; + } +} + + +/** + * As above, but GL_LINEAR filtering. + */ +static INLINE void +clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max, + GLint *i0out, GLint *i1out, GLfloat *weight) +{ + GLfloat fcol; + GLint i0, i1; + switch (wrapMode) { + case GL_CLAMP: + /* Not exactly what the spec says, but it matches NVIDIA output */ + fcol = CLAMP(coord - 0.5F, 0.0, max-1); + i0 = IFLOOR(fcol); + i1 = i0 + 1; + break; + case GL_CLAMP_TO_EDGE: + fcol = CLAMP(coord, 0.5F, max - 0.5F); + fcol -= 0.5F; + i0 = IFLOOR(fcol); + i1 = i0 + 1; + if (i1 > max - 1) + i1 = max - 1; + break; + case GL_CLAMP_TO_BORDER: + fcol = CLAMP(coord, -0.5F, max + 0.5F); + fcol -= 0.5F; + i0 = IFLOOR(fcol); + i1 = i0 + 1; + break; + default: + _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_linear"); + i0 = i1 = 0; + fcol = 0.0F; + } + *i0out = i0; + *i1out = i1; + *weight = FRAC(fcol); +} + + +/** + * Compute nearest integer texcoords for given texobj and coordinate. + */ +static INLINE void +nearest_texcoord(const struct gl_texture_object *texObj, + const GLfloat texcoord[4], + GLint *i, GLint *j, GLint *k) +{ + const GLint baseLevel = texObj->BaseLevel; + const struct gl_texture_image *img = texObj->Image[0][baseLevel]; + const GLint width = img->Width; + const GLint height = img->Height; + const GLint depth = img->Depth; + + switch (texObj->Target) { + case GL_TEXTURE_RECTANGLE_ARB: + *i = clamp_rect_coord_nearest(texObj->WrapS, texcoord[0], width); + *j = clamp_rect_coord_nearest(texObj->WrapT, texcoord[1], height); + *k = 0; + break; + case GL_TEXTURE_1D: + *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]); + *j = 0; + *k = 0; + break; + case GL_TEXTURE_2D: + *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]); + *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]); + *k = 0; + break; + case GL_TEXTURE_1D_ARRAY_EXT: + *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]); + *j = clamp_rect_coord_nearest(texObj->WrapT, texcoord[1], height); + *k = 0; + break; + case GL_TEXTURE_2D_ARRAY_EXT: + *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]); + *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]); + *k = clamp_rect_coord_nearest(texObj->WrapR, texcoord[2], depth); + break; + default: + *i = *j = *k = 0; + } +} + + +/** + * Compute linear integer texcoords for given texobj and coordinate. + */ +static INLINE void +linear_texcoord(const struct gl_texture_object *texObj, + const GLfloat texcoord[4], + GLint *i0, GLint *i1, GLint *j0, GLint *j1, GLint *slice, + GLfloat *wi, GLfloat *wj) +{ + const GLint baseLevel = texObj->BaseLevel; + const struct gl_texture_image *img = texObj->Image[0][baseLevel]; + const GLint width = img->Width; + const GLint height = img->Height; + const GLint depth = img->Depth; + + switch (texObj->Target) { + case GL_TEXTURE_RECTANGLE_ARB: + clamp_rect_coord_linear(texObj->WrapS, texcoord[0], + width, i0, i1, wi); + clamp_rect_coord_linear(texObj->WrapT, texcoord[1], + height, j0, j1, wj); + *slice = 0; + break; + + case GL_TEXTURE_1D: + case GL_TEXTURE_2D: + linear_texel_locations(texObj->WrapS, img, width, + texcoord[0], i0, i1, wi); + linear_texel_locations(texObj->WrapT, img, height, + texcoord[1], j0, j1, wj); + *slice = 0; + break; + + case GL_TEXTURE_1D_ARRAY_EXT: + linear_texel_locations(texObj->WrapS, img, width, + texcoord[0], i0, i1, wi); + *j0 = clamp_rect_coord_nearest(texObj->WrapT, texcoord[1], height); + *j1 = *j0; + *slice = 0; + break; + + case GL_TEXTURE_2D_ARRAY_EXT: + linear_texel_locations(texObj->WrapS, img, width, + texcoord[0], i0, i1, wi); + linear_texel_locations(texObj->WrapT, img, height, + texcoord[1], j0, j1, wj); + *slice = clamp_rect_coord_nearest(texObj->WrapR, texcoord[2], depth); + break; + + default: + *slice = 0; + } +} + + + +/** + * For linear interpolation between mipmap levels N and N+1, this function + * computes N. + */ +static INLINE GLint +linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) +{ + if (lambda < 0.0F) + return tObj->BaseLevel; + else if (lambda > tObj->_MaxLambda) + return (GLint) (tObj->BaseLevel + tObj->_MaxLambda); + else + return (GLint) (tObj->BaseLevel + lambda); +} + + +/** + * Compute the nearest mipmap level to take texels from. + */ +static INLINE GLint +nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) +{ + GLfloat l; + GLint level; + if (lambda <= 0.5F) + l = 0.0F; + else if (lambda > tObj->_MaxLambda + 0.4999F) + l = tObj->_MaxLambda + 0.4999F; + else + l = lambda; + level = (GLint) (tObj->BaseLevel + l + 0.5F); + if (level > tObj->_MaxLevel) + level = tObj->_MaxLevel; + return level; +} + + + +/* + * Bitflags for texture border color sampling. + */ +#define I0BIT 1 +#define I1BIT 2 +#define J0BIT 4 +#define J1BIT 8 +#define K0BIT 16 +#define K1BIT 32 + + + +/** + * The lambda[] array values are always monotonic. Either the whole span + * will be minified, magnified, or split between the two. This function + * determines the subranges in [0, n-1] that are to be minified or magnified. + */ +static INLINE void +compute_min_mag_ranges(const struct gl_texture_object *tObj, + GLuint n, const GLfloat lambda[], + GLuint *minStart, GLuint *minEnd, + GLuint *magStart, GLuint *magEnd) +{ + GLfloat minMagThresh; + + /* we shouldn't be here if minfilter == magfilter */ + ASSERT(tObj->MinFilter != tObj->MagFilter); + + /* This bit comes from the OpenGL spec: */ + if (tObj->MagFilter == GL_LINEAR + && (tObj->MinFilter == GL_NEAREST_MIPMAP_NEAREST || + tObj->MinFilter == GL_NEAREST_MIPMAP_LINEAR)) { + minMagThresh = 0.5F; + } + else { + minMagThresh = 0.0F; + } + +#if 0 + /* DEBUG CODE: Verify that lambda[] is monotonic. + * We can't really use this because the inaccuracy in the LOG2 function + * causes this test to fail, yet the resulting texturing is correct. + */ + if (n > 1) { + GLuint i; + printf("lambda delta = %g\n", lambda[0] - lambda[n-1]); + if (lambda[0] >= lambda[n-1]) { /* decreasing */ + for (i = 0; i < n - 1; i++) { + ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10)); + } + } + else { /* increasing */ + for (i = 0; i < n - 1; i++) { + ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10)); + } + } + } +#endif /* DEBUG */ + + if (lambda[0] <= minMagThresh && (n <= 1 || lambda[n-1] <= minMagThresh)) { + /* magnification for whole span */ + *magStart = 0; + *magEnd = n; + *minStart = *minEnd = 0; + } + else if (lambda[0] > minMagThresh && (n <=1 || lambda[n-1] > minMagThresh)) { + /* minification for whole span */ + *minStart = 0; + *minEnd = n; + *magStart = *magEnd = 0; + } + else { + /* a mix of minification and magnification */ + GLuint i; + if (lambda[0] > minMagThresh) { + /* start with minification */ + for (i = 1; i < n; i++) { + if (lambda[i] <= minMagThresh) + break; + } + *minStart = 0; + *minEnd = i; + *magStart = i; + *magEnd = n; + } + else { + /* start with magnification */ + for (i = 1; i < n; i++) { + if (lambda[i] > minMagThresh) + break; + } + *magStart = 0; + *magEnd = i; + *minStart = i; + *minEnd = n; + } + } + +#if 0 + /* Verify the min/mag Start/End values + * We don't use this either (see above) + */ + { + GLint i; + for (i = 0; i < n; i++) { + if (lambda[i] > minMagThresh) { + /* minification */ + ASSERT(i >= *minStart); + ASSERT(i < *minEnd); + } + else { + /* magnification */ + ASSERT(i >= *magStart); + ASSERT(i < *magEnd); + } + } + } +#endif +} + + +/** + * When we sample the border color, it must be interpreted according to + * the base texture format. Ex: if the texture base format it GL_ALPHA, + * we return (0,0,0,BorderAlpha). + */ +static INLINE void +get_border_color(const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + GLfloat rgba[4]) +{ + switch (img->TexFormat->BaseFormat) { + case GL_RGB: + rgba[0] = tObj->BorderColor[0]; + rgba[1] = tObj->BorderColor[1]; + rgba[2] = tObj->BorderColor[2]; + rgba[3] = 1.0F; + break; + case GL_ALPHA: + rgba[0] = rgba[1] = rgba[2] = 0.0; + rgba[3] = tObj->BorderColor[3]; + break; + case GL_LUMINANCE: + rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor[0]; + rgba[3] = 1.0; + break; + case GL_LUMINANCE_ALPHA: + rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor[0]; + rgba[3] = tObj->BorderColor[3]; + break; + case GL_INTENSITY: + rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->BorderColor[0]; + break; + default: + COPY_4V(rgba, tObj->BorderColor); + } +} + + +/**********************************************************************/ +/* 1-D Texture Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s) using GL_NEAREST filter. + */ +static INLINE void +sample_1d_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + GLint i; + i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]); + /* skip over the border, if any */ + i += img->Border; + if (i < 0 || i >= (GLint) img->Width) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, 0, 0, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s) using GL_LINEAR filter. + */ +static INLINE void +sample_1d_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], GLfloat rgba[4]) +{ + const GLint width = img->Width2; + GLint i0, i1; + GLbitfield useBorderColor = 0x0; + GLfloat a; + GLfloat t0[4], t1[4]; /* texels */ + + linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + } + else { + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + } + + /* fetch texel colors */ + if (useBorderColor & I0BIT) { + get_border_color(tObj, img, t0); + } + else { + img->FetchTexelf(img, i0, 0, 0, t0); + } + if (useBorderColor & I1BIT) { + get_border_color(tObj, img, t1); + } + else { + img->FetchTexelf(img, i1, 0, 0, t1); + } + + lerp_rgba(rgba, a, t0, t1); +} + + +static void +sample_1d_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_1d_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_1d_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_1d_linear_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 1D texture, nearest filtering for both min/magnification */ +static void +sample_nearest_1d( GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4] ) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D texture, linear filtering for both min/magnification */ +static void +sample_linear_1d( GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4] ) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D texture, using lambda to choose between min/magnification */ +static void +sample_lambda_1d( GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4] ) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_1d_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_1d_texture"); + return; + } + } +} + + +/**********************************************************************/ +/* 2-D Texture Sampling Functions */ +/**********************************************************************/ + + +/** + * Return the texture sample for coordinate (s,t) using GL_NEAREST filter. + */ +static INLINE void +sample_2d_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height2; /* without border, power of two */ + GLint i, j; + (void) ctx; + + i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]); + j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]); + + /* skip over the border, if any */ + i += img->Border; + j += img->Border; + + if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, j, 0, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t) using GL_LINEAR filter. + * New sampling code contributed by Lynn Quam <quam@ai.sri.com>. + */ +static INLINE void +sample_2d_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + GLint i0, j0, i1, j1; + GLbitfield useBorderColor = 0x0; + GLfloat a, b; + GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ + + linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + j0 += img->Border; + j1 += img->Border; + } + else { + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + } + + /* fetch four texel colors */ + if (useBorderColor & (I0BIT | J0BIT)) { + get_border_color(tObj, img, t00); + } + else { + img->FetchTexelf(img, i0, j0, 0, t00); + } + if (useBorderColor & (I1BIT | J0BIT)) { + get_border_color(tObj, img, t10); + } + else { + img->FetchTexelf(img, i1, j0, 0, t10); + } + if (useBorderColor & (I0BIT | J1BIT)) { + get_border_color(tObj, img, t01); + } + else { + img->FetchTexelf(img, i0, j1, 0, t01); + } + if (useBorderColor & (I1BIT | J1BIT)) { + get_border_color(tObj, img, t11); + } + else { + img->FetchTexelf(img, i1, j1, 0, t11); + } + + lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); +} + + +/** + * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT. + * We don't have to worry about the texture border. + */ +static INLINE void +sample_2d_linear_repeat(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + GLint i0, j0, i1, j1; + GLfloat wi, wj; + GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ + + (void) ctx; + + ASSERT(tObj->WrapS == GL_REPEAT); + ASSERT(tObj->WrapT == GL_REPEAT); + ASSERT(img->Border == 0); + ASSERT(img->TexFormat->BaseFormat != GL_COLOR_INDEX); + ASSERT(img->_IsPowerOfTwo); + + linear_repeat_texel_location(width, texcoord[0], &i0, &i1, &wi); + linear_repeat_texel_location(height, texcoord[1], &j0, &j1, &wj); + + img->FetchTexelf(img, i0, j0, 0, t00); + img->FetchTexelf(img, i1, j0, 0, t10); + img->FetchTexelf(img, i0, j1, 0, t01); + img->FetchTexelf(img, i1, j1, 0, t11); + + lerp_rgba_2d(rgba, wi, wj, t00, t10, t01, t11); +} + + +static void +sample_2d_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_2d_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_2d_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_2d_linear_mipmap_linear( GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4] ) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_2d_linear_mipmap_linear_repeat(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + ASSERT(tObj->WrapS == GL_REPEAT); + ASSERT(tObj->WrapT == GL_REPEAT); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ], + texcoord[i], t0); + sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1], + texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 2D texture, nearest filtering for both min/magnification */ +static void +sample_nearest_2d(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 2D texture, linear filtering for both min/magnification */ +static void +sample_linear_2d(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + if (tObj->WrapS == GL_REPEAT && + tObj->WrapT == GL_REPEAT && + image->_IsPowerOfTwo && + image->Border == 0) { + for (i = 0; i < n; i++) { + sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]); + } + } + else { + for (i = 0; i < n; i++) { + sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } + } +} + + +/** + * Optimized 2-D texture sampling: + * S and T wrap mode == GL_REPEAT + * GL_NEAREST min/mag filter + * No border, + * RowStride == Width, + * Format = GL_RGB + */ +static void +opt_sample_rgb_2d(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; + const GLfloat width = (GLfloat) img->Width; + const GLfloat height = (GLfloat) img->Height; + const GLint colMask = img->Width - 1; + const GLint rowMask = img->Height - 1; + const GLint shift = img->WidthLog2; + GLuint k; + (void) ctx; + (void) lambda; + ASSERT(tObj->WrapS==GL_REPEAT); + ASSERT(tObj->WrapT==GL_REPEAT); + ASSERT(img->Border==0); + ASSERT(img->TexFormat->MesaFormat==MESA_FORMAT_RGB); + ASSERT(img->_IsPowerOfTwo); + + for (k=0; k<n; k++) { + GLint i = IFLOOR(texcoords[k][0] * width) & colMask; + GLint j = IFLOOR(texcoords[k][1] * height) & rowMask; + GLint pos = (j << shift) | i; + GLchan *texel = ((GLchan *) img->Data) + 3*pos; + rgba[k][RCOMP] = CHAN_TO_FLOAT(texel[0]); + rgba[k][GCOMP] = CHAN_TO_FLOAT(texel[1]); + rgba[k][BCOMP] = CHAN_TO_FLOAT(texel[2]); + } +} + + +/** + * Optimized 2-D texture sampling: + * S and T wrap mode == GL_REPEAT + * GL_NEAREST min/mag filter + * No border + * RowStride == Width, + * Format = GL_RGBA + */ +static void +opt_sample_rgba_2d(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; + const GLfloat width = (GLfloat) img->Width; + const GLfloat height = (GLfloat) img->Height; + const GLint colMask = img->Width - 1; + const GLint rowMask = img->Height - 1; + const GLint shift = img->WidthLog2; + GLuint i; + (void) ctx; + (void) lambda; + ASSERT(tObj->WrapS==GL_REPEAT); + ASSERT(tObj->WrapT==GL_REPEAT); + ASSERT(img->Border==0); + ASSERT(img->TexFormat->MesaFormat==MESA_FORMAT_RGBA); + ASSERT(img->_IsPowerOfTwo); + + for (i = 0; i < n; i++) { + const GLint col = IFLOOR(texcoords[i][0] * width) & colMask; + const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask; + const GLint pos = (row << shift) | col; + const GLchan *texel = ((GLchan *) img->Data) + (pos << 2); /* pos*4 */ + rgba[i][RCOMP] = CHAN_TO_FLOAT(texel[0]); + rgba[i][GCOMP] = CHAN_TO_FLOAT(texel[1]); + rgba[i][BCOMP] = CHAN_TO_FLOAT(texel[2]); + rgba[i][ACOMP] = CHAN_TO_FLOAT(texel[3]); + } +} + + +/** Sample 2D texture, using lambda to choose between min/magnification */ +static void +sample_lambda_2d(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel]; + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + + const GLboolean repeatNoBorderPOT = (tObj->WrapS == GL_REPEAT) + && (tObj->WrapT == GL_REPEAT) + && (tImg->Border == 0 && (tImg->Width == tImg->RowStride)) + && (tImg->TexFormat->BaseFormat != GL_COLOR_INDEX) + && tImg->_IsPowerOfTwo; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + if (repeatNoBorderPOT) { + switch (tImg->TexFormat->MesaFormat) { + case MESA_FORMAT_RGB: + opt_sample_rgb_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + case MESA_FORMAT_RGBA: + opt_sample_rgba_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + default: + sample_nearest_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart ); + } + } + else { + sample_nearest_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + } + break; + case GL_LINEAR: + sample_linear_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_2d_nearest_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + if (repeatNoBorderPOT) + sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m, + texcoords + minStart, lambda + minStart, rgba + minStart); + else + sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_2d_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + const GLuint m = magEnd - magStart; + + switch (tObj->MagFilter) { + case GL_NEAREST: + if (repeatNoBorderPOT) { + switch (tImg->TexFormat->MesaFormat) { + case MESA_FORMAT_RGB: + opt_sample_rgb_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + case MESA_FORMAT_RGBA: + opt_sample_rgba_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + default: + sample_nearest_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart ); + } + } + else { + sample_nearest_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + } + break; + case GL_LINEAR: + sample_linear_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d"); + } + } +} + + + +/**********************************************************************/ +/* 3-D Texture Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. + */ +static INLINE void +sample_3d_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height2; /* without border, power of two */ + const GLint depth = img->Depth2; /* without border, power of two */ + GLint i, j, k; + (void) ctx; + + i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]); + j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]); + k = nearest_texel_location(tObj->WrapR, img, depth, texcoord[2]); + + if (i < 0 || i >= (GLint) img->Width || + j < 0 || j >= (GLint) img->Height || + k < 0 || k >= (GLint) img->Depth) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, j, k, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. + */ +static void +sample_3d_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + const GLint depth = img->Depth2; + GLint i0, j0, k0, i1, j1, k1; + GLbitfield useBorderColor = 0x0; + GLfloat a, b, c; + GLfloat t000[4], t010[4], t001[4], t011[4]; + GLfloat t100[4], t110[4], t101[4], t111[4]; + + linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b); + linear_texel_locations(tObj->WrapR, img, depth, texcoord[2], &k0, &k1, &c); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + j0 += img->Border; + j1 += img->Border; + k0 += img->Border; + k1 += img->Border; + } + else { + /* check if sampling texture border color */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT; + if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT; + } + + /* Fetch texels */ + if (useBorderColor & (I0BIT | J0BIT | K0BIT)) { + get_border_color(tObj, img, t000); + } + else { + img->FetchTexelf(img, i0, j0, k0, t000); + } + if (useBorderColor & (I1BIT | J0BIT | K0BIT)) { + get_border_color(tObj, img, t100); + } + else { + img->FetchTexelf(img, i1, j0, k0, t100); + } + if (useBorderColor & (I0BIT | J1BIT | K0BIT)) { + get_border_color(tObj, img, t010); + } + else { + img->FetchTexelf(img, i0, j1, k0, t010); + } + if (useBorderColor & (I1BIT | J1BIT | K0BIT)) { + get_border_color(tObj, img, t110); + } + else { + img->FetchTexelf(img, i1, j1, k0, t110); + } + + if (useBorderColor & (I0BIT | J0BIT | K1BIT)) { + get_border_color(tObj, img, t001); + } + else { + img->FetchTexelf(img, i0, j0, k1, t001); + } + if (useBorderColor & (I1BIT | J0BIT | K1BIT)) { + get_border_color(tObj, img, t101); + } + else { + img->FetchTexelf(img, i1, j0, k1, t101); + } + if (useBorderColor & (I0BIT | J1BIT | K1BIT)) { + get_border_color(tObj, img, t011); + } + else { + img->FetchTexelf(img, i0, j1, k1, t011); + } + if (useBorderColor & (I1BIT | J1BIT | K1BIT)) { + get_border_color(tObj, img, t111); + } + else { + img->FetchTexelf(img, i1, j1, k1, t111); + } + + /* trilinear interpolation of samples */ + lerp_rgba_3d(rgba, a, b, c, t000, t100, t010, t110, t001, t101, t011, t111); +} + + +static void +sample_3d_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4] ) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_3d_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_3d_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_3d_linear_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 3D texture, nearest filtering for both min/magnification */ +static void +sample_nearest_3d(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 3D texture, linear filtering for both min/magnification */ +static void +sample_linear_3d(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 3D texture, using lambda to choose between min/magnification */ +static void +sample_lambda_3d(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_3d_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_3d_texture"); + return; + } + } +} + + +/**********************************************************************/ +/* Texture Cube Map Sampling Functions */ +/**********************************************************************/ + +/** + * Choose one of six sides of a texture cube map given the texture + * coord (rx,ry,rz). Return pointer to corresponding array of texture + * images. + */ +static const struct gl_texture_image ** +choose_cube_face(const struct gl_texture_object *texObj, + const GLfloat texcoord[4], GLfloat newCoord[4]) +{ + /* + major axis + direction target sc tc ma + ---------- ------------------------------- --- --- --- + +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx + -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx + +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry + -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry + +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz + -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz + */ + const GLfloat rx = texcoord[0]; + const GLfloat ry = texcoord[1]; + const GLfloat rz = texcoord[2]; + const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz); + GLuint face; + GLfloat sc, tc, ma; + + if (arx >= ary && arx >= arz) { + if (rx >= 0.0F) { + face = FACE_POS_X; + sc = -rz; + tc = -ry; + ma = arx; + } + else { + face = FACE_NEG_X; + sc = rz; + tc = -ry; + ma = arx; + } + } + else if (ary >= arx && ary >= arz) { + if (ry >= 0.0F) { + face = FACE_POS_Y; + sc = rx; + tc = rz; + ma = ary; + } + else { + face = FACE_NEG_Y; + sc = rx; + tc = -rz; + ma = ary; + } + } + else { + if (rz > 0.0F) { + face = FACE_POS_Z; + sc = rx; + tc = -ry; + ma = arz; + } + else { + face = FACE_NEG_Z; + sc = -rx; + tc = -ry; + ma = arz; + } + } + + newCoord[0] = ( sc / ma + 1.0F ) * 0.5F; + newCoord[1] = ( tc / ma + 1.0F ) * 0.5F; + return (const struct gl_texture_image **) texObj->Image[face]; +} + + +static void +sample_nearest_cube(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + (void) lambda; + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + images = choose_cube_face(tObj, texcoords[i], newCoord); + sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel], + newCoord, rgba[i]); + } +} + + +static void +sample_linear_cube(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + (void) lambda; + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + images = choose_cube_face(tObj, texcoords[i], newCoord); + sample_2d_linear(ctx, tObj, images[tObj->BaseLevel], + newCoord, rgba[i]); + } +} + + +static void +sample_cube_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level; + images = choose_cube_face(tObj, texcoord[i], newCoord); + + /* XXX we actually need to recompute lambda here based on the newCoords. + * But we would need the texcoords of adjacent fragments to compute that + * properly, and we don't have those here. + * For now, do an approximation: subtracting 1 from the chosen mipmap + * level seems to work in some test cases. + * The same adjustment is done in the next few functions. + */ + level = nearest_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); + + sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]); + } +} + + +static void +sample_cube_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level = nearest_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); /* see comment above */ + images = choose_cube_face(tObj, texcoord[i], newCoord); + sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]); + } +} + + +static void +sample_cube_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level = linear_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); /* see comment above */ + images = choose_cube_face(tObj, texcoord[i], newCoord); + if (level >= tObj->_MaxLevel) { + sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel], + newCoord, rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0); + sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_cube_linear_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level = linear_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); /* see comment above */ + images = choose_cube_face(tObj, texcoord[i], newCoord); + if (level >= tObj->_MaxLevel) { + sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel], + newCoord, rgba[i]); + } + else { + GLfloat t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear(ctx, tObj, images[level ], newCoord, t0); + sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample cube texture, using lambda to choose between min/magnification */ +static void +sample_lambda_cube(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + sample_nearest_cube(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR: + sample_linear_cube(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_cube_nearest_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_cube_linear_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_cube_nearest_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_cube_linear_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_lambda_cube"); + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + const GLuint m = magEnd - magStart; + switch (tObj->MagFilter) { + case GL_NEAREST: + sample_nearest_cube(ctx, tObj, m, texcoords + magStart, + lambda + magStart, rgba + magStart); + break; + case GL_LINEAR: + sample_linear_cube(ctx, tObj, m, texcoords + magStart, + lambda + magStart, rgba + magStart); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube"); + } + } +} + + +/**********************************************************************/ +/* Texture Rectangle Sampling Functions */ +/**********************************************************************/ + + +static void +sample_nearest_rect(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][0]; + const GLint width = img->Width; + const GLint height = img->Height; + GLuint i; + + (void) ctx; + (void) lambda; + + ASSERT(tObj->WrapS == GL_CLAMP || + tObj->WrapS == GL_CLAMP_TO_EDGE || + tObj->WrapS == GL_CLAMP_TO_BORDER); + ASSERT(tObj->WrapT == GL_CLAMP || + tObj->WrapT == GL_CLAMP_TO_EDGE || + tObj->WrapT == GL_CLAMP_TO_BORDER); + ASSERT(img->TexFormat->BaseFormat != GL_COLOR_INDEX); + + for (i = 0; i < n; i++) { + GLint row, col; + col = clamp_rect_coord_nearest(tObj->WrapS, texcoords[i][0], width); + row = clamp_rect_coord_nearest(tObj->WrapT, texcoords[i][1], height); + if (col < 0 || col >= width || row < 0 || row >= height) + get_border_color(tObj, img, rgba[i]); + else + img->FetchTexelf(img, col, row, 0, rgba[i]); + } +} + + +static void +sample_linear_rect(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][0]; + const GLint width = img->Width; + const GLint height = img->Height; + GLuint i; + + (void) ctx; + (void) lambda; + + ASSERT(tObj->WrapS == GL_CLAMP || + tObj->WrapS == GL_CLAMP_TO_EDGE || + tObj->WrapS == GL_CLAMP_TO_BORDER); + ASSERT(tObj->WrapT == GL_CLAMP || + tObj->WrapT == GL_CLAMP_TO_EDGE || + tObj->WrapT == GL_CLAMP_TO_BORDER); + ASSERT(img->TexFormat->BaseFormat != GL_COLOR_INDEX); + + for (i = 0; i < n; i++) { + GLint i0, j0, i1, j1; + GLfloat t00[4], t01[4], t10[4], t11[4]; + GLfloat a, b; + GLbitfield useBorderColor = 0x0; + + clamp_rect_coord_linear(tObj->WrapS, texcoords[i][0], width, + &i0, &i1, &a); + clamp_rect_coord_linear(tObj->WrapT, texcoords[i][1], height, + &j0, &j1, &b); + + /* compute integer rows/columns */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + + /* get four texel samples */ + if (useBorderColor & (I0BIT | J0BIT)) + get_border_color(tObj, img, t00); + else + img->FetchTexelf(img, i0, j0, 0, t00); + + if (useBorderColor & (I1BIT | J0BIT)) + get_border_color(tObj, img, t10); + else + img->FetchTexelf(img, i1, j0, 0, t10); + + if (useBorderColor & (I0BIT | J1BIT)) + get_border_color(tObj, img, t01); + else + img->FetchTexelf(img, i0, j1, 0, t01); + + if (useBorderColor & (I1BIT | J1BIT)) + get_border_color(tObj, img, t11); + else + img->FetchTexelf(img, i1, j1, 0, t11); + + lerp_rgba_2d(rgba[i], a, b, t00, t10, t01, t11); + } +} + + +/** Sample Rect texture, using lambda to choose between min/magnification */ +static void +sample_lambda_rect(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd, magStart, magEnd; + + /* We only need lambda to decide between minification and magnification. + * There is no mipmapping with rectangular textures. + */ + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + if (tObj->MinFilter == GL_NEAREST) { + sample_nearest_rect(ctx, tObj, minEnd - minStart, + texcoords + minStart, NULL, rgba + minStart); + } + else { + sample_linear_rect(ctx, tObj, minEnd - minStart, + texcoords + minStart, NULL, rgba + minStart); + } + } + if (magStart < magEnd) { + if (tObj->MagFilter == GL_NEAREST) { + sample_nearest_rect(ctx, tObj, magEnd - magStart, + texcoords + magStart, NULL, rgba + magStart); + } + else { + sample_linear_rect(ctx, tObj, magEnd - magStart, + texcoords + magStart, NULL, rgba + magStart); + } + } +} + + + +/**********************************************************************/ +/* 2D Texture Array Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. + */ +static void +sample_2d_array_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height2; /* without border, power of two */ + const GLint depth = img->Depth; + GLint i, j; + GLint array; + (void) ctx; + + i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]); + j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]); + array = clamp_rect_coord_nearest(tObj->WrapR, texcoord[2], depth); + + if (i < 0 || i >= (GLint) img->Width || + j < 0 || j >= (GLint) img->Height || + array < 0 || array >= (GLint) img->Depth) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, j, array, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. + */ +static void +sample_2d_array_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + const GLint depth = img->Depth; + GLint i0, j0, i1, j1; + GLint array; + GLbitfield useBorderColor = 0x0; + GLfloat a, b; + GLfloat t00[4], t01[4], t10[4], t11[4]; + + linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b); + array = clamp_rect_coord_nearest(tObj->WrapR, texcoord[2], depth); + + if (array < 0 || array >= depth) { + COPY_4V(rgba, tObj->BorderColor); + } + else { + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + j0 += img->Border; + j1 += img->Border; + } + else { + /* check if sampling texture border color */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + } + + /* Fetch texels */ + if (useBorderColor & (I0BIT | J0BIT)) { + get_border_color(tObj, img, t00); + } + else { + img->FetchTexelf(img, i0, j0, array, t00); + } + if (useBorderColor & (I1BIT | J0BIT)) { + get_border_color(tObj, img, t10); + } + else { + img->FetchTexelf(img, i1, j0, array, t10); + } + if (useBorderColor & (I0BIT | J1BIT)) { + get_border_color(tObj, img, t01); + } + else { + img->FetchTexelf(img, i0, j1, array, t01); + } + if (useBorderColor & (I1BIT | J1BIT)) { + get_border_color(tObj, img, t11); + } + else { + img->FetchTexelf(img, i1, j1, array, t11); + } + + /* trilinear interpolation of samples */ + lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); + } +} + + +static void +sample_2d_array_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], + rgba[i]); + } +} + + +static void +sample_2d_array_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_array_linear(ctx, tObj, tObj->Image[0][level], + texcoord[i], rgba[i]); + } +} + + +static void +sample_2d_array_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level ], + texcoord[i], t0); + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level+1], + texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_2d_array_linear_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_array_linear(ctx, tObj, tObj->Image[0][level ], + texcoord[i], t0); + sample_2d_array_linear(ctx, tObj, tObj->Image[0][level+1], + texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 2D Array texture, nearest filtering for both min/magnification */ +static void +sample_nearest_2d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_2d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + + +/** Sample 2D Array texture, linear filtering for both min/magnification */ +static void +sample_linear_2d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_2d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 2D Array texture, using lambda to choose between min/magnification */ +static void +sample_lambda_2d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_2d_array_nearest_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_2d_array_linear_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_2d_array_nearest_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_2d_array_linear_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_2d_array_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_2d_array_texture"); + return; + } + } +} + + + + +/**********************************************************************/ +/* 1D Texture Array Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. + */ +static void +sample_1d_array_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height; + GLint i; + GLint array; + (void) ctx; + + i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]); + array = clamp_rect_coord_nearest(tObj->WrapT, texcoord[1], height); + + if (i < 0 || i >= (GLint) img->Width || + array < 0 || array >= (GLint) img->Height) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, array, 0, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. + */ +static void +sample_1d_array_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; + const GLint height = img->Height; + GLint i0, i1; + GLint array; + GLbitfield useBorderColor = 0x0; + GLfloat a; + GLfloat t0[4], t1[4]; + + linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a); + array = clamp_rect_coord_nearest(tObj->WrapT, texcoord[1], height); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + } + else { + /* check if sampling texture border color */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + } + + if (array < 0 || array >= height) useBorderColor |= K0BIT; + + /* Fetch texels */ + if (useBorderColor & (I0BIT | K0BIT)) { + get_border_color(tObj, img, t0); + } + else { + img->FetchTexelf(img, i0, array, 0, t0); + } + if (useBorderColor & (I1BIT | K0BIT)) { + get_border_color(tObj, img, t1); + } + else { + img->FetchTexelf(img, i1, array, 0, t1); + } + + /* bilinear interpolation of samples */ + lerp_rgba(rgba, a, t0, t1); +} + + +static void +sample_1d_array_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], + rgba[i]); + } +} + + +static void +sample_1d_array_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_array_linear(ctx, tObj, tObj->Image[0][level], + texcoord[i], rgba[i]); + } +} + + +static void +sample_1d_array_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_1d_array_linear_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_1d_array_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_array_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 1D Array texture, nearest filtering for both min/magnification */ +static void +sample_nearest_1d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D Array texture, linear filtering for both min/magnification */ +static void +sample_linear_1d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D Array texture, using lambda to choose between min/magnification */ +static void +sample_lambda_1d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_1d_array_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_1d_array_linear_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_1d_array_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_1d_array_linear_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_1d_array_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_1d_array_texture"); + return; + } + } +} + + +/** + * Compare texcoord against depth sample. Return 1.0 or the ambient value. + */ +static INLINE GLfloat +shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample, + GLfloat ambient) +{ + switch (function) { + case GL_LEQUAL: + return (coord <= depthSample) ? 1.0F : ambient; + case GL_GEQUAL: + return (coord >= depthSample) ? 1.0F : ambient; + case GL_LESS: + return (coord < depthSample) ? 1.0F : ambient; + case GL_GREATER: + return (coord > depthSample) ? 1.0F : ambient; + case GL_EQUAL: + return (coord == depthSample) ? 1.0F : ambient; + case GL_NOTEQUAL: + return (coord != depthSample) ? 1.0F : ambient; + case GL_ALWAYS: + return 1.0F; + case GL_NEVER: + return ambient; + case GL_NONE: + return depthSample; + default: + _mesa_problem(NULL, "Bad compare func in shadow_compare"); + return ambient; + } +} + + +/** + * Compare texcoord against four depth samples. + */ +static INLINE GLfloat +shadow_compare4(GLenum function, GLfloat coord, + GLfloat depth00, GLfloat depth01, + GLfloat depth10, GLfloat depth11, + GLfloat ambient, GLfloat wi, GLfloat wj) +{ + const GLfloat d = (1.0F - (GLfloat) ambient) * 0.25F; + GLfloat luminance = 1.0F; + + switch (function) { + case GL_LEQUAL: + if (depth00 <= coord) luminance -= d; + if (depth01 <= coord) luminance -= d; + if (depth10 <= coord) luminance -= d; + if (depth11 <= coord) luminance -= d; + return luminance; + case GL_GEQUAL: + if (depth00 >= coord) luminance -= d; + if (depth01 >= coord) luminance -= d; + if (depth10 >= coord) luminance -= d; + if (depth11 >= coord) luminance -= d; + return luminance; + case GL_LESS: + if (depth00 < coord) luminance -= d; + if (depth01 < coord) luminance -= d; + if (depth10 < coord) luminance -= d; + if (depth11 < coord) luminance -= d; + return luminance; + case GL_GREATER: + if (depth00 > coord) luminance -= d; + if (depth01 > coord) luminance -= d; + if (depth10 > coord) luminance -= d; + if (depth11 > coord) luminance -= d; + return luminance; + case GL_EQUAL: + if (depth00 == coord) luminance -= d; + if (depth01 == coord) luminance -= d; + if (depth10 == coord) luminance -= d; + if (depth11 == coord) luminance -= d; + return luminance; + case GL_NOTEQUAL: + if (depth00 != coord) luminance -= d; + if (depth01 != coord) luminance -= d; + if (depth10 != coord) luminance -= d; + if (depth11 != coord) luminance -= d; + return luminance; + case GL_ALWAYS: + return 0.0; + case GL_NEVER: + return ambient; + case GL_NONE: + /* ordinary bilinear filtering */ + return lerp_2d(wi, wj, depth00, depth10, depth01, depth11); + default: + _mesa_problem(NULL, "Bad compare func in sample_depth_texture"); + return 0.0F; + } +} + + +/** + * Sample a shadow/depth texture. + */ +static void +sample_depth_texture( GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat texel[][4] ) +{ + const GLint baseLevel = tObj->BaseLevel; + const struct gl_texture_image *img = tObj->Image[0][baseLevel]; + const GLint width = img->Width; + const GLint height = img->Height; + const GLint depth = img->Depth; + const GLuint compare_coord = (tObj->Target == GL_TEXTURE_2D_ARRAY_EXT) + ? 3 : 2; + GLfloat ambient; + GLenum function; + GLfloat result; + + (void) lambda; + + ASSERT(img->TexFormat->BaseFormat == GL_DEPTH_COMPONENT || + img->TexFormat->BaseFormat == GL_DEPTH_STENCIL_EXT); + + ASSERT(tObj->Target == GL_TEXTURE_1D || + tObj->Target == GL_TEXTURE_2D || + tObj->Target == GL_TEXTURE_RECTANGLE_NV || + tObj->Target == GL_TEXTURE_1D_ARRAY_EXT || + tObj->Target == GL_TEXTURE_2D_ARRAY_EXT); + + ambient = tObj->CompareFailValue; + + /* XXXX if tObj->MinFilter != tObj->MagFilter, we're ignoring lambda */ + + function = (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ? + tObj->CompareFunc : GL_NONE; + + if (tObj->MagFilter == GL_NEAREST) { + GLuint i; + for (i = 0; i < n; i++) { + GLfloat depthSample; + GLint col, row, slice; + + nearest_texcoord(tObj, texcoords[i], &col, &row, &slice); + + if (col >= 0 && row >= 0 && col < width && row < height && + slice >= 0 && slice < depth) { + img->FetchTexelf(img, col, row, slice, &depthSample); + } + else { + depthSample = tObj->BorderColor[0]; + } + + result = shadow_compare(function, texcoords[i][compare_coord], + depthSample, ambient); + + switch (tObj->DepthMode) { + case GL_LUMINANCE: + ASSIGN_4V(texel[i], result, result, result, 1.0F); + break; + case GL_INTENSITY: + ASSIGN_4V(texel[i], result, result, result, result); + break; + case GL_ALPHA: + ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); + break; + default: + _mesa_problem(ctx, "Bad depth texture mode"); + } + } + } + else { + GLuint i; + ASSERT(tObj->MagFilter == GL_LINEAR); + for (i = 0; i < n; i++) { + GLfloat depth00, depth01, depth10, depth11; + GLint i0, i1, j0, j1; + GLint slice; + GLfloat wi, wj; + GLuint useBorderTexel; + + linear_texcoord(tObj, texcoords[i], &i0, &i1, &j0, &j1, &slice, + &wi, &wj); + + useBorderTexel = 0; + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) { + j0 += img->Border; + j1 += img->Border; + } + } + else { + if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT; + if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT; + if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT; + if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT; + } + + if (slice < 0 || slice >= (GLint) depth) { + depth00 = tObj->BorderColor[0]; + depth01 = tObj->BorderColor[0]; + depth10 = tObj->BorderColor[0]; + depth11 = tObj->BorderColor[0]; + } + else { + /* get four depth samples from the texture */ + if (useBorderTexel & (I0BIT | J0BIT)) { + depth00 = tObj->BorderColor[0]; + } + else { + img->FetchTexelf(img, i0, j0, slice, &depth00); + } + if (useBorderTexel & (I1BIT | J0BIT)) { + depth10 = tObj->BorderColor[0]; + } + else { + img->FetchTexelf(img, i1, j0, slice, &depth10); + } + + if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) { + if (useBorderTexel & (I0BIT | J1BIT)) { + depth01 = tObj->BorderColor[0]; + } + else { + img->FetchTexelf(img, i0, j1, slice, &depth01); + } + if (useBorderTexel & (I1BIT | J1BIT)) { + depth11 = tObj->BorderColor[0]; + } + else { + img->FetchTexelf(img, i1, j1, slice, &depth11); + } + } + else { + depth01 = depth00; + depth11 = depth10; + } + } + + result = shadow_compare4(function, texcoords[i][compare_coord], + depth00, depth01, depth10, depth11, + ambient, wi, wj); + + switch (tObj->DepthMode) { + case GL_LUMINANCE: + ASSIGN_4V(texel[i], result, result, result, 1.0F); + break; + case GL_INTENSITY: + ASSIGN_4V(texel[i], result, result, result, result); + break; + case GL_ALPHA: + ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); + break; + default: + _mesa_problem(ctx, "Bad depth texture mode"); + } + + } /* for */ + } /* if filter */ +} + + +/** + * We use this function when a texture object is in an "incomplete" state. + * When a fragment program attempts to sample an incomplete texture we + * return black (see issue 23 in GL_ARB_fragment_program spec). + * Note: fragment programs don't observe the texture enable/disable flags. + */ +static void +null_sample_func( GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + (void) ctx; + (void) tObj; + (void) texcoords; + (void) lambda; + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = 0; + rgba[i][GCOMP] = 0; + rgba[i][BCOMP] = 0; + rgba[i][ACOMP] = CHAN_MAX; + } +} + + +/** + * Choose the texture sampling function for the given texture object. + */ +texture_sample_func +_swrast_choose_texture_sample_func( GLcontext *ctx, + const struct gl_texture_object *t ) +{ + if (!t || !t->_Complete) { + return &null_sample_func; + } + else { + const GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter); + const GLenum format = t->Image[0][t->BaseLevel]->TexFormat->BaseFormat; + + switch (t->Target) { + case GL_TEXTURE_1D: + if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { + return &sample_depth_texture; + } + else if (needLambda) { + return &sample_lambda_1d; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_1d; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_1d; + } + case GL_TEXTURE_2D: + if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { + return &sample_depth_texture; + } + else if (needLambda) { + return &sample_lambda_2d; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_2d; + } + else { + /* check for a few optimized cases */ + const struct gl_texture_image *img = t->Image[0][t->BaseLevel]; + ASSERT(t->MinFilter == GL_NEAREST); + if (t->WrapS == GL_REPEAT && + t->WrapT == GL_REPEAT && + img->_IsPowerOfTwo && + img->Border == 0 && + img->TexFormat->MesaFormat == MESA_FORMAT_RGB) { + return &opt_sample_rgb_2d; + } + else if (t->WrapS == GL_REPEAT && + t->WrapT == GL_REPEAT && + img->_IsPowerOfTwo && + img->Border == 0 && + img->TexFormat->MesaFormat == MESA_FORMAT_RGBA) { + return &opt_sample_rgba_2d; + } + else { + return &sample_nearest_2d; + } + } + case GL_TEXTURE_3D: + if (needLambda) { + return &sample_lambda_3d; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_3d; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_3d; + } + case GL_TEXTURE_CUBE_MAP: + if (needLambda) { + return &sample_lambda_cube; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_cube; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_cube; + } + case GL_TEXTURE_RECTANGLE_NV: + if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { + return &sample_depth_texture; + } + else if (needLambda) { + return &sample_lambda_rect; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_rect; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_rect; + } + case GL_TEXTURE_1D_ARRAY_EXT: + if (needLambda) { + return &sample_lambda_1d_array; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_1d_array; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_1d_array; + } + case GL_TEXTURE_2D_ARRAY_EXT: + if (needLambda) { + return &sample_lambda_2d_array; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_2d_array; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_2d_array; + } + default: + _mesa_problem(ctx, + "invalid target in _swrast_choose_texture_sample_func"); + return &null_sample_func; + } + } +} diff --git a/mesalib/src/mesa/swrast/s_texfilter.h b/mesalib/src/mesa/swrast/s_texfilter.h new file mode 100644 index 000000000..2e265d685 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_texfilter.h @@ -0,0 +1,38 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5 + * + * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_TEXFILTER_H +#define S_TEXFILTER_H + + +#include "swrast.h" + + +extern texture_sample_func +_swrast_choose_texture_sample_func( GLcontext *ctx, + const struct gl_texture_object *tObj ); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_texstore.c b/mesalib/src/mesa/swrast/s_texstore.c new file mode 100644 index 000000000..f9ff9ad6a --- /dev/null +++ b/mesalib/src/mesa/swrast/s_texstore.c @@ -0,0 +1,601 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5.2 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +/* + * Authors: + * Brian Paul + */ + + +/* + * The functions in this file are mostly related to software texture fallbacks. + * This includes texture image transfer/packing and texel fetching. + * Hardware drivers will likely override most of this. + */ + + + +#include "main/glheader.h" +#include "main/imports.h" +#include "main/colormac.h" +#include "main/context.h" +#include "main/convolve.h" +#include "main/image.h" +#include "main/macros.h" +#include "main/mipmap.h" +#include "main/texformat.h" +#include "main/teximage.h" +#include "main/texstore.h" + +#include "s_context.h" +#include "s_depth.h" +#include "s_span.h" + + +/** + * Read an RGBA image from the frame buffer. + * This is used by glCopyTex[Sub]Image[12]D(). + * \param x window source x + * \param y window source y + * \param width image width + * \param height image height + * \param type datatype for returned GL_RGBA image + * \return pointer to image + */ +static GLvoid * +read_color_image( GLcontext *ctx, GLint x, GLint y, GLenum type, + GLsizei width, GLsizei height ) +{ + struct gl_renderbuffer *rb = ctx->ReadBuffer->_ColorReadBuffer; + const GLint pixelSize = _mesa_bytes_per_pixel(GL_RGBA, type); + const GLint stride = width * pixelSize; + GLint row; + GLubyte *image, *dst; + + image = (GLubyte *) _mesa_malloc(width * height * pixelSize); + if (!image) + return NULL; + + swrast_render_start(ctx); + + dst = image; + for (row = 0; row < height; row++) { + _swrast_read_rgba_span(ctx, rb, width, x, y + row, type, dst); + dst += stride; + } + + swrast_render_finish(ctx); + + return image; +} + + +/** + * As above, but read data from depth buffer. Returned as GLuints. + * \sa read_color_image + */ +static GLuint * +read_depth_image( GLcontext *ctx, GLint x, GLint y, + GLsizei width, GLsizei height ) +{ + struct gl_renderbuffer *rb = ctx->ReadBuffer->_DepthBuffer; + GLuint *image, *dst; + GLint i; + + image = (GLuint *) _mesa_malloc(width * height * sizeof(GLuint)); + if (!image) + return NULL; + + swrast_render_start(ctx); + + dst = image; + for (i = 0; i < height; i++) { + _swrast_read_depth_span_uint(ctx, rb, width, x, y + i, dst); + dst += width; + } + + swrast_render_finish(ctx); + + return image; +} + + +/** + * As above, but read data from depth+stencil buffers. + */ +static GLuint * +read_depth_stencil_image(GLcontext *ctx, GLint x, GLint y, + GLsizei width, GLsizei height) +{ + struct gl_renderbuffer *depthRb = ctx->ReadBuffer->_DepthBuffer; + struct gl_renderbuffer *stencilRb = ctx->ReadBuffer->_StencilBuffer; + GLuint *image, *dst; + GLint i; + + ASSERT(depthRb); + ASSERT(stencilRb); + + image = (GLuint *) _mesa_malloc(width * height * sizeof(GLuint)); + if (!image) + return NULL; + + swrast_render_start(ctx); + + /* read from depth buffer */ + dst = image; + if (depthRb->DataType == GL_UNSIGNED_INT) { + for (i = 0; i < height; i++) { + _swrast_get_row(ctx, depthRb, width, x, y + i, dst, sizeof(GLuint)); + dst += width; + } + } + else { + GLushort z16[MAX_WIDTH]; + ASSERT(depthRb->DataType == GL_UNSIGNED_SHORT); + for (i = 0; i < height; i++) { + GLint j; + _swrast_get_row(ctx, depthRb, width, x, y + i, z16, sizeof(GLushort)); + /* convert GLushorts to GLuints */ + for (j = 0; j < width; j++) { + dst[j] = z16[j]; + } + dst += width; + } + } + + /* put depth values into bits 0xffffff00 */ + if (ctx->ReadBuffer->Visual.depthBits == 24) { + GLint j; + for (j = 0; j < width * height; j++) { + image[j] <<= 8; + } + } + else if (ctx->ReadBuffer->Visual.depthBits == 16) { + GLint j; + for (j = 0; j < width * height; j++) { + image[j] = (image[j] << 16) | (image[j] & 0xff00); + } + } + else { + /* this handles arbitrary depthBits >= 12 */ + const GLint rShift = ctx->ReadBuffer->Visual.depthBits; + const GLint lShift = 32 - rShift; + GLint j; + for (j = 0; j < width * height; j++) { + GLuint z = (image[j] << lShift); + image[j] = z | (z >> rShift); + } + } + + /* read stencil values and interleave into image array */ + dst = image; + for (i = 0; i < height; i++) { + GLstencil stencil[MAX_WIDTH]; + GLint j; + ASSERT(8 * sizeof(GLstencil) == stencilRb->StencilBits); + _swrast_get_row(ctx, stencilRb, width, x, y + i, + stencil, sizeof(GLstencil)); + for (j = 0; j < width; j++) { + dst[j] = (dst[j] & 0xffffff00) | (stencil[j] & 0xff); + } + dst += width; + } + + swrast_render_finish(ctx); + + return image; +} + + +static GLboolean +is_depth_format(GLenum format) +{ + switch (format) { + case GL_DEPTH_COMPONENT: + case GL_DEPTH_COMPONENT16: + case GL_DEPTH_COMPONENT24: + case GL_DEPTH_COMPONENT32: + return GL_TRUE; + default: + return GL_FALSE; + } +} + + +static GLboolean +is_depth_stencil_format(GLenum format) +{ + switch (format) { + case GL_DEPTH_STENCIL_EXT: + case GL_DEPTH24_STENCIL8_EXT: + return GL_TRUE; + default: + return GL_FALSE; + } +} + + +/* + * Fallback for Driver.CopyTexImage1D(). + */ +void +_swrast_copy_teximage1d( GLcontext *ctx, GLenum target, GLint level, + GLenum internalFormat, + GLint x, GLint y, GLsizei width, GLint border ) +{ + struct gl_texture_unit *texUnit; + struct gl_texture_object *texObj; + struct gl_texture_image *texImage; + + texUnit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit]; + texObj = _mesa_select_tex_object(ctx, texUnit, target); + ASSERT(texObj); + texImage = _mesa_select_tex_image(ctx, texObj, target, level); + ASSERT(texImage); + + ASSERT(ctx->Driver.TexImage1D); + + if (is_depth_format(internalFormat)) { + /* read depth image from framebuffer */ + GLuint *image = read_depth_image(ctx, x, y, width, 1); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexImage1D"); + return; + } + /* call glTexImage1D to redefine the texture */ + ctx->Driver.TexImage1D(ctx, target, level, internalFormat, + width, border, + GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, image, + &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + else if (is_depth_stencil_format(internalFormat)) { + /* read depth/stencil image from framebuffer */ + GLuint *image = read_depth_stencil_image(ctx, x, y, width, 1); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexImage1D"); + return; + } + /* call glTexImage1D to redefine the texture */ + ctx->Driver.TexImage1D(ctx, target, level, internalFormat, + width, border, + GL_DEPTH_STENCIL_EXT, GL_UNSIGNED_INT_24_8_EXT, + image, &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + else { + /* read RGBA image from framebuffer */ + const GLenum format = GL_RGBA; + const GLenum type = ctx->ReadBuffer->_ColorReadBuffer->DataType; + GLvoid *image = read_color_image(ctx, x, y, type, width, 1); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexImage1D"); + return; + } + /* call glTexImage1D to redefine the texture */ + ctx->Driver.TexImage1D(ctx, target, level, internalFormat, + width, border, format, type, image, + &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + + /* GL_SGIS_generate_mipmap */ + if (level == texObj->BaseLevel && texObj->GenerateMipmap) { + ctx->Driver.GenerateMipmap(ctx, target, texObj); + } +} + + +/** + * Fallback for Driver.CopyTexImage2D(). + * + * We implement CopyTexImage by reading the image from the framebuffer + * then passing it to the ctx->Driver.TexImage2D() function. + * + * Device drivers should try to implement direct framebuffer->texture copies. + */ +void +_swrast_copy_teximage2d( GLcontext *ctx, GLenum target, GLint level, + GLenum internalFormat, + GLint x, GLint y, GLsizei width, GLsizei height, + GLint border ) +{ + struct gl_texture_unit *texUnit; + struct gl_texture_object *texObj; + struct gl_texture_image *texImage; + + texUnit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit]; + texObj = _mesa_select_tex_object(ctx, texUnit, target); + ASSERT(texObj); + texImage = _mesa_select_tex_image(ctx, texObj, target, level); + ASSERT(texImage); + + ASSERT(ctx->Driver.TexImage2D); + + if (is_depth_format(internalFormat)) { + /* read depth image from framebuffer */ + GLuint *image = read_depth_image(ctx, x, y, width, height); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexImage2D"); + return; + } + /* call glTexImage2D to redefine the texture */ + ctx->Driver.TexImage2D(ctx, target, level, internalFormat, + width, height, border, + GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, image, + &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + else if (is_depth_stencil_format(internalFormat)) { + GLuint *image = read_depth_stencil_image(ctx, x, y, width, height); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexImage2D"); + return; + } + /* call glTexImage2D to redefine the texture */ + ctx->Driver.TexImage2D(ctx, target, level, internalFormat, + width, height, border, + GL_DEPTH_STENCIL_EXT, GL_UNSIGNED_INT_24_8_EXT, + image, &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + else { + /* read RGBA image from framebuffer */ + const GLenum format = GL_RGBA; + const GLenum type = ctx->ReadBuffer->_ColorReadBuffer->DataType; + GLvoid *image = read_color_image(ctx, x, y, type, width, height); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexImage2D"); + return; + } + /* call glTexImage2D to redefine the texture */ + ctx->Driver.TexImage2D(ctx, target, level, internalFormat, + width, height, border, format, type, image, + &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + + /* GL_SGIS_generate_mipmap */ + if (level == texObj->BaseLevel && texObj->GenerateMipmap) { + ctx->Driver.GenerateMipmap(ctx, target, texObj); + } +} + + +/* + * Fallback for Driver.CopyTexSubImage1D(). + */ +void +_swrast_copy_texsubimage1d( GLcontext *ctx, GLenum target, GLint level, + GLint xoffset, GLint x, GLint y, GLsizei width ) +{ + struct gl_texture_unit *texUnit; + struct gl_texture_object *texObj; + struct gl_texture_image *texImage; + + texUnit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit]; + texObj = _mesa_select_tex_object(ctx, texUnit, target); + ASSERT(texObj); + texImage = _mesa_select_tex_image(ctx, texObj, target, level); + ASSERT(texImage); + + ASSERT(ctx->Driver.TexImage1D); + + if (texImage->_BaseFormat == GL_DEPTH_COMPONENT) { + /* read depth image from framebuffer */ + GLuint *image = read_depth_image(ctx, x, y, width, 1); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexSubImage1D"); + return; + } + + /* call glTexSubImage1D to redefine the texture */ + ctx->Driver.TexSubImage1D(ctx, target, level, xoffset, width, + GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, image, + &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + else if (texImage->_BaseFormat == GL_DEPTH_STENCIL_EXT) { + /* read depth/stencil image from framebuffer */ + GLuint *image = read_depth_stencil_image(ctx, x, y, width, 1); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexSubImage1D"); + return; + } + /* call glTexImage1D to redefine the texture */ + ctx->Driver.TexSubImage1D(ctx, target, level, xoffset, width, + GL_DEPTH_STENCIL_EXT, GL_UNSIGNED_INT_24_8_EXT, + image, &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + else { + /* read RGBA image from framebuffer */ + const GLenum format = GL_RGBA; + const GLenum type = ctx->ReadBuffer->_ColorReadBuffer->DataType; + GLvoid *image = read_color_image(ctx, x, y, type, width, 1); + if (!image) { + _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyTexSubImage1D" ); + return; + } + /* now call glTexSubImage1D to do the real work */ + ctx->Driver.TexSubImage1D(ctx, target, level, xoffset, width, + format, type, image, + &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + + /* GL_SGIS_generate_mipmap */ + if (level == texObj->BaseLevel && texObj->GenerateMipmap) { + ctx->Driver.GenerateMipmap(ctx, target, texObj); + } +} + + +/** + * Fallback for Driver.CopyTexSubImage2D(). + * + * Read the image from the framebuffer then hand it + * off to ctx->Driver.TexSubImage2D(). + */ +void +_swrast_copy_texsubimage2d( GLcontext *ctx, + GLenum target, GLint level, + GLint xoffset, GLint yoffset, + GLint x, GLint y, GLsizei width, GLsizei height ) +{ + struct gl_texture_unit *texUnit; + struct gl_texture_object *texObj; + struct gl_texture_image *texImage; + + texUnit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit]; + texObj = _mesa_select_tex_object(ctx, texUnit, target); + ASSERT(texObj); + texImage = _mesa_select_tex_image(ctx, texObj, target, level); + ASSERT(texImage); + + ASSERT(ctx->Driver.TexImage2D); + + if (texImage->_BaseFormat == GL_DEPTH_COMPONENT) { + /* read depth image from framebuffer */ + GLuint *image = read_depth_image(ctx, x, y, width, height); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexSubImage2D"); + return; + } + /* call glTexImage2D to redefine the texture */ + ctx->Driver.TexSubImage2D(ctx, target, level, + xoffset, yoffset, width, height, + GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, image, + &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + else if (texImage->_BaseFormat == GL_DEPTH_STENCIL_EXT) { + /* read depth/stencil image from framebuffer */ + GLuint *image = read_depth_stencil_image(ctx, x, y, width, height); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexSubImage2D"); + return; + } + /* call glTexImage2D to redefine the texture */ + ctx->Driver.TexSubImage2D(ctx, target, level, + xoffset, yoffset, width, height, + GL_DEPTH_STENCIL_EXT, GL_UNSIGNED_INT_24_8_EXT, + image, &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + else { + /* read RGBA image from framebuffer */ + const GLenum format = GL_RGBA; + const GLenum type = ctx->ReadBuffer->_ColorReadBuffer->DataType; + GLvoid *image = read_color_image(ctx, x, y, type, width, height); + if (!image) { + _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyTexSubImage2D" ); + return; + } + /* now call glTexSubImage2D to do the real work */ + ctx->Driver.TexSubImage2D(ctx, target, level, + xoffset, yoffset, width, height, + format, type, image, + &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + + /* GL_SGIS_generate_mipmap */ + if (level == texObj->BaseLevel && texObj->GenerateMipmap) { + ctx->Driver.GenerateMipmap(ctx, target, texObj); + } +} + + +/* + * Fallback for Driver.CopyTexSubImage3D(). + */ +void +_swrast_copy_texsubimage3d( GLcontext *ctx, + GLenum target, GLint level, + GLint xoffset, GLint yoffset, GLint zoffset, + GLint x, GLint y, GLsizei width, GLsizei height ) +{ + struct gl_texture_unit *texUnit; + struct gl_texture_object *texObj; + struct gl_texture_image *texImage; + + texUnit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit]; + texObj = _mesa_select_tex_object(ctx, texUnit, target); + ASSERT(texObj); + texImage = _mesa_select_tex_image(ctx, texObj, target, level); + ASSERT(texImage); + + ASSERT(ctx->Driver.TexImage3D); + + if (texImage->_BaseFormat == GL_DEPTH_COMPONENT) { + /* read depth image from framebuffer */ + GLuint *image = read_depth_image(ctx, x, y, width, height); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexSubImage3D"); + return; + } + /* call glTexImage3D to redefine the texture */ + ctx->Driver.TexSubImage3D(ctx, target, level, + xoffset, yoffset, zoffset, width, height, 1, + GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, image, + &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + else if (texImage->_BaseFormat == GL_DEPTH_STENCIL_EXT) { + /* read depth/stencil image from framebuffer */ + GLuint *image = read_depth_stencil_image(ctx, x, y, width, height); + if (!image) { + _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexSubImage3D"); + return; + } + /* call glTexImage3D to redefine the texture */ + ctx->Driver.TexSubImage3D(ctx, target, level, + xoffset, yoffset, zoffset, width, height, 1, + GL_DEPTH_STENCIL_EXT, GL_UNSIGNED_INT_24_8_EXT, + image, &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + else { + /* read RGBA image from framebuffer */ + const GLenum format = GL_RGBA; + const GLenum type = ctx->ReadBuffer->_ColorReadBuffer->DataType; + GLvoid *image = read_color_image(ctx, x, y, type, width, height); + if (!image) { + _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyTexSubImage3D" ); + return; + } + /* now call glTexSubImage3D to do the real work */ + ctx->Driver.TexSubImage3D(ctx, target, level, + xoffset, yoffset, zoffset, width, height, 1, + format, type, image, + &ctx->DefaultPacking, texObj, texImage); + _mesa_free(image); + } + + /* GL_SGIS_generate_mipmap */ + if (level == texObj->BaseLevel && texObj->GenerateMipmap) { + ctx->Driver.GenerateMipmap(ctx, target, texObj); + } +} diff --git a/mesalib/src/mesa/swrast/s_triangle.c b/mesalib/src/mesa/swrast/s_triangle.c new file mode 100644 index 000000000..1ab0e19f9 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_triangle.c @@ -0,0 +1,1150 @@ +/* + * Mesa 3-D graphics library + * Version: 7.3 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +/* + * When the device driver doesn't implement triangle rasterization it + * can hook in _swrast_Triangle, which eventually calls one of these + * functions to draw triangles. + */ + +#include "main/glheader.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/imports.h" +#include "main/macros.h" +#include "main/texformat.h" +#include "shader/prog_instruction.h" + +#include "s_aatriangle.h" +#include "s_context.h" +#include "s_feedback.h" +#include "s_span.h" +#include "s_triangle.h" + + +/** + * Test if a triangle should be culled. Used for feedback and selection mode. + * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise. + */ +GLboolean +_swrast_culltriangle( GLcontext *ctx, + const SWvertex *v0, + const SWvertex *v1, + const SWvertex *v2 ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLfloat ex = v1->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0]; + GLfloat ey = v1->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1]; + GLfloat fx = v2->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0]; + GLfloat fy = v2->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1]; + GLfloat c = ex*fy-ey*fx; + + if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F) + return GL_FALSE; + + return GL_TRUE; +} + + + +/* + * Render a smooth or flat-shaded color index triangle. + */ +#define NAME ci_triangle +#define INTERP_Z 1 +#define INTERP_ATTRIBS 1 /* just for fog */ +#define INTERP_INDEX 1 +#define RENDER_SPAN( span ) _swrast_write_index_span(ctx, &span); +#include "s_tritemp.h" + + + +/* + * Render a flat-shaded RGBA triangle. + */ +#define NAME flat_rgba_triangle +#define INTERP_Z 1 +#define SETUP_CODE \ + ASSERT(ctx->Texture._EnabledCoordUnits == 0);\ + ASSERT(ctx->Light.ShadeModel==GL_FLAT); \ + span.interpMask |= SPAN_RGBA; \ + span.red = ChanToFixed(v2->color[0]); \ + span.green = ChanToFixed(v2->color[1]); \ + span.blue = ChanToFixed(v2->color[2]); \ + span.alpha = ChanToFixed(v2->color[3]); \ + span.redStep = 0; \ + span.greenStep = 0; \ + span.blueStep = 0; \ + span.alphaStep = 0; +#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); +#include "s_tritemp.h" + + + +/* + * Render a smooth-shaded RGBA triangle. + */ +#define NAME smooth_rgba_triangle +#define INTERP_Z 1 +#define INTERP_RGB 1 +#define INTERP_ALPHA 1 +#define SETUP_CODE \ + { \ + /* texturing must be off */ \ + ASSERT(ctx->Texture._EnabledCoordUnits == 0); \ + ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \ + } +#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); +#include "s_tritemp.h" + + + +/* + * Render an RGB, GL_DECAL, textured triangle. + * Interpolate S,T only w/out mipmapping or perspective correction. + * + * No fog. No depth testing. + */ +#define NAME simple_textured_triangle +#define INTERP_INT_TEX 1 +#define S_SCALE twidth +#define T_SCALE theight + +#define SETUP_CODE \ + struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ + struct gl_texture_object *obj = \ + ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ + const GLint b = obj->BaseLevel; \ + const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \ + const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \ + const GLint twidth_log2 = obj->Image[0][b]->WidthLog2; \ + const GLchan *texture = (const GLchan *) obj->Image[0][b]->Data; \ + const GLint smask = obj->Image[0][b]->Width - 1; \ + const GLint tmask = obj->Image[0][b]->Height - 1; \ + if (!rb || !texture) { \ + return; \ + } + +#define RENDER_SPAN( span ) \ + GLuint i; \ + GLchan rgb[MAX_WIDTH][3]; \ + span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ + span.intTex[1] -= FIXED_HALF; \ + for (i = 0; i < span.end; i++) { \ + GLint s = FixedToInt(span.intTex[0]) & smask; \ + GLint t = FixedToInt(span.intTex[1]) & tmask; \ + GLint pos = (t << twidth_log2) + s; \ + pos = pos + pos + pos; /* multiply by 3 */ \ + rgb[i][RCOMP] = texture[pos]; \ + rgb[i][GCOMP] = texture[pos+1]; \ + rgb[i][BCOMP] = texture[pos+2]; \ + span.intTex[0] += span.intTexStep[0]; \ + span.intTex[1] += span.intTexStep[1]; \ + } \ + rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, NULL); + +#include "s_tritemp.h" + + + +/* + * Render an RGB, GL_DECAL, textured triangle. + * Interpolate S,T, GL_LESS depth test, w/out mipmapping or + * perspective correction. + * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE) + * + * No fog. + */ +#define NAME simple_z_textured_triangle +#define INTERP_Z 1 +#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE +#define INTERP_INT_TEX 1 +#define S_SCALE twidth +#define T_SCALE theight + +#define SETUP_CODE \ + struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ + struct gl_texture_object *obj = \ + ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ + const GLint b = obj->BaseLevel; \ + const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \ + const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \ + const GLint twidth_log2 = obj->Image[0][b]->WidthLog2; \ + const GLchan *texture = (const GLchan *) obj->Image[0][b]->Data; \ + const GLint smask = obj->Image[0][b]->Width - 1; \ + const GLint tmask = obj->Image[0][b]->Height - 1; \ + if (!rb || !texture) { \ + return; \ + } + +#define RENDER_SPAN( span ) \ + GLuint i; \ + GLchan rgb[MAX_WIDTH][3]; \ + span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ + span.intTex[1] -= FIXED_HALF; \ + for (i = 0; i < span.end; i++) { \ + const GLuint z = FixedToDepth(span.z); \ + if (z < zRow[i]) { \ + GLint s = FixedToInt(span.intTex[0]) & smask; \ + GLint t = FixedToInt(span.intTex[1]) & tmask; \ + GLint pos = (t << twidth_log2) + s; \ + pos = pos + pos + pos; /* multiply by 3 */ \ + rgb[i][RCOMP] = texture[pos]; \ + rgb[i][GCOMP] = texture[pos+1]; \ + rgb[i][BCOMP] = texture[pos+2]; \ + zRow[i] = z; \ + span.array->mask[i] = 1; \ + } \ + else { \ + span.array->mask[i] = 0; \ + } \ + span.intTex[0] += span.intTexStep[0]; \ + span.intTex[1] += span.intTexStep[1]; \ + span.z += span.zStep; \ + } \ + rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, span.array->mask); + +#include "s_tritemp.h" + + +#if CHAN_TYPE != GL_FLOAT + +struct affine_info +{ + GLenum filter; + GLenum format; + GLenum envmode; + GLint smask, tmask; + GLint twidth_log2; + const GLchan *texture; + GLfixed er, eg, eb, ea; + GLint tbytesline, tsize; +}; + + +static INLINE GLint +ilerp(GLint t, GLint a, GLint b) +{ + return a + ((t * (b - a)) >> FIXED_SHIFT); +} + +static INLINE GLint +ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11) +{ + const GLint temp0 = ilerp(ia, v00, v10); + const GLint temp1 = ilerp(ia, v01, v11); + return ilerp(ib, temp0, temp1); +} + + +/* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA + * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD + * texture env modes. + */ +static INLINE void +affine_span(GLcontext *ctx, SWspan *span, + struct affine_info *info) +{ + GLchan sample[4]; /* the filtered texture sample */ + const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; + + /* Instead of defining a function for each mode, a test is done + * between the outer and inner loops. This is to reduce code size + * and complexity. Observe that an optimizing compiler kills + * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). + */ + +#define NEAREST_RGB \ + sample[RCOMP] = tex00[RCOMP]; \ + sample[GCOMP] = tex00[GCOMP]; \ + sample[BCOMP] = tex00[BCOMP]; \ + sample[ACOMP] = CHAN_MAX + +#define LINEAR_RGB \ + sample[RCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\ + sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ + sample[BCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ + sample[ACOMP] = CHAN_MAX; + +#define NEAREST_RGBA COPY_CHAN4(sample, tex00) + +#define LINEAR_RGBA \ + sample[RCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\ + sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ + sample[BCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ + sample[ACOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]) + +#define MODULATE \ + dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \ + dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \ + dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \ + dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8) + +#define DECAL \ + dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \ + ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \ + >> (FIXED_SHIFT + 8); \ + dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \ + ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \ + >> (FIXED_SHIFT + 8); \ + dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \ + ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \ + >> (FIXED_SHIFT + 8); \ + dest[ACOMP] = FixedToInt(span->alpha) + +#define BLEND \ + dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \ + + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \ + dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \ + + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \ + dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \ + + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \ + dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8) + +#define REPLACE COPY_CHAN4(dest, sample) + +#define ADD \ + { \ + GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \ + GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \ + GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \ + dest[RCOMP] = MIN2(rSum, CHAN_MAX); \ + dest[GCOMP] = MIN2(gSum, CHAN_MAX); \ + dest[BCOMP] = MIN2(bSum, CHAN_MAX); \ + dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \ + } + +/* shortcuts */ + +#define NEAREST_RGB_REPLACE \ + NEAREST_RGB; \ + dest[0] = sample[0]; \ + dest[1] = sample[1]; \ + dest[2] = sample[2]; \ + dest[3] = FixedToInt(span->alpha); + +#define NEAREST_RGBA_REPLACE COPY_CHAN4(dest, tex00) + +#define SPAN_NEAREST(DO_TEX, COMPS) \ + for (i = 0; i < span->end; i++) { \ + /* Isn't it necessary to use FixedFloor below?? */ \ + GLint s = FixedToInt(span->intTex[0]) & info->smask; \ + GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ + GLint pos = (t << info->twidth_log2) + s; \ + const GLchan *tex00 = info->texture + COMPS * pos; \ + DO_TEX; \ + span->red += span->redStep; \ + span->green += span->greenStep; \ + span->blue += span->blueStep; \ + span->alpha += span->alphaStep; \ + span->intTex[0] += span->intTexStep[0]; \ + span->intTex[1] += span->intTexStep[1]; \ + dest += 4; \ + } + +#define SPAN_LINEAR(DO_TEX, COMPS) \ + for (i = 0; i < span->end; i++) { \ + /* Isn't it necessary to use FixedFloor below?? */ \ + const GLint s = FixedToInt(span->intTex[0]) & info->smask; \ + const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ + const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \ + const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \ + const GLint pos = (t << info->twidth_log2) + s; \ + const GLchan *tex00 = info->texture + COMPS * pos; \ + const GLchan *tex10 = tex00 + info->tbytesline; \ + const GLchan *tex01 = tex00 + COMPS; \ + const GLchan *tex11 = tex10 + COMPS; \ + if (t == info->tmask) { \ + tex10 -= info->tsize; \ + tex11 -= info->tsize; \ + } \ + if (s == info->smask) { \ + tex01 -= info->tbytesline; \ + tex11 -= info->tbytesline; \ + } \ + DO_TEX; \ + span->red += span->redStep; \ + span->green += span->greenStep; \ + span->blue += span->blueStep; \ + span->alpha += span->alphaStep; \ + span->intTex[0] += span->intTexStep[0]; \ + span->intTex[1] += span->intTexStep[1]; \ + dest += 4; \ + } + + + GLuint i; + GLchan *dest = span->array->rgba[0]; + + /* Disable tex units so they're not re-applied in swrast_write_rgba_span */ + ctx->Texture._EnabledCoordUnits = 0x0; + + span->intTex[0] -= FIXED_HALF; + span->intTex[1] -= FIXED_HALF; + switch (info->filter) { + case GL_NEAREST: + switch (info->format) { + case GL_RGB: + switch (info->envmode) { + case GL_MODULATE: + SPAN_NEAREST(NEAREST_RGB;MODULATE,3); + break; + case GL_DECAL: + case GL_REPLACE: + SPAN_NEAREST(NEAREST_RGB_REPLACE,3); + break; + case GL_BLEND: + SPAN_NEAREST(NEAREST_RGB;BLEND,3); + break; + case GL_ADD: + SPAN_NEAREST(NEAREST_RGB;ADD,3); + break; + default: + _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR"); + return; + } + break; + case GL_RGBA: + switch(info->envmode) { + case GL_MODULATE: + SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); + break; + case GL_DECAL: + SPAN_NEAREST(NEAREST_RGBA;DECAL,4); + break; + case GL_BLEND: + SPAN_NEAREST(NEAREST_RGBA;BLEND,4); + break; + case GL_ADD: + SPAN_NEAREST(NEAREST_RGBA;ADD,4); + break; + case GL_REPLACE: + SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); + break; + default: + _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR"); + return; + } + break; + } + break; + + case GL_LINEAR: + span->intTex[0] -= FIXED_HALF; + span->intTex[1] -= FIXED_HALF; + switch (info->format) { + case GL_RGB: + switch (info->envmode) { + case GL_MODULATE: + SPAN_LINEAR(LINEAR_RGB;MODULATE,3); + break; + case GL_DECAL: + case GL_REPLACE: + SPAN_LINEAR(LINEAR_RGB;REPLACE,3); + break; + case GL_BLEND: + SPAN_LINEAR(LINEAR_RGB;BLEND,3); + break; + case GL_ADD: + SPAN_LINEAR(LINEAR_RGB;ADD,3); + break; + default: + _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR"); + return; + } + break; + case GL_RGBA: + switch (info->envmode) { + case GL_MODULATE: + SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); + break; + case GL_DECAL: + SPAN_LINEAR(LINEAR_RGBA;DECAL,4); + break; + case GL_BLEND: + SPAN_LINEAR(LINEAR_RGBA;BLEND,4); + break; + case GL_ADD: + SPAN_LINEAR(LINEAR_RGBA;ADD,4); + break; + case GL_REPLACE: + SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); + break; + default: + _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR"); + return; + } + break; + } + break; + } + span->interpMask &= ~SPAN_RGBA; + ASSERT(span->arrayMask & SPAN_RGBA); + + _swrast_write_rgba_span(ctx, span); + + /* re-enable texture units */ + ctx->Texture._EnabledCoordUnits = texEnableSave; + +#undef SPAN_NEAREST +#undef SPAN_LINEAR +} + + + +/* + * Render an RGB/RGBA textured triangle without perspective correction. + */ +#define NAME affine_textured_triangle +#define INTERP_Z 1 +#define INTERP_RGB 1 +#define INTERP_ALPHA 1 +#define INTERP_INT_TEX 1 +#define S_SCALE twidth +#define T_SCALE theight + +#define SETUP_CODE \ + struct affine_info info; \ + struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ + struct gl_texture_object *obj = \ + ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ + const GLint b = obj->BaseLevel; \ + const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \ + const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \ + info.texture = (const GLchan *) obj->Image[0][b]->Data; \ + info.twidth_log2 = obj->Image[0][b]->WidthLog2; \ + info.smask = obj->Image[0][b]->Width - 1; \ + info.tmask = obj->Image[0][b]->Height - 1; \ + info.format = obj->Image[0][b]->_BaseFormat; \ + info.filter = obj->MinFilter; \ + info.envmode = unit->EnvMode; \ + span.arrayMask |= SPAN_RGBA; \ + \ + if (info.envmode == GL_BLEND) { \ + /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ + info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ + info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ + info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ + info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ + } \ + if (!info.texture) { \ + /* this shouldn't happen */ \ + return; \ + } \ + \ + switch (info.format) { \ + case GL_ALPHA: \ + case GL_LUMINANCE: \ + case GL_INTENSITY: \ + info.tbytesline = obj->Image[0][b]->Width; \ + break; \ + case GL_LUMINANCE_ALPHA: \ + info.tbytesline = obj->Image[0][b]->Width * 2; \ + break; \ + case GL_RGB: \ + info.tbytesline = obj->Image[0][b]->Width * 3; \ + break; \ + case GL_RGBA: \ + info.tbytesline = obj->Image[0][b]->Width * 4; \ + break; \ + default: \ + _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\ + return; \ + } \ + info.tsize = obj->Image[0][b]->Height * info.tbytesline; + +#define RENDER_SPAN( span ) affine_span(ctx, &span, &info); + +#include "s_tritemp.h" + + + +struct persp_info +{ + GLenum filter; + GLenum format; + GLenum envmode; + GLint smask, tmask; + GLint twidth_log2; + const GLchan *texture; + GLfixed er, eg, eb, ea; /* texture env color */ + GLint tbytesline, tsize; +}; + + +static INLINE void +fast_persp_span(GLcontext *ctx, SWspan *span, + struct persp_info *info) +{ + GLchan sample[4]; /* the filtered texture sample */ + + /* Instead of defining a function for each mode, a test is done + * between the outer and inner loops. This is to reduce code size + * and complexity. Observe that an optimizing compiler kills + * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). + */ +#define SPAN_NEAREST(DO_TEX,COMP) \ + for (i = 0; i < span->end; i++) { \ + GLdouble invQ = tex_coord[2] ? \ + (1.0 / tex_coord[2]) : 1.0; \ + GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ + GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ + GLint s = IFLOOR(s_tmp) & info->smask; \ + GLint t = IFLOOR(t_tmp) & info->tmask; \ + GLint pos = (t << info->twidth_log2) + s; \ + const GLchan *tex00 = info->texture + COMP * pos; \ + DO_TEX; \ + span->red += span->redStep; \ + span->green += span->greenStep; \ + span->blue += span->blueStep; \ + span->alpha += span->alphaStep; \ + tex_coord[0] += tex_step[0]; \ + tex_coord[1] += tex_step[1]; \ + tex_coord[2] += tex_step[2]; \ + dest += 4; \ + } + +#define SPAN_LINEAR(DO_TEX,COMP) \ + for (i = 0; i < span->end; i++) { \ + GLdouble invQ = tex_coord[2] ? \ + (1.0 / tex_coord[2]) : 1.0; \ + const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ + const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ + const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \ + const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \ + const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \ + const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \ + const GLfixed sf = s_fix & FIXED_FRAC_MASK; \ + const GLfixed tf = t_fix & FIXED_FRAC_MASK; \ + const GLint pos = (t << info->twidth_log2) + s; \ + const GLchan *tex00 = info->texture + COMP * pos; \ + const GLchan *tex10 = tex00 + info->tbytesline; \ + const GLchan *tex01 = tex00 + COMP; \ + const GLchan *tex11 = tex10 + COMP; \ + if (t == info->tmask) { \ + tex10 -= info->tsize; \ + tex11 -= info->tsize; \ + } \ + if (s == info->smask) { \ + tex01 -= info->tbytesline; \ + tex11 -= info->tbytesline; \ + } \ + DO_TEX; \ + span->red += span->redStep; \ + span->green += span->greenStep; \ + span->blue += span->blueStep; \ + span->alpha += span->alphaStep; \ + tex_coord[0] += tex_step[0]; \ + tex_coord[1] += tex_step[1]; \ + tex_coord[2] += tex_step[2]; \ + dest += 4; \ + } + + GLuint i; + GLfloat tex_coord[3], tex_step[3]; + GLchan *dest = span->array->rgba[0]; + + const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; + ctx->Texture._EnabledCoordUnits = 0; + + tex_coord[0] = span->attrStart[FRAG_ATTRIB_TEX0][0] * (info->smask + 1); + tex_step[0] = span->attrStepX[FRAG_ATTRIB_TEX0][0] * (info->smask + 1); + tex_coord[1] = span->attrStart[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1); + tex_step[1] = span->attrStepX[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1); + /* span->attrStart[FRAG_ATTRIB_TEX0][2] only if 3D-texturing, here only 2D */ + tex_coord[2] = span->attrStart[FRAG_ATTRIB_TEX0][3]; + tex_step[2] = span->attrStepX[FRAG_ATTRIB_TEX0][3]; + + switch (info->filter) { + case GL_NEAREST: + switch (info->format) { + case GL_RGB: + switch (info->envmode) { + case GL_MODULATE: + SPAN_NEAREST(NEAREST_RGB;MODULATE,3); + break; + case GL_DECAL: + case GL_REPLACE: + SPAN_NEAREST(NEAREST_RGB_REPLACE,3); + break; + case GL_BLEND: + SPAN_NEAREST(NEAREST_RGB;BLEND,3); + break; + case GL_ADD: + SPAN_NEAREST(NEAREST_RGB;ADD,3); + break; + default: + _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR"); + return; + } + break; + case GL_RGBA: + switch(info->envmode) { + case GL_MODULATE: + SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); + break; + case GL_DECAL: + SPAN_NEAREST(NEAREST_RGBA;DECAL,4); + break; + case GL_BLEND: + SPAN_NEAREST(NEAREST_RGBA;BLEND,4); + break; + case GL_ADD: + SPAN_NEAREST(NEAREST_RGBA;ADD,4); + break; + case GL_REPLACE: + SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); + break; + default: + _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR"); + return; + } + break; + } + break; + + case GL_LINEAR: + switch (info->format) { + case GL_RGB: + switch (info->envmode) { + case GL_MODULATE: + SPAN_LINEAR(LINEAR_RGB;MODULATE,3); + break; + case GL_DECAL: + case GL_REPLACE: + SPAN_LINEAR(LINEAR_RGB;REPLACE,3); + break; + case GL_BLEND: + SPAN_LINEAR(LINEAR_RGB;BLEND,3); + break; + case GL_ADD: + SPAN_LINEAR(LINEAR_RGB;ADD,3); + break; + default: + _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR"); + return; + } + break; + case GL_RGBA: + switch (info->envmode) { + case GL_MODULATE: + SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); + break; + case GL_DECAL: + SPAN_LINEAR(LINEAR_RGBA;DECAL,4); + break; + case GL_BLEND: + SPAN_LINEAR(LINEAR_RGBA;BLEND,4); + break; + case GL_ADD: + SPAN_LINEAR(LINEAR_RGBA;ADD,4); + break; + case GL_REPLACE: + SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); + break; + default: + _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR"); + return; + } + break; + } + break; + } + + ASSERT(span->arrayMask & SPAN_RGBA); + _swrast_write_rgba_span(ctx, span); + +#undef SPAN_NEAREST +#undef SPAN_LINEAR + + /* restore state */ + ctx->Texture._EnabledCoordUnits = texEnableSave; +} + + +/* + * Render an perspective corrected RGB/RGBA textured triangle. + * The Q (aka V in Mesa) coordinate must be zero such that the divide + * by interpolated Q/W comes out right. + * + */ +#define NAME persp_textured_triangle +#define INTERP_Z 1 +#define INTERP_RGB 1 +#define INTERP_ALPHA 1 +#define INTERP_ATTRIBS 1 + +#define SETUP_CODE \ + struct persp_info info; \ + const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ + struct gl_texture_object *obj = \ + ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ + const GLint b = obj->BaseLevel; \ + info.texture = (const GLchan *) obj->Image[0][b]->Data; \ + info.twidth_log2 = obj->Image[0][b]->WidthLog2; \ + info.smask = obj->Image[0][b]->Width - 1; \ + info.tmask = obj->Image[0][b]->Height - 1; \ + info.format = obj->Image[0][b]->_BaseFormat; \ + info.filter = obj->MinFilter; \ + info.envmode = unit->EnvMode; \ + \ + if (info.envmode == GL_BLEND) { \ + /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ + info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ + info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ + info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ + info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ + } \ + if (!info.texture) { \ + /* this shouldn't happen */ \ + return; \ + } \ + \ + switch (info.format) { \ + case GL_ALPHA: \ + case GL_LUMINANCE: \ + case GL_INTENSITY: \ + info.tbytesline = obj->Image[0][b]->Width; \ + break; \ + case GL_LUMINANCE_ALPHA: \ + info.tbytesline = obj->Image[0][b]->Width * 2; \ + break; \ + case GL_RGB: \ + info.tbytesline = obj->Image[0][b]->Width * 3; \ + break; \ + case GL_RGBA: \ + info.tbytesline = obj->Image[0][b]->Width * 4; \ + break; \ + default: \ + _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\ + return; \ + } \ + info.tsize = obj->Image[0][b]->Height * info.tbytesline; + +#define RENDER_SPAN( span ) \ + span.interpMask &= ~SPAN_RGBA; \ + span.arrayMask |= SPAN_RGBA; \ + fast_persp_span(ctx, &span, &info); + +#include "s_tritemp.h" + +#endif /*CHAN_TYPE != GL_FLOAT*/ + + + +/* + * Render an RGBA triangle with arbitrary attributes. + */ +#define NAME general_triangle +#define INTERP_Z 1 +#define INTERP_RGB 1 +#define INTERP_ALPHA 1 +#define INTERP_ATTRIBS 1 +#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); +#include "s_tritemp.h" + + + + +/* + * Special tri function for occlusion testing + */ +#define NAME occlusion_zless_triangle +#define INTERP_Z 1 +#define SETUP_CODE \ + struct gl_renderbuffer *rb = ctx->DrawBuffer->_DepthBuffer; \ + struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \ + ASSERT(ctx->Depth.Test); \ + ASSERT(!ctx->Depth.Mask); \ + ASSERT(ctx->Depth.Func == GL_LESS); \ + if (!q) { \ + return; \ + } +#define RENDER_SPAN( span ) \ + if (rb->DepthBits <= 16) { \ + GLuint i; \ + const GLushort *zRow = (const GLushort *) \ + rb->GetPointer(ctx, rb, span.x, span.y); \ + for (i = 0; i < span.end; i++) { \ + GLuint z = FixedToDepth(span.z); \ + if (z < zRow[i]) { \ + q->Result++; \ + } \ + span.z += span.zStep; \ + } \ + } \ + else { \ + GLuint i; \ + const GLuint *zRow = (const GLuint *) \ + rb->GetPointer(ctx, rb, span.x, span.y); \ + for (i = 0; i < span.end; i++) { \ + if ((GLuint)span.z < zRow[i]) { \ + q->Result++; \ + } \ + span.z += span.zStep; \ + } \ + } +#include "s_tritemp.h" + + + +static void +nodraw_triangle( GLcontext *ctx, + const SWvertex *v0, + const SWvertex *v1, + const SWvertex *v2 ) +{ + (void) (ctx && v0 && v1 && v2); +} + + +/* + * This is used when separate specular color is enabled, but not + * texturing. We add the specular color to the primary color, + * draw the triangle, then restore the original primary color. + * Inefficient, but seldom needed. + */ +void +_swrast_add_spec_terms_triangle(GLcontext *ctx, const SWvertex *v0, + const SWvertex *v1, const SWvertex *v2) +{ + SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */ + SWvertex *ncv1 = (SWvertex *)v1; + SWvertex *ncv2 = (SWvertex *)v2; + GLfloat rSum, gSum, bSum; + GLchan cSave[3][4]; + + /* save original colors */ + COPY_CHAN4( cSave[0], ncv0->color ); + COPY_CHAN4( cSave[1], ncv1->color ); + COPY_CHAN4( cSave[2], ncv2->color ); + /* sum v0 */ + rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[FRAG_ATTRIB_COL1][0]; + gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[FRAG_ATTRIB_COL1][1]; + bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[FRAG_ATTRIB_COL1][2]; + UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum); + /* sum v1 */ + rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[FRAG_ATTRIB_COL1][0]; + gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[FRAG_ATTRIB_COL1][1]; + bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[FRAG_ATTRIB_COL1][2]; + UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum); + /* sum v2 */ + rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[FRAG_ATTRIB_COL1][0]; + gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[FRAG_ATTRIB_COL1][1]; + bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[FRAG_ATTRIB_COL1][2]; + UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum); + UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum); + /* draw */ + SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 ); + /* restore original colors */ + COPY_CHAN4( ncv0->color, cSave[0] ); + COPY_CHAN4( ncv1->color, cSave[1] ); + COPY_CHAN4( ncv2->color, cSave[2] ); +} + + + +#ifdef DEBUG + +/* record the current triangle function name */ +const char *_mesa_triFuncName = NULL; + +#define USE(triFunc) \ +do { \ + _mesa_triFuncName = #triFunc; \ + /*printf("%s\n", _mesa_triFuncName);*/ \ + swrast->Triangle = triFunc; \ +} while (0) + +#else + +#define USE(triFunc) swrast->Triangle = triFunc; + +#endif + + + + +/* + * Determine which triangle rendering function to use given the current + * rendering context. + * + * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or + * remove tests to this code. + */ +void +_swrast_choose_triangle( GLcontext *ctx ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLboolean rgbmode = ctx->Visual.rgbMode; + + if (ctx->Polygon.CullFlag && + ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) { + USE(nodraw_triangle); + return; + } + + if (ctx->RenderMode==GL_RENDER) { + + if (ctx->Polygon.SmoothFlag) { + _swrast_set_aa_triangle_function(ctx); + ASSERT(swrast->Triangle); + return; + } + + /* special case for occlusion testing */ + if (ctx->Query.CurrentOcclusionObject && + ctx->Depth.Test && + ctx->Depth.Mask == GL_FALSE && + ctx->Depth.Func == GL_LESS && + !ctx->Stencil._Enabled) { + if ((rgbmode && + ctx->Color.ColorMask[0] == 0 && + ctx->Color.ColorMask[1] == 0 && + ctx->Color.ColorMask[2] == 0 && + ctx->Color.ColorMask[3] == 0) + || + (!rgbmode && ctx->Color.IndexMask == 0)) { + USE(occlusion_zless_triangle); + return; + } + } + + if (!rgbmode) { + USE(ci_triangle); + return; + } + + /* + * XXX should examine swrast->_ActiveAttribMask to determine what + * needs to be interpolated. + */ + if (ctx->Texture._EnabledCoordUnits || + ctx->FragmentProgram._Current || + ctx->ATIFragmentShader._Enabled || + NEED_SECONDARY_COLOR(ctx) || + swrast->_FogEnabled) { + /* Ugh, we do a _lot_ of tests to pick the best textured tri func */ + const struct gl_texture_object *texObj2D; + const struct gl_texture_image *texImg; + GLenum minFilter, magFilter, envMode; + GLint format; + texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; + + texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL; + format = texImg ? texImg->TexFormat->MesaFormat : -1; + minFilter = texObj2D ? texObj2D->MinFilter : (GLenum) 0; + magFilter = texObj2D ? texObj2D->MagFilter : (GLenum) 0; + envMode = ctx->Texture.Unit[0].EnvMode; + + /* First see if we can use an optimized 2-D texture function */ + if (ctx->Texture._EnabledCoordUnits == 0x1 + && !ctx->FragmentProgram._Current + && !ctx->ATIFragmentShader._Enabled + && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT + && texObj2D->WrapS == GL_REPEAT + && texObj2D->WrapT == GL_REPEAT + && texObj2D->_Swizzle == SWIZZLE_NOOP + && texImg->_IsPowerOfTwo + && texImg->Border == 0 + && texImg->Width == texImg->RowStride + && (format == MESA_FORMAT_RGB || format == MESA_FORMAT_RGBA) + && minFilter == magFilter + && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR + && !swrast->_FogEnabled + && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT + && ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) { + if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) { + if (minFilter == GL_NEAREST + && format == MESA_FORMAT_RGB + && (envMode == GL_REPLACE || envMode == GL_DECAL) + && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT) + && ctx->Depth.Func == GL_LESS + && ctx->Depth.Mask == GL_TRUE) + || swrast->_RasterMask == TEXTURE_BIT) + && ctx->Polygon.StippleFlag == GL_FALSE + && ctx->DrawBuffer->Visual.depthBits <= 16) { + if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) { + USE(simple_z_textured_triangle); + } + else { + USE(simple_textured_triangle); + } + } + else { +#if CHAN_BITS != 8 + USE(general_triangle); +#else + USE(affine_textured_triangle); +#endif + } + } + else { +#if CHAN_BITS != 8 + USE(general_triangle); +#else + USE(persp_textured_triangle); +#endif + } + } + else { + /* general case textured triangles */ + USE(general_triangle); + } + } + else { + ASSERT(!swrast->_FogEnabled); + ASSERT(!NEED_SECONDARY_COLOR(ctx)); + if (ctx->Light.ShadeModel==GL_SMOOTH) { + /* smooth shaded, no texturing, stippled or some raster ops */ +#if CHAN_BITS != 8 + USE(general_triangle); +#else + USE(smooth_rgba_triangle); +#endif + } + else { + /* flat shaded, no texturing, stippled or some raster ops */ +#if CHAN_BITS != 8 + USE(general_triangle); +#else + USE(flat_rgba_triangle); +#endif + } + } + } + else if (ctx->RenderMode==GL_FEEDBACK) { + USE(_swrast_feedback_triangle); + } + else { + /* GL_SELECT mode */ + USE(_swrast_select_triangle); + } +} diff --git a/mesalib/src/mesa/swrast/s_triangle.h b/mesalib/src/mesa/swrast/s_triangle.h new file mode 100644 index 000000000..b81932c73 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_triangle.h @@ -0,0 +1,50 @@ + +/* + * Mesa 3-D graphics library + * Version: 5.1 + * + * Copyright (C) 1999-2003 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_TRIANGLES_H +#define S_TRIANGLES_H + + +#include "swrast.h" + + +extern GLboolean +_swrast_culltriangle( GLcontext *ctx, + const SWvertex *v0, + const SWvertex *v1, + const SWvertex *v2); + +extern void +_swrast_choose_triangle( GLcontext *ctx ); + +extern void +_swrast_add_spec_terms_triangle( GLcontext *ctx, + const SWvertex *v0, + const SWvertex *v1, + const SWvertex *v2 ); + + +#endif diff --git a/mesalib/src/mesa/swrast/s_trispan.h b/mesalib/src/mesa/swrast/s_trispan.h new file mode 100644 index 000000000..15207e863 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_trispan.h @@ -0,0 +1,31 @@ + +/* + * Mesa 3-D graphics library + * Version: 3.5 + * + * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#ifndef S_TRISPAN_H +#define S_TRISPAN_H + + +#endif /* S_TRISPAN_H */ diff --git a/mesalib/src/mesa/swrast/s_tritemp.h b/mesalib/src/mesa/swrast/s_tritemp.h new file mode 100644 index 000000000..8e3c5b5ee --- /dev/null +++ b/mesalib/src/mesa/swrast/s_tritemp.h @@ -0,0 +1,979 @@ +/* + * Mesa 3-D graphics library + * Version: 7.0 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +/* + * Triangle Rasterizer Template + * + * This file is #include'd to generate custom triangle rasterizers. + * + * The following macros may be defined to indicate what auxillary information + * must be interpolated across the triangle: + * INTERP_Z - if defined, interpolate integer Z values + * INTERP_RGB - if defined, interpolate integer RGB values + * INTERP_ALPHA - if defined, interpolate integer Alpha values + * INTERP_INDEX - if defined, interpolate color index values + * INTERP_INT_TEX - if defined, interpolate integer ST texcoords + * (fast, simple 2-D texture mapping, without + * perspective correction) + * INTERP_ATTRIBS - if defined, interpolate arbitrary attribs (texcoords, + * varying vars, etc) This also causes W to be + * computed for perspective correction). + * + * When one can directly address pixels in the color buffer the following + * macros can be defined and used to compute pixel addresses during + * rasterization (see pRow): + * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint) + * BYTES_PER_ROW - number of bytes per row in the color buffer + * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where + * Y==0 at bottom of screen and increases upward. + * + * Similarly, for direct depth buffer access, this type is used for depth + * buffer addressing (see zRow): + * DEPTH_TYPE - either GLushort or GLuint + * + * Optionally, one may provide one-time setup code per triangle: + * SETUP_CODE - code which is to be executed once per triangle + * + * The following macro MUST be defined: + * RENDER_SPAN(span) - code to write a span of pixels. + * + * This code was designed for the origin to be in the lower-left corner. + * + * Inspired by triangle rasterizer code written by Allen Akin. Thanks Allen! + * + * + * Some notes on rasterization accuracy: + * + * This code uses fixed point arithmetic (the GLfixed type) to iterate + * over the triangle edges and interpolate ancillary data (such as Z, + * color, secondary color, etc). The number of fractional bits in + * GLfixed and the value of SUB_PIXEL_BITS has a direct bearing on the + * accuracy of rasterization. + * + * If SUB_PIXEL_BITS=4 then we'll snap the vertices to the nearest + * 1/16 of a pixel. If we're walking up a long, nearly vertical edge + * (dx=1/16, dy=1024) we'll need 4 + 10 = 14 fractional bits in + * GLfixed to walk the edge without error. If the maximum viewport + * height is 4K pixels, then we'll need 4 + 12 = 16 fractional bits. + * + * Historically, Mesa has used 11 fractional bits in GLfixed, snaps + * vertices to 1/16 pixel and allowed a maximum viewport height of 2K + * pixels. 11 fractional bits is actually insufficient for accurately + * rasterizing some triangles. More recently, the maximum viewport + * height was increased to 4K pixels. Thus, Mesa should be using 16 + * fractional bits in GLfixed. Unfortunately, there may be some issues + * with setting FIXED_FRAC_BITS=16, such as multiplication overflow. + * This will have to be examined in some detail... + * + * For now, if you find rasterization errors, particularly with tall, + * sliver triangles, try increasing FIXED_FRAC_BITS and/or decreasing + * SUB_PIXEL_BITS. + */ + + +/* + * Some code we unfortunately need to prevent negative interpolated colors. + */ +#ifndef CLAMP_INTERPOLANT +#define CLAMP_INTERPOLANT(CHANNEL, CHANNELSTEP, LEN) \ +do { \ + GLfixed endVal = span.CHANNEL + (LEN) * span.CHANNELSTEP; \ + if (endVal < 0) { \ + span.CHANNEL -= endVal; \ + } \ + if (span.CHANNEL < 0) { \ + span.CHANNEL = 0; \ + } \ +} while (0) +#endif + + +static void NAME(GLcontext *ctx, const SWvertex *v0, + const SWvertex *v1, + const SWvertex *v2 ) +{ + typedef struct { + const SWvertex *v0, *v1; /* Y(v0) < Y(v1) */ + GLfloat dx; /* X(v1) - X(v0) */ + GLfloat dy; /* Y(v1) - Y(v0) */ + GLfloat dxdy; /* dx/dy */ + GLfixed fdxdy; /* dx/dy in fixed-point */ + GLfloat adjy; /* adjust from v[0]->fy to fsy, scaled */ + GLfixed fsx; /* first sample point x coord */ + GLfixed fsy; + GLfixed fx0; /* fixed pt X of lower endpoint */ + GLint lines; /* number of lines to be sampled on this edge */ + } EdgeT; + + const SWcontext *swrast = SWRAST_CONTEXT(ctx); +#ifdef INTERP_Z + const GLint depthBits = ctx->DrawBuffer->Visual.depthBits; + const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0; + const GLfloat maxDepth = ctx->DrawBuffer->_DepthMaxF; +#define FixedToDepth(F) ((F) >> fixedToDepthShift) +#endif + EdgeT eMaj, eTop, eBot; + GLfloat oneOverArea; + const SWvertex *vMin, *vMid, *vMax; /* Y(vMin)<=Y(vMid)<=Y(vMax) */ + GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign; + const GLint snapMask = ~((FIXED_ONE / (1 << SUB_PIXEL_BITS)) - 1); /* for x/y coord snapping */ + GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy; + + SWspan span; + + (void) swrast; + + INIT_SPAN(span, GL_POLYGON); + span.y = 0; /* silence warnings */ + +#ifdef INTERP_Z + (void) fixedToDepthShift; +#endif + + /* + printf("%s()\n", __FUNCTION__); + printf(" %g, %g, %g\n", + v0->attrib[FRAG_ATTRIB_WPOS][0], + v0->attrib[FRAG_ATTRIB_WPOS][1], + v0->attrib[FRAG_ATTRIB_WPOS][2]); + printf(" %g, %g, %g\n", + v1->attrib[FRAG_ATTRIB_WPOS][0], + v1->attrib[FRAG_ATTRIB_WPOS][1], + v1->attrib[FRAG_ATTRIB_WPOS][2]); + printf(" %g, %g, %g\n", + v2->attrib[FRAG_ATTRIB_WPOS][0], + v2->attrib[FRAG_ATTRIB_WPOS][1], + v2->attrib[FRAG_ATTRIB_WPOS][2]); + */ + + /* Compute fixed point x,y coords w/ half-pixel offsets and snapping. + * And find the order of the 3 vertices along the Y axis. + */ + { + const GLfixed fy0 = FloatToFixed(v0->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask; + const GLfixed fy1 = FloatToFixed(v1->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask; + const GLfixed fy2 = FloatToFixed(v2->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask; + if (fy0 <= fy1) { + if (fy1 <= fy2) { + /* y0 <= y1 <= y2 */ + vMin = v0; vMid = v1; vMax = v2; + vMin_fy = fy0; vMid_fy = fy1; vMax_fy = fy2; + } + else if (fy2 <= fy0) { + /* y2 <= y0 <= y1 */ + vMin = v2; vMid = v0; vMax = v1; + vMin_fy = fy2; vMid_fy = fy0; vMax_fy = fy1; + } + else { + /* y0 <= y2 <= y1 */ + vMin = v0; vMid = v2; vMax = v1; + vMin_fy = fy0; vMid_fy = fy2; vMax_fy = fy1; + bf = -bf; + } + } + else { + if (fy0 <= fy2) { + /* y1 <= y0 <= y2 */ + vMin = v1; vMid = v0; vMax = v2; + vMin_fy = fy1; vMid_fy = fy0; vMax_fy = fy2; + bf = -bf; + } + else if (fy2 <= fy1) { + /* y2 <= y1 <= y0 */ + vMin = v2; vMid = v1; vMax = v0; + vMin_fy = fy2; vMid_fy = fy1; vMax_fy = fy0; + bf = -bf; + } + else { + /* y1 <= y2 <= y0 */ + vMin = v1; vMid = v2; vMax = v0; + vMin_fy = fy1; vMid_fy = fy2; vMax_fy = fy0; + } + } + + /* fixed point X coords */ + vMin_fx = FloatToFixed(vMin->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask; + vMid_fx = FloatToFixed(vMid->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask; + vMax_fx = FloatToFixed(vMax->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask; + } + + /* vertex/edge relationship */ + eMaj.v0 = vMin; eMaj.v1 = vMax; /*TODO: .v1's not needed */ + eTop.v0 = vMid; eTop.v1 = vMax; + eBot.v0 = vMin; eBot.v1 = vMid; + + /* compute deltas for each edge: vertex[upper] - vertex[lower] */ + eMaj.dx = FixedToFloat(vMax_fx - vMin_fx); + eMaj.dy = FixedToFloat(vMax_fy - vMin_fy); + eTop.dx = FixedToFloat(vMax_fx - vMid_fx); + eTop.dy = FixedToFloat(vMax_fy - vMid_fy); + eBot.dx = FixedToFloat(vMid_fx - vMin_fx); + eBot.dy = FixedToFloat(vMid_fy - vMin_fy); + + /* compute area, oneOverArea and perform backface culling */ + { + const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy; + + if (IS_INF_OR_NAN(area) || area == 0.0F) + return; + + if (area * bf * swrast->_BackfaceCullSign < 0.0) + return; + + oneOverArea = 1.0F / area; + + /* 0 = front, 1 = back */ + span.facing = oneOverArea * bf > 0.0F; + } + + /* Edge setup. For a triangle strip these could be reused... */ + { + eMaj.fsy = FixedCeil(vMin_fy); + eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy)); + if (eMaj.lines > 0) { + eMaj.dxdy = eMaj.dx / eMaj.dy; + eMaj.fdxdy = SignedFloatToFixed(eMaj.dxdy); + eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy); /* SCALED! */ + eMaj.fx0 = vMin_fx; + eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * eMaj.dxdy); + } + else { + return; /*CULLED*/ + } + + eTop.fsy = FixedCeil(vMid_fy); + eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy)); + if (eTop.lines > 0) { + eTop.dxdy = eTop.dx / eTop.dy; + eTop.fdxdy = SignedFloatToFixed(eTop.dxdy); + eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */ + eTop.fx0 = vMid_fx; + eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * eTop.dxdy); + } + + eBot.fsy = FixedCeil(vMin_fy); + eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy)); + if (eBot.lines > 0) { + eBot.dxdy = eBot.dx / eBot.dy; + eBot.fdxdy = SignedFloatToFixed(eBot.dxdy); + eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy); /* SCALED! */ + eBot.fx0 = vMin_fx; + eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * eBot.dxdy); + } + } + + /* + * Conceptually, we view a triangle as two subtriangles + * separated by a perfectly horizontal line. The edge that is + * intersected by this line is one with maximal absolute dy; we + * call it a ``major'' edge. The other two edges are the + * ``top'' edge (for the upper subtriangle) and the ``bottom'' + * edge (for the lower subtriangle). If either of these two + * edges is horizontal or very close to horizontal, the + * corresponding subtriangle might cover zero sample points; + * we take care to handle such cases, for performance as well + * as correctness. + * + * By stepping rasterization parameters along the major edge, + * we can avoid recomputing them at the discontinuity where + * the top and bottom edges meet. However, this forces us to + * be able to scan both left-to-right and right-to-left. + * Also, we must determine whether the major edge is at the + * left or right side of the triangle. We do this by + * computing the magnitude of the cross-product of the major + * and top edges. Since this magnitude depends on the sine of + * the angle between the two edges, its sign tells us whether + * we turn to the left or to the right when travelling along + * the major edge to the top edge, and from this we infer + * whether the major edge is on the left or the right. + * + * Serendipitously, this cross-product magnitude is also a + * value we need to compute the iteration parameter + * derivatives for the triangle, and it can be used to perform + * backface culling because its sign tells us whether the + * triangle is clockwise or counterclockwise. In this code we + * refer to it as ``area'' because it's also proportional to + * the pixel area of the triangle. + */ + + { + GLint scan_from_left_to_right; /* true if scanning left-to-right */ +#ifdef INTERP_INDEX + GLfloat didx, didy; +#endif + + /* + * Execute user-supplied setup code + */ +#ifdef SETUP_CODE + SETUP_CODE +#endif + + scan_from_left_to_right = (oneOverArea < 0.0F); + + + /* compute d?/dx and d?/dy derivatives */ +#ifdef INTERP_Z + span.interpMask |= SPAN_Z; + { + GLfloat eMaj_dz = vMax->attrib[FRAG_ATTRIB_WPOS][2] - vMin->attrib[FRAG_ATTRIB_WPOS][2]; + GLfloat eBot_dz = vMid->attrib[FRAG_ATTRIB_WPOS][2] - vMin->attrib[FRAG_ATTRIB_WPOS][2]; + span.attrStepX[FRAG_ATTRIB_WPOS][2] = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz); + if (span.attrStepX[FRAG_ATTRIB_WPOS][2] > maxDepth || + span.attrStepX[FRAG_ATTRIB_WPOS][2] < -maxDepth) { + /* probably a sliver triangle */ + span.attrStepX[FRAG_ATTRIB_WPOS][2] = 0.0; + span.attrStepY[FRAG_ATTRIB_WPOS][2] = 0.0; + } + else { + span.attrStepY[FRAG_ATTRIB_WPOS][2] = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx); + } + if (depthBits <= 16) + span.zStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_WPOS][2]); + else + span.zStep = (GLint) span.attrStepX[FRAG_ATTRIB_WPOS][2]; + } +#endif +#ifdef INTERP_RGB + span.interpMask |= SPAN_RGBA; + if (ctx->Light.ShadeModel == GL_SMOOTH) { + GLfloat eMaj_dr = (GLfloat) (vMax->color[RCOMP] - vMin->color[RCOMP]); + GLfloat eBot_dr = (GLfloat) (vMid->color[RCOMP] - vMin->color[RCOMP]); + GLfloat eMaj_dg = (GLfloat) (vMax->color[GCOMP] - vMin->color[GCOMP]); + GLfloat eBot_dg = (GLfloat) (vMid->color[GCOMP] - vMin->color[GCOMP]); + GLfloat eMaj_db = (GLfloat) (vMax->color[BCOMP] - vMin->color[BCOMP]); + GLfloat eBot_db = (GLfloat) (vMid->color[BCOMP] - vMin->color[BCOMP]); +# ifdef INTERP_ALPHA + GLfloat eMaj_da = (GLfloat) (vMax->color[ACOMP] - vMin->color[ACOMP]); + GLfloat eBot_da = (GLfloat) (vMid->color[ACOMP] - vMin->color[ACOMP]); +# endif + span.attrStepX[FRAG_ATTRIB_COL0][0] = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr); + span.attrStepY[FRAG_ATTRIB_COL0][0] = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx); + span.attrStepX[FRAG_ATTRIB_COL0][1] = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg); + span.attrStepY[FRAG_ATTRIB_COL0][1] = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx); + span.attrStepX[FRAG_ATTRIB_COL0][2] = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db); + span.attrStepY[FRAG_ATTRIB_COL0][2] = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx); + span.redStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][0]); + span.greenStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][1]); + span.blueStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][2]); +# ifdef INTERP_ALPHA + span.attrStepX[FRAG_ATTRIB_COL0][3] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da); + span.attrStepY[FRAG_ATTRIB_COL0][3] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx); + span.alphaStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][3]); +# endif /* INTERP_ALPHA */ + } + else { + ASSERT(ctx->Light.ShadeModel == GL_FLAT); + span.interpMask |= SPAN_FLAT; + span.attrStepX[FRAG_ATTRIB_COL0][0] = span.attrStepY[FRAG_ATTRIB_COL0][0] = 0.0F; + span.attrStepX[FRAG_ATTRIB_COL0][1] = span.attrStepY[FRAG_ATTRIB_COL0][1] = 0.0F; + span.attrStepX[FRAG_ATTRIB_COL0][2] = span.attrStepY[FRAG_ATTRIB_COL0][2] = 0.0F; + span.redStep = 0; + span.greenStep = 0; + span.blueStep = 0; +# ifdef INTERP_ALPHA + span.attrStepX[FRAG_ATTRIB_COL0][3] = span.attrStepY[FRAG_ATTRIB_COL0][3] = 0.0F; + span.alphaStep = 0; +# endif + } +#endif /* INTERP_RGB */ +#ifdef INTERP_INDEX + span.interpMask |= SPAN_INDEX; + if (ctx->Light.ShadeModel == GL_SMOOTH) { + GLfloat eMaj_di = vMax->attrib[FRAG_ATTRIB_CI][0] - vMin->attrib[FRAG_ATTRIB_CI][0]; + GLfloat eBot_di = vMid->attrib[FRAG_ATTRIB_CI][0] - vMin->attrib[FRAG_ATTRIB_CI][0]; + didx = oneOverArea * (eMaj_di * eBot.dy - eMaj.dy * eBot_di); + didy = oneOverArea * (eMaj.dx * eBot_di - eMaj_di * eBot.dx); + span.indexStep = SignedFloatToFixed(didx); + } + else { + span.interpMask |= SPAN_FLAT; + didx = didy = 0.0F; + span.indexStep = 0; + } +#endif +#ifdef INTERP_INT_TEX + { + GLfloat eMaj_ds = (vMax->attrib[FRAG_ATTRIB_TEX0][0] - vMin->attrib[FRAG_ATTRIB_TEX0][0]) * S_SCALE; + GLfloat eBot_ds = (vMid->attrib[FRAG_ATTRIB_TEX0][0] - vMin->attrib[FRAG_ATTRIB_TEX0][0]) * S_SCALE; + GLfloat eMaj_dt = (vMax->attrib[FRAG_ATTRIB_TEX0][1] - vMin->attrib[FRAG_ATTRIB_TEX0][1]) * T_SCALE; + GLfloat eBot_dt = (vMid->attrib[FRAG_ATTRIB_TEX0][1] - vMin->attrib[FRAG_ATTRIB_TEX0][1]) * T_SCALE; + span.attrStepX[FRAG_ATTRIB_TEX0][0] = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds); + span.attrStepY[FRAG_ATTRIB_TEX0][0] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx); + span.attrStepX[FRAG_ATTRIB_TEX0][1] = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt); + span.attrStepY[FRAG_ATTRIB_TEX0][1] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx); + span.intTexStep[0] = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_TEX0][0]); + span.intTexStep[1] = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_TEX0][1]); + } +#endif +#ifdef INTERP_ATTRIBS + { + /* attrib[FRAG_ATTRIB_WPOS][3] is 1/W */ + const GLfloat wMax = vMax->attrib[FRAG_ATTRIB_WPOS][3]; + const GLfloat wMin = vMin->attrib[FRAG_ATTRIB_WPOS][3]; + const GLfloat wMid = vMid->attrib[FRAG_ATTRIB_WPOS][3]; + { + const GLfloat eMaj_dw = wMax - wMin; + const GLfloat eBot_dw = wMid - wMin; + span.attrStepX[FRAG_ATTRIB_WPOS][3] = oneOverArea * (eMaj_dw * eBot.dy - eMaj.dy * eBot_dw); + span.attrStepY[FRAG_ATTRIB_WPOS][3] = oneOverArea * (eMaj.dx * eBot_dw - eMaj_dw * eBot.dx); + } + ATTRIB_LOOP_BEGIN + if (swrast->_InterpMode[attr] == GL_FLAT) { + ASSIGN_4V(span.attrStepX[attr], 0.0, 0.0, 0.0, 0.0); + ASSIGN_4V(span.attrStepY[attr], 0.0, 0.0, 0.0, 0.0); + } + else { + GLuint c; + for (c = 0; c < 4; c++) { + GLfloat eMaj_da = vMax->attrib[attr][c] * wMax - vMin->attrib[attr][c] * wMin; + GLfloat eBot_da = vMid->attrib[attr][c] * wMid - vMin->attrib[attr][c] * wMin; + span.attrStepX[attr][c] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da); + span.attrStepY[attr][c] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx); + } + } + ATTRIB_LOOP_END + } +#endif + + /* + * We always sample at pixel centers. However, we avoid + * explicit half-pixel offsets in this code by incorporating + * the proper offset in each of x and y during the + * transformation to window coordinates. + * + * We also apply the usual rasterization rules to prevent + * cracks and overlaps. A pixel is considered inside a + * subtriangle if it meets all of four conditions: it is on or + * to the right of the left edge, strictly to the left of the + * right edge, on or below the top edge, and strictly above + * the bottom edge. (Some edges may be degenerate.) + * + * The following discussion assumes left-to-right scanning + * (that is, the major edge is on the left); the right-to-left + * case is a straightforward variation. + * + * We start by finding the half-integral y coordinate that is + * at or below the top of the triangle. This gives us the + * first scan line that could possibly contain pixels that are + * inside the triangle. + * + * Next we creep down the major edge until we reach that y, + * and compute the corresponding x coordinate on the edge. + * Then we find the half-integral x that lies on or just + * inside the edge. This is the first pixel that might lie in + * the interior of the triangle. (We won't know for sure + * until we check the other edges.) + * + * As we rasterize the triangle, we'll step down the major + * edge. For each step in y, we'll move an integer number + * of steps in x. There are two possible x step sizes, which + * we'll call the ``inner'' step (guaranteed to land on the + * edge or inside it) and the ``outer'' step (guaranteed to + * land on the edge or outside it). The inner and outer steps + * differ by one. During rasterization we maintain an error + * term that indicates our distance from the true edge, and + * select either the inner step or the outer step, whichever + * gets us to the first pixel that falls inside the triangle. + * + * All parameters (z, red, etc.) as well as the buffer + * addresses for color and z have inner and outer step values, + * so that we can increment them appropriately. This method + * eliminates the need to adjust parameters by creeping a + * sub-pixel amount into the triangle at each scanline. + */ + + { + GLint subTriangle; + GLfixed fxLeftEdge = 0, fxRightEdge = 0; + GLfixed fdxLeftEdge = 0, fdxRightEdge = 0; + GLfixed fError = 0, fdError = 0; +#ifdef PIXEL_ADDRESS + PIXEL_TYPE *pRow = NULL; + GLint dPRowOuter = 0, dPRowInner; /* offset in bytes */ +#endif +#ifdef INTERP_Z +# ifdef DEPTH_TYPE + struct gl_renderbuffer *zrb + = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; + DEPTH_TYPE *zRow = NULL; + GLint dZRowOuter = 0, dZRowInner; /* offset in bytes */ +# endif + GLuint zLeft = 0; + GLfixed fdzOuter = 0, fdzInner; +#endif +#ifdef INTERP_RGB + GLint rLeft = 0, fdrOuter = 0, fdrInner; + GLint gLeft = 0, fdgOuter = 0, fdgInner; + GLint bLeft = 0, fdbOuter = 0, fdbInner; +#endif +#ifdef INTERP_ALPHA + GLint aLeft = 0, fdaOuter = 0, fdaInner; +#endif +#ifdef INTERP_INDEX + GLfixed iLeft=0, diOuter=0, diInner; +#endif +#ifdef INTERP_INT_TEX + GLfixed sLeft=0, dsOuter=0, dsInner; + GLfixed tLeft=0, dtOuter=0, dtInner; +#endif +#ifdef INTERP_ATTRIBS + GLfloat wLeft = 0, dwOuter = 0, dwInner; + GLfloat attrLeft[FRAG_ATTRIB_MAX][4]; + GLfloat daOuter[FRAG_ATTRIB_MAX][4], daInner[FRAG_ATTRIB_MAX][4]; +#endif + + for (subTriangle=0; subTriangle<=1; subTriangle++) { + EdgeT *eLeft, *eRight; + int setupLeft, setupRight; + int lines; + + if (subTriangle==0) { + /* bottom half */ + if (scan_from_left_to_right) { + eLeft = &eMaj; + eRight = &eBot; + lines = eRight->lines; + setupLeft = 1; + setupRight = 1; + } + else { + eLeft = &eBot; + eRight = &eMaj; + lines = eLeft->lines; + setupLeft = 1; + setupRight = 1; + } + } + else { + /* top half */ + if (scan_from_left_to_right) { + eLeft = &eMaj; + eRight = &eTop; + lines = eRight->lines; + setupLeft = 0; + setupRight = 1; + } + else { + eLeft = &eTop; + eRight = &eMaj; + lines = eLeft->lines; + setupLeft = 1; + setupRight = 0; + } + if (lines == 0) + return; + } + + if (setupLeft && eLeft->lines > 0) { + const SWvertex *vLower = eLeft->v0; + const GLfixed fsy = eLeft->fsy; + const GLfixed fsx = eLeft->fsx; /* no fractional part */ + const GLfixed fx = FixedCeil(fsx); /* no fractional part */ + const GLfixed adjx = (GLfixed) (fx - eLeft->fx0); /* SCALED! */ + const GLfixed adjy = (GLfixed) eLeft->adjy; /* SCALED! */ + GLint idxOuter; + GLfloat dxOuter; + GLfixed fdxOuter; + + fError = fx - fsx - FIXED_ONE; + fxLeftEdge = fsx - FIXED_EPSILON; + fdxLeftEdge = eLeft->fdxdy; + fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON); + fdError = fdxOuter - fdxLeftEdge + FIXED_ONE; + idxOuter = FixedToInt(fdxOuter); + dxOuter = (GLfloat) idxOuter; + span.y = FixedToInt(fsy); + + /* silence warnings on some compilers */ + (void) dxOuter; + (void) adjx; + (void) adjy; + (void) vLower; + +#ifdef PIXEL_ADDRESS + { + pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y); + dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE); + /* negative because Y=0 at bottom and increases upward */ + } +#endif + /* + * Now we need the set of parameter (z, color, etc.) values at + * the point (fx, fsy). This gives us properly-sampled parameter + * values that we can step from pixel to pixel. Furthermore, + * although we might have intermediate results that overflow + * the normal parameter range when we step temporarily outside + * the triangle, we shouldn't overflow or underflow for any + * pixel that's actually inside the triangle. + */ + +#ifdef INTERP_Z + { + GLfloat z0 = vLower->attrib[FRAG_ATTRIB_WPOS][2]; + if (depthBits <= 16) { + /* interpolate fixed-pt values */ + GLfloat tmp = (z0 * FIXED_SCALE + + span.attrStepX[FRAG_ATTRIB_WPOS][2] * adjx + + span.attrStepY[FRAG_ATTRIB_WPOS][2] * adjy) + FIXED_HALF; + if (tmp < MAX_GLUINT / 2) + zLeft = (GLfixed) tmp; + else + zLeft = MAX_GLUINT / 2; + fdzOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_WPOS][2] + + dxOuter * span.attrStepX[FRAG_ATTRIB_WPOS][2]); + } + else { + /* interpolate depth values w/out scaling */ + zLeft = (GLuint) (z0 + span.attrStepX[FRAG_ATTRIB_WPOS][2] * FixedToFloat(adjx) + + span.attrStepY[FRAG_ATTRIB_WPOS][2] * FixedToFloat(adjy)); + fdzOuter = (GLint) (span.attrStepY[FRAG_ATTRIB_WPOS][2] + + dxOuter * span.attrStepX[FRAG_ATTRIB_WPOS][2]); + } +# ifdef DEPTH_TYPE + zRow = (DEPTH_TYPE *) + zrb->GetPointer(ctx, zrb, FixedToInt(fxLeftEdge), span.y); + dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE); +# endif + } +#endif +#ifdef INTERP_RGB + if (ctx->Light.ShadeModel == GL_SMOOTH) { + rLeft = (GLint)(ChanToFixed(vLower->color[RCOMP]) + + span.attrStepX[FRAG_ATTRIB_COL0][0] * adjx + + span.attrStepY[FRAG_ATTRIB_COL0][0] * adjy) + FIXED_HALF; + gLeft = (GLint)(ChanToFixed(vLower->color[GCOMP]) + + span.attrStepX[FRAG_ATTRIB_COL0][1] * adjx + + span.attrStepY[FRAG_ATTRIB_COL0][1] * adjy) + FIXED_HALF; + bLeft = (GLint)(ChanToFixed(vLower->color[BCOMP]) + + span.attrStepX[FRAG_ATTRIB_COL0][2] * adjx + + span.attrStepY[FRAG_ATTRIB_COL0][2] * adjy) + FIXED_HALF; + fdrOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][0] + + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][0]); + fdgOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][1] + + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][1]); + fdbOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][2] + + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][2]); +# ifdef INTERP_ALPHA + aLeft = (GLint)(ChanToFixed(vLower->color[ACOMP]) + + span.attrStepX[FRAG_ATTRIB_COL0][3] * adjx + + span.attrStepY[FRAG_ATTRIB_COL0][3] * adjy) + FIXED_HALF; + fdaOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][3] + + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][3]); +# endif + } + else { + ASSERT(ctx->Light.ShadeModel == GL_FLAT); + rLeft = ChanToFixed(v2->color[RCOMP]); + gLeft = ChanToFixed(v2->color[GCOMP]); + bLeft = ChanToFixed(v2->color[BCOMP]); + fdrOuter = fdgOuter = fdbOuter = 0; +# ifdef INTERP_ALPHA + aLeft = ChanToFixed(v2->color[ACOMP]); + fdaOuter = 0; +# endif + } +#endif /* INTERP_RGB */ + + +#ifdef INTERP_INDEX + if (ctx->Light.ShadeModel == GL_SMOOTH) { + iLeft = (GLfixed)(vLower->attrib[FRAG_ATTRIB_CI][0] * FIXED_SCALE + + didx * adjx + didy * adjy) + FIXED_HALF; + diOuter = SignedFloatToFixed(didy + dxOuter * didx); + } + else { + ASSERT(ctx->Light.ShadeModel == GL_FLAT); + iLeft = FloatToFixed(v2->attrib[FRAG_ATTRIB_CI][0]); + diOuter = 0; + } +#endif +#ifdef INTERP_INT_TEX + { + GLfloat s0, t0; + s0 = vLower->attrib[FRAG_ATTRIB_TEX0][0] * S_SCALE; + sLeft = (GLfixed)(s0 * FIXED_SCALE + span.attrStepX[FRAG_ATTRIB_TEX0][0] * adjx + + span.attrStepY[FRAG_ATTRIB_TEX0][0] * adjy) + FIXED_HALF; + dsOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_TEX0][0] + + dxOuter * span.attrStepX[FRAG_ATTRIB_TEX0][0]); + + t0 = vLower->attrib[FRAG_ATTRIB_TEX0][1] * T_SCALE; + tLeft = (GLfixed)(t0 * FIXED_SCALE + span.attrStepX[FRAG_ATTRIB_TEX0][1] * adjx + + span.attrStepY[FRAG_ATTRIB_TEX0][1] * adjy) + FIXED_HALF; + dtOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_TEX0][1] + + dxOuter * span.attrStepX[FRAG_ATTRIB_TEX0][1]); + } +#endif +#ifdef INTERP_ATTRIBS + { + const GLuint attr = FRAG_ATTRIB_WPOS; + wLeft = vLower->attrib[FRAG_ATTRIB_WPOS][3] + + (span.attrStepX[attr][3] * adjx + + span.attrStepY[attr][3] * adjy) * (1.0F/FIXED_SCALE); + dwOuter = span.attrStepY[attr][3] + dxOuter * span.attrStepX[attr][3]; + } + ATTRIB_LOOP_BEGIN + const GLfloat invW = vLower->attrib[FRAG_ATTRIB_WPOS][3]; + if (swrast->_InterpMode[attr] == GL_FLAT) { + GLuint c; + for (c = 0; c < 4; c++) { + attrLeft[attr][c] = v2->attrib[attr][c] * invW; + daOuter[attr][c] = 0.0; + } + } + else { + GLuint c; + for (c = 0; c < 4; c++) { + const GLfloat a = vLower->attrib[attr][c] * invW; + attrLeft[attr][c] = a + ( span.attrStepX[attr][c] * adjx + + span.attrStepY[attr][c] * adjy) * (1.0F/FIXED_SCALE); + daOuter[attr][c] = span.attrStepY[attr][c] + dxOuter * span.attrStepX[attr][c]; + } + } + ATTRIB_LOOP_END +#endif + } /*if setupLeft*/ + + + if (setupRight && eRight->lines>0) { + fxRightEdge = eRight->fsx - FIXED_EPSILON; + fdxRightEdge = eRight->fdxdy; + } + + if (lines==0) { + continue; + } + + + /* Rasterize setup */ +#ifdef PIXEL_ADDRESS + dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE); +#endif +#ifdef INTERP_Z +# ifdef DEPTH_TYPE + dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE); +# endif + fdzInner = fdzOuter + span.zStep; +#endif +#ifdef INTERP_RGB + fdrInner = fdrOuter + span.redStep; + fdgInner = fdgOuter + span.greenStep; + fdbInner = fdbOuter + span.blueStep; +#endif +#ifdef INTERP_ALPHA + fdaInner = fdaOuter + span.alphaStep; +#endif +#ifdef INTERP_INDEX + diInner = diOuter + span.indexStep; +#endif +#ifdef INTERP_INT_TEX + dsInner = dsOuter + span.intTexStep[0]; + dtInner = dtOuter + span.intTexStep[1]; +#endif +#ifdef INTERP_ATTRIBS + dwInner = dwOuter + span.attrStepX[FRAG_ATTRIB_WPOS][3]; + ATTRIB_LOOP_BEGIN + GLuint c; + for (c = 0; c < 4; c++) { + daInner[attr][c] = daOuter[attr][c] + span.attrStepX[attr][c]; + } + ATTRIB_LOOP_END +#endif + + while (lines > 0) { + /* initialize the span interpolants to the leftmost value */ + /* ff = fixed-pt fragment */ + const GLint right = FixedToInt(fxRightEdge); + span.x = FixedToInt(fxLeftEdge); + if (right <= span.x) + span.end = 0; + else + span.end = right - span.x; + +#ifdef INTERP_Z + span.z = zLeft; +#endif +#ifdef INTERP_RGB + span.red = rLeft; + span.green = gLeft; + span.blue = bLeft; +#endif +#ifdef INTERP_ALPHA + span.alpha = aLeft; +#endif +#ifdef INTERP_INDEX + span.index = iLeft; +#endif +#ifdef INTERP_INT_TEX + span.intTex[0] = sLeft; + span.intTex[1] = tLeft; +#endif + +#ifdef INTERP_ATTRIBS + span.attrStart[FRAG_ATTRIB_WPOS][3] = wLeft; + ATTRIB_LOOP_BEGIN + GLuint c; + for (c = 0; c < 4; c++) { + span.attrStart[attr][c] = attrLeft[attr][c]; + } + ATTRIB_LOOP_END +#endif + + /* This is where we actually generate fragments */ + /* XXX the test for span.y > 0 _shouldn't_ be needed but + * it fixes a problem on 64-bit Opterons (bug 4842). + */ + if (span.end > 0 && span.y >= 0) { + const GLint len = span.end - 1; + (void) len; +#ifdef INTERP_RGB + CLAMP_INTERPOLANT(red, redStep, len); + CLAMP_INTERPOLANT(green, greenStep, len); + CLAMP_INTERPOLANT(blue, blueStep, len); +#endif +#ifdef INTERP_ALPHA + CLAMP_INTERPOLANT(alpha, alphaStep, len); +#endif +#ifdef INTERP_INDEX + CLAMP_INTERPOLANT(index, indexStep, len); +#endif + { + RENDER_SPAN( span ); + } + } + + /* + * Advance to the next scan line. Compute the + * new edge coordinates, and adjust the + * pixel-center x coordinate so that it stays + * on or inside the major edge. + */ + span.y++; + lines--; + + fxLeftEdge += fdxLeftEdge; + fxRightEdge += fdxRightEdge; + + fError += fdError; + if (fError >= 0) { + fError -= FIXED_ONE; + +#ifdef PIXEL_ADDRESS + pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter); +#endif +#ifdef INTERP_Z +# ifdef DEPTH_TYPE + zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter); +# endif + zLeft += fdzOuter; +#endif +#ifdef INTERP_RGB + rLeft += fdrOuter; + gLeft += fdgOuter; + bLeft += fdbOuter; +#endif +#ifdef INTERP_ALPHA + aLeft += fdaOuter; +#endif +#ifdef INTERP_INDEX + iLeft += diOuter; +#endif +#ifdef INTERP_INT_TEX + sLeft += dsOuter; + tLeft += dtOuter; +#endif +#ifdef INTERP_ATTRIBS + wLeft += dwOuter; + ATTRIB_LOOP_BEGIN + GLuint c; + for (c = 0; c < 4; c++) { + attrLeft[attr][c] += daOuter[attr][c]; + } + ATTRIB_LOOP_END +#endif + } + else { +#ifdef PIXEL_ADDRESS + pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner); +#endif +#ifdef INTERP_Z +# ifdef DEPTH_TYPE + zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner); +# endif + zLeft += fdzInner; +#endif +#ifdef INTERP_RGB + rLeft += fdrInner; + gLeft += fdgInner; + bLeft += fdbInner; +#endif +#ifdef INTERP_ALPHA + aLeft += fdaInner; +#endif +#ifdef INTERP_INDEX + iLeft += diInner; +#endif +#ifdef INTERP_INT_TEX + sLeft += dsInner; + tLeft += dtInner; +#endif +#ifdef INTERP_ATTRIBS + wLeft += dwInner; + ATTRIB_LOOP_BEGIN + GLuint c; + for (c = 0; c < 4; c++) { + attrLeft[attr][c] += daInner[attr][c]; + } + ATTRIB_LOOP_END +#endif + } + } /*while lines>0*/ + + } /* for subTriangle */ + + } + } +} + +#undef SETUP_CODE +#undef RENDER_SPAN + +#undef PIXEL_TYPE +#undef BYTES_PER_ROW +#undef PIXEL_ADDRESS +#undef DEPTH_TYPE + +#undef INTERP_Z +#undef INTERP_RGB +#undef INTERP_ALPHA +#undef INTERP_INDEX +#undef INTERP_INT_TEX +#undef INTERP_ATTRIBS + +#undef S_SCALE +#undef T_SCALE + +#undef FixedToDepth + +#undef NAME diff --git a/mesalib/src/mesa/swrast/s_zoom.c b/mesalib/src/mesa/swrast/s_zoom.c new file mode 100644 index 000000000..a48eae192 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_zoom.c @@ -0,0 +1,477 @@ +/* + * Mesa 3-D graphics library + * Version: 7.1 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +#include "main/glheader.h" +#include "main/macros.h" +#include "main/imports.h" +#include "main/colormac.h" + +#include "s_context.h" +#include "s_span.h" +#include "s_stencil.h" +#include "s_zoom.h" + + +/** + * Compute the bounds of the region resulting from zooming a pixel span. + * The resulting region will be entirely inside the window/scissor bounds + * so no additional clipping is needed. + * \param imageX, imageY position of the mage being drawn (gl WindowPos) + * \param spanX, spanY position of span being drawing + * \param width number of pixels in span + * \param x0, x1 returned X bounds of zoomed region [x0, x1) + * \param y0, y1 returned Y bounds of zoomed region [y0, y1) + * \return GL_TRUE if any zoomed pixels visible, GL_FALSE if totally clipped + */ +static GLboolean +compute_zoomed_bounds(GLcontext *ctx, GLint imageX, GLint imageY, + GLint spanX, GLint spanY, GLint width, + GLint *x0, GLint *x1, GLint *y0, GLint *y1) +{ + const struct gl_framebuffer *fb = ctx->DrawBuffer; + GLint c0, c1, r0, r1; + + ASSERT(spanX >= imageX); + ASSERT(spanY >= imageY); + + /* + * Compute destination columns: [c0, c1) + */ + c0 = imageX + (GLint) ((spanX - imageX) * ctx->Pixel.ZoomX); + c1 = imageX + (GLint) ((spanX + width - imageX) * ctx->Pixel.ZoomX); + if (c1 < c0) { + /* swap */ + GLint tmp = c1; + c1 = c0; + c0 = tmp; + } + c0 = CLAMP(c0, fb->_Xmin, fb->_Xmax); + c1 = CLAMP(c1, fb->_Xmin, fb->_Xmax); + if (c0 == c1) { + return GL_FALSE; /* no width */ + } + + /* + * Compute destination rows: [r0, r1) + */ + r0 = imageY + (GLint) ((spanY - imageY) * ctx->Pixel.ZoomY); + r1 = imageY + (GLint) ((spanY + 1 - imageY) * ctx->Pixel.ZoomY); + if (r1 < r0) { + /* swap */ + GLint tmp = r1; + r1 = r0; + r0 = tmp; + } + r0 = CLAMP(r0, fb->_Ymin, fb->_Ymax); + r1 = CLAMP(r1, fb->_Ymin, fb->_Ymax); + if (r0 == r1) { + return GL_FALSE; /* no height */ + } + + *x0 = c0; + *x1 = c1; + *y0 = r0; + *y1 = r1; + + return GL_TRUE; +} + + +/** + * Convert a zoomed x image coordinate back to an unzoomed x coord. + * 'zx' is screen position of a pixel in the zoomed image, who's left edge + * is at 'imageX'. + * return corresponding x coord in the original, unzoomed image. + * This can use this for unzooming X or Y values. + */ +static INLINE GLint +unzoom_x(GLfloat zoomX, GLint imageX, GLint zx) +{ + /* + zx = imageX + (x - imageX) * zoomX; + zx - imageX = (x - imageX) * zoomX; + (zx - imageX) / zoomX = x - imageX; + */ + GLint x; + if (zoomX < 0.0) + zx++; + x = imageX + (GLint) ((zx - imageX) / zoomX); + return x; +} + + + +/** + * Helper function called from _swrast_write_zoomed_rgba/rgb/ + * index/depth_span(). + */ +static void +zoom_span( GLcontext *ctx, GLint imgX, GLint imgY, const SWspan *span, + const GLvoid *src, GLenum format ) +{ + SWcontext *swrast = SWRAST_CONTEXT(ctx); + SWspan zoomed; + GLint x0, x1, y0, y1; + GLint zoomedWidth; + + if (!compute_zoomed_bounds(ctx, imgX, imgY, span->x, span->y, span->end, + &x0, &x1, &y0, &y1)) { + return; /* totally clipped */ + } + + if (!swrast->ZoomedArrays) { + /* allocate on demand */ + swrast->ZoomedArrays = (SWspanarrays *) CALLOC(sizeof(SWspanarrays)); + if (!swrast->ZoomedArrays) + return; + } + + zoomedWidth = x1 - x0; + ASSERT(zoomedWidth > 0); + ASSERT(zoomedWidth <= MAX_WIDTH); + + /* no pixel arrays! must be horizontal spans. */ + ASSERT((span->arrayMask & SPAN_XY) == 0); + ASSERT(span->primitive == GL_BITMAP); + + INIT_SPAN(zoomed, GL_BITMAP); + zoomed.x = x0; + zoomed.end = zoomedWidth; + zoomed.array = swrast->ZoomedArrays; + zoomed.array->ChanType = span->array->ChanType; + if (zoomed.array->ChanType == GL_UNSIGNED_BYTE) + zoomed.array->rgba = (GLchan (*)[4]) zoomed.array->rgba8; + else if (zoomed.array->ChanType == GL_UNSIGNED_SHORT) + zoomed.array->rgba = (GLchan (*)[4]) zoomed.array->rgba16; + else + zoomed.array->rgba = (GLchan (*)[4]) zoomed.array->attribs[FRAG_ATTRIB_COL0]; + + COPY_4V(zoomed.attrStart[FRAG_ATTRIB_WPOS], span->attrStart[FRAG_ATTRIB_WPOS]); + COPY_4V(zoomed.attrStepX[FRAG_ATTRIB_WPOS], span->attrStepX[FRAG_ATTRIB_WPOS]); + COPY_4V(zoomed.attrStepY[FRAG_ATTRIB_WPOS], span->attrStepY[FRAG_ATTRIB_WPOS]); + + zoomed.attrStart[FRAG_ATTRIB_FOGC][0] = span->attrStart[FRAG_ATTRIB_FOGC][0]; + zoomed.attrStepX[FRAG_ATTRIB_FOGC][0] = span->attrStepX[FRAG_ATTRIB_FOGC][0]; + zoomed.attrStepY[FRAG_ATTRIB_FOGC][0] = span->attrStepY[FRAG_ATTRIB_FOGC][0]; + + if (format == GL_RGBA || format == GL_RGB) { + /* copy Z info */ + zoomed.z = span->z; + zoomed.zStep = span->zStep; + /* we'll generate an array of colorss */ + zoomed.interpMask = span->interpMask & ~SPAN_RGBA; + zoomed.arrayMask |= SPAN_RGBA; + zoomed.arrayAttribs |= FRAG_BIT_COL0; /* we'll produce these values */ + ASSERT(span->arrayMask & SPAN_RGBA); + } + else if (format == GL_COLOR_INDEX) { + /* copy Z info */ + zoomed.z = span->z; + zoomed.zStep = span->zStep; + /* we'll generate an array of color indexes */ + zoomed.interpMask = span->interpMask & ~SPAN_INDEX; + zoomed.arrayMask |= SPAN_INDEX; + ASSERT(span->arrayMask & SPAN_INDEX); + } + else if (format == GL_DEPTH_COMPONENT) { + /* Copy color info */ + zoomed.red = span->red; + zoomed.green = span->green; + zoomed.blue = span->blue; + zoomed.alpha = span->alpha; + zoomed.redStep = span->redStep; + zoomed.greenStep = span->greenStep; + zoomed.blueStep = span->blueStep; + zoomed.alphaStep = span->alphaStep; + /* we'll generate an array of depth values */ + zoomed.interpMask = span->interpMask & ~SPAN_Z; + zoomed.arrayMask |= SPAN_Z; + ASSERT(span->arrayMask & SPAN_Z); + } + else { + _mesa_problem(ctx, "Bad format in zoom_span"); + return; + } + + /* zoom the span horizontally */ + if (format == GL_RGBA) { + if (zoomed.array->ChanType == GL_UNSIGNED_BYTE) { + const GLubyte (*rgba)[4] = (const GLubyte (*)[4]) src; + GLint i; + for (i = 0; i < zoomedWidth; i++) { + GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; + ASSERT(j >= 0); + ASSERT(j < (GLint) span->end); + COPY_4UBV(zoomed.array->rgba8[i], rgba[j]); + } + } + else if (zoomed.array->ChanType == GL_UNSIGNED_SHORT) { + const GLushort (*rgba)[4] = (const GLushort (*)[4]) src; + GLint i; + for (i = 0; i < zoomedWidth; i++) { + GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; + ASSERT(j >= 0); + ASSERT(j < (GLint) span->end); + COPY_4V(zoomed.array->rgba16[i], rgba[j]); + } + } + else { + const GLfloat (*rgba)[4] = (const GLfloat (*)[4]) src; + GLint i; + for (i = 0; i < zoomedWidth; i++) { + GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; + ASSERT(j >= 0); + ASSERT(j < span->end); + COPY_4V(zoomed.array->attribs[FRAG_ATTRIB_COL0][i], rgba[j]); + } + } + } + else if (format == GL_RGB) { + if (zoomed.array->ChanType == GL_UNSIGNED_BYTE) { + const GLubyte (*rgb)[3] = (const GLubyte (*)[3]) src; + GLint i; + for (i = 0; i < zoomedWidth; i++) { + GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; + ASSERT(j >= 0); + ASSERT(j < (GLint) span->end); + zoomed.array->rgba8[i][0] = rgb[j][0]; + zoomed.array->rgba8[i][1] = rgb[j][1]; + zoomed.array->rgba8[i][2] = rgb[j][2]; + zoomed.array->rgba8[i][3] = 0xff; + } + } + else if (zoomed.array->ChanType == GL_UNSIGNED_SHORT) { + const GLushort (*rgb)[3] = (const GLushort (*)[3]) src; + GLint i; + for (i = 0; i < zoomedWidth; i++) { + GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; + ASSERT(j >= 0); + ASSERT(j < (GLint) span->end); + zoomed.array->rgba16[i][0] = rgb[j][0]; + zoomed.array->rgba16[i][1] = rgb[j][1]; + zoomed.array->rgba16[i][2] = rgb[j][2]; + zoomed.array->rgba16[i][3] = 0xffff; + } + } + else { + const GLfloat (*rgb)[3] = (const GLfloat (*)[3]) src; + GLint i; + for (i = 0; i < zoomedWidth; i++) { + GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; + ASSERT(j >= 0); + ASSERT(j < span->end); + zoomed.array->attribs[FRAG_ATTRIB_COL0][i][0] = rgb[j][0]; + zoomed.array->attribs[FRAG_ATTRIB_COL0][i][1] = rgb[j][1]; + zoomed.array->attribs[FRAG_ATTRIB_COL0][i][2] = rgb[j][2]; + zoomed.array->attribs[FRAG_ATTRIB_COL0][i][3] = 1.0F; + } + } + } + else if (format == GL_COLOR_INDEX) { + const GLuint *indexes = (const GLuint *) src; + GLint i; + for (i = 0; i < zoomedWidth; i++) { + GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; + ASSERT(j >= 0); + ASSERT(j < (GLint) span->end); + zoomed.array->index[i] = indexes[j]; + } + } + else if (format == GL_DEPTH_COMPONENT) { + const GLuint *zValues = (const GLuint *) src; + GLint i; + for (i = 0; i < zoomedWidth; i++) { + GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; + ASSERT(j >= 0); + ASSERT(j < (GLint) span->end); + zoomed.array->z[i] = zValues[j]; + } + /* Now, fall into either the RGB or COLOR_INDEX path below */ + format = ctx->Visual.rgbMode ? GL_RGBA : GL_COLOR_INDEX; + } + + /* write the span in rows [r0, r1) */ + if (format == GL_RGBA || format == GL_RGB) { + /* Writing the span may modify the colors, so make a backup now if we're + * going to call _swrast_write_zoomed_span() more than once. + * Also, clipping may change the span end value, so store it as well. + */ + const GLint end = zoomed.end; /* save */ + GLuint rgbaSave[MAX_WIDTH][4]; + const GLint pixelSize = + (zoomed.array->ChanType == GL_UNSIGNED_BYTE) ? 4 * sizeof(GLubyte) : + ((zoomed.array->ChanType == GL_UNSIGNED_SHORT) ? 4 * sizeof(GLushort) + : 4 * sizeof(GLfloat)); + if (y1 - y0 > 1) { + MEMCPY(rgbaSave, zoomed.array->rgba, zoomed.end * pixelSize); + } + for (zoomed.y = y0; zoomed.y < y1; zoomed.y++) { + _swrast_write_rgba_span(ctx, &zoomed); + zoomed.end = end; /* restore */ + if (y1 - y0 > 1) { + /* restore the colors */ + MEMCPY(zoomed.array->rgba, rgbaSave, zoomed.end * pixelSize); + } + } + } + else if (format == GL_COLOR_INDEX) { + /* use specular color array for temp storage */ + GLuint *indexSave = (GLuint *) zoomed.array->attribs[FRAG_ATTRIB_FOGC]; + const GLint end = zoomed.end; /* save */ + if (y1 - y0 > 1) { + MEMCPY(indexSave, zoomed.array->index, zoomed.end * sizeof(GLuint)); + } + for (zoomed.y = y0; zoomed.y < y1; zoomed.y++) { + _swrast_write_index_span(ctx, &zoomed); + zoomed.end = end; /* restore */ + if (y1 - y0 > 1) { + /* restore the colors */ + MEMCPY(zoomed.array->index, indexSave, zoomed.end * sizeof(GLuint)); + } + } + } +} + + +void +_swrast_write_zoomed_rgba_span(GLcontext *ctx, GLint imgX, GLint imgY, + const SWspan *span, const GLvoid *rgba) +{ + zoom_span(ctx, imgX, imgY, span, rgba, GL_RGBA); +} + + +void +_swrast_write_zoomed_rgb_span(GLcontext *ctx, GLint imgX, GLint imgY, + const SWspan *span, const GLvoid *rgb) +{ + zoom_span(ctx, imgX, imgY, span, rgb, GL_RGB); +} + + +void +_swrast_write_zoomed_index_span(GLcontext *ctx, GLint imgX, GLint imgY, + const SWspan *span) +{ + zoom_span(ctx, imgX, imgY, span, + (const GLvoid *) span->array->index, GL_COLOR_INDEX); +} + + +void +_swrast_write_zoomed_depth_span(GLcontext *ctx, GLint imgX, GLint imgY, + const SWspan *span) +{ + zoom_span(ctx, imgX, imgY, span, + (const GLvoid *) span->array->z, GL_DEPTH_COMPONENT); +} + + +/** + * Zoom/write stencil values. + * No per-fragment operations are applied. + */ +void +_swrast_write_zoomed_stencil_span(GLcontext *ctx, GLint imgX, GLint imgY, + GLint width, GLint spanX, GLint spanY, + const GLstencil stencil[]) +{ + GLstencil zoomedVals[MAX_WIDTH]; + GLint x0, x1, y0, y1, y; + GLint i, zoomedWidth; + + if (!compute_zoomed_bounds(ctx, imgX, imgY, spanX, spanY, width, + &x0, &x1, &y0, &y1)) { + return; /* totally clipped */ + } + + zoomedWidth = x1 - x0; + ASSERT(zoomedWidth > 0); + ASSERT(zoomedWidth <= MAX_WIDTH); + + /* zoom the span horizontally */ + for (i = 0; i < zoomedWidth; i++) { + GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - spanX; + ASSERT(j >= 0); + ASSERT(j < width); + zoomedVals[i] = stencil[j]; + } + + /* write the zoomed spans */ + for (y = y0; y < y1; y++) { + _swrast_write_stencil_span(ctx, zoomedWidth, x0, y, zoomedVals); + } +} + + +/** + * Zoom/write z values (16 or 32-bit). + * No per-fragment operations are applied. + */ +void +_swrast_write_zoomed_z_span(GLcontext *ctx, GLint imgX, GLint imgY, + GLint width, GLint spanX, GLint spanY, + const GLvoid *z) +{ + struct gl_renderbuffer *rb = ctx->DrawBuffer->_DepthBuffer; + GLushort zoomedVals16[MAX_WIDTH]; + GLuint zoomedVals32[MAX_WIDTH]; + GLint x0, x1, y0, y1, y; + GLint i, zoomedWidth; + + if (!compute_zoomed_bounds(ctx, imgX, imgY, spanX, spanY, width, + &x0, &x1, &y0, &y1)) { + return; /* totally clipped */ + } + + zoomedWidth = x1 - x0; + ASSERT(zoomedWidth > 0); + ASSERT(zoomedWidth <= MAX_WIDTH); + + /* zoom the span horizontally */ + if (rb->DataType == GL_UNSIGNED_SHORT) { + for (i = 0; i < zoomedWidth; i++) { + GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - spanX; + ASSERT(j >= 0); + ASSERT(j < width); + zoomedVals16[i] = ((GLushort *) z)[j]; + } + z = zoomedVals16; + } + else { + ASSERT(rb->DataType == GL_UNSIGNED_INT); + for (i = 0; i < zoomedWidth; i++) { + GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - spanX; + ASSERT(j >= 0); + ASSERT(j < width); + zoomedVals32[i] = ((GLuint *) z)[j]; + } + z = zoomedVals32; + } + + /* write the zoomed spans */ + for (y = y0; y < y1; y++) { + rb->PutRow(ctx, rb, zoomedWidth, x0, y, z, NULL); + } +} diff --git a/mesalib/src/mesa/swrast/s_zoom.h b/mesalib/src/mesa/swrast/s_zoom.h new file mode 100644 index 000000000..d2815b41a --- /dev/null +++ b/mesalib/src/mesa/swrast/s_zoom.h @@ -0,0 +1,59 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5 + * + * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +#ifndef S_ZOOM_H +#define S_ZOOM_H + +#include "swrast.h" + + +extern void +_swrast_write_zoomed_rgba_span(GLcontext *ctx, GLint imgX, GLint imgY, + const SWspan *span, const GLvoid *rgba); + +extern void +_swrast_write_zoomed_rgb_span(GLcontext *ctx, GLint imgX, GLint imgY, + const SWspan *span, const GLvoid *rgb); + +extern void +_swrast_write_zoomed_index_span(GLcontext *ctx, GLint imgX, GLint imgY, + const SWspan *span); + +extern void +_swrast_write_zoomed_depth_span(GLcontext *ctx, GLint imgX, GLint imgY, + const SWspan *span); + + +extern void +_swrast_write_zoomed_stencil_span(GLcontext *ctx, GLint imgX, GLint imgY, + GLint width, GLint spanX, GLint spanY, + const GLstencil stencil[]); + +extern void +_swrast_write_zoomed_z_span(GLcontext *ctx, GLint imgX, GLint imgY, + GLint width, GLint spanX, GLint spanY, + const GLvoid *z); + + +#endif diff --git a/mesalib/src/mesa/swrast/swrast.h b/mesalib/src/mesa/swrast/swrast.h new file mode 100644 index 000000000..c319ca62f --- /dev/null +++ b/mesalib/src/mesa/swrast/swrast.h @@ -0,0 +1,292 @@ +/* + * Mesa 3-D graphics library + * Version: 6.5 + * + * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + */ + +/** + * \file swrast/swrast.h + * \brief Public interface to the software rasterization functions. + * \author Keith Whitwell <keith@tungstengraphics.com> + */ + +#ifndef SWRAST_H +#define SWRAST_H + +#include "main/mtypes.h" + +/** + * \struct SWvertex + * \brief Data-structure to handle vertices in the software rasterizer. + * + * The software rasterizer now uses this format for vertices. Thus a + * 'RasterSetup' stage or other translation is required between the + * tnl module and the swrast rasterization functions. This serves to + * isolate the swrast module from the internals of the tnl module, and + * improve its usefulness as a fallback mechanism for hardware + * drivers. + * + * wpos = attr[FRAG_ATTRIB_WPOS] and MUST BE THE FIRST values in the + * vertex because of the tnl clipping code. + + * wpos[0] and [1] are the screen-coords of SWvertex. + * wpos[2] is the z-buffer coord (if 16-bit Z buffer, in range [0,65535]). + * wpos[3] is 1/w where w is the clip-space W coord. This is the value + * that clip{XYZ} were multiplied by to get ndc{XYZ}. + * + * Full software drivers: + * - Register the rastersetup and triangle functions from + * utils/software_helper. + * - On statechange, update the rasterization pointers in that module. + * + * Rasterization hardware drivers: + * - Keep native rastersetup. + * - Implement native twoside,offset and unfilled triangle setup. + * - Implement a translator from native vertices to swrast vertices. + * - On partial fallback (mix of accelerated and unaccelerated + * prims), call a pass-through function which translates native + * vertices to SWvertices and calls the appropriate swrast function. + * - On total fallback (vertex format insufficient for state or all + * primitives unaccelerated), hook in swrast_setup instead. + */ +typedef struct { + GLfloat attrib[FRAG_ATTRIB_MAX][4]; + GLchan color[4]; /** integer color */ + GLfloat pointSize; +} SWvertex; + + +/** + * Fixed point data type. + */ +typedef int GLfixed; + + +#define FRAG_ATTRIB_CI FRAG_ATTRIB_COL0 + + +struct swrast_device_driver; + + +/* These are the public-access functions exported from swrast. + */ + +extern GLboolean +_swrast_CreateContext( GLcontext *ctx ); + +extern void +_swrast_DestroyContext( GLcontext *ctx ); + +/* Get a (non-const) reference to the device driver struct for swrast. + */ +extern struct swrast_device_driver * +_swrast_GetDeviceDriverReference( GLcontext *ctx ); + +extern void +_swrast_Bitmap( GLcontext *ctx, + GLint px, GLint py, + GLsizei width, GLsizei height, + const struct gl_pixelstore_attrib *unpack, + const GLubyte *bitmap ); + +extern void +_swrast_CopyPixels( GLcontext *ctx, + GLint srcx, GLint srcy, + GLint destx, GLint desty, + GLsizei width, GLsizei height, + GLenum type ); + +extern void +_swrast_DrawPixels( GLcontext *ctx, + GLint x, GLint y, + GLsizei width, GLsizei height, + GLenum format, GLenum type, + const struct gl_pixelstore_attrib *unpack, + const GLvoid *pixels ); + +extern void +_swrast_ReadPixels( GLcontext *ctx, + GLint x, GLint y, GLsizei width, GLsizei height, + GLenum format, GLenum type, + const struct gl_pixelstore_attrib *unpack, + GLvoid *pixels ); + +extern void +_swrast_BlitFramebuffer(GLcontext *ctx, + GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, + GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, + GLbitfield mask, GLenum filter); + +extern void +_swrast_Clear(GLcontext *ctx, GLbitfield buffers); + +extern void +_swrast_Accum(GLcontext *ctx, GLenum op, GLfloat value); + + + +/* Reset the stipple counter + */ +extern void +_swrast_ResetLineStipple( GLcontext *ctx ); + +/** + * Indicates front/back facing for subsequent points/lines when drawing + * unfilled polygons. Needed for two-side stencil. + */ +extern void +_swrast_SetFacing(GLcontext *ctx, GLuint facing); + +/* These will always render the correct point/line/triangle for the + * current state. + * + * For flatshaded primitives, the provoking vertex is the final one. + */ +extern void +_swrast_Point( GLcontext *ctx, const SWvertex *v ); + +extern void +_swrast_Line( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1 ); + +extern void +_swrast_Triangle( GLcontext *ctx, const SWvertex *v0, + const SWvertex *v1, const SWvertex *v2 ); + +extern void +_swrast_Quad( GLcontext *ctx, + const SWvertex *v0, const SWvertex *v1, + const SWvertex *v2, const SWvertex *v3); + +extern void +_swrast_flush( GLcontext *ctx ); + +extern void +_swrast_render_primitive( GLcontext *ctx, GLenum mode ); + +extern void +_swrast_render_start( GLcontext *ctx ); + +extern void +_swrast_render_finish( GLcontext *ctx ); + +/* Tell the software rasterizer about core state changes. + */ +extern void +_swrast_InvalidateState( GLcontext *ctx, GLbitfield new_state ); + +/* Configure software rasterizer to match hardware rasterizer characteristics: + */ +extern void +_swrast_allow_vertex_fog( GLcontext *ctx, GLboolean value ); + +extern void +_swrast_allow_pixel_fog( GLcontext *ctx, GLboolean value ); + +/* Debug: + */ +extern void +_swrast_print_vertex( GLcontext *ctx, const SWvertex *v ); + + +/* + * Imaging fallbacks (a better solution should be found, perhaps + * moving all the imaging fallback code to a new module) + */ +extern void +_swrast_CopyConvolutionFilter2D(GLcontext *ctx, GLenum target, + GLenum internalFormat, + GLint x, GLint y, GLsizei width, + GLsizei height); +extern void +_swrast_CopyConvolutionFilter1D(GLcontext *ctx, GLenum target, + GLenum internalFormat, + GLint x, GLint y, GLsizei width); +extern void +_swrast_CopyColorSubTable( GLcontext *ctx,GLenum target, GLsizei start, + GLint x, GLint y, GLsizei width); +extern void +_swrast_CopyColorTable( GLcontext *ctx, + GLenum target, GLenum internalformat, + GLint x, GLint y, GLsizei width); + + +/* + * Texture fallbacks. Could also live in a new module + * with the rest of the texture store fallbacks? + */ +extern void +_swrast_copy_teximage1d(GLcontext *ctx, GLenum target, GLint level, + GLenum internalFormat, + GLint x, GLint y, GLsizei width, GLint border); + +extern void +_swrast_copy_teximage2d(GLcontext *ctx, GLenum target, GLint level, + GLenum internalFormat, + GLint x, GLint y, GLsizei width, GLsizei height, + GLint border); + + +extern void +_swrast_copy_texsubimage1d(GLcontext *ctx, GLenum target, GLint level, + GLint xoffset, GLint x, GLint y, GLsizei width); + +extern void +_swrast_copy_texsubimage2d(GLcontext *ctx, + GLenum target, GLint level, + GLint xoffset, GLint yoffset, + GLint x, GLint y, GLsizei width, GLsizei height); + +extern void +_swrast_copy_texsubimage3d(GLcontext *ctx, + GLenum target, GLint level, + GLint xoffset, GLint yoffset, GLint zoffset, + GLint x, GLint y, GLsizei width, GLsizei height); + + +extern void +_swrast_eject_texture_images(GLcontext *ctx); + + + +/** + * The driver interface for the software rasterizer. + * XXX this may go away. + * We may move these functions to ctx->Driver.RenderStart, RenderEnd. + */ +struct swrast_device_driver { + /* + * These are called before and after accessing renderbuffers during + * software rasterization. + * + * These are a suitable place for grabbing/releasing hardware locks. + * + * NOTE: The swrast triangle/line/point routines *DO NOT* call + * these functions. Locking in that case must be organized by the + * driver by other mechanisms. + */ + void (*SpanRenderStart)(GLcontext *ctx); + void (*SpanRenderFinish)(GLcontext *ctx); +}; + + + +#endif |