aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/util/register_allocate.c
diff options
context:
space:
mode:
authormarha <marha@users.sourceforge.net>2014-10-01 20:47:44 +0200
committermarha <marha@users.sourceforge.net>2014-10-01 20:47:44 +0200
commit30eb28e89e513ba7c04e8424be0cba326a01882b (patch)
treec84d1ffa742ebc6f077abb20a6b80c56ddaea888 /mesalib/src/util/register_allocate.c
parent438af0c7d4bf60b408b259c88205ff2193195466 (diff)
downloadvcxsrv-30eb28e89e513ba7c04e8424be0cba326a01882b.tar.gz
vcxsrv-30eb28e89e513ba7c04e8424be0cba326a01882b.tar.bz2
vcxsrv-30eb28e89e513ba7c04e8424be0cba326a01882b.zip
libxtrans pixman fontconfig mesa xserver xkeyboard-config git update 1 Oct 2014
plink 10277 xserver commit d3d845ca9e92f0a2ccde93f4242d7769cfe14164 xkeyboard-config commit 73aa90ce32967747c84a1b5fe32cee329bc3bbcf pixman commit f078727f392bc9f235df916e75634ed87177b9b4 libxtrans commit 7cbad9fe2e61cd9d5caeaf361826a6f4bd320f03 fontconfig commit 1082161ea303cf2bbc13b62a191662984131e820 mesa commit 4f7916ab4f8093fa33519dfa3d08e73b4d35ebe3
Diffstat (limited to 'mesalib/src/util/register_allocate.c')
-rw-r--r--mesalib/src/util/register_allocate.c654
1 files changed, 654 insertions, 0 deletions
diff --git a/mesalib/src/util/register_allocate.c b/mesalib/src/util/register_allocate.c
new file mode 100644
index 000000000..afab9ddd3
--- /dev/null
+++ b/mesalib/src/util/register_allocate.c
@@ -0,0 +1,654 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ * Authors:
+ * Eric Anholt <eric@anholt.net>
+ *
+ */
+
+/** @file register_allocate.c
+ *
+ * Graph-coloring register allocator.
+ *
+ * The basic idea of graph coloring is to make a node in a graph for
+ * every thing that needs a register (color) number assigned, and make
+ * edges in the graph between nodes that interfere (can't be allocated
+ * to the same register at the same time).
+ *
+ * During the "simplify" process, any any node with fewer edges than
+ * there are registers means that that edge can get assigned a
+ * register regardless of what its neighbors choose, so that node is
+ * pushed on a stack and removed (with its edges) from the graph.
+ * That likely causes other nodes to become trivially colorable as well.
+ *
+ * Then during the "select" process, nodes are popped off of that
+ * stack, their edges restored, and assigned a color different from
+ * their neighbors. Because they were pushed on the stack only when
+ * they were trivially colorable, any color chosen won't interfere
+ * with the registers to be popped later.
+ *
+ * The downside to most graph coloring is that real hardware often has
+ * limitations, like registers that need to be allocated to a node in
+ * pairs, or aligned on some boundary. This implementation follows
+ * the paper "Retargetable Graph-Coloring Register Allocation for
+ * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
+ *
+ * In this system, there are register classes each containing various
+ * registers, and registers may interfere with other registers. For
+ * example, one might have a class of base registers, and a class of
+ * aligned register pairs that would each interfere with their pair of
+ * the base registers. Each node has a register class it needs to be
+ * assigned to. Define p(B) to be the size of register class B, and
+ * q(B,C) to be the number of registers in B that the worst choice
+ * register in C could conflict with. Then, this system replaces the
+ * basic graph coloring test of "fewer edges from this node than there
+ * are registers" with "For this node of class B, the sum of q(B,C)
+ * for each neighbor node of class C is less than pB".
+ *
+ * A nice feature of the pq test is that q(B,C) can be computed once
+ * up front and stored in a 2-dimensional array, so that the cost of
+ * coloring a node is constant with the number of registers. We do
+ * this during ra_set_finalize().
+ */
+
+#include <stdbool.h>
+
+#include "ralloc.h"
+#include "main/imports.h"
+#include "main/macros.h"
+#include "main/mtypes.h"
+#include "main/bitset.h"
+#include "register_allocate.h"
+
+#define NO_REG ~0
+
+struct ra_reg {
+ BITSET_WORD *conflicts;
+ unsigned int *conflict_list;
+ unsigned int conflict_list_size;
+ unsigned int num_conflicts;
+};
+
+struct ra_regs {
+ struct ra_reg *regs;
+ unsigned int count;
+
+ struct ra_class **classes;
+ unsigned int class_count;
+
+ bool round_robin;
+};
+
+struct ra_class {
+ /**
+ * Bitset indicating which registers belong to this class.
+ *
+ * (If bit N is set, then register N belongs to this class.)
+ */
+ BITSET_WORD *regs;
+
+ /**
+ * p(B) in Runeson/Nyström paper.
+ *
+ * This is "how many regs are in the set."
+ */
+ unsigned int p;
+
+ /**
+ * q(B,C) (indexed by C, B is this register class) in
+ * Runeson/Nyström paper. This is "how many registers of B could
+ * the worst choice register from C conflict with".
+ */
+ unsigned int *q;
+};
+
+struct ra_node {
+ /** @{
+ *
+ * List of which nodes this node interferes with. This should be
+ * symmetric with the other node.
+ */
+ BITSET_WORD *adjacency;
+ unsigned int *adjacency_list;
+ unsigned int adjacency_list_size;
+ unsigned int adjacency_count;
+ /** @} */
+
+ unsigned int class;
+
+ /* Register, if assigned, or NO_REG. */
+ unsigned int reg;
+
+ /**
+ * Set when the node is in the trivially colorable stack. When
+ * set, the adjacency to this node is ignored, to implement the
+ * "remove the edge from the graph" in simplification without
+ * having to actually modify the adjacency_list.
+ */
+ bool in_stack;
+
+ /**
+ * The q total, as defined in the Runeson/Nyström paper, for all the
+ * interfering nodes not in the stack.
+ */
+ unsigned int q_total;
+
+ /* For an implementation that needs register spilling, this is the
+ * approximate cost of spilling this node.
+ */
+ float spill_cost;
+};
+
+struct ra_graph {
+ struct ra_regs *regs;
+ /**
+ * the variables that need register allocation.
+ */
+ struct ra_node *nodes;
+ unsigned int count; /**< count of nodes. */
+
+ unsigned int *stack;
+ unsigned int stack_count;
+};
+
+/**
+ * Creates a set of registers for the allocator.
+ *
+ * mem_ctx is a ralloc context for the allocator. The reg set may be freed
+ * using ralloc_free().
+ */
+struct ra_regs *
+ra_alloc_reg_set(void *mem_ctx, unsigned int count)
+{
+ unsigned int i;
+ struct ra_regs *regs;
+
+ regs = rzalloc(mem_ctx, struct ra_regs);
+ regs->count = count;
+ regs->regs = rzalloc_array(regs, struct ra_reg, count);
+
+ for (i = 0; i < count; i++) {
+ regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
+ BITSET_WORDS(count));
+ BITSET_SET(regs->regs[i].conflicts, i);
+
+ regs->regs[i].conflict_list = ralloc_array(regs->regs, unsigned int, 4);
+ regs->regs[i].conflict_list_size = 4;
+ regs->regs[i].conflict_list[0] = i;
+ regs->regs[i].num_conflicts = 1;
+ }
+
+ return regs;
+}
+
+/**
+ * The register allocator by default prefers to allocate low register numbers,
+ * since it was written for hardware (gen4/5 Intel) that is limited in its
+ * multithreadedness by the number of registers used in a given shader.
+ *
+ * However, for hardware without that restriction, densely packed register
+ * allocation can put serious constraints on instruction scheduling. This
+ * function tells the allocator to rotate around the registers if possible as
+ * it allocates the nodes.
+ */
+void
+ra_set_allocate_round_robin(struct ra_regs *regs)
+{
+ regs->round_robin = true;
+}
+
+static void
+ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
+{
+ struct ra_reg *reg1 = &regs->regs[r1];
+
+ if (reg1->conflict_list_size == reg1->num_conflicts) {
+ reg1->conflict_list_size *= 2;
+ reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
+ unsigned int, reg1->conflict_list_size);
+ }
+ reg1->conflict_list[reg1->num_conflicts++] = r2;
+ BITSET_SET(reg1->conflicts, r2);
+}
+
+void
+ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
+{
+ if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
+ ra_add_conflict_list(regs, r1, r2);
+ ra_add_conflict_list(regs, r2, r1);
+ }
+}
+
+/**
+ * Adds a conflict between base_reg and reg, and also between reg and
+ * anything that base_reg conflicts with.
+ *
+ * This can simplify code for setting up multiple register classes
+ * which are aggregates of some base hardware registers, compared to
+ * explicitly using ra_add_reg_conflict.
+ */
+void
+ra_add_transitive_reg_conflict(struct ra_regs *regs,
+ unsigned int base_reg, unsigned int reg)
+{
+ int i;
+
+ ra_add_reg_conflict(regs, reg, base_reg);
+
+ for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
+ ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
+ }
+}
+
+unsigned int
+ra_alloc_reg_class(struct ra_regs *regs)
+{
+ struct ra_class *class;
+
+ regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
+ regs->class_count + 1);
+
+ class = rzalloc(regs, struct ra_class);
+ regs->classes[regs->class_count] = class;
+
+ class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
+
+ return regs->class_count++;
+}
+
+void
+ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
+{
+ struct ra_class *class = regs->classes[c];
+
+ BITSET_SET(class->regs, r);
+ class->p++;
+}
+
+/**
+ * Returns true if the register belongs to the given class.
+ */
+static bool
+reg_belongs_to_class(unsigned int r, struct ra_class *c)
+{
+ return BITSET_TEST(c->regs, r);
+}
+
+/**
+ * Must be called after all conflicts and register classes have been
+ * set up and before the register set is used for allocation.
+ * To avoid costly q value computation, use the q_values paramater
+ * to pass precomputed q values to this function.
+ */
+void
+ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
+{
+ unsigned int b, c;
+
+ for (b = 0; b < regs->class_count; b++) {
+ regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
+ }
+
+ if (q_values) {
+ for (b = 0; b < regs->class_count; b++) {
+ for (c = 0; c < regs->class_count; c++) {
+ regs->classes[b]->q[c] = q_values[b][c];
+ }
+ }
+ return;
+ }
+
+ /* Compute, for each class B and C, how many regs of B an
+ * allocation to C could conflict with.
+ */
+ for (b = 0; b < regs->class_count; b++) {
+ for (c = 0; c < regs->class_count; c++) {
+ unsigned int rc;
+ int max_conflicts = 0;
+
+ for (rc = 0; rc < regs->count; rc++) {
+ int conflicts = 0;
+ int i;
+
+ if (!reg_belongs_to_class(rc, regs->classes[c]))
+ continue;
+
+ for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
+ unsigned int rb = regs->regs[rc].conflict_list[i];
+ if (BITSET_TEST(regs->classes[b]->regs, rb))
+ conflicts++;
+ }
+ max_conflicts = MAX2(max_conflicts, conflicts);
+ }
+ regs->classes[b]->q[c] = max_conflicts;
+ }
+ }
+}
+
+static void
+ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
+{
+ BITSET_SET(g->nodes[n1].adjacency, n2);
+
+ if (n1 != n2) {
+ int n1_class = g->nodes[n1].class;
+ int n2_class = g->nodes[n2].class;
+ g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
+ }
+
+ if (g->nodes[n1].adjacency_count >=
+ g->nodes[n1].adjacency_list_size) {
+ g->nodes[n1].adjacency_list_size *= 2;
+ g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
+ unsigned int,
+ g->nodes[n1].adjacency_list_size);
+ }
+
+ g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
+ g->nodes[n1].adjacency_count++;
+}
+
+struct ra_graph *
+ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
+{
+ struct ra_graph *g;
+ unsigned int i;
+
+ g = rzalloc(regs, struct ra_graph);
+ g->regs = regs;
+ g->nodes = rzalloc_array(g, struct ra_node, count);
+ g->count = count;
+
+ g->stack = rzalloc_array(g, unsigned int, count);
+
+ for (i = 0; i < count; i++) {
+ int bitset_count = BITSET_WORDS(count);
+ g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
+
+ g->nodes[i].adjacency_list_size = 4;
+ g->nodes[i].adjacency_list =
+ ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
+ g->nodes[i].adjacency_count = 0;
+ g->nodes[i].q_total = 0;
+
+ ra_add_node_adjacency(g, i, i);
+ g->nodes[i].reg = NO_REG;
+ }
+
+ return g;
+}
+
+void
+ra_set_node_class(struct ra_graph *g,
+ unsigned int n, unsigned int class)
+{
+ g->nodes[n].class = class;
+}
+
+void
+ra_add_node_interference(struct ra_graph *g,
+ unsigned int n1, unsigned int n2)
+{
+ if (!BITSET_TEST(g->nodes[n1].adjacency, n2)) {
+ ra_add_node_adjacency(g, n1, n2);
+ ra_add_node_adjacency(g, n2, n1);
+ }
+}
+
+static bool
+pq_test(struct ra_graph *g, unsigned int n)
+{
+ int n_class = g->nodes[n].class;
+
+ return g->nodes[n].q_total < g->regs->classes[n_class]->p;
+}
+
+static void
+decrement_q(struct ra_graph *g, unsigned int n)
+{
+ unsigned int i;
+ int n_class = g->nodes[n].class;
+
+ for (i = 0; i < g->nodes[n].adjacency_count; i++) {
+ unsigned int n2 = g->nodes[n].adjacency_list[i];
+ unsigned int n2_class = g->nodes[n2].class;
+
+ if (n != n2 && !g->nodes[n2].in_stack) {
+ assert(g->nodes[n2].q_total >= g->regs->classes[n2_class]->q[n_class]);
+ g->nodes[n2].q_total -= g->regs->classes[n2_class]->q[n_class];
+ }
+ }
+}
+
+/**
+ * Simplifies the interference graph by pushing all
+ * trivially-colorable nodes into a stack of nodes to be colored,
+ * removing them from the graph, and rinsing and repeating.
+ *
+ * If we encounter a case where we can't push any nodes on the stack, then
+ * we optimistically choose a node and push it on the stack. We heuristically
+ * push the node with the lowest total q value, since it has the fewest
+ * neighbors and therefore is most likely to be allocated.
+ */
+static void
+ra_simplify(struct ra_graph *g)
+{
+ bool progress = true;
+ int i;
+
+ while (progress) {
+ unsigned int best_optimistic_node = ~0;
+ unsigned int lowest_q_total = ~0;
+
+ progress = false;
+
+ for (i = g->count - 1; i >= 0; i--) {
+ if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
+ continue;
+
+ if (pq_test(g, i)) {
+ decrement_q(g, i);
+ g->stack[g->stack_count] = i;
+ g->stack_count++;
+ g->nodes[i].in_stack = true;
+ progress = true;
+ } else {
+ unsigned int new_q_total = g->nodes[i].q_total;
+ if (new_q_total < lowest_q_total) {
+ best_optimistic_node = i;
+ lowest_q_total = new_q_total;
+ }
+ }
+ }
+
+ if (!progress && best_optimistic_node != ~0) {
+ decrement_q(g, best_optimistic_node);
+ g->stack[g->stack_count] = best_optimistic_node;
+ g->stack_count++;
+ g->nodes[best_optimistic_node].in_stack = true;
+ progress = true;
+ }
+ }
+}
+
+/**
+ * Pops nodes from the stack back into the graph, coloring them with
+ * registers as they go.
+ *
+ * If all nodes were trivially colorable, then this must succeed. If
+ * not (optimistic coloring), then it may return false;
+ */
+static bool
+ra_select(struct ra_graph *g)
+{
+ int i;
+ int start_search_reg = 0;
+
+ while (g->stack_count != 0) {
+ unsigned int ri;
+ unsigned int r = -1;
+ int n = g->stack[g->stack_count - 1];
+ struct ra_class *c = g->regs->classes[g->nodes[n].class];
+
+ /* Find the lowest-numbered reg which is not used by a member
+ * of the graph adjacent to us.
+ */
+ for (ri = 0; ri < g->regs->count; ri++) {
+ r = (start_search_reg + ri) % g->regs->count;
+ if (!reg_belongs_to_class(r, c))
+ continue;
+
+ /* Check if any of our neighbors conflict with this register choice. */
+ for (i = 0; i < g->nodes[n].adjacency_count; i++) {
+ unsigned int n2 = g->nodes[n].adjacency_list[i];
+
+ if (!g->nodes[n2].in_stack &&
+ BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
+ break;
+ }
+ }
+ if (i == g->nodes[n].adjacency_count)
+ break;
+ }
+
+ /* set this to false even if we return here so that
+ * ra_get_best_spill_node() considers this node later.
+ */
+ g->nodes[n].in_stack = false;
+
+ if (ri == g->regs->count)
+ return false;
+
+ g->nodes[n].reg = r;
+ g->stack_count--;
+
+ if (g->regs->round_robin)
+ start_search_reg = r + 1;
+ }
+
+ return true;
+}
+
+bool
+ra_allocate(struct ra_graph *g)
+{
+ ra_simplify(g);
+ return ra_select(g);
+}
+
+unsigned int
+ra_get_node_reg(struct ra_graph *g, unsigned int n)
+{
+ return g->nodes[n].reg;
+}
+
+/**
+ * Forces a node to a specific register. This can be used to avoid
+ * creating a register class containing one node when handling data
+ * that must live in a fixed location and is known to not conflict
+ * with other forced register assignment (as is common with shader
+ * input data). These nodes do not end up in the stack during
+ * ra_simplify(), and thus at ra_select() time it is as if they were
+ * the first popped off the stack and assigned their fixed locations.
+ * Nodes that use this function do not need to be assigned a register
+ * class.
+ *
+ * Must be called before ra_simplify().
+ */
+void
+ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
+{
+ g->nodes[n].reg = reg;
+ g->nodes[n].in_stack = false;
+}
+
+static float
+ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
+{
+ int j;
+ float benefit = 0;
+ int n_class = g->nodes[n].class;
+
+ /* Define the benefit of eliminating an interference between n, n2
+ * through spilling as q(C, B) / p(C). This is similar to the
+ * "count number of edges" approach of traditional graph coloring,
+ * but takes classes into account.
+ */
+ for (j = 0; j < g->nodes[n].adjacency_count; j++) {
+ unsigned int n2 = g->nodes[n].adjacency_list[j];
+ if (n != n2) {
+ unsigned int n2_class = g->nodes[n2].class;
+ benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
+ g->regs->classes[n_class]->p);
+ }
+ }
+
+ return benefit;
+}
+
+/**
+ * Returns a node number to be spilled according to the cost/benefit using
+ * the pq test, or -1 if there are no spillable nodes.
+ */
+int
+ra_get_best_spill_node(struct ra_graph *g)
+{
+ unsigned int best_node = -1;
+ float best_benefit = 0.0;
+ unsigned int n;
+
+ /* Consider any nodes that we colored successfully or the node we failed to
+ * color for spilling. When we failed to color a node in ra_select(), we
+ * only considered these nodes, so spilling any other ones would not result
+ * in us making progress.
+ */
+ for (n = 0; n < g->count; n++) {
+ float cost = g->nodes[n].spill_cost;
+ float benefit;
+
+ if (cost <= 0.0)
+ continue;
+
+ if (g->nodes[n].in_stack)
+ continue;
+
+ benefit = ra_get_spill_benefit(g, n);
+
+ if (benefit / cost > best_benefit) {
+ best_benefit = benefit / cost;
+ best_node = n;
+ }
+ }
+
+ return best_node;
+}
+
+/**
+ * Only nodes with a spill cost set (cost != 0.0) will be considered
+ * for register spilling.
+ */
+void
+ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
+{
+ g->nodes[n].spill_cost = cost;
+}