diff options
author | marha <marha@users.sourceforge.net> | 2010-03-29 17:08:02 +0000 |
---|---|---|
committer | marha <marha@users.sourceforge.net> | 2010-03-29 17:08:02 +0000 |
commit | 15272ab4ed1e6250412fccd48200ed9eae59608f (patch) | |
tree | a5996ea67966a778a16565f19dfc2e7c7f49b376 /openssl/crypto/ec/ec2_mult.c | |
parent | 3827301b2ea5a45ac009c3bf9f08586ff40b8506 (diff) | |
download | vcxsrv-15272ab4ed1e6250412fccd48200ed9eae59608f.tar.gz vcxsrv-15272ab4ed1e6250412fccd48200ed9eae59608f.tar.bz2 vcxsrv-15272ab4ed1e6250412fccd48200ed9eae59608f.zip |
Updated to openssl 1.0.0
Diffstat (limited to 'openssl/crypto/ec/ec2_mult.c')
-rw-r--r-- | openssl/crypto/ec/ec2_mult.c | 33 |
1 files changed, 17 insertions, 16 deletions
diff --git a/openssl/crypto/ec/ec2_mult.c b/openssl/crypto/ec/ec2_mult.c index ff368fd7d..ab631a50a 100644 --- a/openssl/crypto/ec/ec2_mult.c +++ b/openssl/crypto/ec/ec2_mult.c @@ -76,7 +76,7 @@ * coordinates. * Uses algorithm Mdouble in appendix of * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation". + * GF(2^m) without precomputation" (CHES '99, LNCS 1717). * modified to not require precomputation of c=b^{2^{m-1}}. */ static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) @@ -107,8 +107,8 @@ static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery * projective coordinates. * Uses algorithm Madd in appendix of - * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation". + * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over + * GF(2^m) without precomputation" (CHES '99, LNCS 1717). */ static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) @@ -140,8 +140,8 @@ static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) * using Montgomery point multiplication algorithm Mxy() in appendix of - * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation". + * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over + * GF(2^m) without precomputation" (CHES '99, LNCS 1717). * Returns: * 0 on error * 1 if return value should be the point at infinity @@ -209,15 +209,15 @@ static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIG /* Computes scalar*point and stores the result in r. * point can not equal r. * Uses algorithm 2P of - * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation". + * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over + * GF(2^m) without precomputation" (CHES '99, LNCS 1717). */ static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) { BIGNUM *x1, *x2, *z1, *z2; - int ret = 0, i, j; - BN_ULONG mask; + int ret = 0, i; + BN_ULONG mask,word; if (r == point) { @@ -251,22 +251,24 @@ static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */ /* find top most bit and go one past it */ - i = scalar->top - 1; j = BN_BITS2 - 1; + i = scalar->top - 1; mask = BN_TBIT; - while (!(scalar->d[i] & mask)) { mask >>= 1; j--; } - mask >>= 1; j--; + word = scalar->d[i]; + while (!(word & mask)) mask >>= 1; + mask >>= 1; /* if top most bit was at word break, go to next word */ if (!mask) { - i--; j = BN_BITS2 - 1; + i--; mask = BN_TBIT; } for (; i >= 0; i--) { - for (; j >= 0; j--) + word = scalar->d[i]; + while (mask) { - if (scalar->d[i] & mask) + if (word & mask) { if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err; if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err; @@ -278,7 +280,6 @@ static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, } mask >>= 1; } - j = BN_BITS2 - 1; mask = BN_TBIT; } |