aboutsummaryrefslogtreecommitdiff
path: root/openssl/crypto/modes/asm
diff options
context:
space:
mode:
authormarha <marha@users.sourceforge.net>2012-04-10 11:54:31 +0200
committermarha <marha@users.sourceforge.net>2012-04-10 11:54:31 +0200
commit5564e91e3cf4ba5cb2fbebbc2d63d18f588016b8 (patch)
treec800a66664ea3af61eb13928db45a26275930b0b /openssl/crypto/modes/asm
parentd79e641dea89c0d5d651b11971c4c9e14df34629 (diff)
parent67326634496ef21b4acbf4cef2f05040d34aef9b (diff)
downloadvcxsrv-5564e91e3cf4ba5cb2fbebbc2d63d18f588016b8.tar.gz
vcxsrv-5564e91e3cf4ba5cb2fbebbc2d63d18f588016b8.tar.bz2
vcxsrv-5564e91e3cf4ba5cb2fbebbc2d63d18f588016b8.zip
Merge remote-tracking branch 'origin/released'
Conflicts: openssl/Configure openssl/Makefile openssl/crypto/opensslconf.h openssl/util/mk1mf.pl openssl/util/pl/VC-32.pl
Diffstat (limited to 'openssl/crypto/modes/asm')
-rw-r--r--openssl/crypto/modes/asm/ghash-alpha.pl451
-rw-r--r--openssl/crypto/modes/asm/ghash-armv4.pl429
-rw-r--r--openssl/crypto/modes/asm/ghash-ia64.pl463
-rw-r--r--openssl/crypto/modes/asm/ghash-parisc.pl730
-rw-r--r--openssl/crypto/modes/asm/ghash-s390x.pl262
-rw-r--r--openssl/crypto/modes/asm/ghash-sparcv9.pl330
-rw-r--r--openssl/crypto/modes/asm/ghash-x86.pl1342
-rw-r--r--openssl/crypto/modes/asm/ghash-x86_64.pl805
8 files changed, 4812 insertions, 0 deletions
diff --git a/openssl/crypto/modes/asm/ghash-alpha.pl b/openssl/crypto/modes/asm/ghash-alpha.pl
new file mode 100644
index 000000000..6358b2750
--- /dev/null
+++ b/openssl/crypto/modes/asm/ghash-alpha.pl
@@ -0,0 +1,451 @@
+#!/usr/bin/env perl
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# March 2010
+#
+# The module implements "4-bit" GCM GHASH function and underlying
+# single multiplication operation in GF(2^128). "4-bit" means that it
+# uses 256 bytes per-key table [+128 bytes shared table]. Even though
+# loops are aggressively modulo-scheduled in respect to references to
+# Htbl and Z.hi updates for 8 cycles per byte, measured performance is
+# ~12 cycles per processed byte on 21264 CPU. It seems to be a dynamic
+# scheduling "glitch," because uprofile(1) indicates uniform sample
+# distribution, as if all instruction bundles execute in 1.5 cycles.
+# Meaning that it could have been even faster, yet 12 cycles is ~60%
+# better than gcc-generated code and ~80% than code generated by vendor
+# compiler.
+
+$cnt="v0"; # $0
+$t0="t0";
+$t1="t1";
+$t2="t2";
+$Thi0="t3"; # $4
+$Tlo0="t4";
+$Thi1="t5";
+$Tlo1="t6";
+$rem="t7"; # $8
+#################
+$Xi="a0"; # $16, input argument block
+$Htbl="a1";
+$inp="a2";
+$len="a3";
+$nlo="a4"; # $20
+$nhi="a5";
+$Zhi="t8";
+$Zlo="t9";
+$Xhi="t10"; # $24
+$Xlo="t11";
+$remp="t12";
+$rem_4bit="AT"; # $28
+
+{ my $N;
+ sub loop() {
+
+ $N++;
+$code.=<<___;
+.align 4
+ extbl $Xlo,7,$nlo
+ and $nlo,0xf0,$nhi
+ sll $nlo,4,$nlo
+ and $nlo,0xf0,$nlo
+
+ addq $nlo,$Htbl,$nlo
+ ldq $Zlo,8($nlo)
+ addq $nhi,$Htbl,$nhi
+ ldq $Zhi,0($nlo)
+
+ and $Zlo,0x0f,$remp
+ sll $Zhi,60,$t0
+ lda $cnt,6(zero)
+ extbl $Xlo,6,$nlo
+
+ ldq $Tlo1,8($nhi)
+ s8addq $remp,$rem_4bit,$remp
+ ldq $Thi1,0($nhi)
+ srl $Zlo,4,$Zlo
+
+ ldq $rem,0($remp)
+ srl $Zhi,4,$Zhi
+ xor $t0,$Zlo,$Zlo
+ and $nlo,0xf0,$nhi
+
+ xor $Tlo1,$Zlo,$Zlo
+ sll $nlo,4,$nlo
+ xor $Thi1,$Zhi,$Zhi
+ and $nlo,0xf0,$nlo
+
+ addq $nlo,$Htbl,$nlo
+ ldq $Tlo0,8($nlo)
+ addq $nhi,$Htbl,$nhi
+ ldq $Thi0,0($nlo)
+
+.Looplo$N:
+ and $Zlo,0x0f,$remp
+ sll $Zhi,60,$t0
+ subq $cnt,1,$cnt
+ srl $Zlo,4,$Zlo
+
+ ldq $Tlo1,8($nhi)
+ xor $rem,$Zhi,$Zhi
+ ldq $Thi1,0($nhi)
+ s8addq $remp,$rem_4bit,$remp
+
+ ldq $rem,0($remp)
+ srl $Zhi,4,$Zhi
+ xor $t0,$Zlo,$Zlo
+ extbl $Xlo,$cnt,$nlo
+
+ and $nlo,0xf0,$nhi
+ xor $Thi0,$Zhi,$Zhi
+ xor $Tlo0,$Zlo,$Zlo
+ sll $nlo,4,$nlo
+
+
+ and $Zlo,0x0f,$remp
+ sll $Zhi,60,$t0
+ and $nlo,0xf0,$nlo
+ srl $Zlo,4,$Zlo
+
+ s8addq $remp,$rem_4bit,$remp
+ xor $rem,$Zhi,$Zhi
+ addq $nlo,$Htbl,$nlo
+ addq $nhi,$Htbl,$nhi
+
+ ldq $rem,0($remp)
+ srl $Zhi,4,$Zhi
+ ldq $Tlo0,8($nlo)
+ xor $t0,$Zlo,$Zlo
+
+ xor $Tlo1,$Zlo,$Zlo
+ xor $Thi1,$Zhi,$Zhi
+ ldq $Thi0,0($nlo)
+ bne $cnt,.Looplo$N
+
+
+ and $Zlo,0x0f,$remp
+ sll $Zhi,60,$t0
+ lda $cnt,7(zero)
+ srl $Zlo,4,$Zlo
+
+ ldq $Tlo1,8($nhi)
+ xor $rem,$Zhi,$Zhi
+ ldq $Thi1,0($nhi)
+ s8addq $remp,$rem_4bit,$remp
+
+ ldq $rem,0($remp)
+ srl $Zhi,4,$Zhi
+ xor $t0,$Zlo,$Zlo
+ extbl $Xhi,$cnt,$nlo
+
+ and $nlo,0xf0,$nhi
+ xor $Thi0,$Zhi,$Zhi
+ xor $Tlo0,$Zlo,$Zlo
+ sll $nlo,4,$nlo
+
+ and $Zlo,0x0f,$remp
+ sll $Zhi,60,$t0
+ and $nlo,0xf0,$nlo
+ srl $Zlo,4,$Zlo
+
+ s8addq $remp,$rem_4bit,$remp
+ xor $rem,$Zhi,$Zhi
+ addq $nlo,$Htbl,$nlo
+ addq $nhi,$Htbl,$nhi
+
+ ldq $rem,0($remp)
+ srl $Zhi,4,$Zhi
+ ldq $Tlo0,8($nlo)
+ xor $t0,$Zlo,$Zlo
+
+ xor $Tlo1,$Zlo,$Zlo
+ xor $Thi1,$Zhi,$Zhi
+ ldq $Thi0,0($nlo)
+ unop
+
+
+.Loophi$N:
+ and $Zlo,0x0f,$remp
+ sll $Zhi,60,$t0
+ subq $cnt,1,$cnt
+ srl $Zlo,4,$Zlo
+
+ ldq $Tlo1,8($nhi)
+ xor $rem,$Zhi,$Zhi
+ ldq $Thi1,0($nhi)
+ s8addq $remp,$rem_4bit,$remp
+
+ ldq $rem,0($remp)
+ srl $Zhi,4,$Zhi
+ xor $t0,$Zlo,$Zlo
+ extbl $Xhi,$cnt,$nlo
+
+ and $nlo,0xf0,$nhi
+ xor $Thi0,$Zhi,$Zhi
+ xor $Tlo0,$Zlo,$Zlo
+ sll $nlo,4,$nlo
+
+
+ and $Zlo,0x0f,$remp
+ sll $Zhi,60,$t0
+ and $nlo,0xf0,$nlo
+ srl $Zlo,4,$Zlo
+
+ s8addq $remp,$rem_4bit,$remp
+ xor $rem,$Zhi,$Zhi
+ addq $nlo,$Htbl,$nlo
+ addq $nhi,$Htbl,$nhi
+
+ ldq $rem,0($remp)
+ srl $Zhi,4,$Zhi
+ ldq $Tlo0,8($nlo)
+ xor $t0,$Zlo,$Zlo
+
+ xor $Tlo1,$Zlo,$Zlo
+ xor $Thi1,$Zhi,$Zhi
+ ldq $Thi0,0($nlo)
+ bne $cnt,.Loophi$N
+
+
+ and $Zlo,0x0f,$remp
+ sll $Zhi,60,$t0
+ srl $Zlo,4,$Zlo
+
+ ldq $Tlo1,8($nhi)
+ xor $rem,$Zhi,$Zhi
+ ldq $Thi1,0($nhi)
+ s8addq $remp,$rem_4bit,$remp
+
+ ldq $rem,0($remp)
+ srl $Zhi,4,$Zhi
+ xor $t0,$Zlo,$Zlo
+
+ xor $Tlo0,$Zlo,$Zlo
+ xor $Thi0,$Zhi,$Zhi
+
+ and $Zlo,0x0f,$remp
+ sll $Zhi,60,$t0
+ srl $Zlo,4,$Zlo
+
+ s8addq $remp,$rem_4bit,$remp
+ xor $rem,$Zhi,$Zhi
+
+ ldq $rem,0($remp)
+ srl $Zhi,4,$Zhi
+ xor $Tlo1,$Zlo,$Zlo
+ xor $Thi1,$Zhi,$Zhi
+ xor $t0,$Zlo,$Zlo
+ xor $rem,$Zhi,$Zhi
+___
+}}
+
+$code=<<___;
+#ifdef __linux__
+#include <asm/regdef.h>
+#else
+#include <asm.h>
+#include <regdef.h>
+#endif
+
+.text
+
+.set noat
+.set noreorder
+.globl gcm_gmult_4bit
+.align 4
+.ent gcm_gmult_4bit
+gcm_gmult_4bit:
+ .frame sp,0,ra
+ .prologue 0
+
+ ldq $Xlo,8($Xi)
+ ldq $Xhi,0($Xi)
+
+ br $rem_4bit,.Lpic1
+.Lpic1: lda $rem_4bit,rem_4bit-.Lpic1($rem_4bit)
+___
+
+ &loop();
+
+$code.=<<___;
+ srl $Zlo,24,$t0 # byte swap
+ srl $Zlo,8,$t1
+
+ sll $Zlo,8,$t2
+ sll $Zlo,24,$Zlo
+ zapnot $t0,0x11,$t0
+ zapnot $t1,0x22,$t1
+
+ zapnot $Zlo,0x88,$Zlo
+ or $t0,$t1,$t0
+ zapnot $t2,0x44,$t2
+
+ or $Zlo,$t0,$Zlo
+ srl $Zhi,24,$t0
+ srl $Zhi,8,$t1
+
+ or $Zlo,$t2,$Zlo
+ sll $Zhi,8,$t2
+ sll $Zhi,24,$Zhi
+
+ srl $Zlo,32,$Xlo
+ sll $Zlo,32,$Zlo
+
+ zapnot $t0,0x11,$t0
+ zapnot $t1,0x22,$t1
+ or $Zlo,$Xlo,$Xlo
+
+ zapnot $Zhi,0x88,$Zhi
+ or $t0,$t1,$t0
+ zapnot $t2,0x44,$t2
+
+ or $Zhi,$t0,$Zhi
+ or $Zhi,$t2,$Zhi
+
+ srl $Zhi,32,$Xhi
+ sll $Zhi,32,$Zhi
+
+ or $Zhi,$Xhi,$Xhi
+ stq $Xlo,8($Xi)
+ stq $Xhi,0($Xi)
+
+ ret (ra)
+.end gcm_gmult_4bit
+___
+
+$inhi="s0";
+$inlo="s1";
+
+$code.=<<___;
+.globl gcm_ghash_4bit
+.align 4
+.ent gcm_ghash_4bit
+gcm_ghash_4bit:
+ lda sp,-32(sp)
+ stq ra,0(sp)
+ stq s0,8(sp)
+ stq s1,16(sp)
+ .mask 0x04000600,-32
+ .frame sp,32,ra
+ .prologue 0
+
+ ldq_u $inhi,0($inp)
+ ldq_u $Thi0,7($inp)
+ ldq_u $inlo,8($inp)
+ ldq_u $Tlo0,15($inp)
+ ldq $Xhi,0($Xi)
+ ldq $Xlo,8($Xi)
+
+ br $rem_4bit,.Lpic2
+.Lpic2: lda $rem_4bit,rem_4bit-.Lpic2($rem_4bit)
+
+.Louter:
+ extql $inhi,$inp,$inhi
+ extqh $Thi0,$inp,$Thi0
+ or $inhi,$Thi0,$inhi
+ lda $inp,16($inp)
+
+ extql $inlo,$inp,$inlo
+ extqh $Tlo0,$inp,$Tlo0
+ or $inlo,$Tlo0,$inlo
+ subq $len,16,$len
+
+ xor $Xlo,$inlo,$Xlo
+ xor $Xhi,$inhi,$Xhi
+___
+
+ &loop();
+
+$code.=<<___;
+ srl $Zlo,24,$t0 # byte swap
+ srl $Zlo,8,$t1
+
+ sll $Zlo,8,$t2
+ sll $Zlo,24,$Zlo
+ zapnot $t0,0x11,$t0
+ zapnot $t1,0x22,$t1
+
+ zapnot $Zlo,0x88,$Zlo
+ or $t0,$t1,$t0
+ zapnot $t2,0x44,$t2
+
+ or $Zlo,$t0,$Zlo
+ srl $Zhi,24,$t0
+ srl $Zhi,8,$t1
+
+ or $Zlo,$t2,$Zlo
+ sll $Zhi,8,$t2
+ sll $Zhi,24,$Zhi
+
+ srl $Zlo,32,$Xlo
+ sll $Zlo,32,$Zlo
+ beq $len,.Ldone
+
+ zapnot $t0,0x11,$t0
+ zapnot $t1,0x22,$t1
+ or $Zlo,$Xlo,$Xlo
+ ldq_u $inhi,0($inp)
+
+ zapnot $Zhi,0x88,$Zhi
+ or $t0,$t1,$t0
+ zapnot $t2,0x44,$t2
+ ldq_u $Thi0,7($inp)
+
+ or $Zhi,$t0,$Zhi
+ or $Zhi,$t2,$Zhi
+ ldq_u $inlo,8($inp)
+ ldq_u $Tlo0,15($inp)
+
+ srl $Zhi,32,$Xhi
+ sll $Zhi,32,$Zhi
+
+ or $Zhi,$Xhi,$Xhi
+ br zero,.Louter
+
+.Ldone:
+ zapnot $t0,0x11,$t0
+ zapnot $t1,0x22,$t1
+ or $Zlo,$Xlo,$Xlo
+
+ zapnot $Zhi,0x88,$Zhi
+ or $t0,$t1,$t0
+ zapnot $t2,0x44,$t2
+
+ or $Zhi,$t0,$Zhi
+ or $Zhi,$t2,$Zhi
+
+ srl $Zhi,32,$Xhi
+ sll $Zhi,32,$Zhi
+
+ or $Zhi,$Xhi,$Xhi
+
+ stq $Xlo,8($Xi)
+ stq $Xhi,0($Xi)
+
+ .set noreorder
+ /*ldq ra,0(sp)*/
+ ldq s0,8(sp)
+ ldq s1,16(sp)
+ lda sp,32(sp)
+ ret (ra)
+.end gcm_ghash_4bit
+
+.align 4
+rem_4bit:
+ .quad 0x0000<<48, 0x1C20<<48, 0x3840<<48, 0x2460<<48
+ .quad 0x7080<<48, 0x6CA0<<48, 0x48C0<<48, 0x54E0<<48
+ .quad 0xE100<<48, 0xFD20<<48, 0xD940<<48, 0xC560<<48
+ .quad 0x9180<<48, 0x8DA0<<48, 0xA9C0<<48, 0xB5E0<<48
+.ascii "GHASH for Alpha, CRYPTOGAMS by <appro\@openssl.org>"
+.align 4
+
+___
+$output=shift and open STDOUT,">$output";
+print $code;
+close STDOUT;
+
diff --git a/openssl/crypto/modes/asm/ghash-armv4.pl b/openssl/crypto/modes/asm/ghash-armv4.pl
new file mode 100644
index 000000000..d91586ee2
--- /dev/null
+++ b/openssl/crypto/modes/asm/ghash-armv4.pl
@@ -0,0 +1,429 @@
+#!/usr/bin/env perl
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# April 2010
+#
+# The module implements "4-bit" GCM GHASH function and underlying
+# single multiplication operation in GF(2^128). "4-bit" means that it
+# uses 256 bytes per-key table [+32 bytes shared table]. There is no
+# experimental performance data available yet. The only approximation
+# that can be made at this point is based on code size. Inner loop is
+# 32 instructions long and on single-issue core should execute in <40
+# cycles. Having verified that gcc 3.4 didn't unroll corresponding
+# loop, this assembler loop body was found to be ~3x smaller than
+# compiler-generated one...
+#
+# July 2010
+#
+# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
+# Cortex A8 core and ~25 cycles per processed byte (which was observed
+# to be ~3 times faster than gcc-generated code:-)
+#
+# February 2011
+#
+# Profiler-assisted and platform-specific optimization resulted in 7%
+# improvement on Cortex A8 core and ~23.5 cycles per byte.
+#
+# March 2011
+#
+# Add NEON implementation featuring polynomial multiplication, i.e. no
+# lookup tables involved. On Cortex A8 it was measured to process one
+# byte in 15 cycles or 55% faster than integer-only code.
+
+# ====================================================================
+# Note about "528B" variant. In ARM case it makes lesser sense to
+# implement it for following reasons:
+#
+# - performance improvement won't be anywhere near 50%, because 128-
+# bit shift operation is neatly fused with 128-bit xor here, and
+# "538B" variant would eliminate only 4-5 instructions out of 32
+# in the inner loop (meaning that estimated improvement is ~15%);
+# - ARM-based systems are often embedded ones and extra memory
+# consumption might be unappreciated (for so little improvement);
+#
+# Byte order [in]dependence. =========================================
+#
+# Caller is expected to maintain specific *dword* order in Htable,
+# namely with *least* significant dword of 128-bit value at *lower*
+# address. This differs completely from C code and has everything to
+# do with ldm instruction and order in which dwords are "consumed" by
+# algorithm. *Byte* order within these dwords in turn is whatever
+# *native* byte order on current platform. See gcm128.c for working
+# example...
+
+while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
+open STDOUT,">$output";
+
+$Xi="r0"; # argument block
+$Htbl="r1";
+$inp="r2";
+$len="r3";
+
+$Zll="r4"; # variables
+$Zlh="r5";
+$Zhl="r6";
+$Zhh="r7";
+$Tll="r8";
+$Tlh="r9";
+$Thl="r10";
+$Thh="r11";
+$nlo="r12";
+################# r13 is stack pointer
+$nhi="r14";
+################# r15 is program counter
+
+$rem_4bit=$inp; # used in gcm_gmult_4bit
+$cnt=$len;
+
+sub Zsmash() {
+ my $i=12;
+ my @args=@_;
+ for ($Zll,$Zlh,$Zhl,$Zhh) {
+ $code.=<<___;
+#if __ARM_ARCH__>=7 && defined(__ARMEL__)
+ rev $_,$_
+ str $_,[$Xi,#$i]
+#elif defined(__ARMEB__)
+ str $_,[$Xi,#$i]
+#else
+ mov $Tlh,$_,lsr#8
+ strb $_,[$Xi,#$i+3]
+ mov $Thl,$_,lsr#16
+ strb $Tlh,[$Xi,#$i+2]
+ mov $Thh,$_,lsr#24
+ strb $Thl,[$Xi,#$i+1]
+ strb $Thh,[$Xi,#$i]
+#endif
+___
+ $code.="\t".shift(@args)."\n";
+ $i-=4;
+ }
+}
+
+$code=<<___;
+#include "arm_arch.h"
+
+.text
+.code 32
+
+.type rem_4bit,%object
+.align 5
+rem_4bit:
+.short 0x0000,0x1C20,0x3840,0x2460
+.short 0x7080,0x6CA0,0x48C0,0x54E0
+.short 0xE100,0xFD20,0xD940,0xC560
+.short 0x9180,0x8DA0,0xA9C0,0xB5E0
+.size rem_4bit,.-rem_4bit
+
+.type rem_4bit_get,%function
+rem_4bit_get:
+ sub $rem_4bit,pc,#8
+ sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit
+ b .Lrem_4bit_got
+ nop
+.size rem_4bit_get,.-rem_4bit_get
+
+.global gcm_ghash_4bit
+.type gcm_ghash_4bit,%function
+gcm_ghash_4bit:
+ sub r12,pc,#8
+ add $len,$inp,$len @ $len to point at the end
+ stmdb sp!,{r3-r11,lr} @ save $len/end too
+ sub r12,r12,#48 @ &rem_4bit
+
+ ldmia r12,{r4-r11} @ copy rem_4bit ...
+ stmdb sp!,{r4-r11} @ ... to stack
+
+ ldrb $nlo,[$inp,#15]
+ ldrb $nhi,[$Xi,#15]
+.Louter:
+ eor $nlo,$nlo,$nhi
+ and $nhi,$nlo,#0xf0
+ and $nlo,$nlo,#0x0f
+ mov $cnt,#14
+
+ add $Zhh,$Htbl,$nlo,lsl#4
+ ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
+ add $Thh,$Htbl,$nhi
+ ldrb $nlo,[$inp,#14]
+
+ and $nhi,$Zll,#0xf @ rem
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
+ add $nhi,$nhi,$nhi
+ eor $Zll,$Tll,$Zll,lsr#4
+ ldrh $Tll,[sp,$nhi] @ rem_4bit[rem]
+ eor $Zll,$Zll,$Zlh,lsl#28
+ ldrb $nhi,[$Xi,#14]
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eor $Zhh,$Thh,$Zhh,lsr#4
+ eor $nlo,$nlo,$nhi
+ and $nhi,$nlo,#0xf0
+ and $nlo,$nlo,#0x0f
+ eor $Zhh,$Zhh,$Tll,lsl#16
+
+.Linner:
+ add $Thh,$Htbl,$nlo,lsl#4
+ and $nlo,$Zll,#0xf @ rem
+ subs $cnt,$cnt,#1
+ add $nlo,$nlo,$nlo
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
+ eor $Zll,$Tll,$Zll,lsr#4
+ eor $Zll,$Zll,$Zlh,lsl#28
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ ldrh $Tll,[sp,$nlo] @ rem_4bit[rem]
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ ldrplb $nlo,[$inp,$cnt]
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eor $Zhh,$Thh,$Zhh,lsr#4
+
+ add $Thh,$Htbl,$nhi
+ and $nhi,$Zll,#0xf @ rem
+ eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
+ add $nhi,$nhi,$nhi
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
+ eor $Zll,$Tll,$Zll,lsr#4
+ ldrplb $Tll,[$Xi,$cnt]
+ eor $Zll,$Zll,$Zlh,lsl#28
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ ldrh $Tlh,[sp,$nhi]
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eorpl $nlo,$nlo,$Tll
+ eor $Zhh,$Thh,$Zhh,lsr#4
+ andpl $nhi,$nlo,#0xf0
+ andpl $nlo,$nlo,#0x0f
+ eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem]
+ bpl .Linner
+
+ ldr $len,[sp,#32] @ re-load $len/end
+ add $inp,$inp,#16
+ mov $nhi,$Zll
+___
+ &Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]");
+$code.=<<___;
+ bne .Louter
+
+ add sp,sp,#36
+#if __ARM_ARCH__>=5
+ ldmia sp!,{r4-r11,pc}
+#else
+ ldmia sp!,{r4-r11,lr}
+ tst lr,#1
+ moveq pc,lr @ be binary compatible with V4, yet
+ bx lr @ interoperable with Thumb ISA:-)
+#endif
+.size gcm_ghash_4bit,.-gcm_ghash_4bit
+
+.global gcm_gmult_4bit
+.type gcm_gmult_4bit,%function
+gcm_gmult_4bit:
+ stmdb sp!,{r4-r11,lr}
+ ldrb $nlo,[$Xi,#15]
+ b rem_4bit_get
+.Lrem_4bit_got:
+ and $nhi,$nlo,#0xf0
+ and $nlo,$nlo,#0x0f
+ mov $cnt,#14
+
+ add $Zhh,$Htbl,$nlo,lsl#4
+ ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
+ ldrb $nlo,[$Xi,#14]
+
+ add $Thh,$Htbl,$nhi
+ and $nhi,$Zll,#0xf @ rem
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
+ add $nhi,$nhi,$nhi
+ eor $Zll,$Tll,$Zll,lsr#4
+ ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
+ eor $Zll,$Zll,$Zlh,lsl#28
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eor $Zhh,$Thh,$Zhh,lsr#4
+ and $nhi,$nlo,#0xf0
+ eor $Zhh,$Zhh,$Tll,lsl#16
+ and $nlo,$nlo,#0x0f
+
+.Loop:
+ add $Thh,$Htbl,$nlo,lsl#4
+ and $nlo,$Zll,#0xf @ rem
+ subs $cnt,$cnt,#1
+ add $nlo,$nlo,$nlo
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
+ eor $Zll,$Tll,$Zll,lsr#4
+ eor $Zll,$Zll,$Zlh,lsl#28
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem]
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ ldrplb $nlo,[$Xi,$cnt]
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eor $Zhh,$Thh,$Zhh,lsr#4
+
+ add $Thh,$Htbl,$nhi
+ and $nhi,$Zll,#0xf @ rem
+ eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
+ add $nhi,$nhi,$nhi
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
+ eor $Zll,$Tll,$Zll,lsr#4
+ eor $Zll,$Zll,$Zlh,lsl#28
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eor $Zhh,$Thh,$Zhh,lsr#4
+ andpl $nhi,$nlo,#0xf0
+ andpl $nlo,$nlo,#0x0f
+ eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
+ bpl .Loop
+___
+ &Zsmash();
+$code.=<<___;
+#if __ARM_ARCH__>=5
+ ldmia sp!,{r4-r11,pc}
+#else
+ ldmia sp!,{r4-r11,lr}
+ tst lr,#1
+ moveq pc,lr @ be binary compatible with V4, yet
+ bx lr @ interoperable with Thumb ISA:-)
+#endif
+.size gcm_gmult_4bit,.-gcm_gmult_4bit
+___
+{
+my $cnt=$Htbl; # $Htbl is used once in the very beginning
+
+my ($Hhi, $Hlo, $Zo, $T, $xi, $mod) = map("d$_",(0..7));
+my ($Qhi, $Qlo, $Z, $R, $zero, $Qpost, $IN) = map("q$_",(8..15));
+
+# Z:Zo keeps 128-bit result shifted by 1 to the right, with bottom bit
+# in Zo. Or should I say "top bit", because GHASH is specified in
+# reverse bit order? Otherwise straightforward 128-bt H by one input
+# byte multiplication and modulo-reduction, times 16.
+
+sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; }
+sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; }
+sub Q() { shift=~m|d([1-3]?[02468])|?"q".($1/2):""; }
+
+$code.=<<___;
+#if __ARM_ARCH__>=7
+.fpu neon
+
+.global gcm_gmult_neon
+.type gcm_gmult_neon,%function
+.align 4
+gcm_gmult_neon:
+ sub $Htbl,#16 @ point at H in GCM128_CTX
+ vld1.64 `&Dhi("$IN")`,[$Xi,:64]!@ load Xi
+ vmov.i32 $mod,#0xe1 @ our irreducible polynomial
+ vld1.64 `&Dlo("$IN")`,[$Xi,:64]!
+ vshr.u64 $mod,#32
+ vldmia $Htbl,{$Hhi-$Hlo} @ load H
+ veor $zero,$zero
+#ifdef __ARMEL__
+ vrev64.8 $IN,$IN
+#endif
+ veor $Qpost,$Qpost
+ veor $R,$R
+ mov $cnt,#16
+ veor $Z,$Z
+ mov $len,#16
+ veor $Zo,$Zo
+ vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
+ b .Linner_neon
+.size gcm_gmult_neon,.-gcm_gmult_neon
+
+.global gcm_ghash_neon
+.type gcm_ghash_neon,%function
+.align 4
+gcm_ghash_neon:
+ vld1.64 `&Dhi("$Z")`,[$Xi,:64]! @ load Xi
+ vmov.i32 $mod,#0xe1 @ our irreducible polynomial
+ vld1.64 `&Dlo("$Z")`,[$Xi,:64]!
+ vshr.u64 $mod,#32
+ vldmia $Xi,{$Hhi-$Hlo} @ load H
+ veor $zero,$zero
+ nop
+#ifdef __ARMEL__
+ vrev64.8 $Z,$Z
+#endif
+.Louter_neon:
+ vld1.64 `&Dhi($IN)`,[$inp]! @ load inp
+ veor $Qpost,$Qpost
+ vld1.64 `&Dlo($IN)`,[$inp]!
+ veor $R,$R
+ mov $cnt,#16
+#ifdef __ARMEL__
+ vrev64.8 $IN,$IN
+#endif
+ veor $Zo,$Zo
+ veor $IN,$Z @ inp^=Xi
+ veor $Z,$Z
+ vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
+.Linner_neon:
+ subs $cnt,$cnt,#1
+ vmull.p8 $Qlo,$Hlo,$xi @ H.lo·Xi[i]
+ vmull.p8 $Qhi,$Hhi,$xi @ H.hi·Xi[i]
+ vext.8 $IN,$zero,#1 @ IN>>=8
+
+ veor $Z,$Qpost @ modulo-scheduled part
+ vshl.i64 `&Dlo("$R")`,#48
+ vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
+ veor $T,`&Dlo("$Qlo")`,`&Dlo("$Z")`
+
+ veor `&Dhi("$Z")`,`&Dlo("$R")`
+ vuzp.8 $Qlo,$Qhi
+ vsli.8 $Zo,$T,#1 @ compose the "carry" byte
+ vext.8 $Z,$zero,#1 @ Z>>=8
+
+ vmull.p8 $R,$Zo,$mod @ "carry"·0xe1
+ vshr.u8 $Zo,$T,#7 @ save Z's bottom bit
+ vext.8 $Qpost,$Qlo,$zero,#1 @ Qlo>>=8
+ veor $Z,$Qhi
+ bne .Linner_neon
+
+ veor $Z,$Qpost @ modulo-scheduled artefact
+ vshl.i64 `&Dlo("$R")`,#48
+ veor `&Dhi("$Z")`,`&Dlo("$R")`
+
+ @ finalization, normalize Z:Zo
+ vand $Zo,$mod @ suffices to mask the bit
+ vshr.u64 `&Dhi(&Q("$Zo"))`,`&Dlo("$Z")`,#63
+ vshl.i64 $Z,#1
+ subs $len,#16
+ vorr $Z,`&Q("$Zo")` @ Z=Z:Zo<<1
+ bne .Louter_neon
+
+#ifdef __ARMEL__
+ vrev64.8 $Z,$Z
+#endif
+ sub $Xi,#16
+ vst1.64 `&Dhi("$Z")`,[$Xi,:64]! @ write out Xi
+ vst1.64 `&Dlo("$Z")`,[$Xi,:64]
+
+ bx lr
+.size gcm_ghash_neon,.-gcm_ghash_neon
+#endif
+___
+}
+$code.=<<___;
+.asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
+.align 2
+___
+
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+$code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4
+print $code;
+close STDOUT; # enforce flush
diff --git a/openssl/crypto/modes/asm/ghash-ia64.pl b/openssl/crypto/modes/asm/ghash-ia64.pl
new file mode 100644
index 000000000..0354c9544
--- /dev/null
+++ b/openssl/crypto/modes/asm/ghash-ia64.pl
@@ -0,0 +1,463 @@
+#!/usr/bin/env perl
+
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# March 2010
+#
+# The module implements "4-bit" GCM GHASH function and underlying
+# single multiplication operation in GF(2^128). "4-bit" means that it
+# uses 256 bytes per-key table [+128 bytes shared table]. Streamed
+# GHASH performance was measured to be 6.67 cycles per processed byte
+# on Itanium 2, which is >90% better than Microsoft compiler generated
+# code. To anchor to something else sha1-ia64.pl module processes one
+# byte in 5.7 cycles. On Itanium GHASH should run at ~8.5 cycles per
+# byte.
+
+# September 2010
+#
+# It was originally thought that it makes lesser sense to implement
+# "528B" variant on Itanium 2 for following reason. Because number of
+# functional units is naturally limited, it appeared impossible to
+# implement "528B" loop in 4 cycles, only in 5. This would mean that
+# theoretically performance improvement couldn't be more than 20%.
+# But occasionally you prove yourself wrong:-) I figured out a way to
+# fold couple of instructions and having freed yet another instruction
+# slot by unrolling the loop... Resulting performance is 4.45 cycles
+# per processed byte and 50% better than "256B" version. On original
+# Itanium performance should remain the same as the "256B" version,
+# i.e. ~8.5 cycles.
+
+$output=shift and (open STDOUT,">$output" or die "can't open $output: $!");
+
+if ($^O eq "hpux") {
+ $ADDP="addp4";
+ for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); }
+} else { $ADDP="add"; }
+for (@ARGV) { $big_endian=1 if (/\-DB_ENDIAN/);
+ $big_endian=0 if (/\-DL_ENDIAN/); }
+if (!defined($big_endian))
+ { $big_endian=(unpack('L',pack('N',1))==1); }
+
+sub loop() {
+my $label=shift;
+my ($p16,$p17)=(shift)?("p63","p63"):("p16","p17"); # mask references to inp
+
+# Loop is scheduled for 6 ticks on Itanium 2 and 8 on Itanium, i.e.
+# in scalable manner;-) Naturally assuming data in L1 cache...
+# Special note about 'dep' instruction, which is used to construct
+# &rem_4bit[Zlo&0xf]. It works, because rem_4bit is aligned at 128
+# bytes boundary and lower 7 bits of its address are guaranteed to
+# be zero.
+$code.=<<___;
+$label:
+{ .mfi; (p18) ld8 Hlo=[Hi[1]],-8
+ (p19) dep rem=Zlo,rem_4bitp,3,4 }
+{ .mfi; (p19) xor Zhi=Zhi,Hhi
+ ($p17) xor xi[1]=xi[1],in[1] };;
+{ .mfi; (p18) ld8 Hhi=[Hi[1]]
+ (p19) shrp Zlo=Zhi,Zlo,4 }
+{ .mfi; (p19) ld8 rem=[rem]
+ (p18) and Hi[1]=mask0xf0,xi[2] };;
+{ .mmi; ($p16) ld1 in[0]=[inp],-1
+ (p18) xor Zlo=Zlo,Hlo
+ (p19) shr.u Zhi=Zhi,4 }
+{ .mib; (p19) xor Hhi=Hhi,rem
+ (p18) add Hi[1]=Htbl,Hi[1] };;
+
+{ .mfi; (p18) ld8 Hlo=[Hi[1]],-8
+ (p18) dep rem=Zlo,rem_4bitp,3,4 }
+{ .mfi; (p17) shladd Hi[0]=xi[1],4,r0
+ (p18) xor Zhi=Zhi,Hhi };;
+{ .mfi; (p18) ld8 Hhi=[Hi[1]]
+ (p18) shrp Zlo=Zhi,Zlo,4 }
+{ .mfi; (p18) ld8 rem=[rem]
+ (p17) and Hi[0]=mask0xf0,Hi[0] };;
+{ .mmi; (p16) ld1 xi[0]=[Xi],-1
+ (p18) xor Zlo=Zlo,Hlo
+ (p18) shr.u Zhi=Zhi,4 }
+{ .mib; (p18) xor Hhi=Hhi,rem
+ (p17) add Hi[0]=Htbl,Hi[0]
+ br.ctop.sptk $label };;
+___
+}
+
+$code=<<___;
+.explicit
+.text
+
+prevfs=r2; prevlc=r3; prevpr=r8;
+mask0xf0=r21;
+rem=r22; rem_4bitp=r23;
+Xi=r24; Htbl=r25;
+inp=r26; end=r27;
+Hhi=r28; Hlo=r29;
+Zhi=r30; Zlo=r31;
+
+.align 128
+.skip 16 // aligns loop body
+.global gcm_gmult_4bit#
+.proc gcm_gmult_4bit#
+gcm_gmult_4bit:
+ .prologue
+{ .mmi; .save ar.pfs,prevfs
+ alloc prevfs=ar.pfs,2,6,0,8
+ $ADDP Xi=15,in0 // &Xi[15]
+ mov rem_4bitp=ip }
+{ .mii; $ADDP Htbl=8,in1 // &Htbl[0].lo
+ .save ar.lc,prevlc
+ mov prevlc=ar.lc
+ .save pr,prevpr
+ mov prevpr=pr };;
+
+ .body
+ .rotr in[3],xi[3],Hi[2]
+
+{ .mib; ld1 xi[2]=[Xi],-1 // Xi[15]
+ mov mask0xf0=0xf0
+ brp.loop.imp .Loop1,.Lend1-16};;
+{ .mmi; ld1 xi[1]=[Xi],-1 // Xi[14]
+ };;
+{ .mii; shladd Hi[1]=xi[2],4,r0
+ mov pr.rot=0x7<<16
+ mov ar.lc=13 };;
+{ .mii; and Hi[1]=mask0xf0,Hi[1]
+ mov ar.ec=3
+ xor Zlo=Zlo,Zlo };;
+{ .mii; add Hi[1]=Htbl,Hi[1] // &Htbl[nlo].lo
+ add rem_4bitp=rem_4bit#-gcm_gmult_4bit#,rem_4bitp
+ xor Zhi=Zhi,Zhi };;
+___
+ &loop (".Loop1",1);
+$code.=<<___;
+.Lend1:
+{ .mib; xor Zhi=Zhi,Hhi };; // modulo-scheduling artefact
+{ .mib; mux1 Zlo=Zlo,\@rev };;
+{ .mib; mux1 Zhi=Zhi,\@rev };;
+{ .mmi; add Hlo=9,Xi;; // ;; is here to prevent
+ add Hhi=1,Xi };; // pipeline flush on Itanium
+{ .mib; st8 [Hlo]=Zlo
+ mov pr=prevpr,0x1ffff };;
+{ .mib; st8 [Hhi]=Zhi
+ mov ar.lc=prevlc
+ br.ret.sptk.many b0 };;
+.endp gcm_gmult_4bit#
+___
+
+######################################################################
+# "528B" (well, "512B" actualy) streamed GHASH
+#
+$Xip="in0";
+$Htbl="in1";
+$inp="in2";
+$len="in3";
+$rem_8bit="loc0";
+$mask0xff="loc1";
+($sum,$rum) = $big_endian ? ("nop.m","nop.m") : ("sum","rum");
+
+sub load_htable() {
+ for (my $i=0;$i<8;$i++) {
+ $code.=<<___;
+{ .mmi; ld8 r`16+2*$i+1`=[r8],16 // Htable[$i].hi
+ ld8 r`16+2*$i`=[r9],16 } // Htable[$i].lo
+{ .mmi; ldf8 f`32+2*$i+1`=[r10],16 // Htable[`8+$i`].hi
+ ldf8 f`32+2*$i`=[r11],16 // Htable[`8+$i`].lo
+___
+ $code.=shift if (($i+$#_)==7);
+ $code.="\t};;\n"
+ }
+}
+
+$code.=<<___;
+prevsp=r3;
+
+.align 32
+.skip 16 // aligns loop body
+.global gcm_ghash_4bit#
+.proc gcm_ghash_4bit#
+gcm_ghash_4bit:
+ .prologue
+{ .mmi; .save ar.pfs,prevfs
+ alloc prevfs=ar.pfs,4,2,0,0
+ .vframe prevsp
+ mov prevsp=sp
+ mov $rem_8bit=ip };;
+ .body
+{ .mfi; $ADDP r8=0+0,$Htbl
+ $ADDP r9=0+8,$Htbl }
+{ .mfi; $ADDP r10=128+0,$Htbl
+ $ADDP r11=128+8,$Htbl };;
+___
+ &load_htable(
+ " $ADDP $Xip=15,$Xip", # &Xi[15]
+ " $ADDP $len=$len,$inp", # &inp[len]
+ " $ADDP $inp=15,$inp", # &inp[15]
+ " mov $mask0xff=0xff",
+ " add sp=-512,sp",
+ " andcm sp=sp,$mask0xff", # align stack frame
+ " add r14=0,sp",
+ " add r15=8,sp");
+$code.=<<___;
+{ .mmi; $sum 1<<1 // go big-endian
+ add r8=256+0,sp
+ add r9=256+8,sp }
+{ .mmi; add r10=256+128+0,sp
+ add r11=256+128+8,sp
+ add $len=-17,$len };;
+___
+for($i=0;$i<8;$i++) { # generate first half of Hshr4[]
+my ($rlo,$rhi)=("r".eval(16+2*$i),"r".eval(16+2*$i+1));
+$code.=<<___;
+{ .mmi; st8 [r8]=$rlo,16 // Htable[$i].lo
+ st8 [r9]=$rhi,16 // Htable[$i].hi
+ shrp $rlo=$rhi,$rlo,4 }//;;
+{ .mmi; stf8 [r10]=f`32+2*$i`,16 // Htable[`8+$i`].lo
+ stf8 [r11]=f`32+2*$i+1`,16 // Htable[`8+$i`].hi
+ shr.u $rhi=$rhi,4 };;
+{ .mmi; st8 [r14]=$rlo,16 // Htable[$i].lo>>4
+ st8 [r15]=$rhi,16 }//;; // Htable[$i].hi>>4
+___
+}
+$code.=<<___;
+{ .mmi; ld8 r16=[r8],16 // Htable[8].lo
+ ld8 r17=[r9],16 };; // Htable[8].hi
+{ .mmi; ld8 r18=[r8],16 // Htable[9].lo
+ ld8 r19=[r9],16 } // Htable[9].hi
+{ .mmi; rum 1<<5 // clear um.mfh
+ shrp r16=r17,r16,4 };;
+___
+for($i=0;$i<6;$i++) { # generate second half of Hshr4[]
+$code.=<<___;
+{ .mmi; ld8 r`20+2*$i`=[r8],16 // Htable[`10+$i`].lo
+ ld8 r`20+2*$i+1`=[r9],16 // Htable[`10+$i`].hi
+ shr.u r`16+2*$i+1`=r`16+2*$i+1`,4 };;
+{ .mmi; st8 [r14]=r`16+2*$i`,16 // Htable[`8+$i`].lo>>4
+ st8 [r15]=r`16+2*$i+1`,16 // Htable[`8+$i`].hi>>4
+ shrp r`18+2*$i`=r`18+2*$i+1`,r`18+2*$i`,4 }
+___
+}
+$code.=<<___;
+{ .mmi; shr.u r`16+2*$i+1`=r`16+2*$i+1`,4 };;
+{ .mmi; st8 [r14]=r`16+2*$i`,16 // Htable[`8+$i`].lo>>4
+ st8 [r15]=r`16+2*$i+1`,16 // Htable[`8+$i`].hi>>4
+ shrp r`18+2*$i`=r`18+2*$i+1`,r`18+2*$i`,4 }
+{ .mmi; add $Htbl=256,sp // &Htable[0]
+ add $rem_8bit=rem_8bit#-gcm_ghash_4bit#,$rem_8bit
+ shr.u r`18+2*$i+1`=r`18+2*$i+1`,4 };;
+{ .mmi; st8 [r14]=r`18+2*$i` // Htable[`8+$i`].lo>>4
+ st8 [r15]=r`18+2*$i+1` } // Htable[`8+$i`].hi>>4
+___
+
+$in="r15";
+@xi=("r16","r17");
+@rem=("r18","r19");
+($Alo,$Ahi,$Blo,$Bhi,$Zlo,$Zhi)=("r20","r21","r22","r23","r24","r25");
+($Atbl,$Btbl)=("r26","r27");
+
+$code.=<<___; # (p16)
+{ .mmi; ld1 $in=[$inp],-1 //(p16) *inp--
+ ld1 $xi[0]=[$Xip],-1 //(p16) *Xi--
+ cmp.eq p0,p6=r0,r0 };; // clear p6
+___
+push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers
+
+$code.=<<___; # (p16),(p17)
+{ .mmi; ld1 $xi[0]=[$Xip],-1 //(p16) *Xi--
+ xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i]
+{ .mii; ld1 $in=[$inp],-1 //(p16) *inp--
+ dep $Atbl=$xi[1],$Htbl,4,4 //(p17) &Htable[nlo].lo
+ and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0
+.align 32
+.LOOP:
+{ .mmi;
+(p6) st8 [$Xip]=$Zhi,13
+ xor $Zlo=$Zlo,$Zlo
+ add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi].lo
+___
+push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers
+
+$code.=<<___; # (p16),(p17),(p18)
+{ .mmi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi
+ ld8 $rem[0]=[$Btbl],-256 //(p18) Htable[nhi].lo,&Hshr4[nhi].lo
+ xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i]
+{ .mfi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi
+ dep $Atbl=$xi[1],$Htbl,4,4 } //(p17) &Htable[nlo].lo
+{ .mfi; shladd $rem[0]=$rem[0],4,r0 //(p18) Htable[nhi].lo<<4
+ xor $Zlo=$Zlo,$Alo };; //(p18) Z.lo^=Htable[nlo].lo
+{ .mmi; ld8 $Blo=[$Btbl],8 //(p18) Hshr4[nhi].lo,&Hshr4[nhi].hi
+ ld1 $in=[$inp],-1 } //(p16) *inp--
+{ .mmi; xor $rem[0]=$rem[0],$Zlo //(p18) Z.lo^(Htable[nhi].lo<<4)
+ mov $Zhi=$Ahi //(p18) Z.hi^=Htable[nlo].hi
+ and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0
+{ .mmi; ld8 $Bhi=[$Btbl] //(p18) Hshr4[nhi].hi
+ ld1 $xi[0]=[$Xip],-1 //(p16) *Xi--
+ shrp $Zlo=$Zhi,$Zlo,8 } //(p18) Z.lo=(Z.hi<<56)|(Z.lo>>8)
+{ .mmi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff
+ add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi]
+___
+push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers
+
+for ($i=1;$i<14;$i++) {
+# Above and below fragments are derived from this one by removing
+# unsuitable (p??) instructions.
+$code.=<<___; # (p16),(p17),(p18),(p19)
+{ .mmi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi
+ ld8 $rem[0]=[$Btbl],-256 //(p18) Htable[nhi].lo,&Hshr4[nhi].lo
+ shr.u $Zhi=$Zhi,8 } //(p19) Z.hi>>=8
+{ .mmi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem]
+ xor $Zlo=$Zlo,$Blo //(p19) Z.lo^=Hshr4[nhi].lo
+ xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i]
+{ .mmi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi
+ ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem]
+ dep $Atbl=$xi[1],$Htbl,4,4 } //(p17) &Htable[nlo].lo
+{ .mmi; shladd $rem[0]=$rem[0],4,r0 //(p18) Htable[nhi].lo<<4
+ xor $Zlo=$Zlo,$Alo //(p18) Z.lo^=Htable[nlo].lo
+ xor $Zhi=$Zhi,$Bhi };; //(p19) Z.hi^=Hshr4[nhi].hi
+{ .mmi; ld8 $Blo=[$Btbl],8 //(p18) Hshr4[nhi].lo,&Hshr4[nhi].hi
+ ld1 $in=[$inp],-1 //(p16) *inp--
+ shl $rem[1]=$rem[1],48 } //(p19) rem_8bit[rem]<<48
+{ .mmi; xor $rem[0]=$rem[0],$Zlo //(p18) Z.lo^(Htable[nhi].lo<<4)
+ xor $Zhi=$Zhi,$Ahi //(p18) Z.hi^=Htable[nlo].hi
+ and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0
+{ .mmi; ld8 $Bhi=[$Btbl] //(p18) Hshr4[nhi].hi
+ ld1 $xi[0]=[$Xip],-1 //(p16) *Xi--
+ shrp $Zlo=$Zhi,$Zlo,8 } //(p18) Z.lo=(Z.hi<<56)|(Z.lo>>8)
+{ .mmi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff
+ xor $Zhi=$Zhi,$rem[1] //(p19) Z.hi^=rem_8bit[rem]<<48
+ add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi]
+___
+push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers
+}
+
+$code.=<<___; # (p17),(p18),(p19)
+{ .mmi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi
+ ld8 $rem[0]=[$Btbl],-256 //(p18) Htable[nhi].lo,&Hshr4[nhi].lo
+ shr.u $Zhi=$Zhi,8 } //(p19) Z.hi>>=8
+{ .mmi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem]
+ xor $Zlo=$Zlo,$Blo //(p19) Z.lo^=Hshr4[nhi].lo
+ xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i]
+{ .mmi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi
+ ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem]
+ dep $Atbl=$xi[1],$Htbl,4,4 };; //(p17) &Htable[nlo].lo
+{ .mmi; shladd $rem[0]=$rem[0],4,r0 //(p18) Htable[nhi].lo<<4
+ xor $Zlo=$Zlo,$Alo //(p18) Z.lo^=Htable[nlo].lo
+ xor $Zhi=$Zhi,$Bhi };; //(p19) Z.hi^=Hshr4[nhi].hi
+{ .mmi; ld8 $Blo=[$Btbl],8 //(p18) Hshr4[nhi].lo,&Hshr4[nhi].hi
+ shl $rem[1]=$rem[1],48 } //(p19) rem_8bit[rem]<<48
+{ .mmi; xor $rem[0]=$rem[0],$Zlo //(p18) Z.lo^(Htable[nhi].lo<<4)
+ xor $Zhi=$Zhi,$Ahi //(p18) Z.hi^=Htable[nlo].hi
+ and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0
+{ .mmi; ld8 $Bhi=[$Btbl] //(p18) Hshr4[nhi].hi
+ shrp $Zlo=$Zhi,$Zlo,8 } //(p18) Z.lo=(Z.hi<<56)|(Z.lo>>8)
+{ .mmi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff
+ xor $Zhi=$Zhi,$rem[1] //(p19) Z.hi^=rem_8bit[rem]<<48
+ add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi]
+___
+push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers
+
+$code.=<<___; # (p18),(p19)
+{ .mfi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi
+ shr.u $Zhi=$Zhi,8 } //(p19) Z.hi>>=8
+{ .mfi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem]
+ xor $Zlo=$Zlo,$Blo };; //(p19) Z.lo^=Hshr4[nhi].lo
+{ .mfi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi
+ xor $Zlo=$Zlo,$Alo } //(p18) Z.lo^=Htable[nlo].lo
+{ .mfi; ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem]
+ xor $Zhi=$Zhi,$Bhi };; //(p19) Z.hi^=Hshr4[nhi].hi
+{ .mfi; ld8 $Blo=[$Btbl],8 //(p18) Htable[nhi].lo,&Htable[nhi].hi
+ shl $rem[1]=$rem[1],48 } //(p19) rem_8bit[rem]<<48
+{ .mfi; shladd $rem[0]=$Zlo,4,r0 //(p18) Z.lo<<4
+ xor $Zhi=$Zhi,$Ahi };; //(p18) Z.hi^=Htable[nlo].hi
+{ .mfi; ld8 $Bhi=[$Btbl] //(p18) Htable[nhi].hi
+ shrp $Zlo=$Zhi,$Zlo,4 } //(p18) Z.lo=(Z.hi<<60)|(Z.lo>>4)
+{ .mfi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff
+ xor $Zhi=$Zhi,$rem[1] };; //(p19) Z.hi^=rem_8bit[rem]<<48
+___
+push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers
+
+$code.=<<___; # (p19)
+{ .mmi; cmp.ltu p6,p0=$inp,$len
+ add $inp=32,$inp
+ shr.u $Zhi=$Zhi,4 } //(p19) Z.hi>>=4
+{ .mmi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem]
+ xor $Zlo=$Zlo,$Blo //(p19) Z.lo^=Hshr4[nhi].lo
+ add $Xip=9,$Xip };; // &Xi.lo
+{ .mmi; ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem]
+(p6) ld1 $in=[$inp],-1 //[p16] *inp--
+(p6) extr.u $xi[1]=$Zlo,8,8 } //[p17] Xi[14]
+{ .mmi; xor $Zhi=$Zhi,$Bhi //(p19) Z.hi^=Hshr4[nhi].hi
+(p6) and $xi[0]=$Zlo,$mask0xff };; //[p16] Xi[15]
+{ .mmi; st8 [$Xip]=$Zlo,-8
+(p6) xor $xi[0]=$xi[0],$in //[p17] xi=$xi[i]^inp[i]
+ shl $rem[1]=$rem[1],48 };; //(p19) rem_8bit[rem]<<48
+{ .mmi;
+(p6) ld1 $in=[$inp],-1 //[p16] *inp--
+ xor $Zhi=$Zhi,$rem[1] //(p19) Z.hi^=rem_8bit[rem]<<48
+(p6) dep $Atbl=$xi[0],$Htbl,4,4 } //[p17] &Htable[nlo].lo
+{ .mib;
+(p6) and $xi[0]=-16,$xi[0] //[p17] nhi=xi&0xf0
+(p6) br.cond.dptk.many .LOOP };;
+
+{ .mib; st8 [$Xip]=$Zhi };;
+{ .mib; $rum 1<<1 // return to little-endian
+ .restore sp
+ mov sp=prevsp
+ br.ret.sptk.many b0 };;
+.endp gcm_ghash_4bit#
+___
+$code.=<<___;
+.align 128
+.type rem_4bit#,\@object
+rem_4bit:
+ data8 0x0000<<48, 0x1C20<<48, 0x3840<<48, 0x2460<<48
+ data8 0x7080<<48, 0x6CA0<<48, 0x48C0<<48, 0x54E0<<48
+ data8 0xE100<<48, 0xFD20<<48, 0xD940<<48, 0xC560<<48
+ data8 0x9180<<48, 0x8DA0<<48, 0xA9C0<<48, 0xB5E0<<48
+.size rem_4bit#,128
+.type rem_8bit#,\@object
+rem_8bit:
+ data1 0x00,0x00, 0x01,0xC2, 0x03,0x84, 0x02,0x46, 0x07,0x08, 0x06,0xCA, 0x04,0x8C, 0x05,0x4E
+ data1 0x0E,0x10, 0x0F,0xD2, 0x0D,0x94, 0x0C,0x56, 0x09,0x18, 0x08,0xDA, 0x0A,0x9C, 0x0B,0x5E
+ data1 0x1C,0x20, 0x1D,0xE2, 0x1F,0xA4, 0x1E,0x66, 0x1B,0x28, 0x1A,0xEA, 0x18,0xAC, 0x19,0x6E
+ data1 0x12,0x30, 0x13,0xF2, 0x11,0xB4, 0x10,0x76, 0x15,0x38, 0x14,0xFA, 0x16,0xBC, 0x17,0x7E
+ data1 0x38,0x40, 0x39,0x82, 0x3B,0xC4, 0x3A,0x06, 0x3F,0x48, 0x3E,0x8A, 0x3C,0xCC, 0x3D,0x0E
+ data1 0x36,0x50, 0x37,0x92, 0x35,0xD4, 0x34,0x16, 0x31,0x58, 0x30,0x9A, 0x32,0xDC, 0x33,0x1E
+ data1 0x24,0x60, 0x25,0xA2, 0x27,0xE4, 0x26,0x26, 0x23,0x68, 0x22,0xAA, 0x20,0xEC, 0x21,0x2E
+ data1 0x2A,0x70, 0x2B,0xB2, 0x29,0xF4, 0x28,0x36, 0x2D,0x78, 0x2C,0xBA, 0x2E,0xFC, 0x2F,0x3E
+ data1 0x70,0x80, 0x71,0x42, 0x73,0x04, 0x72,0xC6, 0x77,0x88, 0x76,0x4A, 0x74,0x0C, 0x75,0xCE
+ data1 0x7E,0x90, 0x7F,0x52, 0x7D,0x14, 0x7C,0xD6, 0x79,0x98, 0x78,0x5A, 0x7A,0x1C, 0x7B,0xDE
+ data1 0x6C,0xA0, 0x6D,0x62, 0x6F,0x24, 0x6E,0xE6, 0x6B,0xA8, 0x6A,0x6A, 0x68,0x2C, 0x69,0xEE
+ data1 0x62,0xB0, 0x63,0x72, 0x61,0x34, 0x60,0xF6, 0x65,0xB8, 0x64,0x7A, 0x66,0x3C, 0x67,0xFE
+ data1 0x48,0xC0, 0x49,0x02, 0x4B,0x44, 0x4A,0x86, 0x4F,0xC8, 0x4E,0x0A, 0x4C,0x4C, 0x4D,0x8E
+ data1 0x46,0xD0, 0x47,0x12, 0x45,0x54, 0x44,0x96, 0x41,0xD8, 0x40,0x1A, 0x42,0x5C, 0x43,0x9E
+ data1 0x54,0xE0, 0x55,0x22, 0x57,0x64, 0x56,0xA6, 0x53,0xE8, 0x52,0x2A, 0x50,0x6C, 0x51,0xAE
+ data1 0x5A,0xF0, 0x5B,0x32, 0x59,0x74, 0x58,0xB6, 0x5D,0xF8, 0x5C,0x3A, 0x5E,0x7C, 0x5F,0xBE
+ data1 0xE1,0x00, 0xE0,0xC2, 0xE2,0x84, 0xE3,0x46, 0xE6,0x08, 0xE7,0xCA, 0xE5,0x8C, 0xE4,0x4E
+ data1 0xEF,0x10, 0xEE,0xD2, 0xEC,0x94, 0xED,0x56, 0xE8,0x18, 0xE9,0xDA, 0xEB,0x9C, 0xEA,0x5E
+ data1 0xFD,0x20, 0xFC,0xE2, 0xFE,0xA4, 0xFF,0x66, 0xFA,0x28, 0xFB,0xEA, 0xF9,0xAC, 0xF8,0x6E
+ data1 0xF3,0x30, 0xF2,0xF2, 0xF0,0xB4, 0xF1,0x76, 0xF4,0x38, 0xF5,0xFA, 0xF7,0xBC, 0xF6,0x7E
+ data1 0xD9,0x40, 0xD8,0x82, 0xDA,0xC4, 0xDB,0x06, 0xDE,0x48, 0xDF,0x8A, 0xDD,0xCC, 0xDC,0x0E
+ data1 0xD7,0x50, 0xD6,0x92, 0xD4,0xD4, 0xD5,0x16, 0xD0,0x58, 0xD1,0x9A, 0xD3,0xDC, 0xD2,0x1E
+ data1 0xC5,0x60, 0xC4,0xA2, 0xC6,0xE4, 0xC7,0x26, 0xC2,0x68, 0xC3,0xAA, 0xC1,0xEC, 0xC0,0x2E
+ data1 0xCB,0x70, 0xCA,0xB2, 0xC8,0xF4, 0xC9,0x36, 0xCC,0x78, 0xCD,0xBA, 0xCF,0xFC, 0xCE,0x3E
+ data1 0x91,0x80, 0x90,0x42, 0x92,0x04, 0x93,0xC6, 0x96,0x88, 0x97,0x4A, 0x95,0x0C, 0x94,0xCE
+ data1 0x9F,0x90, 0x9E,0x52, 0x9C,0x14, 0x9D,0xD6, 0x98,0x98, 0x99,0x5A, 0x9B,0x1C, 0x9A,0xDE
+ data1 0x8D,0xA0, 0x8C,0x62, 0x8E,0x24, 0x8F,0xE6, 0x8A,0xA8, 0x8B,0x6A, 0x89,0x2C, 0x88,0xEE
+ data1 0x83,0xB0, 0x82,0x72, 0x80,0x34, 0x81,0xF6, 0x84,0xB8, 0x85,0x7A, 0x87,0x3C, 0x86,0xFE
+ data1 0xA9,0xC0, 0xA8,0x02, 0xAA,0x44, 0xAB,0x86, 0xAE,0xC8, 0xAF,0x0A, 0xAD,0x4C, 0xAC,0x8E
+ data1 0xA7,0xD0, 0xA6,0x12, 0xA4,0x54, 0xA5,0x96, 0xA0,0xD8, 0xA1,0x1A, 0xA3,0x5C, 0xA2,0x9E
+ data1 0xB5,0xE0, 0xB4,0x22, 0xB6,0x64, 0xB7,0xA6, 0xB2,0xE8, 0xB3,0x2A, 0xB1,0x6C, 0xB0,0xAE
+ data1 0xBB,0xF0, 0xBA,0x32, 0xB8,0x74, 0xB9,0xB6, 0xBC,0xF8, 0xBD,0x3A, 0xBF,0x7C, 0xBE,0xBE
+.size rem_8bit#,512
+stringz "GHASH for IA64, CRYPTOGAMS by <appro\@openssl.org>"
+___
+
+$code =~ s/mux1(\s+)\S+\@rev/nop.i$1 0x0/gm if ($big_endian);
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+
+print $code;
+close STDOUT;
diff --git a/openssl/crypto/modes/asm/ghash-parisc.pl b/openssl/crypto/modes/asm/ghash-parisc.pl
new file mode 100644
index 000000000..8c7454ee9
--- /dev/null
+++ b/openssl/crypto/modes/asm/ghash-parisc.pl
@@ -0,0 +1,730 @@
+#!/usr/bin/env perl
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# April 2010
+#
+# The module implements "4-bit" GCM GHASH function and underlying
+# single multiplication operation in GF(2^128). "4-bit" means that it
+# uses 256 bytes per-key table [+128 bytes shared table]. On PA-7100LC
+# it processes one byte in 19.6 cycles, which is more than twice as
+# fast as code generated by gcc 3.2. PA-RISC 2.0 loop is scheduled for
+# 8 cycles, but measured performance on PA-8600 system is ~9 cycles per
+# processed byte. This is ~2.2x faster than 64-bit code generated by
+# vendor compiler (which used to be very hard to beat:-).
+#
+# Special thanks to polarhome.com for providing HP-UX account.
+
+$flavour = shift;
+$output = shift;
+open STDOUT,">$output";
+
+if ($flavour =~ /64/) {
+ $LEVEL ="2.0W";
+ $SIZE_T =8;
+ $FRAME_MARKER =80;
+ $SAVED_RP =16;
+ $PUSH ="std";
+ $PUSHMA ="std,ma";
+ $POP ="ldd";
+ $POPMB ="ldd,mb";
+ $NREGS =6;
+} else {
+ $LEVEL ="1.0"; #"\n\t.ALLOW\t2.0";
+ $SIZE_T =4;
+ $FRAME_MARKER =48;
+ $SAVED_RP =20;
+ $PUSH ="stw";
+ $PUSHMA ="stwm";
+ $POP ="ldw";
+ $POPMB ="ldwm";
+ $NREGS =11;
+}
+
+$FRAME=10*$SIZE_T+$FRAME_MARKER;# NREGS saved regs + frame marker
+ # [+ argument transfer]
+
+################# volatile registers
+$Xi="%r26"; # argument block
+$Htbl="%r25";
+$inp="%r24";
+$len="%r23";
+$Hhh=$Htbl; # variables
+$Hll="%r22";
+$Zhh="%r21";
+$Zll="%r20";
+$cnt="%r19";
+$rem_4bit="%r28";
+$rem="%r29";
+$mask0xf0="%r31";
+
+################# preserved registers
+$Thh="%r1";
+$Tll="%r2";
+$nlo="%r3";
+$nhi="%r4";
+$byte="%r5";
+if ($SIZE_T==4) {
+ $Zhl="%r6";
+ $Zlh="%r7";
+ $Hhl="%r8";
+ $Hlh="%r9";
+ $Thl="%r10";
+ $Tlh="%r11";
+}
+$rem2="%r6"; # used in PA-RISC 2.0 code
+
+$code.=<<___;
+ .LEVEL $LEVEL
+ .SPACE \$TEXT\$
+ .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY
+
+ .EXPORT gcm_gmult_4bit,ENTRY,ARGW0=GR,ARGW1=GR
+ .ALIGN 64
+gcm_gmult_4bit
+ .PROC
+ .CALLINFO FRAME=`$FRAME-10*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=$NREGS
+ .ENTRY
+ $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue
+ $PUSHMA %r3,$FRAME(%sp)
+ $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp)
+ $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp)
+ $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp)
+___
+$code.=<<___ if ($SIZE_T==4);
+ $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp)
+ $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp)
+ $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp)
+ $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp)
+ $PUSH %r11,`-$FRAME+8*$SIZE_T`(%sp)
+___
+$code.=<<___;
+ blr %r0,$rem_4bit
+ ldi 3,$rem
+L\$pic_gmult
+ andcm $rem_4bit,$rem,$rem_4bit
+ addl $inp,$len,$len
+ ldo L\$rem_4bit-L\$pic_gmult($rem_4bit),$rem_4bit
+ ldi 0xf0,$mask0xf0
+___
+$code.=<<___ if ($SIZE_T==4);
+ ldi 31,$rem
+ mtctl $rem,%cr11
+ extrd,u,*= $rem,%sar,1,$rem ; executes on PA-RISC 1.0
+ b L\$parisc1_gmult
+ nop
+___
+
+$code.=<<___;
+ ldb 15($Xi),$nlo
+ ldo 8($Htbl),$Hll
+
+ and $mask0xf0,$nlo,$nhi
+ depd,z $nlo,59,4,$nlo
+
+ ldd $nlo($Hll),$Zll
+ ldd $nlo($Hhh),$Zhh
+
+ depd,z $Zll,60,4,$rem
+ shrpd $Zhh,$Zll,4,$Zll
+ extrd,u $Zhh,59,60,$Zhh
+ ldb 14($Xi),$nlo
+
+ ldd $nhi($Hll),$Tll
+ ldd $nhi($Hhh),$Thh
+ and $mask0xf0,$nlo,$nhi
+ depd,z $nlo,59,4,$nlo
+
+ xor $Tll,$Zll,$Zll
+ xor $Thh,$Zhh,$Zhh
+ ldd $rem($rem_4bit),$rem
+ b L\$oop_gmult_pa2
+ ldi 13,$cnt
+
+ .ALIGN 8
+L\$oop_gmult_pa2
+ xor $rem,$Zhh,$Zhh ; moved here to work around gas bug
+ depd,z $Zll,60,4,$rem
+
+ shrpd $Zhh,$Zll,4,$Zll
+ extrd,u $Zhh,59,60,$Zhh
+ ldd $nlo($Hll),$Tll
+ ldd $nlo($Hhh),$Thh
+
+ xor $Tll,$Zll,$Zll
+ xor $Thh,$Zhh,$Zhh
+ ldd $rem($rem_4bit),$rem
+
+ xor $rem,$Zhh,$Zhh
+ depd,z $Zll,60,4,$rem
+ ldbx $cnt($Xi),$nlo
+
+ shrpd $Zhh,$Zll,4,$Zll
+ extrd,u $Zhh,59,60,$Zhh
+ ldd $nhi($Hll),$Tll
+ ldd $nhi($Hhh),$Thh
+
+ and $mask0xf0,$nlo,$nhi
+ depd,z $nlo,59,4,$nlo
+ ldd $rem($rem_4bit),$rem
+
+ xor $Tll,$Zll,$Zll
+ addib,uv -1,$cnt,L\$oop_gmult_pa2
+ xor $Thh,$Zhh,$Zhh
+
+ xor $rem,$Zhh,$Zhh
+ depd,z $Zll,60,4,$rem
+
+ shrpd $Zhh,$Zll,4,$Zll
+ extrd,u $Zhh,59,60,$Zhh
+ ldd $nlo($Hll),$Tll
+ ldd $nlo($Hhh),$Thh
+
+ xor $Tll,$Zll,$Zll
+ xor $Thh,$Zhh,$Zhh
+ ldd $rem($rem_4bit),$rem
+
+ xor $rem,$Zhh,$Zhh
+ depd,z $Zll,60,4,$rem
+
+ shrpd $Zhh,$Zll,4,$Zll
+ extrd,u $Zhh,59,60,$Zhh
+ ldd $nhi($Hll),$Tll
+ ldd $nhi($Hhh),$Thh
+
+ xor $Tll,$Zll,$Zll
+ xor $Thh,$Zhh,$Zhh
+ ldd $rem($rem_4bit),$rem
+
+ xor $rem,$Zhh,$Zhh
+ std $Zll,8($Xi)
+ std $Zhh,0($Xi)
+___
+
+$code.=<<___ if ($SIZE_T==4);
+ b L\$done_gmult
+ nop
+
+L\$parisc1_gmult
+ ldb 15($Xi),$nlo
+ ldo 12($Htbl),$Hll
+ ldo 8($Htbl),$Hlh
+ ldo 4($Htbl),$Hhl
+
+ and $mask0xf0,$nlo,$nhi
+ zdep $nlo,27,4,$nlo
+
+ ldwx $nlo($Hll),$Zll
+ ldwx $nlo($Hlh),$Zlh
+ ldwx $nlo($Hhl),$Zhl
+ ldwx $nlo($Hhh),$Zhh
+ zdep $Zll,28,4,$rem
+ ldb 14($Xi),$nlo
+ ldwx $rem($rem_4bit),$rem
+ shrpw $Zlh,$Zll,4,$Zll
+ ldwx $nhi($Hll),$Tll
+ shrpw $Zhl,$Zlh,4,$Zlh
+ ldwx $nhi($Hlh),$Tlh
+ shrpw $Zhh,$Zhl,4,$Zhl
+ ldwx $nhi($Hhl),$Thl
+ extru $Zhh,27,28,$Zhh
+ ldwx $nhi($Hhh),$Thh
+ xor $rem,$Zhh,$Zhh
+ and $mask0xf0,$nlo,$nhi
+ zdep $nlo,27,4,$nlo
+
+ xor $Tll,$Zll,$Zll
+ ldwx $nlo($Hll),$Tll
+ xor $Tlh,$Zlh,$Zlh
+ ldwx $nlo($Hlh),$Tlh
+ xor $Thl,$Zhl,$Zhl
+ b L\$oop_gmult_pa1
+ ldi 13,$cnt
+
+ .ALIGN 8
+L\$oop_gmult_pa1
+ zdep $Zll,28,4,$rem
+ ldwx $nlo($Hhl),$Thl
+ xor $Thh,$Zhh,$Zhh
+ ldwx $rem($rem_4bit),$rem
+ shrpw $Zlh,$Zll,4,$Zll
+ ldwx $nlo($Hhh),$Thh
+ shrpw $Zhl,$Zlh,4,$Zlh
+ ldbx $cnt($Xi),$nlo
+ xor $Tll,$Zll,$Zll
+ ldwx $nhi($Hll),$Tll
+ shrpw $Zhh,$Zhl,4,$Zhl
+ xor $Tlh,$Zlh,$Zlh
+ ldwx $nhi($Hlh),$Tlh
+ extru $Zhh,27,28,$Zhh
+ xor $Thl,$Zhl,$Zhl
+ ldwx $nhi($Hhl),$Thl
+ xor $rem,$Zhh,$Zhh
+ zdep $Zll,28,4,$rem
+ xor $Thh,$Zhh,$Zhh
+ ldwx $nhi($Hhh),$Thh
+ shrpw $Zlh,$Zll,4,$Zll
+ ldwx $rem($rem_4bit),$rem
+ shrpw $Zhl,$Zlh,4,$Zlh
+ shrpw $Zhh,$Zhl,4,$Zhl
+ and $mask0xf0,$nlo,$nhi
+ extru $Zhh,27,28,$Zhh
+ zdep $nlo,27,4,$nlo
+ xor $Tll,$Zll,$Zll
+ ldwx $nlo($Hll),$Tll
+ xor $Tlh,$Zlh,$Zlh
+ ldwx $nlo($Hlh),$Tlh
+ xor $rem,$Zhh,$Zhh
+ addib,uv -1,$cnt,L\$oop_gmult_pa1
+ xor $Thl,$Zhl,$Zhl
+
+ zdep $Zll,28,4,$rem
+ ldwx $nlo($Hhl),$Thl
+ xor $Thh,$Zhh,$Zhh
+ ldwx $rem($rem_4bit),$rem
+ shrpw $Zlh,$Zll,4,$Zll
+ ldwx $nlo($Hhh),$Thh
+ shrpw $Zhl,$Zlh,4,$Zlh
+ xor $Tll,$Zll,$Zll
+ ldwx $nhi($Hll),$Tll
+ shrpw $Zhh,$Zhl,4,$Zhl
+ xor $Tlh,$Zlh,$Zlh
+ ldwx $nhi($Hlh),$Tlh
+ extru $Zhh,27,28,$Zhh
+ xor $rem,$Zhh,$Zhh
+ xor $Thl,$Zhl,$Zhl
+ ldwx $nhi($Hhl),$Thl
+ xor $Thh,$Zhh,$Zhh
+ ldwx $nhi($Hhh),$Thh
+ zdep $Zll,28,4,$rem
+ ldwx $rem($rem_4bit),$rem
+ shrpw $Zlh,$Zll,4,$Zll
+ shrpw $Zhl,$Zlh,4,$Zlh
+ shrpw $Zhh,$Zhl,4,$Zhl
+ extru $Zhh,27,28,$Zhh
+ xor $Tll,$Zll,$Zll
+ xor $Tlh,$Zlh,$Zlh
+ xor $rem,$Zhh,$Zhh
+ stw $Zll,12($Xi)
+ xor $Thl,$Zhl,$Zhl
+ stw $Zlh,8($Xi)
+ xor $Thh,$Zhh,$Zhh
+ stw $Zhl,4($Xi)
+ stw $Zhh,0($Xi)
+___
+$code.=<<___;
+L\$done_gmult
+ $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue
+ $POP `-$FRAME+1*$SIZE_T`(%sp),%r4
+ $POP `-$FRAME+2*$SIZE_T`(%sp),%r5
+ $POP `-$FRAME+3*$SIZE_T`(%sp),%r6
+___
+$code.=<<___ if ($SIZE_T==4);
+ $POP `-$FRAME+4*$SIZE_T`(%sp),%r7
+ $POP `-$FRAME+5*$SIZE_T`(%sp),%r8
+ $POP `-$FRAME+6*$SIZE_T`(%sp),%r9
+ $POP `-$FRAME+7*$SIZE_T`(%sp),%r10
+ $POP `-$FRAME+8*$SIZE_T`(%sp),%r11
+___
+$code.=<<___;
+ bv (%r2)
+ .EXIT
+ $POPMB -$FRAME(%sp),%r3
+ .PROCEND
+
+ .EXPORT gcm_ghash_4bit,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR
+ .ALIGN 64
+gcm_ghash_4bit
+ .PROC
+ .CALLINFO FRAME=`$FRAME-10*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=11
+ .ENTRY
+ $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue
+ $PUSHMA %r3,$FRAME(%sp)
+ $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp)
+ $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp)
+ $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp)
+___
+$code.=<<___ if ($SIZE_T==4);
+ $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp)
+ $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp)
+ $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp)
+ $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp)
+ $PUSH %r11,`-$FRAME+8*$SIZE_T`(%sp)
+___
+$code.=<<___;
+ blr %r0,$rem_4bit
+ ldi 3,$rem
+L\$pic_ghash
+ andcm $rem_4bit,$rem,$rem_4bit
+ addl $inp,$len,$len
+ ldo L\$rem_4bit-L\$pic_ghash($rem_4bit),$rem_4bit
+ ldi 0xf0,$mask0xf0
+___
+$code.=<<___ if ($SIZE_T==4);
+ ldi 31,$rem
+ mtctl $rem,%cr11
+ extrd,u,*= $rem,%sar,1,$rem ; executes on PA-RISC 1.0
+ b L\$parisc1_ghash
+ nop
+___
+
+$code.=<<___;
+ ldb 15($Xi),$nlo
+ ldo 8($Htbl),$Hll
+
+L\$outer_ghash_pa2
+ ldb 15($inp),$nhi
+ xor $nhi,$nlo,$nlo
+ and $mask0xf0,$nlo,$nhi
+ depd,z $nlo,59,4,$nlo
+
+ ldd $nlo($Hll),$Zll
+ ldd $nlo($Hhh),$Zhh
+
+ depd,z $Zll,60,4,$rem
+ shrpd $Zhh,$Zll,4,$Zll
+ extrd,u $Zhh,59,60,$Zhh
+ ldb 14($Xi),$nlo
+ ldb 14($inp),$byte
+
+ ldd $nhi($Hll),$Tll
+ ldd $nhi($Hhh),$Thh
+ xor $byte,$nlo,$nlo
+ and $mask0xf0,$nlo,$nhi
+ depd,z $nlo,59,4,$nlo
+
+ xor $Tll,$Zll,$Zll
+ xor $Thh,$Zhh,$Zhh
+ ldd $rem($rem_4bit),$rem
+ b L\$oop_ghash_pa2
+ ldi 13,$cnt
+
+ .ALIGN 8
+L\$oop_ghash_pa2
+ xor $rem,$Zhh,$Zhh ; moved here to work around gas bug
+ depd,z $Zll,60,4,$rem2
+
+ shrpd $Zhh,$Zll,4,$Zll
+ extrd,u $Zhh,59,60,$Zhh
+ ldd $nlo($Hll),$Tll
+ ldd $nlo($Hhh),$Thh
+
+ xor $Tll,$Zll,$Zll
+ xor $Thh,$Zhh,$Zhh
+ ldbx $cnt($Xi),$nlo
+ ldbx $cnt($inp),$byte
+
+ depd,z $Zll,60,4,$rem
+ shrpd $Zhh,$Zll,4,$Zll
+ ldd $rem2($rem_4bit),$rem2
+
+ xor $rem2,$Zhh,$Zhh
+ xor $byte,$nlo,$nlo
+ ldd $nhi($Hll),$Tll
+ ldd $nhi($Hhh),$Thh
+
+ and $mask0xf0,$nlo,$nhi
+ depd,z $nlo,59,4,$nlo
+
+ extrd,u $Zhh,59,60,$Zhh
+ xor $Tll,$Zll,$Zll
+
+ ldd $rem($rem_4bit),$rem
+ addib,uv -1,$cnt,L\$oop_ghash_pa2
+ xor $Thh,$Zhh,$Zhh
+
+ xor $rem,$Zhh,$Zhh
+ depd,z $Zll,60,4,$rem2
+
+ shrpd $Zhh,$Zll,4,$Zll
+ extrd,u $Zhh,59,60,$Zhh
+ ldd $nlo($Hll),$Tll
+ ldd $nlo($Hhh),$Thh
+
+ xor $Tll,$Zll,$Zll
+ xor $Thh,$Zhh,$Zhh
+
+ depd,z $Zll,60,4,$rem
+ shrpd $Zhh,$Zll,4,$Zll
+ ldd $rem2($rem_4bit),$rem2
+
+ xor $rem2,$Zhh,$Zhh
+ ldd $nhi($Hll),$Tll
+ ldd $nhi($Hhh),$Thh
+
+ extrd,u $Zhh,59,60,$Zhh
+ xor $Tll,$Zll,$Zll
+ xor $Thh,$Zhh,$Zhh
+ ldd $rem($rem_4bit),$rem
+
+ xor $rem,$Zhh,$Zhh
+ std $Zll,8($Xi)
+ ldo 16($inp),$inp
+ std $Zhh,0($Xi)
+ cmpb,*<> $inp,$len,L\$outer_ghash_pa2
+ copy $Zll,$nlo
+___
+
+$code.=<<___ if ($SIZE_T==4);
+ b L\$done_ghash
+ nop
+
+L\$parisc1_ghash
+ ldb 15($Xi),$nlo
+ ldo 12($Htbl),$Hll
+ ldo 8($Htbl),$Hlh
+ ldo 4($Htbl),$Hhl
+
+L\$outer_ghash_pa1
+ ldb 15($inp),$byte
+ xor $byte,$nlo,$nlo
+ and $mask0xf0,$nlo,$nhi
+ zdep $nlo,27,4,$nlo
+
+ ldwx $nlo($Hll),$Zll
+ ldwx $nlo($Hlh),$Zlh
+ ldwx $nlo($Hhl),$Zhl
+ ldwx $nlo($Hhh),$Zhh
+ zdep $Zll,28,4,$rem
+ ldb 14($Xi),$nlo
+ ldb 14($inp),$byte
+ ldwx $rem($rem_4bit),$rem
+ shrpw $Zlh,$Zll,4,$Zll
+ ldwx $nhi($Hll),$Tll
+ shrpw $Zhl,$Zlh,4,$Zlh
+ ldwx $nhi($Hlh),$Tlh
+ shrpw $Zhh,$Zhl,4,$Zhl
+ ldwx $nhi($Hhl),$Thl
+ extru $Zhh,27,28,$Zhh
+ ldwx $nhi($Hhh),$Thh
+ xor $byte,$nlo,$nlo
+ xor $rem,$Zhh,$Zhh
+ and $mask0xf0,$nlo,$nhi
+ zdep $nlo,27,4,$nlo
+
+ xor $Tll,$Zll,$Zll
+ ldwx $nlo($Hll),$Tll
+ xor $Tlh,$Zlh,$Zlh
+ ldwx $nlo($Hlh),$Tlh
+ xor $Thl,$Zhl,$Zhl
+ b L\$oop_ghash_pa1
+ ldi 13,$cnt
+
+ .ALIGN 8
+L\$oop_ghash_pa1
+ zdep $Zll,28,4,$rem
+ ldwx $nlo($Hhl),$Thl
+ xor $Thh,$Zhh,$Zhh
+ ldwx $rem($rem_4bit),$rem
+ shrpw $Zlh,$Zll,4,$Zll
+ ldwx $nlo($Hhh),$Thh
+ shrpw $Zhl,$Zlh,4,$Zlh
+ ldbx $cnt($Xi),$nlo
+ xor $Tll,$Zll,$Zll
+ ldwx $nhi($Hll),$Tll
+ shrpw $Zhh,$Zhl,4,$Zhl
+ ldbx $cnt($inp),$byte
+ xor $Tlh,$Zlh,$Zlh
+ ldwx $nhi($Hlh),$Tlh
+ extru $Zhh,27,28,$Zhh
+ xor $Thl,$Zhl,$Zhl
+ ldwx $nhi($Hhl),$Thl
+ xor $rem,$Zhh,$Zhh
+ zdep $Zll,28,4,$rem
+ xor $Thh,$Zhh,$Zhh
+ ldwx $nhi($Hhh),$Thh
+ shrpw $Zlh,$Zll,4,$Zll
+ ldwx $rem($rem_4bit),$rem
+ shrpw $Zhl,$Zlh,4,$Zlh
+ xor $byte,$nlo,$nlo
+ shrpw $Zhh,$Zhl,4,$Zhl
+ and $mask0xf0,$nlo,$nhi
+ extru $Zhh,27,28,$Zhh
+ zdep $nlo,27,4,$nlo
+ xor $Tll,$Zll,$Zll
+ ldwx $nlo($Hll),$Tll
+ xor $Tlh,$Zlh,$Zlh
+ ldwx $nlo($Hlh),$Tlh
+ xor $rem,$Zhh,$Zhh
+ addib,uv -1,$cnt,L\$oop_ghash_pa1
+ xor $Thl,$Zhl,$Zhl
+
+ zdep $Zll,28,4,$rem
+ ldwx $nlo($Hhl),$Thl
+ xor $Thh,$Zhh,$Zhh
+ ldwx $rem($rem_4bit),$rem
+ shrpw $Zlh,$Zll,4,$Zll
+ ldwx $nlo($Hhh),$Thh
+ shrpw $Zhl,$Zlh,4,$Zlh
+ xor $Tll,$Zll,$Zll
+ ldwx $nhi($Hll),$Tll
+ shrpw $Zhh,$Zhl,4,$Zhl
+ xor $Tlh,$Zlh,$Zlh
+ ldwx $nhi($Hlh),$Tlh
+ extru $Zhh,27,28,$Zhh
+ xor $rem,$Zhh,$Zhh
+ xor $Thl,$Zhl,$Zhl
+ ldwx $nhi($Hhl),$Thl
+ xor $Thh,$Zhh,$Zhh
+ ldwx $nhi($Hhh),$Thh
+ zdep $Zll,28,4,$rem
+ ldwx $rem($rem_4bit),$rem
+ shrpw $Zlh,$Zll,4,$Zll
+ shrpw $Zhl,$Zlh,4,$Zlh
+ shrpw $Zhh,$Zhl,4,$Zhl
+ extru $Zhh,27,28,$Zhh
+ xor $Tll,$Zll,$Zll
+ xor $Tlh,$Zlh,$Zlh
+ xor $rem,$Zhh,$Zhh
+ stw $Zll,12($Xi)
+ xor $Thl,$Zhl,$Zhl
+ stw $Zlh,8($Xi)
+ xor $Thh,$Zhh,$Zhh
+ stw $Zhl,4($Xi)
+ ldo 16($inp),$inp
+ stw $Zhh,0($Xi)
+ comb,<> $inp,$len,L\$outer_ghash_pa1
+ copy $Zll,$nlo
+___
+$code.=<<___;
+L\$done_ghash
+ $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue
+ $POP `-$FRAME+1*$SIZE_T`(%sp),%r4
+ $POP `-$FRAME+2*$SIZE_T`(%sp),%r5
+ $POP `-$FRAME+3*$SIZE_T`(%sp),%r6
+___
+$code.=<<___ if ($SIZE_T==4);
+ $POP `-$FRAME+4*$SIZE_T`(%sp),%r7
+ $POP `-$FRAME+5*$SIZE_T`(%sp),%r8
+ $POP `-$FRAME+6*$SIZE_T`(%sp),%r9
+ $POP `-$FRAME+7*$SIZE_T`(%sp),%r10
+ $POP `-$FRAME+8*$SIZE_T`(%sp),%r11
+___
+$code.=<<___;
+ bv (%r2)
+ .EXIT
+ $POPMB -$FRAME(%sp),%r3
+ .PROCEND
+
+ .ALIGN 64
+L\$rem_4bit
+ .WORD `0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0
+ .WORD `0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0
+ .WORD `0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0
+ .WORD `0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0
+ .STRINGZ "GHASH for PA-RISC, GRYPTOGAMS by <appro\@openssl.org>"
+ .ALIGN 64
+___
+
+# Explicitly encode PA-RISC 2.0 instructions used in this module, so
+# that it can be compiled with .LEVEL 1.0. It should be noted that I
+# wouldn't have to do this, if GNU assembler understood .ALLOW 2.0
+# directive...
+
+my $ldd = sub {
+ my ($mod,$args) = @_;
+ my $orig = "ldd$mod\t$args";
+
+ if ($args =~ /%r([0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 4
+ { my $opcode=(0x03<<26)|($2<<21)|($1<<16)|(3<<6)|$3;
+ sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
+ }
+ elsif ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 5
+ { my $opcode=(0x03<<26)|($2<<21)|(1<<12)|(3<<6)|$3;
+ $opcode|=(($1&0xF)<<17)|(($1&0x10)<<12); # encode offset
+ $opcode|=(1<<5) if ($mod =~ /^,m/);
+ $opcode|=(1<<13) if ($mod =~ /^,mb/);
+ sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
+ }
+ else { "\t".$orig; }
+};
+
+my $std = sub {
+ my ($mod,$args) = @_;
+ my $orig = "std$mod\t$args";
+
+ if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/) # format 3 suffices
+ { my $opcode=(0x1c<<26)|($3<<21)|($1<<16)|(($2&0x1FF8)<<1)|(($2>>13)&1);
+ sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
+ }
+ else { "\t".$orig; }
+};
+
+my $extrd = sub {
+ my ($mod,$args) = @_;
+ my $orig = "extrd$mod\t$args";
+
+ # I only have ",u" completer, it's implicitly encoded...
+ if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 15
+ { my $opcode=(0x36<<26)|($1<<21)|($4<<16);
+ my $len=32-$3;
+ $opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5); # encode pos
+ $opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len
+ sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
+ }
+ elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/) # format 12
+ { my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9);
+ my $len=32-$2;
+ $opcode |= (($len&0x20)<<3)|($len&0x1f); # encode len
+ $opcode |= (1<<13) if ($mod =~ /,\**=/);
+ sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
+ }
+ else { "\t".$orig; }
+};
+
+my $shrpd = sub {
+ my ($mod,$args) = @_;
+ my $orig = "shrpd$mod\t$args";
+
+ if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/) # format 14
+ { my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4;
+ my $cpos=63-$3;
+ $opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode sa
+ sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
+ }
+ elsif ($args =~ /%r([0-9]+),%r([0-9]+),%sar,%r([0-9]+)/) # format 11
+ { sprintf "\t.WORD\t0x%08x\t; %s",
+ (0x34<<26)|($2<<21)|($1<<16)|(1<<9)|$3,$orig;
+ }
+ else { "\t".$orig; }
+};
+
+my $depd = sub {
+ my ($mod,$args) = @_;
+ my $orig = "depd$mod\t$args";
+
+ # I only have ",z" completer, it's impicitly encoded...
+ if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 16
+ { my $opcode=(0x3c<<26)|($4<<21)|($1<<16);
+ my $cpos=63-$2;
+ my $len=32-$3;
+ $opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode pos
+ $opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len
+ sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
+ }
+ else { "\t".$orig; }
+};
+
+sub assemble {
+ my ($mnemonic,$mod,$args)=@_;
+ my $opcode = eval("\$$mnemonic");
+
+ ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args";
+}
+
+foreach (split("\n",$code)) {
+ s/\`([^\`]*)\`/eval $1/ge;
+ if ($SIZE_T==4) {
+ s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e;
+ s/cmpb,\*/comb,/;
+ s/,\*/,/;
+ }
+ print $_,"\n";
+}
+
+close STDOUT;
diff --git a/openssl/crypto/modes/asm/ghash-s390x.pl b/openssl/crypto/modes/asm/ghash-s390x.pl
new file mode 100644
index 000000000..48cb08d33
--- /dev/null
+++ b/openssl/crypto/modes/asm/ghash-s390x.pl
@@ -0,0 +1,262 @@
+#!/usr/bin/env perl
+
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+
+# September 2010.
+#
+# The module implements "4-bit" GCM GHASH function and underlying
+# single multiplication operation in GF(2^128). "4-bit" means that it
+# uses 256 bytes per-key table [+128 bytes shared table]. Performance
+# was measured to be ~18 cycles per processed byte on z10, which is
+# almost 40% better than gcc-generated code. It should be noted that
+# 18 cycles is worse result than expected: loop is scheduled for 12
+# and the result should be close to 12. In the lack of instruction-
+# level profiling data it's impossible to tell why...
+
+# November 2010.
+#
+# Adapt for -m31 build. If kernel supports what's called "highgprs"
+# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
+# instructions and achieve "64-bit" performance even in 31-bit legacy
+# application context. The feature is not specific to any particular
+# processor, as long as it's "z-CPU". Latter implies that the code
+# remains z/Architecture specific. On z990 it was measured to perform
+# 2.8x better than 32-bit code generated by gcc 4.3.
+
+# March 2011.
+#
+# Support for hardware KIMD-GHASH is verified to produce correct
+# result and therefore is engaged. On z196 it was measured to process
+# 8KB buffer ~7 faster than software implementation. It's not as
+# impressive for smaller buffer sizes and for smallest 16-bytes buffer
+# it's actually almost 2 times slower. Which is the reason why
+# KIMD-GHASH is not used in gcm_gmult_4bit.
+
+$flavour = shift;
+
+if ($flavour =~ /3[12]/) {
+ $SIZE_T=4;
+ $g="";
+} else {
+ $SIZE_T=8;
+ $g="g";
+}
+
+while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
+open STDOUT,">$output";
+
+$softonly=0;
+
+$Zhi="%r0";
+$Zlo="%r1";
+
+$Xi="%r2"; # argument block
+$Htbl="%r3";
+$inp="%r4";
+$len="%r5";
+
+$rem0="%r6"; # variables
+$rem1="%r7";
+$nlo="%r8";
+$nhi="%r9";
+$xi="%r10";
+$cnt="%r11";
+$tmp="%r12";
+$x78="%r13";
+$rem_4bit="%r14";
+
+$sp="%r15";
+
+$code.=<<___;
+.text
+
+.globl gcm_gmult_4bit
+.align 32
+gcm_gmult_4bit:
+___
+$code.=<<___ if(!$softonly && 0); # hardware is slow for single block...
+ larl %r1,OPENSSL_s390xcap_P
+ lg %r0,0(%r1)
+ tmhl %r0,0x4000 # check for message-security-assist
+ jz .Lsoft_gmult
+ lghi %r0,0
+ la %r1,16($sp)
+ .long 0xb93e0004 # kimd %r0,%r4
+ lg %r1,24($sp)
+ tmhh %r1,0x4000 # check for function 65
+ jz .Lsoft_gmult
+ stg %r0,16($sp) # arrange 16 bytes of zero input
+ stg %r0,24($sp)
+ lghi %r0,65 # function 65
+ la %r1,0($Xi) # H lies right after Xi in gcm128_context
+ la $inp,16($sp)
+ lghi $len,16
+ .long 0xb93e0004 # kimd %r0,$inp
+ brc 1,.-4 # pay attention to "partial completion"
+ br %r14
+.align 32
+.Lsoft_gmult:
+___
+$code.=<<___;
+ stm${g} %r6,%r14,6*$SIZE_T($sp)
+
+ aghi $Xi,-1
+ lghi $len,1
+ lghi $x78,`0xf<<3`
+ larl $rem_4bit,rem_4bit
+
+ lg $Zlo,8+1($Xi) # Xi
+ j .Lgmult_shortcut
+.type gcm_gmult_4bit,\@function
+.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
+
+.globl gcm_ghash_4bit
+.align 32
+gcm_ghash_4bit:
+___
+$code.=<<___ if(!$softonly);
+ larl %r1,OPENSSL_s390xcap_P
+ lg %r0,0(%r1)
+ tmhl %r0,0x4000 # check for message-security-assist
+ jz .Lsoft_ghash
+ lghi %r0,0
+ la %r1,16($sp)
+ .long 0xb93e0004 # kimd %r0,%r4
+ lg %r1,24($sp)
+ tmhh %r1,0x4000 # check for function 65
+ jz .Lsoft_ghash
+ lghi %r0,65 # function 65
+ la %r1,0($Xi) # H lies right after Xi in gcm128_context
+ .long 0xb93e0004 # kimd %r0,$inp
+ brc 1,.-4 # pay attention to "partial completion"
+ br %r14
+.align 32
+.Lsoft_ghash:
+___
+$cdoe.=<<___ if ($flavour =~ /3[12]/);
+ llgfr $len,$len
+___
+$code.=<<___;
+ stm${g} %r6,%r14,6*$SIZE_T($sp)
+
+ aghi $Xi,-1
+ srlg $len,$len,4
+ lghi $x78,`0xf<<3`
+ larl $rem_4bit,rem_4bit
+
+ lg $Zlo,8+1($Xi) # Xi
+ lg $Zhi,0+1($Xi)
+ lghi $tmp,0
+.Louter:
+ xg $Zhi,0($inp) # Xi ^= inp
+ xg $Zlo,8($inp)
+ xgr $Zhi,$tmp
+ stg $Zlo,8+1($Xi)
+ stg $Zhi,0+1($Xi)
+
+.Lgmult_shortcut:
+ lghi $tmp,0xf0
+ sllg $nlo,$Zlo,4
+ srlg $xi,$Zlo,8 # extract second byte
+ ngr $nlo,$tmp
+ lgr $nhi,$Zlo
+ lghi $cnt,14
+ ngr $nhi,$tmp
+
+ lg $Zlo,8($nlo,$Htbl)
+ lg $Zhi,0($nlo,$Htbl)
+
+ sllg $nlo,$xi,4
+ sllg $rem0,$Zlo,3
+ ngr $nlo,$tmp
+ ngr $rem0,$x78
+ ngr $xi,$tmp
+
+ sllg $tmp,$Zhi,60
+ srlg $Zlo,$Zlo,4
+ srlg $Zhi,$Zhi,4
+ xg $Zlo,8($nhi,$Htbl)
+ xg $Zhi,0($nhi,$Htbl)
+ lgr $nhi,$xi
+ sllg $rem1,$Zlo,3
+ xgr $Zlo,$tmp
+ ngr $rem1,$x78
+ j .Lghash_inner
+.align 16
+.Lghash_inner:
+ srlg $Zlo,$Zlo,4
+ sllg $tmp,$Zhi,60
+ xg $Zlo,8($nlo,$Htbl)
+ srlg $Zhi,$Zhi,4
+ llgc $xi,0($cnt,$Xi)
+ xg $Zhi,0($nlo,$Htbl)
+ sllg $nlo,$xi,4
+ xg $Zhi,0($rem0,$rem_4bit)
+ nill $nlo,0xf0
+ sllg $rem0,$Zlo,3
+ xgr $Zlo,$tmp
+ ngr $rem0,$x78
+ nill $xi,0xf0
+
+ sllg $tmp,$Zhi,60
+ srlg $Zlo,$Zlo,4
+ srlg $Zhi,$Zhi,4
+ xg $Zlo,8($nhi,$Htbl)
+ xg $Zhi,0($nhi,$Htbl)
+ lgr $nhi,$xi
+ xg $Zhi,0($rem1,$rem_4bit)
+ sllg $rem1,$Zlo,3
+ xgr $Zlo,$tmp
+ ngr $rem1,$x78
+ brct $cnt,.Lghash_inner
+
+ sllg $tmp,$Zhi,60
+ srlg $Zlo,$Zlo,4
+ srlg $Zhi,$Zhi,4
+ xg $Zlo,8($nlo,$Htbl)
+ xg $Zhi,0($nlo,$Htbl)
+ sllg $xi,$Zlo,3
+ xg $Zhi,0($rem0,$rem_4bit)
+ xgr $Zlo,$tmp
+ ngr $xi,$x78
+
+ sllg $tmp,$Zhi,60
+ srlg $Zlo,$Zlo,4
+ srlg $Zhi,$Zhi,4
+ xg $Zlo,8($nhi,$Htbl)
+ xg $Zhi,0($nhi,$Htbl)
+ xgr $Zlo,$tmp
+ xg $Zhi,0($rem1,$rem_4bit)
+
+ lg $tmp,0($xi,$rem_4bit)
+ la $inp,16($inp)
+ sllg $tmp,$tmp,4 # correct last rem_4bit[rem]
+ brctg $len,.Louter
+
+ xgr $Zhi,$tmp
+ stg $Zlo,8+1($Xi)
+ stg $Zhi,0+1($Xi)
+ lm${g} %r6,%r14,6*$SIZE_T($sp)
+ br %r14
+.type gcm_ghash_4bit,\@function
+.size gcm_ghash_4bit,(.-gcm_ghash_4bit)
+
+.align 64
+rem_4bit:
+ .long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0
+ .long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0
+ .long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0
+ .long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0
+.type rem_4bit,\@object
+.size rem_4bit,(.-rem_4bit)
+.string "GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>"
+___
+
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+print $code;
+close STDOUT;
diff --git a/openssl/crypto/modes/asm/ghash-sparcv9.pl b/openssl/crypto/modes/asm/ghash-sparcv9.pl
new file mode 100644
index 000000000..70e7b044a
--- /dev/null
+++ b/openssl/crypto/modes/asm/ghash-sparcv9.pl
@@ -0,0 +1,330 @@
+#!/usr/bin/env perl
+
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+
+# March 2010
+#
+# The module implements "4-bit" GCM GHASH function and underlying
+# single multiplication operation in GF(2^128). "4-bit" means that it
+# uses 256 bytes per-key table [+128 bytes shared table]. Performance
+# results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU
+# and are expressed in cycles per processed byte, less is better:
+#
+# gcc 3.3.x cc 5.2 this assembler
+#
+# 32-bit build 81.4 43.3 12.6 (+546%/+244%)
+# 64-bit build 20.2 21.2 12.6 (+60%/+68%)
+#
+# Here is data collected on UltraSPARC T1 system running Linux:
+#
+# gcc 4.4.1 this assembler
+#
+# 32-bit build 566 50 (+1000%)
+# 64-bit build 56 50 (+12%)
+#
+# I don't quite understand why difference between 32-bit and 64-bit
+# compiler-generated code is so big. Compilers *were* instructed to
+# generate code for UltraSPARC and should have used 64-bit registers
+# for Z vector (see C code) even in 32-bit build... Oh well, it only
+# means more impressive improvement coefficients for this assembler
+# module;-) Loops are aggressively modulo-scheduled in respect to
+# references to input data and Z.hi updates to achieve 12 cycles
+# timing. To anchor to something else, sha1-sparcv9.pl spends 11.6
+# cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1.
+
+$bits=32;
+for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
+if ($bits==64) { $bias=2047; $frame=192; }
+else { $bias=0; $frame=112; }
+
+$output=shift;
+open STDOUT,">$output";
+
+$Zhi="%o0"; # 64-bit values
+$Zlo="%o1";
+$Thi="%o2";
+$Tlo="%o3";
+$rem="%o4";
+$tmp="%o5";
+
+$nhi="%l0"; # small values and pointers
+$nlo="%l1";
+$xi0="%l2";
+$xi1="%l3";
+$rem_4bit="%l4";
+$remi="%l5";
+$Htblo="%l6";
+$cnt="%l7";
+
+$Xi="%i0"; # input argument block
+$Htbl="%i1";
+$inp="%i2";
+$len="%i3";
+
+$code.=<<___;
+.section ".text",#alloc,#execinstr
+
+.align 64
+rem_4bit:
+ .long `0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0
+ .long `0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0
+ .long `0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0
+ .long `0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0
+.type rem_4bit,#object
+.size rem_4bit,(.-rem_4bit)
+
+.globl gcm_ghash_4bit
+.align 32
+gcm_ghash_4bit:
+ save %sp,-$frame,%sp
+ ldub [$inp+15],$nlo
+ ldub [$Xi+15],$xi0
+ ldub [$Xi+14],$xi1
+ add $len,$inp,$len
+ add $Htbl,8,$Htblo
+
+1: call .+8
+ add %o7,rem_4bit-1b,$rem_4bit
+
+.Louter:
+ xor $xi0,$nlo,$nlo
+ and $nlo,0xf0,$nhi
+ and $nlo,0x0f,$nlo
+ sll $nlo,4,$nlo
+ ldx [$Htblo+$nlo],$Zlo
+ ldx [$Htbl+$nlo],$Zhi
+
+ ldub [$inp+14],$nlo
+
+ ldx [$Htblo+$nhi],$Tlo
+ and $Zlo,0xf,$remi
+ ldx [$Htbl+$nhi],$Thi
+ sll $remi,3,$remi
+ ldx [$rem_4bit+$remi],$rem
+ srlx $Zlo,4,$Zlo
+ mov 13,$cnt
+ sllx $Zhi,60,$tmp
+ xor $Tlo,$Zlo,$Zlo
+ srlx $Zhi,4,$Zhi
+ xor $Zlo,$tmp,$Zlo
+
+ xor $xi1,$nlo,$nlo
+ and $Zlo,0xf,$remi
+ and $nlo,0xf0,$nhi
+ and $nlo,0x0f,$nlo
+ ba .Lghash_inner
+ sll $nlo,4,$nlo
+.align 32
+.Lghash_inner:
+ ldx [$Htblo+$nlo],$Tlo
+ sll $remi,3,$remi
+ xor $Thi,$Zhi,$Zhi
+ ldx [$Htbl+$nlo],$Thi
+ srlx $Zlo,4,$Zlo
+ xor $rem,$Zhi,$Zhi
+ ldx [$rem_4bit+$remi],$rem
+ sllx $Zhi,60,$tmp
+ xor $Tlo,$Zlo,$Zlo
+ ldub [$inp+$cnt],$nlo
+ srlx $Zhi,4,$Zhi
+ xor $Zlo,$tmp,$Zlo
+ ldub [$Xi+$cnt],$xi1
+ xor $Thi,$Zhi,$Zhi
+ and $Zlo,0xf,$remi
+
+ ldx [$Htblo+$nhi],$Tlo
+ sll $remi,3,$remi
+ xor $rem,$Zhi,$Zhi
+ ldx [$Htbl+$nhi],$Thi
+ srlx $Zlo,4,$Zlo
+ ldx [$rem_4bit+$remi],$rem
+ sllx $Zhi,60,$tmp
+ xor $xi1,$nlo,$nlo
+ srlx $Zhi,4,$Zhi
+ and $nlo,0xf0,$nhi
+ addcc $cnt,-1,$cnt
+ xor $Zlo,$tmp,$Zlo
+ and $nlo,0x0f,$nlo
+ xor $Tlo,$Zlo,$Zlo
+ sll $nlo,4,$nlo
+ blu .Lghash_inner
+ and $Zlo,0xf,$remi
+
+ ldx [$Htblo+$nlo],$Tlo
+ sll $remi,3,$remi
+ xor $Thi,$Zhi,$Zhi
+ ldx [$Htbl+$nlo],$Thi
+ srlx $Zlo,4,$Zlo
+ xor $rem,$Zhi,$Zhi
+ ldx [$rem_4bit+$remi],$rem
+ sllx $Zhi,60,$tmp
+ xor $Tlo,$Zlo,$Zlo
+ srlx $Zhi,4,$Zhi
+ xor $Zlo,$tmp,$Zlo
+ xor $Thi,$Zhi,$Zhi
+
+ add $inp,16,$inp
+ cmp $inp,$len
+ be,pn `$bits==64?"%xcc":"%icc"`,.Ldone
+ and $Zlo,0xf,$remi
+
+ ldx [$Htblo+$nhi],$Tlo
+ sll $remi,3,$remi
+ xor $rem,$Zhi,$Zhi
+ ldx [$Htbl+$nhi],$Thi
+ srlx $Zlo,4,$Zlo
+ ldx [$rem_4bit+$remi],$rem
+ sllx $Zhi,60,$tmp
+ xor $Tlo,$Zlo,$Zlo
+ ldub [$inp+15],$nlo
+ srlx $Zhi,4,$Zhi
+ xor $Zlo,$tmp,$Zlo
+ xor $Thi,$Zhi,$Zhi
+ stx $Zlo,[$Xi+8]
+ xor $rem,$Zhi,$Zhi
+ stx $Zhi,[$Xi]
+ srl $Zlo,8,$xi1
+ and $Zlo,0xff,$xi0
+ ba .Louter
+ and $xi1,0xff,$xi1
+.align 32
+.Ldone:
+ ldx [$Htblo+$nhi],$Tlo
+ sll $remi,3,$remi
+ xor $rem,$Zhi,$Zhi
+ ldx [$Htbl+$nhi],$Thi
+ srlx $Zlo,4,$Zlo
+ ldx [$rem_4bit+$remi],$rem
+ sllx $Zhi,60,$tmp
+ xor $Tlo,$Zlo,$Zlo
+ srlx $Zhi,4,$Zhi
+ xor $Zlo,$tmp,$Zlo
+ xor $Thi,$Zhi,$Zhi
+ stx $Zlo,[$Xi+8]
+ xor $rem,$Zhi,$Zhi
+ stx $Zhi,[$Xi]
+
+ ret
+ restore
+.type gcm_ghash_4bit,#function
+.size gcm_ghash_4bit,(.-gcm_ghash_4bit)
+___
+
+undef $inp;
+undef $len;
+
+$code.=<<___;
+.globl gcm_gmult_4bit
+.align 32
+gcm_gmult_4bit:
+ save %sp,-$frame,%sp
+ ldub [$Xi+15],$nlo
+ add $Htbl,8,$Htblo
+
+1: call .+8
+ add %o7,rem_4bit-1b,$rem_4bit
+
+ and $nlo,0xf0,$nhi
+ and $nlo,0x0f,$nlo
+ sll $nlo,4,$nlo
+ ldx [$Htblo+$nlo],$Zlo
+ ldx [$Htbl+$nlo],$Zhi
+
+ ldub [$Xi+14],$nlo
+
+ ldx [$Htblo+$nhi],$Tlo
+ and $Zlo,0xf,$remi
+ ldx [$Htbl+$nhi],$Thi
+ sll $remi,3,$remi
+ ldx [$rem_4bit+$remi],$rem
+ srlx $Zlo,4,$Zlo
+ mov 13,$cnt
+ sllx $Zhi,60,$tmp
+ xor $Tlo,$Zlo,$Zlo
+ srlx $Zhi,4,$Zhi
+ xor $Zlo,$tmp,$Zlo
+
+ and $Zlo,0xf,$remi
+ and $nlo,0xf0,$nhi
+ and $nlo,0x0f,$nlo
+ ba .Lgmult_inner
+ sll $nlo,4,$nlo
+.align 32
+.Lgmult_inner:
+ ldx [$Htblo+$nlo],$Tlo
+ sll $remi,3,$remi
+ xor $Thi,$Zhi,$Zhi
+ ldx [$Htbl+$nlo],$Thi
+ srlx $Zlo,4,$Zlo
+ xor $rem,$Zhi,$Zhi
+ ldx [$rem_4bit+$remi],$rem
+ sllx $Zhi,60,$tmp
+ xor $Tlo,$Zlo,$Zlo
+ ldub [$Xi+$cnt],$nlo
+ srlx $Zhi,4,$Zhi
+ xor $Zlo,$tmp,$Zlo
+ xor $Thi,$Zhi,$Zhi
+ and $Zlo,0xf,$remi
+
+ ldx [$Htblo+$nhi],$Tlo
+ sll $remi,3,$remi
+ xor $rem,$Zhi,$Zhi
+ ldx [$Htbl+$nhi],$Thi
+ srlx $Zlo,4,$Zlo
+ ldx [$rem_4bit+$remi],$rem
+ sllx $Zhi,60,$tmp
+ srlx $Zhi,4,$Zhi
+ and $nlo,0xf0,$nhi
+ addcc $cnt,-1,$cnt
+ xor $Zlo,$tmp,$Zlo
+ and $nlo,0x0f,$nlo
+ xor $Tlo,$Zlo,$Zlo
+ sll $nlo,4,$nlo
+ blu .Lgmult_inner
+ and $Zlo,0xf,$remi
+
+ ldx [$Htblo+$nlo],$Tlo
+ sll $remi,3,$remi
+ xor $Thi,$Zhi,$Zhi
+ ldx [$Htbl+$nlo],$Thi
+ srlx $Zlo,4,$Zlo
+ xor $rem,$Zhi,$Zhi
+ ldx [$rem_4bit+$remi],$rem
+ sllx $Zhi,60,$tmp
+ xor $Tlo,$Zlo,$Zlo
+ srlx $Zhi,4,$Zhi
+ xor $Zlo,$tmp,$Zlo
+ xor $Thi,$Zhi,$Zhi
+ and $Zlo,0xf,$remi
+
+ ldx [$Htblo+$nhi],$Tlo
+ sll $remi,3,$remi
+ xor $rem,$Zhi,$Zhi
+ ldx [$Htbl+$nhi],$Thi
+ srlx $Zlo,4,$Zlo
+ ldx [$rem_4bit+$remi],$rem
+ sllx $Zhi,60,$tmp
+ xor $Tlo,$Zlo,$Zlo
+ srlx $Zhi,4,$Zhi
+ xor $Zlo,$tmp,$Zlo
+ xor $Thi,$Zhi,$Zhi
+ stx $Zlo,[$Xi+8]
+ xor $rem,$Zhi,$Zhi
+ stx $Zhi,[$Xi]
+
+ ret
+ restore
+.type gcm_gmult_4bit,#function
+.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
+.asciz "GHASH for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
+.align 4
+___
+
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+print $code;
+close STDOUT;
diff --git a/openssl/crypto/modes/asm/ghash-x86.pl b/openssl/crypto/modes/asm/ghash-x86.pl
new file mode 100644
index 000000000..6b09669d4
--- /dev/null
+++ b/openssl/crypto/modes/asm/ghash-x86.pl
@@ -0,0 +1,1342 @@
+#!/usr/bin/env perl
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# March, May, June 2010
+#
+# The module implements "4-bit" GCM GHASH function and underlying
+# single multiplication operation in GF(2^128). "4-bit" means that it
+# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
+# code paths: vanilla x86 and vanilla MMX. Former will be executed on
+# 486 and Pentium, latter on all others. MMX GHASH features so called
+# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
+# of per-key storage [+512 bytes shared table]. Performance results
+# are for streamed GHASH subroutine and are expressed in cycles per
+# processed byte, less is better:
+#
+# gcc 2.95.3(*) MMX assembler x86 assembler
+#
+# Pentium 105/111(**) - 50
+# PIII 68 /75 12.2 24
+# P4 125/125 17.8 84(***)
+# Opteron 66 /70 10.1 30
+# Core2 54 /67 8.4 18
+#
+# (*) gcc 3.4.x was observed to generate few percent slower code,
+# which is one of reasons why 2.95.3 results were chosen,
+# another reason is lack of 3.4.x results for older CPUs;
+# comparison with MMX results is not completely fair, because C
+# results are for vanilla "256B" implementation, while
+# assembler results are for "528B";-)
+# (**) second number is result for code compiled with -fPIC flag,
+# which is actually more relevant, because assembler code is
+# position-independent;
+# (***) see comment in non-MMX routine for further details;
+#
+# To summarize, it's >2-5 times faster than gcc-generated code. To
+# anchor it to something else SHA1 assembler processes one byte in
+# 11-13 cycles on contemporary x86 cores. As for choice of MMX in
+# particular, see comment at the end of the file...
+
+# May 2010
+#
+# Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
+# The question is how close is it to theoretical limit? The pclmulqdq
+# instruction latency appears to be 14 cycles and there can't be more
+# than 2 of them executing at any given time. This means that single
+# Karatsuba multiplication would take 28 cycles *plus* few cycles for
+# pre- and post-processing. Then multiplication has to be followed by
+# modulo-reduction. Given that aggregated reduction method [see
+# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
+# white paper by Intel] allows you to perform reduction only once in
+# a while we can assume that asymptotic performance can be estimated
+# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
+# and Naggr is the aggregation factor.
+#
+# Before we proceed to this implementation let's have closer look at
+# the best-performing code suggested by Intel in their white paper.
+# By tracing inter-register dependencies Tmod is estimated as ~19
+# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
+# processed byte. As implied, this is quite optimistic estimate,
+# because it does not account for Karatsuba pre- and post-processing,
+# which for a single multiplication is ~5 cycles. Unfortunately Intel
+# does not provide performance data for GHASH alone. But benchmarking
+# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
+# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
+# the result accounts even for pre-computing of degrees of the hash
+# key H, but its portion is negligible at 16KB buffer size.
+#
+# Moving on to the implementation in question. Tmod is estimated as
+# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
+# 2.16. How is it possible that measured performance is better than
+# optimistic theoretical estimate? There is one thing Intel failed
+# to recognize. By serializing GHASH with CTR in same subroutine
+# former's performance is really limited to above (Tmul + Tmod/Naggr)
+# equation. But if GHASH procedure is detached, the modulo-reduction
+# can be interleaved with Naggr-1 multiplications at instruction level
+# and under ideal conditions even disappear from the equation. So that
+# optimistic theoretical estimate for this implementation is ...
+# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
+# at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
+# where Tproc is time required for Karatsuba pre- and post-processing,
+# is more realistic estimate. In this case it gives ... 1.91 cycles.
+# Or in other words, depending on how well we can interleave reduction
+# and one of the two multiplications the performance should be betwen
+# 1.91 and 2.16. As already mentioned, this implementation processes
+# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
+# - in 2.02. x86_64 performance is better, because larger register
+# bank allows to interleave reduction and multiplication better.
+#
+# Does it make sense to increase Naggr? To start with it's virtually
+# impossible in 32-bit mode, because of limited register bank
+# capacity. Otherwise improvement has to be weighed agiainst slower
+# setup, as well as code size and complexity increase. As even
+# optimistic estimate doesn't promise 30% performance improvement,
+# there are currently no plans to increase Naggr.
+#
+# Special thanks to David Woodhouse <dwmw2@infradead.org> for
+# providing access to a Westmere-based system on behalf of Intel
+# Open Source Technology Centre.
+
+# January 2010
+#
+# Tweaked to optimize transitions between integer and FP operations
+# on same XMM register, PCLMULQDQ subroutine was measured to process
+# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
+# The minor regression on Westmere is outweighed by ~15% improvement
+# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
+# similar manner resulted in almost 20% degradation on Sandy Bridge,
+# where original 64-bit code processes one byte in 1.95 cycles.
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+push(@INC,"${dir}","${dir}../../perlasm");
+require "x86asm.pl";
+
+&asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
+
+$sse2=0;
+for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
+
+($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
+$inp = "edi";
+$Htbl = "esi";
+
+$unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse
+ # than unrolled, which has to be weighted against
+ # 2.5x x86-specific code size reduction.
+
+sub x86_loop {
+ my $off = shift;
+ my $rem = "eax";
+
+ &mov ($Zhh,&DWP(4,$Htbl,$Zll));
+ &mov ($Zhl,&DWP(0,$Htbl,$Zll));
+ &mov ($Zlh,&DWP(12,$Htbl,$Zll));
+ &mov ($Zll,&DWP(8,$Htbl,$Zll));
+ &xor ($rem,$rem); # avoid partial register stalls on PIII
+
+ # shrd practically kills P4, 2.5x deterioration, but P4 has
+ # MMX code-path to execute. shrd runs tad faster [than twice
+ # the shifts, move's and or's] on pre-MMX Pentium (as well as
+ # PIII and Core2), *but* minimizes code size, spares register
+ # and thus allows to fold the loop...
+ if (!$unroll) {
+ my $cnt = $inp;
+ &mov ($cnt,15);
+ &jmp (&label("x86_loop"));
+ &set_label("x86_loop",16);
+ for($i=1;$i<=2;$i++) {
+ &mov (&LB($rem),&LB($Zll));
+ &shrd ($Zll,$Zlh,4);
+ &and (&LB($rem),0xf);
+ &shrd ($Zlh,$Zhl,4);
+ &shrd ($Zhl,$Zhh,4);
+ &shr ($Zhh,4);
+ &xor ($Zhh,&DWP($off+16,"esp",$rem,4));
+
+ &mov (&LB($rem),&BP($off,"esp",$cnt));
+ if ($i&1) {
+ &and (&LB($rem),0xf0);
+ } else {
+ &shl (&LB($rem),4);
+ }
+
+ &xor ($Zll,&DWP(8,$Htbl,$rem));
+ &xor ($Zlh,&DWP(12,$Htbl,$rem));
+ &xor ($Zhl,&DWP(0,$Htbl,$rem));
+ &xor ($Zhh,&DWP(4,$Htbl,$rem));
+
+ if ($i&1) {
+ &dec ($cnt);
+ &js (&label("x86_break"));
+ } else {
+ &jmp (&label("x86_loop"));
+ }
+ }
+ &set_label("x86_break",16);
+ } else {
+ for($i=1;$i<32;$i++) {
+ &comment($i);
+ &mov (&LB($rem),&LB($Zll));
+ &shrd ($Zll,$Zlh,4);
+ &and (&LB($rem),0xf);
+ &shrd ($Zlh,$Zhl,4);
+ &shrd ($Zhl,$Zhh,4);
+ &shr ($Zhh,4);
+ &xor ($Zhh,&DWP($off+16,"esp",$rem,4));
+
+ if ($i&1) {
+ &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
+ &and (&LB($rem),0xf0);
+ } else {
+ &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
+ &shl (&LB($rem),4);
+ }
+
+ &xor ($Zll,&DWP(8,$Htbl,$rem));
+ &xor ($Zlh,&DWP(12,$Htbl,$rem));
+ &xor ($Zhl,&DWP(0,$Htbl,$rem));
+ &xor ($Zhh,&DWP(4,$Htbl,$rem));
+ }
+ }
+ &bswap ($Zll);
+ &bswap ($Zlh);
+ &bswap ($Zhl);
+ if (!$x86only) {
+ &bswap ($Zhh);
+ } else {
+ &mov ("eax",$Zhh);
+ &bswap ("eax");
+ &mov ($Zhh,"eax");
+ }
+}
+
+if ($unroll) {
+ &function_begin_B("_x86_gmult_4bit_inner");
+ &x86_loop(4);
+ &ret ();
+ &function_end_B("_x86_gmult_4bit_inner");
+}
+
+sub deposit_rem_4bit {
+ my $bias = shift;
+
+ &mov (&DWP($bias+0, "esp"),0x0000<<16);
+ &mov (&DWP($bias+4, "esp"),0x1C20<<16);
+ &mov (&DWP($bias+8, "esp"),0x3840<<16);
+ &mov (&DWP($bias+12,"esp"),0x2460<<16);
+ &mov (&DWP($bias+16,"esp"),0x7080<<16);
+ &mov (&DWP($bias+20,"esp"),0x6CA0<<16);
+ &mov (&DWP($bias+24,"esp"),0x48C0<<16);
+ &mov (&DWP($bias+28,"esp"),0x54E0<<16);
+ &mov (&DWP($bias+32,"esp"),0xE100<<16);
+ &mov (&DWP($bias+36,"esp"),0xFD20<<16);
+ &mov (&DWP($bias+40,"esp"),0xD940<<16);
+ &mov (&DWP($bias+44,"esp"),0xC560<<16);
+ &mov (&DWP($bias+48,"esp"),0x9180<<16);
+ &mov (&DWP($bias+52,"esp"),0x8DA0<<16);
+ &mov (&DWP($bias+56,"esp"),0xA9C0<<16);
+ &mov (&DWP($bias+60,"esp"),0xB5E0<<16);
+}
+
+$suffix = $x86only ? "" : "_x86";
+
+&function_begin("gcm_gmult_4bit".$suffix);
+ &stack_push(16+4+1); # +1 for stack alignment
+ &mov ($inp,&wparam(0)); # load Xi
+ &mov ($Htbl,&wparam(1)); # load Htable
+
+ &mov ($Zhh,&DWP(0,$inp)); # load Xi[16]
+ &mov ($Zhl,&DWP(4,$inp));
+ &mov ($Zlh,&DWP(8,$inp));
+ &mov ($Zll,&DWP(12,$inp));
+
+ &deposit_rem_4bit(16);
+
+ &mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack
+ &mov (&DWP(4,"esp"),$Zhl);
+ &mov (&DWP(8,"esp"),$Zlh);
+ &mov (&DWP(12,"esp"),$Zll);
+ &shr ($Zll,20);
+ &and ($Zll,0xf0);
+
+ if ($unroll) {
+ &call ("_x86_gmult_4bit_inner");
+ } else {
+ &x86_loop(0);
+ &mov ($inp,&wparam(0));
+ }
+
+ &mov (&DWP(12,$inp),$Zll);
+ &mov (&DWP(8,$inp),$Zlh);
+ &mov (&DWP(4,$inp),$Zhl);
+ &mov (&DWP(0,$inp),$Zhh);
+ &stack_pop(16+4+1);
+&function_end("gcm_gmult_4bit".$suffix);
+
+&function_begin("gcm_ghash_4bit".$suffix);
+ &stack_push(16+4+1); # +1 for 64-bit alignment
+ &mov ($Zll,&wparam(0)); # load Xi
+ &mov ($Htbl,&wparam(1)); # load Htable
+ &mov ($inp,&wparam(2)); # load in
+ &mov ("ecx",&wparam(3)); # load len
+ &add ("ecx",$inp);
+ &mov (&wparam(3),"ecx");
+
+ &mov ($Zhh,&DWP(0,$Zll)); # load Xi[16]
+ &mov ($Zhl,&DWP(4,$Zll));
+ &mov ($Zlh,&DWP(8,$Zll));
+ &mov ($Zll,&DWP(12,$Zll));
+
+ &deposit_rem_4bit(16);
+
+ &set_label("x86_outer_loop",16);
+ &xor ($Zll,&DWP(12,$inp)); # xor with input
+ &xor ($Zlh,&DWP(8,$inp));
+ &xor ($Zhl,&DWP(4,$inp));
+ &xor ($Zhh,&DWP(0,$inp));
+ &mov (&DWP(12,"esp"),$Zll); # dump it on stack
+ &mov (&DWP(8,"esp"),$Zlh);
+ &mov (&DWP(4,"esp"),$Zhl);
+ &mov (&DWP(0,"esp"),$Zhh);
+
+ &shr ($Zll,20);
+ &and ($Zll,0xf0);
+
+ if ($unroll) {
+ &call ("_x86_gmult_4bit_inner");
+ } else {
+ &x86_loop(0);
+ &mov ($inp,&wparam(2));
+ }
+ &lea ($inp,&DWP(16,$inp));
+ &cmp ($inp,&wparam(3));
+ &mov (&wparam(2),$inp) if (!$unroll);
+ &jb (&label("x86_outer_loop"));
+
+ &mov ($inp,&wparam(0)); # load Xi
+ &mov (&DWP(12,$inp),$Zll);
+ &mov (&DWP(8,$inp),$Zlh);
+ &mov (&DWP(4,$inp),$Zhl);
+ &mov (&DWP(0,$inp),$Zhh);
+ &stack_pop(16+4+1);
+&function_end("gcm_ghash_4bit".$suffix);
+
+if (!$x86only) {{{
+
+&static_label("rem_4bit");
+
+if (!$sse2) {{ # pure-MMX "May" version...
+
+$S=12; # shift factor for rem_4bit
+
+&function_begin_B("_mmx_gmult_4bit_inner");
+# MMX version performs 3.5 times better on P4 (see comment in non-MMX
+# routine for further details), 100% better on Opteron, ~70% better
+# on Core2 and PIII... In other words effort is considered to be well
+# spent... Since initial release the loop was unrolled in order to
+# "liberate" register previously used as loop counter. Instead it's
+# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
+# The path involves move of Z.lo from MMX to integer register,
+# effective address calculation and finally merge of value to Z.hi.
+# Reference to rem_4bit is scheduled so late that I had to >>4
+# rem_4bit elements. This resulted in 20-45% procent improvement
+# on contemporary µ-archs.
+{
+ my $cnt;
+ my $rem_4bit = "eax";
+ my @rem = ($Zhh,$Zll);
+ my $nhi = $Zhl;
+ my $nlo = $Zlh;
+
+ my ($Zlo,$Zhi) = ("mm0","mm1");
+ my $tmp = "mm2";
+
+ &xor ($nlo,$nlo); # avoid partial register stalls on PIII
+ &mov ($nhi,$Zll);
+ &mov (&LB($nlo),&LB($nhi));
+ &shl (&LB($nlo),4);
+ &and ($nhi,0xf0);
+ &movq ($Zlo,&QWP(8,$Htbl,$nlo));
+ &movq ($Zhi,&QWP(0,$Htbl,$nlo));
+ &movd ($rem[0],$Zlo);
+
+ for ($cnt=28;$cnt>=-2;$cnt--) {
+ my $odd = $cnt&1;
+ my $nix = $odd ? $nlo : $nhi;
+
+ &shl (&LB($nlo),4) if ($odd);
+ &psrlq ($Zlo,4);
+ &movq ($tmp,$Zhi);
+ &psrlq ($Zhi,4);
+ &pxor ($Zlo,&QWP(8,$Htbl,$nix));
+ &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0);
+ &psllq ($tmp,60);
+ &and ($nhi,0xf0) if ($odd);
+ &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
+ &and ($rem[0],0xf);
+ &pxor ($Zhi,&QWP(0,$Htbl,$nix));
+ &mov ($nhi,$nlo) if (!$odd && $cnt>=0);
+ &movd ($rem[1],$Zlo);
+ &pxor ($Zlo,$tmp);
+
+ push (@rem,shift(@rem)); # "rotate" registers
+ }
+
+ &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem]
+
+ &psrlq ($Zlo,32); # lower part of Zlo is already there
+ &movd ($Zhl,$Zhi);
+ &psrlq ($Zhi,32);
+ &movd ($Zlh,$Zlo);
+ &movd ($Zhh,$Zhi);
+ &shl ($inp,4); # compensate for rem_4bit[i] being >>4
+
+ &bswap ($Zll);
+ &bswap ($Zhl);
+ &bswap ($Zlh);
+ &xor ($Zhh,$inp);
+ &bswap ($Zhh);
+
+ &ret ();
+}
+&function_end_B("_mmx_gmult_4bit_inner");
+
+&function_begin("gcm_gmult_4bit_mmx");
+ &mov ($inp,&wparam(0)); # load Xi
+ &mov ($Htbl,&wparam(1)); # load Htable
+
+ &call (&label("pic_point"));
+ &set_label("pic_point");
+ &blindpop("eax");
+ &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
+
+ &movz ($Zll,&BP(15,$inp));
+
+ &call ("_mmx_gmult_4bit_inner");
+
+ &mov ($inp,&wparam(0)); # load Xi
+ &emms ();
+ &mov (&DWP(12,$inp),$Zll);
+ &mov (&DWP(4,$inp),$Zhl);
+ &mov (&DWP(8,$inp),$Zlh);
+ &mov (&DWP(0,$inp),$Zhh);
+&function_end("gcm_gmult_4bit_mmx");
+
+# Streamed version performs 20% better on P4, 7% on Opteron,
+# 10% on Core2 and PIII...
+&function_begin("gcm_ghash_4bit_mmx");
+ &mov ($Zhh,&wparam(0)); # load Xi
+ &mov ($Htbl,&wparam(1)); # load Htable
+ &mov ($inp,&wparam(2)); # load in
+ &mov ($Zlh,&wparam(3)); # load len
+
+ &call (&label("pic_point"));
+ &set_label("pic_point");
+ &blindpop("eax");
+ &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
+
+ &add ($Zlh,$inp);
+ &mov (&wparam(3),$Zlh); # len to point at the end of input
+ &stack_push(4+1); # +1 for stack alignment
+
+ &mov ($Zll,&DWP(12,$Zhh)); # load Xi[16]
+ &mov ($Zhl,&DWP(4,$Zhh));
+ &mov ($Zlh,&DWP(8,$Zhh));
+ &mov ($Zhh,&DWP(0,$Zhh));
+ &jmp (&label("mmx_outer_loop"));
+
+ &set_label("mmx_outer_loop",16);
+ &xor ($Zll,&DWP(12,$inp));
+ &xor ($Zhl,&DWP(4,$inp));
+ &xor ($Zlh,&DWP(8,$inp));
+ &xor ($Zhh,&DWP(0,$inp));
+ &mov (&wparam(2),$inp);
+ &mov (&DWP(12,"esp"),$Zll);
+ &mov (&DWP(4,"esp"),$Zhl);
+ &mov (&DWP(8,"esp"),$Zlh);
+ &mov (&DWP(0,"esp"),$Zhh);
+
+ &mov ($inp,"esp");
+ &shr ($Zll,24);
+
+ &call ("_mmx_gmult_4bit_inner");
+
+ &mov ($inp,&wparam(2));
+ &lea ($inp,&DWP(16,$inp));
+ &cmp ($inp,&wparam(3));
+ &jb (&label("mmx_outer_loop"));
+
+ &mov ($inp,&wparam(0)); # load Xi
+ &emms ();
+ &mov (&DWP(12,$inp),$Zll);
+ &mov (&DWP(4,$inp),$Zhl);
+ &mov (&DWP(8,$inp),$Zlh);
+ &mov (&DWP(0,$inp),$Zhh);
+
+ &stack_pop(4+1);
+&function_end("gcm_ghash_4bit_mmx");
+
+}} else {{ # "June" MMX version...
+ # ... has slower "April" gcm_gmult_4bit_mmx with folded
+ # loop. This is done to conserve code size...
+$S=16; # shift factor for rem_4bit
+
+sub mmx_loop() {
+# MMX version performs 2.8 times better on P4 (see comment in non-MMX
+# routine for further details), 40% better on Opteron and Core2, 50%
+# better on PIII... In other words effort is considered to be well
+# spent...
+ my $inp = shift;
+ my $rem_4bit = shift;
+ my $cnt = $Zhh;
+ my $nhi = $Zhl;
+ my $nlo = $Zlh;
+ my $rem = $Zll;
+
+ my ($Zlo,$Zhi) = ("mm0","mm1");
+ my $tmp = "mm2";
+
+ &xor ($nlo,$nlo); # avoid partial register stalls on PIII
+ &mov ($nhi,$Zll);
+ &mov (&LB($nlo),&LB($nhi));
+ &mov ($cnt,14);
+ &shl (&LB($nlo),4);
+ &and ($nhi,0xf0);
+ &movq ($Zlo,&QWP(8,$Htbl,$nlo));
+ &movq ($Zhi,&QWP(0,$Htbl,$nlo));
+ &movd ($rem,$Zlo);
+ &jmp (&label("mmx_loop"));
+
+ &set_label("mmx_loop",16);
+ &psrlq ($Zlo,4);
+ &and ($rem,0xf);
+ &movq ($tmp,$Zhi);
+ &psrlq ($Zhi,4);
+ &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
+ &mov (&LB($nlo),&BP(0,$inp,$cnt));
+ &psllq ($tmp,60);
+ &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
+ &dec ($cnt);
+ &movd ($rem,$Zlo);
+ &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
+ &mov ($nhi,$nlo);
+ &pxor ($Zlo,$tmp);
+ &js (&label("mmx_break"));
+
+ &shl (&LB($nlo),4);
+ &and ($rem,0xf);
+ &psrlq ($Zlo,4);
+ &and ($nhi,0xf0);
+ &movq ($tmp,$Zhi);
+ &psrlq ($Zhi,4);
+ &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
+ &psllq ($tmp,60);
+ &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
+ &movd ($rem,$Zlo);
+ &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
+ &pxor ($Zlo,$tmp);
+ &jmp (&label("mmx_loop"));
+
+ &set_label("mmx_break",16);
+ &shl (&LB($nlo),4);
+ &and ($rem,0xf);
+ &psrlq ($Zlo,4);
+ &and ($nhi,0xf0);
+ &movq ($tmp,$Zhi);
+ &psrlq ($Zhi,4);
+ &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
+ &psllq ($tmp,60);
+ &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
+ &movd ($rem,$Zlo);
+ &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
+ &pxor ($Zlo,$tmp);
+
+ &psrlq ($Zlo,4);
+ &and ($rem,0xf);
+ &movq ($tmp,$Zhi);
+ &psrlq ($Zhi,4);
+ &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
+ &psllq ($tmp,60);
+ &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
+ &movd ($rem,$Zlo);
+ &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
+ &pxor ($Zlo,$tmp);
+
+ &psrlq ($Zlo,32); # lower part of Zlo is already there
+ &movd ($Zhl,$Zhi);
+ &psrlq ($Zhi,32);
+ &movd ($Zlh,$Zlo);
+ &movd ($Zhh,$Zhi);
+
+ &bswap ($Zll);
+ &bswap ($Zhl);
+ &bswap ($Zlh);
+ &bswap ($Zhh);
+}
+
+&function_begin("gcm_gmult_4bit_mmx");
+ &mov ($inp,&wparam(0)); # load Xi
+ &mov ($Htbl,&wparam(1)); # load Htable
+
+ &call (&label("pic_point"));
+ &set_label("pic_point");
+ &blindpop("eax");
+ &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
+
+ &movz ($Zll,&BP(15,$inp));
+
+ &mmx_loop($inp,"eax");
+
+ &emms ();
+ &mov (&DWP(12,$inp),$Zll);
+ &mov (&DWP(4,$inp),$Zhl);
+ &mov (&DWP(8,$inp),$Zlh);
+ &mov (&DWP(0,$inp),$Zhh);
+&function_end("gcm_gmult_4bit_mmx");
+
+######################################################################
+# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
+# (see gcm128.c for details). It provides further 20-40% performance
+# improvement over above mentioned "May" version.
+
+&static_label("rem_8bit");
+
+&function_begin("gcm_ghash_4bit_mmx");
+{ my ($Zlo,$Zhi) = ("mm7","mm6");
+ my $rem_8bit = "esi";
+ my $Htbl = "ebx";
+
+ # parameter block
+ &mov ("eax",&wparam(0)); # Xi
+ &mov ("ebx",&wparam(1)); # Htable
+ &mov ("ecx",&wparam(2)); # inp
+ &mov ("edx",&wparam(3)); # len
+ &mov ("ebp","esp"); # original %esp
+ &call (&label("pic_point"));
+ &set_label ("pic_point");
+ &blindpop ($rem_8bit);
+ &lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
+
+ &sub ("esp",512+16+16); # allocate stack frame...
+ &and ("esp",-64); # ...and align it
+ &sub ("esp",16); # place for (u8)(H[]<<4)
+
+ &add ("edx","ecx"); # pointer to the end of input
+ &mov (&DWP(528+16+0,"esp"),"eax"); # save Xi
+ &mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len
+ &mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp
+
+ { my @lo = ("mm0","mm1","mm2");
+ my @hi = ("mm3","mm4","mm5");
+ my @tmp = ("mm6","mm7");
+ my $off1=0,$off2=0,$i;
+
+ &add ($Htbl,128); # optimize for size
+ &lea ("edi",&DWP(16+128,"esp"));
+ &lea ("ebp",&DWP(16+256+128,"esp"));
+
+ # decompose Htable (low and high parts are kept separately),
+ # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
+ for ($i=0;$i<18;$i++) {
+
+ &mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16);
+ &movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16);
+ &psllq ($tmp[1],60) if ($i>1);
+ &movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16);
+ &por ($lo[2],$tmp[1]) if ($i>1);
+ &movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17);
+ &psrlq ($lo[1],4) if ($i>0 && $i<17);
+ &movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17);
+ &movq ($tmp[0],$hi[1]) if ($i>0 && $i<17);
+ &movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1);
+ &psrlq ($hi[1],4) if ($i>0 && $i<17);
+ &movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1);
+ &shl ("edx",4) if ($i<16);
+ &mov (&BP($i,"esp"),&LB("edx")) if ($i<16);
+
+ unshift (@lo,pop(@lo)); # "rotate" registers
+ unshift (@hi,pop(@hi));
+ unshift (@tmp,pop(@tmp));
+ $off1 += 8 if ($i>0);
+ $off2 += 8 if ($i>1);
+ }
+ }
+
+ &movq ($Zhi,&QWP(0,"eax"));
+ &mov ("ebx",&DWP(8,"eax"));
+ &mov ("edx",&DWP(12,"eax")); # load Xi
+
+&set_label("outer",16);
+ { my $nlo = "eax";
+ my $dat = "edx";
+ my @nhi = ("edi","ebp");
+ my @rem = ("ebx","ecx");
+ my @red = ("mm0","mm1","mm2");
+ my $tmp = "mm3";
+
+ &xor ($dat,&DWP(12,"ecx")); # merge input data
+ &xor ("ebx",&DWP(8,"ecx"));
+ &pxor ($Zhi,&QWP(0,"ecx"));
+ &lea ("ecx",&DWP(16,"ecx")); # inp+=16
+ #&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi
+ &mov (&DWP(528+8,"esp"),"ebx");
+ &movq (&QWP(528+0,"esp"),$Zhi);
+ &mov (&DWP(528+16+4,"esp"),"ecx"); # save inp
+
+ &xor ($nlo,$nlo);
+ &rol ($dat,8);
+ &mov (&LB($nlo),&LB($dat));
+ &mov ($nhi[1],$nlo);
+ &and (&LB($nlo),0x0f);
+ &shr ($nhi[1],4);
+ &pxor ($red[0],$red[0]);
+ &rol ($dat,8); # next byte
+ &pxor ($red[1],$red[1]);
+ &pxor ($red[2],$red[2]);
+
+ # Just like in "May" verson modulo-schedule for critical path in
+ # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
+ # is scheduled so late that rem_8bit[] has to be shifted *right*
+ # by 16, which is why last argument to pinsrw is 2, which
+ # corresponds to <<32=<<48>>16...
+ for ($j=11,$i=0;$i<15;$i++) {
+
+ if ($i>0) {
+ &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
+ &rol ($dat,8); # next byte
+ &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
+
+ &pxor ($Zlo,$tmp);
+ &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
+ &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)
+ } else {
+ &movq ($Zlo,&QWP(16,"esp",$nlo,8));
+ &movq ($Zhi,&QWP(16+128,"esp",$nlo,8));
+ }
+
+ &mov (&LB($nlo),&LB($dat));
+ &mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0);
+
+ &movd ($rem[0],$Zlo);
+ &movz ($rem[1],&LB($rem[1])) if ($i>0);
+ &psrlq ($Zlo,8); # Z>>=8
+
+ &movq ($tmp,$Zhi);
+ &mov ($nhi[0],$nlo);
+ &psrlq ($Zhi,8);
+
+ &pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4
+ &and (&LB($nlo),0x0f);
+ &psllq ($tmp,56);
+
+ &pxor ($Zhi,$red[1]) if ($i>1);
+ &shr ($nhi[0],4);
+ &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0);
+
+ unshift (@red,pop(@red)); # "rotate" registers
+ unshift (@rem,pop(@rem));
+ unshift (@nhi,pop(@nhi));
+ }
+
+ &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
+ &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
+ &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)
+
+ &pxor ($Zlo,$tmp);
+ &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
+ &movz ($rem[1],&LB($rem[1]));
+
+ &pxor ($red[2],$red[2]); # clear 2nd word
+ &psllq ($red[1],4);
+
+ &movd ($rem[0],$Zlo);
+ &psrlq ($Zlo,4); # Z>>=4
+
+ &movq ($tmp,$Zhi);
+ &psrlq ($Zhi,4);
+ &shl ($rem[0],4); # rem<<4
+
+ &pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi]
+ &psllq ($tmp,60);
+ &movz ($rem[0],&LB($rem[0]));
+
+ &pxor ($Zlo,$tmp);
+ &pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8));
+
+ &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
+ &pxor ($Zhi,$red[1]);
+
+ &movd ($dat,$Zlo);
+ &pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48
+
+ &psllq ($red[0],12); # correct by <<16>>4
+ &pxor ($Zhi,$red[0]);
+ &psrlq ($Zlo,32);
+ &pxor ($Zhi,$red[2]);
+
+ &mov ("ecx",&DWP(528+16+4,"esp")); # restore inp
+ &movd ("ebx",$Zlo);
+ &movq ($tmp,$Zhi); # 01234567
+ &psllw ($Zhi,8); # 1.3.5.7.
+ &psrlw ($tmp,8); # .0.2.4.6
+ &por ($Zhi,$tmp); # 10325476
+ &bswap ($dat);
+ &pshufw ($Zhi,$Zhi,0b00011011); # 76543210
+ &bswap ("ebx");
+
+ &cmp ("ecx",&DWP(528+16+8,"esp")); # are we done?
+ &jne (&label("outer"));
+ }
+
+ &mov ("eax",&DWP(528+16+0,"esp")); # restore Xi
+ &mov (&DWP(12,"eax"),"edx");
+ &mov (&DWP(8,"eax"),"ebx");
+ &movq (&QWP(0,"eax"),$Zhi);
+
+ &mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp
+ &emms ();
+}
+&function_end("gcm_ghash_4bit_mmx");
+}}
+
+if ($sse2) {{
+######################################################################
+# PCLMULQDQ version.
+
+$Xip="eax";
+$Htbl="edx";
+$const="ecx";
+$inp="esi";
+$len="ebx";
+
+($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2";
+($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
+($Xn,$Xhn)=("xmm6","xmm7");
+
+&static_label("bswap");
+
+sub clmul64x64_T2 { # minimal "register" pressure
+my ($Xhi,$Xi,$Hkey)=@_;
+
+ &movdqa ($Xhi,$Xi); #
+ &pshufd ($T1,$Xi,0b01001110);
+ &pshufd ($T2,$Hkey,0b01001110);
+ &pxor ($T1,$Xi); #
+ &pxor ($T2,$Hkey);
+
+ &pclmulqdq ($Xi,$Hkey,0x00); #######
+ &pclmulqdq ($Xhi,$Hkey,0x11); #######
+ &pclmulqdq ($T1,$T2,0x00); #######
+ &xorps ($T1,$Xi); #
+ &xorps ($T1,$Xhi); #
+
+ &movdqa ($T2,$T1); #
+ &psrldq ($T1,8);
+ &pslldq ($T2,8); #
+ &pxor ($Xhi,$T1);
+ &pxor ($Xi,$T2); #
+}
+
+sub clmul64x64_T3 {
+# Even though this subroutine offers visually better ILP, it
+# was empirically found to be a tad slower than above version.
+# At least in gcm_ghash_clmul context. But it's just as well,
+# because loop modulo-scheduling is possible only thanks to
+# minimized "register" pressure...
+my ($Xhi,$Xi,$Hkey)=@_;
+
+ &movdqa ($T1,$Xi); #
+ &movdqa ($Xhi,$Xi);
+ &pclmulqdq ($Xi,$Hkey,0x00); #######
+ &pclmulqdq ($Xhi,$Hkey,0x11); #######
+ &pshufd ($T2,$T1,0b01001110); #
+ &pshufd ($T3,$Hkey,0b01001110);
+ &pxor ($T2,$T1); #
+ &pxor ($T3,$Hkey);
+ &pclmulqdq ($T2,$T3,0x00); #######
+ &pxor ($T2,$Xi); #
+ &pxor ($T2,$Xhi); #
+
+ &movdqa ($T3,$T2); #
+ &psrldq ($T2,8);
+ &pslldq ($T3,8); #
+ &pxor ($Xhi,$T2);
+ &pxor ($Xi,$T3); #
+}
+
+if (1) { # Algorithm 9 with <<1 twist.
+ # Reduction is shorter and uses only two
+ # temporary registers, which makes it better
+ # candidate for interleaving with 64x64
+ # multiplication. Pre-modulo-scheduled loop
+ # was found to be ~20% faster than Algorithm 5
+ # below. Algorithm 9 was therefore chosen for
+ # further optimization...
+
+sub reduction_alg9 { # 17/13 times faster than Intel version
+my ($Xhi,$Xi) = @_;
+
+ # 1st phase
+ &movdqa ($T1,$Xi) #
+ &psllq ($Xi,1);
+ &pxor ($Xi,$T1); #
+ &psllq ($Xi,5); #
+ &pxor ($Xi,$T1); #
+ &psllq ($Xi,57); #
+ &movdqa ($T2,$Xi); #
+ &pslldq ($Xi,8);
+ &psrldq ($T2,8); #
+ &pxor ($Xi,$T1);
+ &pxor ($Xhi,$T2); #
+
+ # 2nd phase
+ &movdqa ($T2,$Xi);
+ &psrlq ($Xi,5);
+ &pxor ($Xi,$T2); #
+ &psrlq ($Xi,1); #
+ &pxor ($Xi,$T2); #
+ &pxor ($T2,$Xhi);
+ &psrlq ($Xi,1); #
+ &pxor ($Xi,$T2); #
+}
+
+&function_begin_B("gcm_init_clmul");
+ &mov ($Htbl,&wparam(0));
+ &mov ($Xip,&wparam(1));
+
+ &call (&label("pic"));
+&set_label("pic");
+ &blindpop ($const);
+ &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
+
+ &movdqu ($Hkey,&QWP(0,$Xip));
+ &pshufd ($Hkey,$Hkey,0b01001110);# dword swap
+
+ # <<1 twist
+ &pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword
+ &movdqa ($T1,$Hkey);
+ &psllq ($Hkey,1);
+ &pxor ($T3,$T3); #
+ &psrlq ($T1,63);
+ &pcmpgtd ($T3,$T2); # broadcast carry bit
+ &pslldq ($T1,8);
+ &por ($Hkey,$T1); # H<<=1
+
+ # magic reduction
+ &pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial
+ &pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial
+
+ # calculate H^2
+ &movdqa ($Xi,$Hkey);
+ &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
+ &reduction_alg9 ($Xhi,$Xi);
+
+ &movdqu (&QWP(0,$Htbl),$Hkey); # save H
+ &movdqu (&QWP(16,$Htbl),$Xi); # save H^2
+
+ &ret ();
+&function_end_B("gcm_init_clmul");
+
+&function_begin_B("gcm_gmult_clmul");
+ &mov ($Xip,&wparam(0));
+ &mov ($Htbl,&wparam(1));
+
+ &call (&label("pic"));
+&set_label("pic");
+ &blindpop ($const);
+ &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
+
+ &movdqu ($Xi,&QWP(0,$Xip));
+ &movdqa ($T3,&QWP(0,$const));
+ &movups ($Hkey,&QWP(0,$Htbl));
+ &pshufb ($Xi,$T3);
+
+ &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
+ &reduction_alg9 ($Xhi,$Xi);
+
+ &pshufb ($Xi,$T3);
+ &movdqu (&QWP(0,$Xip),$Xi);
+
+ &ret ();
+&function_end_B("gcm_gmult_clmul");
+
+&function_begin("gcm_ghash_clmul");
+ &mov ($Xip,&wparam(0));
+ &mov ($Htbl,&wparam(1));
+ &mov ($inp,&wparam(2));
+ &mov ($len,&wparam(3));
+
+ &call (&label("pic"));
+&set_label("pic");
+ &blindpop ($const);
+ &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
+
+ &movdqu ($Xi,&QWP(0,$Xip));
+ &movdqa ($T3,&QWP(0,$const));
+ &movdqu ($Hkey,&QWP(0,$Htbl));
+ &pshufb ($Xi,$T3);
+
+ &sub ($len,0x10);
+ &jz (&label("odd_tail"));
+
+ #######
+ # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
+ # [(H*Ii+1) + (H*Xi+1)] mod P =
+ # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
+ #
+ &movdqu ($T1,&QWP(0,$inp)); # Ii
+ &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
+ &pshufb ($T1,$T3);
+ &pshufb ($Xn,$T3);
+ &pxor ($Xi,$T1); # Ii+Xi
+
+ &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1
+ &movups ($Hkey,&QWP(16,$Htbl)); # load H^2
+
+ &lea ($inp,&DWP(32,$inp)); # i+=2
+ &sub ($len,0x20);
+ &jbe (&label("even_tail"));
+
+&set_label("mod_loop");
+ &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
+ &movdqu ($T1,&QWP(0,$inp)); # Ii
+ &movups ($Hkey,&QWP(0,$Htbl)); # load H
+
+ &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
+ &pxor ($Xhi,$Xhn);
+
+ &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
+ &pshufb ($T1,$T3);
+ &pshufb ($Xn,$T3);
+
+ &movdqa ($T3,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1
+ &movdqa ($Xhn,$Xn);
+ &pxor ($Xhi,$T1); # "Ii+Xi", consume early
+
+ &movdqa ($T1,$Xi) #&reduction_alg9($Xhi,$Xi); 1st phase
+ &psllq ($Xi,1);
+ &pxor ($Xi,$T1); #
+ &psllq ($Xi,5); #
+ &pxor ($Xi,$T1); #
+ &pclmulqdq ($Xn,$Hkey,0x00); #######
+ &psllq ($Xi,57); #
+ &movdqa ($T2,$Xi); #
+ &pslldq ($Xi,8);
+ &psrldq ($T2,8); #
+ &pxor ($Xi,$T1);
+ &pshufd ($T1,$T3,0b01001110);
+ &pxor ($Xhi,$T2); #
+ &pxor ($T1,$T3);
+ &pshufd ($T3,$Hkey,0b01001110);
+ &pxor ($T3,$Hkey); #
+
+ &pclmulqdq ($Xhn,$Hkey,0x11); #######
+ &movdqa ($T2,$Xi); # 2nd phase
+ &psrlq ($Xi,5);
+ &pxor ($Xi,$T2); #
+ &psrlq ($Xi,1); #
+ &pxor ($Xi,$T2); #
+ &pxor ($T2,$Xhi);
+ &psrlq ($Xi,1); #
+ &pxor ($Xi,$T2); #
+
+ &pclmulqdq ($T1,$T3,0x00); #######
+ &movups ($Hkey,&QWP(16,$Htbl)); # load H^2
+ &xorps ($T1,$Xn); #
+ &xorps ($T1,$Xhn); #
+
+ &movdqa ($T3,$T1); #
+ &psrldq ($T1,8);
+ &pslldq ($T3,8); #
+ &pxor ($Xhn,$T1);
+ &pxor ($Xn,$T3); #
+ &movdqa ($T3,&QWP(0,$const));
+
+ &lea ($inp,&DWP(32,$inp));
+ &sub ($len,0x20);
+ &ja (&label("mod_loop"));
+
+&set_label("even_tail");
+ &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
+
+ &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
+ &pxor ($Xhi,$Xhn);
+
+ &reduction_alg9 ($Xhi,$Xi);
+
+ &test ($len,$len);
+ &jnz (&label("done"));
+
+ &movups ($Hkey,&QWP(0,$Htbl)); # load H
+&set_label("odd_tail");
+ &movdqu ($T1,&QWP(0,$inp)); # Ii
+ &pshufb ($T1,$T3);
+ &pxor ($Xi,$T1); # Ii+Xi
+
+ &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
+ &reduction_alg9 ($Xhi,$Xi);
+
+&set_label("done");
+ &pshufb ($Xi,$T3);
+ &movdqu (&QWP(0,$Xip),$Xi);
+&function_end("gcm_ghash_clmul");
+
+} else { # Algorith 5. Kept for reference purposes.
+
+sub reduction_alg5 { # 19/16 times faster than Intel version
+my ($Xhi,$Xi)=@_;
+
+ # <<1
+ &movdqa ($T1,$Xi); #
+ &movdqa ($T2,$Xhi);
+ &pslld ($Xi,1);
+ &pslld ($Xhi,1); #
+ &psrld ($T1,31);
+ &psrld ($T2,31); #
+ &movdqa ($T3,$T1);
+ &pslldq ($T1,4);
+ &psrldq ($T3,12); #
+ &pslldq ($T2,4);
+ &por ($Xhi,$T3); #
+ &por ($Xi,$T1);
+ &por ($Xhi,$T2); #
+
+ # 1st phase
+ &movdqa ($T1,$Xi);
+ &movdqa ($T2,$Xi);
+ &movdqa ($T3,$Xi); #
+ &pslld ($T1,31);
+ &pslld ($T2,30);
+ &pslld ($Xi,25); #
+ &pxor ($T1,$T2);
+ &pxor ($T1,$Xi); #
+ &movdqa ($T2,$T1); #
+ &pslldq ($T1,12);
+ &psrldq ($T2,4); #
+ &pxor ($T3,$T1);
+
+ # 2nd phase
+ &pxor ($Xhi,$T3); #
+ &movdqa ($Xi,$T3);
+ &movdqa ($T1,$T3);
+ &psrld ($Xi,1); #
+ &psrld ($T1,2);
+ &psrld ($T3,7); #
+ &pxor ($Xi,$T1);
+ &pxor ($Xhi,$T2);
+ &pxor ($Xi,$T3); #
+ &pxor ($Xi,$Xhi); #
+}
+
+&function_begin_B("gcm_init_clmul");
+ &mov ($Htbl,&wparam(0));
+ &mov ($Xip,&wparam(1));
+
+ &call (&label("pic"));
+&set_label("pic");
+ &blindpop ($const);
+ &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
+
+ &movdqu ($Hkey,&QWP(0,$Xip));
+ &pshufd ($Hkey,$Hkey,0b01001110);# dword swap
+
+ # calculate H^2
+ &movdqa ($Xi,$Hkey);
+ &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
+ &reduction_alg5 ($Xhi,$Xi);
+
+ &movdqu (&QWP(0,$Htbl),$Hkey); # save H
+ &movdqu (&QWP(16,$Htbl),$Xi); # save H^2
+
+ &ret ();
+&function_end_B("gcm_init_clmul");
+
+&function_begin_B("gcm_gmult_clmul");
+ &mov ($Xip,&wparam(0));
+ &mov ($Htbl,&wparam(1));
+
+ &call (&label("pic"));
+&set_label("pic");
+ &blindpop ($const);
+ &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
+
+ &movdqu ($Xi,&QWP(0,$Xip));
+ &movdqa ($Xn,&QWP(0,$const));
+ &movdqu ($Hkey,&QWP(0,$Htbl));
+ &pshufb ($Xi,$Xn);
+
+ &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
+ &reduction_alg5 ($Xhi,$Xi);
+
+ &pshufb ($Xi,$Xn);
+ &movdqu (&QWP(0,$Xip),$Xi);
+
+ &ret ();
+&function_end_B("gcm_gmult_clmul");
+
+&function_begin("gcm_ghash_clmul");
+ &mov ($Xip,&wparam(0));
+ &mov ($Htbl,&wparam(1));
+ &mov ($inp,&wparam(2));
+ &mov ($len,&wparam(3));
+
+ &call (&label("pic"));
+&set_label("pic");
+ &blindpop ($const);
+ &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
+
+ &movdqu ($Xi,&QWP(0,$Xip));
+ &movdqa ($T3,&QWP(0,$const));
+ &movdqu ($Hkey,&QWP(0,$Htbl));
+ &pshufb ($Xi,$T3);
+
+ &sub ($len,0x10);
+ &jz (&label("odd_tail"));
+
+ #######
+ # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
+ # [(H*Ii+1) + (H*Xi+1)] mod P =
+ # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
+ #
+ &movdqu ($T1,&QWP(0,$inp)); # Ii
+ &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
+ &pshufb ($T1,$T3);
+ &pshufb ($Xn,$T3);
+ &pxor ($Xi,$T1); # Ii+Xi
+
+ &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
+ &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
+
+ &sub ($len,0x20);
+ &lea ($inp,&DWP(32,$inp)); # i+=2
+ &jbe (&label("even_tail"));
+
+&set_label("mod_loop");
+ &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
+ &movdqu ($Hkey,&QWP(0,$Htbl)); # load H
+
+ &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
+ &pxor ($Xhi,$Xhn);
+
+ &reduction_alg5 ($Xhi,$Xi);
+
+ #######
+ &movdqa ($T3,&QWP(0,$const));
+ &movdqu ($T1,&QWP(0,$inp)); # Ii
+ &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
+ &pshufb ($T1,$T3);
+ &pshufb ($Xn,$T3);
+ &pxor ($Xi,$T1); # Ii+Xi
+
+ &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
+ &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
+
+ &sub ($len,0x20);
+ &lea ($inp,&DWP(32,$inp));
+ &ja (&label("mod_loop"));
+
+&set_label("even_tail");
+ &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
+
+ &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
+ &pxor ($Xhi,$Xhn);
+
+ &reduction_alg5 ($Xhi,$Xi);
+
+ &movdqa ($T3,&QWP(0,$const));
+ &test ($len,$len);
+ &jnz (&label("done"));
+
+ &movdqu ($Hkey,&QWP(0,$Htbl)); # load H
+&set_label("odd_tail");
+ &movdqu ($T1,&QWP(0,$inp)); # Ii
+ &pshufb ($T1,$T3);
+ &pxor ($Xi,$T1); # Ii+Xi
+
+ &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
+ &reduction_alg5 ($Xhi,$Xi);
+
+ &movdqa ($T3,&QWP(0,$const));
+&set_label("done");
+ &pshufb ($Xi,$T3);
+ &movdqu (&QWP(0,$Xip),$Xi);
+&function_end("gcm_ghash_clmul");
+
+}
+
+&set_label("bswap",64);
+ &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
+ &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial
+}} # $sse2
+
+&set_label("rem_4bit",64);
+ &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
+ &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
+ &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
+ &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
+&set_label("rem_8bit",64);
+ &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
+ &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
+ &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
+ &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
+ &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
+ &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
+ &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
+ &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
+ &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
+ &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
+ &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
+ &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
+ &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
+ &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
+ &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
+ &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
+ &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
+ &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
+ &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
+ &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
+ &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
+ &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
+ &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
+ &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
+ &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
+ &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
+ &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
+ &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
+ &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
+ &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
+ &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
+ &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
+}}} # !$x86only
+
+&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
+&asm_finish();
+
+# A question was risen about choice of vanilla MMX. Or rather why wasn't
+# SSE2 chosen instead? In addition to the fact that MMX runs on legacy
+# CPUs such as PIII, "4-bit" MMX version was observed to provide better
+# performance than *corresponding* SSE2 one even on contemporary CPUs.
+# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
+# implementation featuring full range of lookup-table sizes, but with
+# per-invocation lookup table setup. Latter means that table size is
+# chosen depending on how much data is to be hashed in every given call,
+# more data - larger table. Best reported result for Core2 is ~4 cycles
+# per processed byte out of 64KB block. This number accounts even for
+# 64KB table setup overhead. As discussed in gcm128.c we choose to be
+# more conservative in respect to lookup table sizes, but how do the
+# results compare? Minimalistic "256B" MMX version delivers ~11 cycles
+# on same platform. As also discussed in gcm128.c, next in line "8-bit
+# Shoup's" or "4KB" method should deliver twice the performance of
+# "256B" one, in other words not worse than ~6 cycles per byte. It
+# should be also be noted that in SSE2 case improvement can be "super-
+# linear," i.e. more than twice, mostly because >>8 maps to single
+# instruction on SSE2 register. This is unlike "4-bit" case when >>4
+# maps to same amount of instructions in both MMX and SSE2 cases.
+# Bottom line is that switch to SSE2 is considered to be justifiable
+# only in case we choose to implement "8-bit" method...
diff --git a/openssl/crypto/modes/asm/ghash-x86_64.pl b/openssl/crypto/modes/asm/ghash-x86_64.pl
new file mode 100644
index 000000000..a5ae18088
--- /dev/null
+++ b/openssl/crypto/modes/asm/ghash-x86_64.pl
@@ -0,0 +1,805 @@
+#!/usr/bin/env perl
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# March, June 2010
+#
+# The module implements "4-bit" GCM GHASH function and underlying
+# single multiplication operation in GF(2^128). "4-bit" means that
+# it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
+# function features so called "528B" variant utilizing additional
+# 256+16 bytes of per-key storage [+512 bytes shared table].
+# Performance results are for this streamed GHASH subroutine and are
+# expressed in cycles per processed byte, less is better:
+#
+# gcc 3.4.x(*) assembler
+#
+# P4 28.6 14.0 +100%
+# Opteron 19.3 7.7 +150%
+# Core2 17.8 8.1(**) +120%
+#
+# (*) comparison is not completely fair, because C results are
+# for vanilla "256B" implementation, while assembler results
+# are for "528B";-)
+# (**) it's mystery [to me] why Core2 result is not same as for
+# Opteron;
+
+# May 2010
+#
+# Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
+# See ghash-x86.pl for background information and details about coding
+# techniques.
+#
+# Special thanks to David Woodhouse <dwmw2@infradead.org> for
+# providing access to a Westmere-based system on behalf of Intel
+# Open Source Technology Centre.
+
+$flavour = shift;
+$output = shift;
+if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
+
+$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
+die "can't locate x86_64-xlate.pl";
+
+open STDOUT,"| $^X $xlate $flavour $output";
+
+# common register layout
+$nlo="%rax";
+$nhi="%rbx";
+$Zlo="%r8";
+$Zhi="%r9";
+$tmp="%r10";
+$rem_4bit = "%r11";
+
+$Xi="%rdi";
+$Htbl="%rsi";
+
+# per-function register layout
+$cnt="%rcx";
+$rem="%rdx";
+
+sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or
+ $r =~ s/%[er]([sd]i)/%\1l/ or
+ $r =~ s/%[er](bp)/%\1l/ or
+ $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; }
+
+sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
+{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
+ my $arg = pop;
+ $arg = "\$$arg" if ($arg*1 eq $arg);
+ $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
+}
+
+{ my $N;
+ sub loop() {
+ my $inp = shift;
+
+ $N++;
+$code.=<<___;
+ xor $nlo,$nlo
+ xor $nhi,$nhi
+ mov `&LB("$Zlo")`,`&LB("$nlo")`
+ mov `&LB("$Zlo")`,`&LB("$nhi")`
+ shl \$4,`&LB("$nlo")`
+ mov \$14,$cnt
+ mov 8($Htbl,$nlo),$Zlo
+ mov ($Htbl,$nlo),$Zhi
+ and \$0xf0,`&LB("$nhi")`
+ mov $Zlo,$rem
+ jmp .Loop$N
+
+.align 16
+.Loop$N:
+ shr \$4,$Zlo
+ and \$0xf,$rem
+ mov $Zhi,$tmp
+ mov ($inp,$cnt),`&LB("$nlo")`
+ shr \$4,$Zhi
+ xor 8($Htbl,$nhi),$Zlo
+ shl \$60,$tmp
+ xor ($Htbl,$nhi),$Zhi
+ mov `&LB("$nlo")`,`&LB("$nhi")`
+ xor ($rem_4bit,$rem,8),$Zhi
+ mov $Zlo,$rem
+ shl \$4,`&LB("$nlo")`
+ xor $tmp,$Zlo
+ dec $cnt
+ js .Lbreak$N
+
+ shr \$4,$Zlo
+ and \$0xf,$rem
+ mov $Zhi,$tmp
+ shr \$4,$Zhi
+ xor 8($Htbl,$nlo),$Zlo
+ shl \$60,$tmp
+ xor ($Htbl,$nlo),$Zhi
+ and \$0xf0,`&LB("$nhi")`
+ xor ($rem_4bit,$rem,8),$Zhi
+ mov $Zlo,$rem
+ xor $tmp,$Zlo
+ jmp .Loop$N
+
+.align 16
+.Lbreak$N:
+ shr \$4,$Zlo
+ and \$0xf,$rem
+ mov $Zhi,$tmp
+ shr \$4,$Zhi
+ xor 8($Htbl,$nlo),$Zlo
+ shl \$60,$tmp
+ xor ($Htbl,$nlo),$Zhi
+ and \$0xf0,`&LB("$nhi")`
+ xor ($rem_4bit,$rem,8),$Zhi
+ mov $Zlo,$rem
+ xor $tmp,$Zlo
+
+ shr \$4,$Zlo
+ and \$0xf,$rem
+ mov $Zhi,$tmp
+ shr \$4,$Zhi
+ xor 8($Htbl,$nhi),$Zlo
+ shl \$60,$tmp
+ xor ($Htbl,$nhi),$Zhi
+ xor $tmp,$Zlo
+ xor ($rem_4bit,$rem,8),$Zhi
+
+ bswap $Zlo
+ bswap $Zhi
+___
+}}
+
+$code=<<___;
+.text
+
+.globl gcm_gmult_4bit
+.type gcm_gmult_4bit,\@function,2
+.align 16
+gcm_gmult_4bit:
+ push %rbx
+ push %rbp # %rbp and %r12 are pushed exclusively in
+ push %r12 # order to reuse Win64 exception handler...
+.Lgmult_prologue:
+
+ movzb 15($Xi),$Zlo
+ lea .Lrem_4bit(%rip),$rem_4bit
+___
+ &loop ($Xi);
+$code.=<<___;
+ mov $Zlo,8($Xi)
+ mov $Zhi,($Xi)
+
+ mov 16(%rsp),%rbx
+ lea 24(%rsp),%rsp
+.Lgmult_epilogue:
+ ret
+.size gcm_gmult_4bit,.-gcm_gmult_4bit
+___
+
+# per-function register layout
+$inp="%rdx";
+$len="%rcx";
+$rem_8bit=$rem_4bit;
+
+$code.=<<___;
+.globl gcm_ghash_4bit
+.type gcm_ghash_4bit,\@function,4
+.align 16
+gcm_ghash_4bit:
+ push %rbx
+ push %rbp
+ push %r12
+ push %r13
+ push %r14
+ push %r15
+ sub \$280,%rsp
+.Lghash_prologue:
+ mov $inp,%r14 # reassign couple of args
+ mov $len,%r15
+___
+{ my $inp="%r14";
+ my $dat="%edx";
+ my $len="%r15";
+ my @nhi=("%ebx","%ecx");
+ my @rem=("%r12","%r13");
+ my $Hshr4="%rbp";
+
+ &sub ($Htbl,-128); # size optimization
+ &lea ($Hshr4,"16+128(%rsp)");
+ { my @lo =($nlo,$nhi);
+ my @hi =($Zlo,$Zhi);
+
+ &xor ($dat,$dat);
+ for ($i=0,$j=-2;$i<18;$i++,$j++) {
+ &mov ("$j(%rsp)",&LB($dat)) if ($i>1);
+ &or ($lo[0],$tmp) if ($i>1);
+ &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17);
+ &shr ($lo[1],4) if ($i>0 && $i<17);
+ &mov ($tmp,$hi[1]) if ($i>0 && $i<17);
+ &shr ($hi[1],4) if ($i>0 && $i<17);
+ &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1);
+ &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16);
+ &shl (&LB($dat),4) if ($i>0 && $i<17);
+ &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1);
+ &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16);
+ &shl ($tmp,60) if ($i>0 && $i<17);
+
+ push (@lo,shift(@lo));
+ push (@hi,shift(@hi));
+ }
+ }
+ &add ($Htbl,-128);
+ &mov ($Zlo,"8($Xi)");
+ &mov ($Zhi,"0($Xi)");
+ &add ($len,$inp); # pointer to the end of data
+ &lea ($rem_8bit,".Lrem_8bit(%rip)");
+ &jmp (".Louter_loop");
+
+$code.=".align 16\n.Louter_loop:\n";
+ &xor ($Zhi,"($inp)");
+ &mov ("%rdx","8($inp)");
+ &lea ($inp,"16($inp)");
+ &xor ("%rdx",$Zlo);
+ &mov ("($Xi)",$Zhi);
+ &mov ("8($Xi)","%rdx");
+ &shr ("%rdx",32);
+
+ &xor ($nlo,$nlo);
+ &rol ($dat,8);
+ &mov (&LB($nlo),&LB($dat));
+ &movz ($nhi[0],&LB($dat));
+ &shl (&LB($nlo),4);
+ &shr ($nhi[0],4);
+
+ for ($j=11,$i=0;$i<15;$i++) {
+ &rol ($dat,8);
+ &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0);
+ &xor ($Zhi,"($Htbl,$nlo)") if ($i>0);
+ &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0);
+ &mov ($Zhi,"($Htbl,$nlo)") if ($i==0);
+
+ &mov (&LB($nlo),&LB($dat));
+ &xor ($Zlo,$tmp) if ($i>0);
+ &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0);
+
+ &movz ($nhi[1],&LB($dat));
+ &shl (&LB($nlo),4);
+ &movzb ($rem[0],"(%rsp,$nhi[0])");
+
+ &shr ($nhi[1],4) if ($i<14);
+ &and ($nhi[1],0xf0) if ($i==14);
+ &shl ($rem[1],48) if ($i>0);
+ &xor ($rem[0],$Zlo);
+
+ &mov ($tmp,$Zhi);
+ &xor ($Zhi,$rem[1]) if ($i>0);
+ &shr ($Zlo,8);
+
+ &movz ($rem[0],&LB($rem[0]));
+ &mov ($dat,"$j($Xi)") if (--$j%4==0);
+ &shr ($Zhi,8);
+
+ &xor ($Zlo,"-128($Hshr4,$nhi[0],8)");
+ &shl ($tmp,56);
+ &xor ($Zhi,"($Hshr4,$nhi[0],8)");
+
+ unshift (@nhi,pop(@nhi)); # "rotate" registers
+ unshift (@rem,pop(@rem));
+ }
+ &movzw ($rem[1],"($rem_8bit,$rem[1],2)");
+ &xor ($Zlo,"8($Htbl,$nlo)");
+ &xor ($Zhi,"($Htbl,$nlo)");
+
+ &shl ($rem[1],48);
+ &xor ($Zlo,$tmp);
+
+ &xor ($Zhi,$rem[1]);
+ &movz ($rem[0],&LB($Zlo));
+ &shr ($Zlo,4);
+
+ &mov ($tmp,$Zhi);
+ &shl (&LB($rem[0]),4);
+ &shr ($Zhi,4);
+
+ &xor ($Zlo,"8($Htbl,$nhi[0])");
+ &movzw ($rem[0],"($rem_8bit,$rem[0],2)");
+ &shl ($tmp,60);
+
+ &xor ($Zhi,"($Htbl,$nhi[0])");
+ &xor ($Zlo,$tmp);
+ &shl ($rem[0],48);
+
+ &bswap ($Zlo);
+ &xor ($Zhi,$rem[0]);
+
+ &bswap ($Zhi);
+ &cmp ($inp,$len);
+ &jb (".Louter_loop");
+}
+$code.=<<___;
+ mov $Zlo,8($Xi)
+ mov $Zhi,($Xi)
+
+ lea 280(%rsp),%rsi
+ mov 0(%rsi),%r15
+ mov 8(%rsi),%r14
+ mov 16(%rsi),%r13
+ mov 24(%rsi),%r12
+ mov 32(%rsi),%rbp
+ mov 40(%rsi),%rbx
+ lea 48(%rsi),%rsp
+.Lghash_epilogue:
+ ret
+.size gcm_ghash_4bit,.-gcm_ghash_4bit
+___
+
+######################################################################
+# PCLMULQDQ version.
+
+@_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
+ ("%rdi","%rsi","%rdx","%rcx"); # Unix order
+
+($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2";
+($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
+
+sub clmul64x64_T2 { # minimal register pressure
+my ($Xhi,$Xi,$Hkey,$modulo)=@_;
+
+$code.=<<___ if (!defined($modulo));
+ movdqa $Xi,$Xhi #
+ pshufd \$0b01001110,$Xi,$T1
+ pshufd \$0b01001110,$Hkey,$T2
+ pxor $Xi,$T1 #
+ pxor $Hkey,$T2
+___
+$code.=<<___;
+ pclmulqdq \$0x00,$Hkey,$Xi #######
+ pclmulqdq \$0x11,$Hkey,$Xhi #######
+ pclmulqdq \$0x00,$T2,$T1 #######
+ pxor $Xi,$T1 #
+ pxor $Xhi,$T1 #
+
+ movdqa $T1,$T2 #
+ psrldq \$8,$T1
+ pslldq \$8,$T2 #
+ pxor $T1,$Xhi
+ pxor $T2,$Xi #
+___
+}
+
+sub reduction_alg9 { # 17/13 times faster than Intel version
+my ($Xhi,$Xi) = @_;
+
+$code.=<<___;
+ # 1st phase
+ movdqa $Xi,$T1 #
+ psllq \$1,$Xi
+ pxor $T1,$Xi #
+ psllq \$5,$Xi #
+ pxor $T1,$Xi #
+ psllq \$57,$Xi #
+ movdqa $Xi,$T2 #
+ pslldq \$8,$Xi
+ psrldq \$8,$T2 #
+ pxor $T1,$Xi
+ pxor $T2,$Xhi #
+
+ # 2nd phase
+ movdqa $Xi,$T2
+ psrlq \$5,$Xi
+ pxor $T2,$Xi #
+ psrlq \$1,$Xi #
+ pxor $T2,$Xi #
+ pxor $Xhi,$T2
+ psrlq \$1,$Xi #
+ pxor $T2,$Xi #
+___
+}
+
+{ my ($Htbl,$Xip)=@_4args;
+
+$code.=<<___;
+.globl gcm_init_clmul
+.type gcm_init_clmul,\@abi-omnipotent
+.align 16
+gcm_init_clmul:
+ movdqu ($Xip),$Hkey
+ pshufd \$0b01001110,$Hkey,$Hkey # dword swap
+
+ # <<1 twist
+ pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
+ movdqa $Hkey,$T1
+ psllq \$1,$Hkey
+ pxor $T3,$T3 #
+ psrlq \$63,$T1
+ pcmpgtd $T2,$T3 # broadcast carry bit
+ pslldq \$8,$T1
+ por $T1,$Hkey # H<<=1
+
+ # magic reduction
+ pand .L0x1c2_polynomial(%rip),$T3
+ pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial
+
+ # calculate H^2
+ movdqa $Hkey,$Xi
+___
+ &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
+ &reduction_alg9 ($Xhi,$Xi);
+$code.=<<___;
+ movdqu $Hkey,($Htbl) # save H
+ movdqu $Xi,16($Htbl) # save H^2
+ ret
+.size gcm_init_clmul,.-gcm_init_clmul
+___
+}
+
+{ my ($Xip,$Htbl)=@_4args;
+
+$code.=<<___;
+.globl gcm_gmult_clmul
+.type gcm_gmult_clmul,\@abi-omnipotent
+.align 16
+gcm_gmult_clmul:
+ movdqu ($Xip),$Xi
+ movdqa .Lbswap_mask(%rip),$T3
+ movdqu ($Htbl),$Hkey
+ pshufb $T3,$Xi
+___
+ &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
+ &reduction_alg9 ($Xhi,$Xi);
+$code.=<<___;
+ pshufb $T3,$Xi
+ movdqu $Xi,($Xip)
+ ret
+.size gcm_gmult_clmul,.-gcm_gmult_clmul
+___
+}
+
+{ my ($Xip,$Htbl,$inp,$len)=@_4args;
+ my $Xn="%xmm6";
+ my $Xhn="%xmm7";
+ my $Hkey2="%xmm8";
+ my $T1n="%xmm9";
+ my $T2n="%xmm10";
+
+$code.=<<___;
+.globl gcm_ghash_clmul
+.type gcm_ghash_clmul,\@abi-omnipotent
+.align 16
+gcm_ghash_clmul:
+___
+$code.=<<___ if ($win64);
+.LSEH_begin_gcm_ghash_clmul:
+ # I can't trust assembler to use specific encoding:-(
+ .byte 0x48,0x83,0xec,0x58 #sub \$0x58,%rsp
+ .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
+ .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp)
+ .byte 0x44,0x0f,0x29,0x44,0x24,0x20 #movaps %xmm8,0x20(%rsp)
+ .byte 0x44,0x0f,0x29,0x4c,0x24,0x30 #movaps %xmm9,0x30(%rsp)
+ .byte 0x44,0x0f,0x29,0x54,0x24,0x40 #movaps %xmm10,0x40(%rsp)
+___
+$code.=<<___;
+ movdqa .Lbswap_mask(%rip),$T3
+
+ movdqu ($Xip),$Xi
+ movdqu ($Htbl),$Hkey
+ pshufb $T3,$Xi
+
+ sub \$0x10,$len
+ jz .Lodd_tail
+
+ movdqu 16($Htbl),$Hkey2
+ #######
+ # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
+ # [(H*Ii+1) + (H*Xi+1)] mod P =
+ # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
+ #
+ movdqu ($inp),$T1 # Ii
+ movdqu 16($inp),$Xn # Ii+1
+ pshufb $T3,$T1
+ pshufb $T3,$Xn
+ pxor $T1,$Xi # Ii+Xi
+___
+ &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1
+$code.=<<___;
+ movdqa $Xi,$Xhi #
+ pshufd \$0b01001110,$Xi,$T1
+ pshufd \$0b01001110,$Hkey2,$T2
+ pxor $Xi,$T1 #
+ pxor $Hkey2,$T2
+
+ lea 32($inp),$inp # i+=2
+ sub \$0x20,$len
+ jbe .Leven_tail
+
+.Lmod_loop:
+___
+ &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi)
+$code.=<<___;
+ movdqu ($inp),$T1 # Ii
+ pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
+ pxor $Xhn,$Xhi
+
+ movdqu 16($inp),$Xn # Ii+1
+ pshufb $T3,$T1
+ pshufb $T3,$Xn
+
+ movdqa $Xn,$Xhn #
+ pshufd \$0b01001110,$Xn,$T1n
+ pshufd \$0b01001110,$Hkey,$T2n
+ pxor $Xn,$T1n #
+ pxor $Hkey,$T2n
+ pxor $T1,$Xhi # "Ii+Xi", consume early
+
+ movdqa $Xi,$T1 # 1st phase
+ psllq \$1,$Xi
+ pxor $T1,$Xi #
+ psllq \$5,$Xi #
+ pxor $T1,$Xi #
+ pclmulqdq \$0x00,$Hkey,$Xn #######
+ psllq \$57,$Xi #
+ movdqa $Xi,$T2 #
+ pslldq \$8,$Xi
+ psrldq \$8,$T2 #
+ pxor $T1,$Xi
+ pxor $T2,$Xhi #
+
+ pclmulqdq \$0x11,$Hkey,$Xhn #######
+ movdqa $Xi,$T2 # 2nd phase
+ psrlq \$5,$Xi
+ pxor $T2,$Xi #
+ psrlq \$1,$Xi #
+ pxor $T2,$Xi #
+ pxor $Xhi,$T2
+ psrlq \$1,$Xi #
+ pxor $T2,$Xi #
+
+ pclmulqdq \$0x00,$T2n,$T1n #######
+ movdqa $Xi,$Xhi #
+ pshufd \$0b01001110,$Xi,$T1
+ pshufd \$0b01001110,$Hkey2,$T2
+ pxor $Xi,$T1 #
+ pxor $Hkey2,$T2
+
+ pxor $Xn,$T1n #
+ pxor $Xhn,$T1n #
+ movdqa $T1n,$T2n #
+ psrldq \$8,$T1n
+ pslldq \$8,$T2n #
+ pxor $T1n,$Xhn
+ pxor $T2n,$Xn #
+
+ lea 32($inp),$inp
+ sub \$0x20,$len
+ ja .Lmod_loop
+
+.Leven_tail:
+___
+ &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi)
+$code.=<<___;
+ pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
+ pxor $Xhn,$Xhi
+___
+ &reduction_alg9 ($Xhi,$Xi);
+$code.=<<___;
+ test $len,$len
+ jnz .Ldone
+
+.Lodd_tail:
+ movdqu ($inp),$T1 # Ii
+ pshufb $T3,$T1
+ pxor $T1,$Xi # Ii+Xi
+___
+ &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
+ &reduction_alg9 ($Xhi,$Xi);
+$code.=<<___;
+.Ldone:
+ pshufb $T3,$Xi
+ movdqu $Xi,($Xip)
+___
+$code.=<<___ if ($win64);
+ movaps (%rsp),%xmm6
+ movaps 0x10(%rsp),%xmm7
+ movaps 0x20(%rsp),%xmm8
+ movaps 0x30(%rsp),%xmm9
+ movaps 0x40(%rsp),%xmm10
+ add \$0x58,%rsp
+___
+$code.=<<___;
+ ret
+.LSEH_end_gcm_ghash_clmul:
+.size gcm_ghash_clmul,.-gcm_ghash_clmul
+___
+}
+
+$code.=<<___;
+.align 64
+.Lbswap_mask:
+ .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
+.L0x1c2_polynomial:
+ .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
+.align 64
+.type .Lrem_4bit,\@object
+.Lrem_4bit:
+ .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
+ .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
+ .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
+ .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
+.type .Lrem_8bit,\@object
+.Lrem_8bit:
+ .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
+ .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
+ .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
+ .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
+ .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
+ .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
+ .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
+ .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
+ .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
+ .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
+ .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
+ .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
+ .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
+ .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
+ .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
+ .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
+ .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
+ .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
+ .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
+ .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
+ .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
+ .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
+ .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
+ .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
+ .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
+ .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
+ .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
+ .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
+ .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
+ .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
+ .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
+ .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
+
+.asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
+.align 64
+___
+
+# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
+# CONTEXT *context,DISPATCHER_CONTEXT *disp)
+if ($win64) {
+$rec="%rcx";
+$frame="%rdx";
+$context="%r8";
+$disp="%r9";
+
+$code.=<<___;
+.extern __imp_RtlVirtualUnwind
+.type se_handler,\@abi-omnipotent
+.align 16
+se_handler:
+ push %rsi
+ push %rdi
+ push %rbx
+ push %rbp
+ push %r12
+ push %r13
+ push %r14
+ push %r15
+ pushfq
+ sub \$64,%rsp
+
+ mov 120($context),%rax # pull context->Rax
+ mov 248($context),%rbx # pull context->Rip
+
+ mov 8($disp),%rsi # disp->ImageBase
+ mov 56($disp),%r11 # disp->HandlerData
+
+ mov 0(%r11),%r10d # HandlerData[0]
+ lea (%rsi,%r10),%r10 # prologue label
+ cmp %r10,%rbx # context->Rip<prologue label
+ jb .Lin_prologue
+
+ mov 152($context),%rax # pull context->Rsp
+
+ mov 4(%r11),%r10d # HandlerData[1]
+ lea (%rsi,%r10),%r10 # epilogue label
+ cmp %r10,%rbx # context->Rip>=epilogue label
+ jae .Lin_prologue
+
+ lea 24(%rax),%rax # adjust "rsp"
+
+ mov -8(%rax),%rbx
+ mov -16(%rax),%rbp
+ mov -24(%rax),%r12
+ mov %rbx,144($context) # restore context->Rbx
+ mov %rbp,160($context) # restore context->Rbp
+ mov %r12,216($context) # restore context->R12
+
+.Lin_prologue:
+ mov 8(%rax),%rdi
+ mov 16(%rax),%rsi
+ mov %rax,152($context) # restore context->Rsp
+ mov %rsi,168($context) # restore context->Rsi
+ mov %rdi,176($context) # restore context->Rdi
+
+ mov 40($disp),%rdi # disp->ContextRecord
+ mov $context,%rsi # context
+ mov \$`1232/8`,%ecx # sizeof(CONTEXT)
+ .long 0xa548f3fc # cld; rep movsq
+
+ mov $disp,%rsi
+ xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
+ mov 8(%rsi),%rdx # arg2, disp->ImageBase
+ mov 0(%rsi),%r8 # arg3, disp->ControlPc
+ mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
+ mov 40(%rsi),%r10 # disp->ContextRecord
+ lea 56(%rsi),%r11 # &disp->HandlerData
+ lea 24(%rsi),%r12 # &disp->EstablisherFrame
+ mov %r10,32(%rsp) # arg5
+ mov %r11,40(%rsp) # arg6
+ mov %r12,48(%rsp) # arg7
+ mov %rcx,56(%rsp) # arg8, (NULL)
+ call *__imp_RtlVirtualUnwind(%rip)
+
+ mov \$1,%eax # ExceptionContinueSearch
+ add \$64,%rsp
+ popfq
+ pop %r15
+ pop %r14
+ pop %r13
+ pop %r12
+ pop %rbp
+ pop %rbx
+ pop %rdi
+ pop %rsi
+ ret
+.size se_handler,.-se_handler
+
+.section .pdata
+.align 4
+ .rva .LSEH_begin_gcm_gmult_4bit
+ .rva .LSEH_end_gcm_gmult_4bit
+ .rva .LSEH_info_gcm_gmult_4bit
+
+ .rva .LSEH_begin_gcm_ghash_4bit
+ .rva .LSEH_end_gcm_ghash_4bit
+ .rva .LSEH_info_gcm_ghash_4bit
+
+ .rva .LSEH_begin_gcm_ghash_clmul
+ .rva .LSEH_end_gcm_ghash_clmul
+ .rva .LSEH_info_gcm_ghash_clmul
+
+.section .xdata
+.align 8
+.LSEH_info_gcm_gmult_4bit:
+ .byte 9,0,0,0
+ .rva se_handler
+ .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData
+.LSEH_info_gcm_ghash_4bit:
+ .byte 9,0,0,0
+ .rva se_handler
+ .rva .Lghash_prologue,.Lghash_epilogue # HandlerData
+.LSEH_info_gcm_ghash_clmul:
+ .byte 0x01,0x1f,0x0b,0x00
+ .byte 0x1f,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10
+ .byte 0x19,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9
+ .byte 0x13,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8
+ .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7
+ .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6
+ .byte 0x04,0xa2,0x00,0x00 #sub rsp,0x58
+___
+}
+
+$code =~ s/\`([^\`]*)\`/eval($1)/gem;
+
+print $code;
+
+close STDOUT;