aboutsummaryrefslogtreecommitdiff
path: root/openssl/crypto/rc2/rrc2.doc
diff options
context:
space:
mode:
authormarha <marha@users.sourceforge.net>2009-06-28 22:07:26 +0000
committermarha <marha@users.sourceforge.net>2009-06-28 22:07:26 +0000
commit3562e78743202e43aec8727005182a2558117eca (patch)
tree8f9113a77d12470c5c851a2a8e4cb02e89df7d43 /openssl/crypto/rc2/rrc2.doc
downloadvcxsrv-3562e78743202e43aec8727005182a2558117eca.tar.gz
vcxsrv-3562e78743202e43aec8727005182a2558117eca.tar.bz2
vcxsrv-3562e78743202e43aec8727005182a2558117eca.zip
Checked in the following released items:
xkeyboard-config-1.4.tar.gz ttf-bitstream-vera-1.10.tar.gz font-alias-1.0.1.tar.gz font-sun-misc-1.0.0.tar.gz font-sun-misc-1.0.0.tar.gz font-sony-misc-1.0.0.tar.gz font-schumacher-misc-1.0.0.tar.gz font-mutt-misc-1.0.0.tar.gz font-misc-misc-1.0.0.tar.gz font-misc-meltho-1.0.0.tar.gz font-micro-misc-1.0.0.tar.gz font-jis-misc-1.0.0.tar.gz font-isas-misc-1.0.0.tar.gz font-dec-misc-1.0.0.tar.gz font-daewoo-misc-1.0.0.tar.gz font-cursor-misc-1.0.0.tar.gz font-arabic-misc-1.0.0.tar.gz font-winitzki-cyrillic-1.0.0.tar.gz font-misc-cyrillic-1.0.0.tar.gz font-cronyx-cyrillic-1.0.0.tar.gz font-screen-cyrillic-1.0.1.tar.gz font-xfree86-type1-1.0.1.tar.gz font-adobe-utopia-type1-1.0.1.tar.gz font-ibm-type1-1.0.0.tar.gz font-bitstream-type1-1.0.0.tar.gz font-bitstream-speedo-1.0.0.tar.gz font-bh-ttf-1.0.0.tar.gz font-bh-type1-1.0.0.tar.gz font-bitstream-100dpi-1.0.0.tar.gz font-bh-lucidatypewriter-100dpi-1.0.0.tar.gz font-bh-100dpi-1.0.0.tar.gz font-adobe-utopia-100dpi-1.0.1.tar.gz font-adobe-100dpi-1.0.0.tar.gz font-util-1.0.1.tar.gz font-bitstream-75dpi-1.0.0.tar.gz font-bh-lucidatypewriter-75dpi-1.0.0.tar.gz font-adobe-utopia-75dpi-1.0.1.tar.gz font-bh-75dpi-1.0.0.tar.gz bdftopcf-1.0.1.tar.gz font-adobe-75dpi-1.0.0.tar.gz mkfontscale-1.0.6.tar.gz openssl-0.9.8k.tar.gz bigreqsproto-1.0.2.tar.gz xtrans-1.2.2.tar.gz resourceproto-1.0.2.tar.gz inputproto-1.4.4.tar.gz compositeproto-0.4.tar.gz damageproto-1.1.0.tar.gz zlib-1.2.3.tar.gz xkbcomp-1.0.5.tar.gz freetype-2.3.9.tar.gz pthreads-w32-2-8-0-release.tar.gz pixman-0.12.0.tar.gz kbproto-1.0.3.tar.gz evieext-1.0.2.tar.gz fixesproto-4.0.tar.gz recordproto-1.13.2.tar.gz randrproto-1.2.2.tar.gz scrnsaverproto-1.1.0.tar.gz renderproto-0.9.3.tar.gz xcmiscproto-1.1.2.tar.gz fontsproto-2.0.2.tar.gz xextproto-7.0.3.tar.gz xproto-7.0.14.tar.gz libXdmcp-1.0.2.tar.gz libxkbfile-1.0.5.tar.gz libfontenc-1.0.4.tar.gz libXfont-1.3.4.tar.gz libX11-1.1.5.tar.gz libXau-1.0.4.tar.gz libxcb-1.1.tar.gz xorg-server-1.5.3.tar.gz
Diffstat (limited to 'openssl/crypto/rc2/rrc2.doc')
-rw-r--r--openssl/crypto/rc2/rrc2.doc219
1 files changed, 219 insertions, 0 deletions
diff --git a/openssl/crypto/rc2/rrc2.doc b/openssl/crypto/rc2/rrc2.doc
new file mode 100644
index 000000000..f93ee003d
--- /dev/null
+++ b/openssl/crypto/rc2/rrc2.doc
@@ -0,0 +1,219 @@
+>From cygnus.mincom.oz.au!minbne.mincom.oz.au!bunyip.cc.uq.oz.au!munnari.OZ.AU!comp.vuw.ac.nz!waikato!auckland.ac.nz!news Mon Feb 12 18:48:17 EST 1996
+Article 23601 of sci.crypt:
+Path: cygnus.mincom.oz.au!minbne.mincom.oz.au!bunyip.cc.uq.oz.au!munnari.OZ.AU!comp.vuw.ac.nz!waikato!auckland.ac.nz!news
+>From: pgut01@cs.auckland.ac.nz (Peter Gutmann)
+Newsgroups: sci.crypt
+Subject: Specification for Ron Rivests Cipher No.2
+Date: 11 Feb 1996 06:45:03 GMT
+Organization: University of Auckland
+Lines: 203
+Sender: pgut01@cs.auckland.ac.nz (Peter Gutmann)
+Message-ID: <4fk39f$f70@net.auckland.ac.nz>
+NNTP-Posting-Host: cs26.cs.auckland.ac.nz
+X-Newsreader: NN version 6.5.0 #3 (NOV)
+
+
+
+
+ Ron Rivest's Cipher No.2
+ ------------------------
+
+Ron Rivest's Cipher No.2 (hereafter referred to as RRC.2, other people may
+refer to it by other names) is word oriented, operating on a block of 64 bits
+divided into four 16-bit words, with a key table of 64 words. All data units
+are little-endian. This functional description of the algorithm is based in
+the paper "The RC5 Encryption Algorithm" (RC5 is a trademark of RSADSI), using
+the same general layout, terminology, and pseudocode style.
+
+
+Notation and RRC.2 Primitive Operations
+
+RRC.2 uses the following primitive operations:
+
+1. Two's-complement addition of words, denoted by "+". The inverse operation,
+ subtraction, is denoted by "-".
+2. Bitwise exclusive OR, denoted by "^".
+3. Bitwise AND, denoted by "&".
+4. Bitwise NOT, denoted by "~".
+5. A left-rotation of words; the rotation of word x left by y is denoted
+ x <<< y. The inverse operation, right-rotation, is denoted x >>> y.
+
+These operations are directly and efficiently supported by most processors.
+
+
+The RRC.2 Algorithm
+
+RRC.2 consists of three components, a *key expansion* algorithm, an
+*encryption* algorithm, and a *decryption* algorithm.
+
+
+Key Expansion
+
+The purpose of the key-expansion routine is to expand the user's key K to fill
+the expanded key array S, so S resembles an array of random binary words
+determined by the user's secret key K.
+
+Initialising the S-box
+
+RRC.2 uses a single 256-byte S-box derived from the ciphertext contents of
+Beale Cipher No.1 XOR'd with a one-time pad. The Beale Ciphers predate modern
+cryptography by enough time that there should be no concerns about trapdoors
+hidden in the data. They have been published widely, and the S-box can be
+easily recreated from the one-time pad values and the Beale Cipher data taken
+from a standard source. To initialise the S-box:
+
+ for i = 0 to 255 do
+ sBox[ i ] = ( beale[ i ] mod 256 ) ^ pad[ i ]
+
+The contents of Beale Cipher No.1 and the necessary one-time pad are given as
+an appendix at the end of this document. For efficiency, implementors may wish
+to skip the Beale Cipher expansion and store the sBox table directly.
+
+Expanding the Secret Key to 128 Bytes
+
+The secret key is first expanded to fill 128 bytes (64 words). The expansion
+consists of taking the sum of the first and last bytes in the user key, looking
+up the sum (modulo 256) in the S-box, and appending the result to the key. The
+operation is repeated with the second byte and new last byte of the key until
+all 128 bytes have been generated. Note that the following pseudocode treats
+the S array as an array of 128 bytes rather than 64 words.
+
+ for j = 0 to length-1 do
+ S[ j ] = K[ j ]
+ for j = length to 127 do
+ s[ j ] = sBox[ ( S[ j-length ] + S[ j-1 ] ) mod 256 ];
+
+At this point it is possible to perform a truncation of the effective key
+length to ease the creation of espionage-enabled software products. However
+since the author cannot conceive why anyone would want to do this, it will not
+be considered further.
+
+The final phase of the key expansion involves replacing the first byte of S
+with the entry selected from the S-box:
+
+ S[ 0 ] = sBox[ S[ 0 ] ]
+
+
+Encryption
+
+The cipher has 16 full rounds, each divided into 4 subrounds. Two of the full
+rounds perform an additional transformation on the data. Note that the
+following pseudocode treats the S array as an array of 64 words rather than 128
+bytes.
+
+ for i = 0 to 15 do
+ j = i * 4;
+ word0 = ( word0 + ( word1 & ~word3 ) + ( word2 & word3 ) + S[ j+0 ] ) <<< 1
+ word1 = ( word1 + ( word2 & ~word0 ) + ( word3 & word0 ) + S[ j+1 ] ) <<< 2
+ word2 = ( word2 + ( word3 & ~word1 ) + ( word0 & word1 ) + S[ j+2 ] ) <<< 3
+ word3 = ( word3 + ( word0 & ~word2 ) + ( word1 & word2 ) + S[ j+3 ] ) <<< 5
+
+In addition the fifth and eleventh rounds add the contents of the S-box indexed
+by one of the data words to another of the data words following the four
+subrounds as follows:
+
+ word0 = word0 + S[ word3 & 63 ];
+ word1 = word1 + S[ word0 & 63 ];
+ word2 = word2 + S[ word1 & 63 ];
+ word3 = word3 + S[ word2 & 63 ];
+
+
+Decryption
+
+The decryption operation is simply the inverse of the encryption operation.
+Note that the following pseudocode treats the S array as an array of 64 words
+rather than 128 bytes.
+
+ for i = 15 downto 0 do
+ j = i * 4;
+ word3 = ( word3 >>> 5 ) - ( word0 & ~word2 ) - ( word1 & word2 ) - S[ j+3 ]
+ word2 = ( word2 >>> 3 ) - ( word3 & ~word1 ) - ( word0 & word1 ) - S[ j+2 ]
+ word1 = ( word1 >>> 2 ) - ( word2 & ~word0 ) - ( word3 & word0 ) - S[ j+1 ]
+ word0 = ( word0 >>> 1 ) - ( word1 & ~word3 ) - ( word2 & word3 ) - S[ j+0 ]
+
+In addition the fifth and eleventh rounds subtract the contents of the S-box
+indexed by one of the data words from another one of the data words following
+the four subrounds as follows:
+
+ word3 = word3 - S[ word2 & 63 ]
+ word2 = word2 - S[ word1 & 63 ]
+ word1 = word1 - S[ word0 & 63 ]
+ word0 = word0 - S[ word3 & 63 ]
+
+
+Test Vectors
+
+The following test vectors may be used to test the correctness of an RRC.2
+implementation:
+
+ Key: 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+ Plain: 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+ Cipher: 0x1C, 0x19, 0x8A, 0x83, 0x8D, 0xF0, 0x28, 0xB7
+
+ Key: 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
+ Plain: 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+ Cipher: 0x21, 0x82, 0x9C, 0x78, 0xA9, 0xF9, 0xC0, 0x74
+
+ Key: 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+ Plain: 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
+ Cipher: 0x13, 0xDB, 0x35, 0x17, 0xD3, 0x21, 0x86, 0x9E
+
+ Key: 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
+ Plain: 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+ Cipher: 0x50, 0xDC, 0x01, 0x62, 0xBD, 0x75, 0x7F, 0x31
+
+
+Appendix: Beale Cipher No.1, "The Locality of the Vault", and One-time Pad for
+ Creating the S-Box
+
+Beale Cipher No.1.
+
+ 71, 194, 38,1701, 89, 76, 11, 83,1629, 48, 94, 63, 132, 16, 111, 95,
+ 84, 341, 975, 14, 40, 64, 27, 81, 139, 213, 63, 90,1120, 8, 15, 3,
+ 126,2018, 40, 74, 758, 485, 604, 230, 436, 664, 582, 150, 251, 284, 308, 231,
+ 124, 211, 486, 225, 401, 370, 11, 101, 305, 139, 189, 17, 33, 88, 208, 193,
+ 145, 1, 94, 73, 416, 918, 263, 28, 500, 538, 356, 117, 136, 219, 27, 176,
+ 130, 10, 460, 25, 485, 18, 436, 65, 84, 200, 283, 118, 320, 138, 36, 416,
+ 280, 15, 71, 224, 961, 44, 16, 401, 39, 88, 61, 304, 12, 21, 24, 283,
+ 134, 92, 63, 246, 486, 682, 7, 219, 184, 360, 780, 18, 64, 463, 474, 131,
+ 160, 79, 73, 440, 95, 18, 64, 581, 34, 69, 128, 367, 460, 17, 81, 12,
+ 103, 820, 62, 110, 97, 103, 862, 70, 60,1317, 471, 540, 208, 121, 890, 346,
+ 36, 150, 59, 568, 614, 13, 120, 63, 219, 812,2160,1780, 99, 35, 18, 21,
+ 136, 872, 15, 28, 170, 88, 4, 30, 44, 112, 18, 147, 436, 195, 320, 37,
+ 122, 113, 6, 140, 8, 120, 305, 42, 58, 461, 44, 106, 301, 13, 408, 680,
+ 93, 86, 116, 530, 82, 568, 9, 102, 38, 416, 89, 71, 216, 728, 965, 818,
+ 2, 38, 121, 195, 14, 326, 148, 234, 18, 55, 131, 234, 361, 824, 5, 81,
+ 623, 48, 961, 19, 26, 33, 10,1101, 365, 92, 88, 181, 275, 346, 201, 206
+
+One-time Pad.
+
+ 158, 186, 223, 97, 64, 145, 190, 190, 117, 217, 163, 70, 206, 176, 183, 194,
+ 146, 43, 248, 141, 3, 54, 72, 223, 233, 153, 91, 210, 36, 131, 244, 161,
+ 105, 120, 113, 191, 113, 86, 19, 245, 213, 221, 43, 27, 242, 157, 73, 213,
+ 193, 92, 166, 10, 23, 197, 112, 110, 193, 30, 156, 51, 125, 51, 158, 67,
+ 197, 215, 59, 218, 110, 246, 181, 0, 135, 76, 164, 97, 47, 87, 234, 108,
+ 144, 127, 6, 6, 222, 172, 80, 144, 22, 245, 207, 70, 227, 182, 146, 134,
+ 119, 176, 73, 58, 135, 69, 23, 198, 0, 170, 32, 171, 176, 129, 91, 24,
+ 126, 77, 248, 0, 118, 69, 57, 60, 190, 171, 217, 61, 136, 169, 196, 84,
+ 168, 167, 163, 102, 223, 64, 174, 178, 166, 239, 242, 195, 249, 92, 59, 38,
+ 241, 46, 236, 31, 59, 114, 23, 50, 119, 186, 7, 66, 212, 97, 222, 182,
+ 230, 118, 122, 86, 105, 92, 179, 243, 255, 189, 223, 164, 194, 215, 98, 44,
+ 17, 20, 53, 153, 137, 224, 176, 100, 208, 114, 36, 200, 145, 150, 215, 20,
+ 87, 44, 252, 20, 235, 242, 163, 132, 63, 18, 5, 122, 74, 97, 34, 97,
+ 142, 86, 146, 221, 179, 166, 161, 74, 69, 182, 88, 120, 128, 58, 76, 155,
+ 15, 30, 77, 216, 165, 117, 107, 90, 169, 127, 143, 181, 208, 137, 200, 127,
+ 170, 195, 26, 84, 255, 132, 150, 58, 103, 250, 120, 221, 237, 37, 8, 99
+
+
+Implementation
+
+A non-US based programmer who has never seen any encryption code before will
+shortly be implementing RRC.2 based solely on this specification and not on
+knowledge of any other encryption algorithms. Stand by.
+
+
+