diff options
author | marha <marha@users.sourceforge.net> | 2014-04-14 23:49:11 +0200 |
---|---|---|
committer | marha <marha@users.sourceforge.net> | 2014-04-14 23:49:11 +0200 |
commit | 3053928d3e9e12e59c46917113bad496487f1d28 (patch) | |
tree | 591c17cafc365399cc88774bba985af7276d957e /tools/plink/sshbn.c | |
parent | 7c21629fbeb51b65fd0625bb36d888587d62fd89 (diff) | |
parent | a3fe3e22d85e8aa795df85c21814fc84cac42e99 (diff) | |
download | vcxsrv-3053928d3e9e12e59c46917113bad496487f1d28.tar.gz vcxsrv-3053928d3e9e12e59c46917113bad496487f1d28.tar.bz2 vcxsrv-3053928d3e9e12e59c46917113bad496487f1d28.zip |
Merge remote-tracking branch 'origin/released'
Conflicts:
tools/plink/misc.h
tools/plink/ssh.c
tools/plink/sshbn.c
tools/plink/winplink.c
Diffstat (limited to 'tools/plink/sshbn.c')
-rwxr-xr-x[-rw-r--r--] | tools/plink/sshbn.c | 3919 |
1 files changed, 2001 insertions, 1918 deletions
diff --git a/tools/plink/sshbn.c b/tools/plink/sshbn.c index 5c1870876..e71940e31 100644..100755 --- a/tools/plink/sshbn.c +++ b/tools/plink/sshbn.c @@ -1,1918 +1,2001 @@ -/*
- * Bignum routines for RSA and DH and stuff.
- */
-
-#include <stdio.h>
-#include <assert.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include "misc.h"
-
-/*
- * Usage notes:
- * * Do not call the DIVMOD_WORD macro with expressions such as array
- * subscripts, as some implementations object to this (see below).
- * * Note that none of the division methods below will cope if the
- * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
- * to avoid this case.
- * If this condition occurs, in the case of the x86 DIV instruction,
- * an overflow exception will occur, which (according to a correspondent)
- * will manifest on Windows as something like
- * 0xC0000095: Integer overflow
- * The C variant won't give the right answer, either.
- */
-
-#if defined __GNUC__ && defined __i386__
-typedef unsigned long BignumInt;
-typedef unsigned long long BignumDblInt;
-#define BIGNUM_INT_MASK 0xFFFFFFFFUL
-#define BIGNUM_TOP_BIT 0x80000000UL
-#define BIGNUM_INT_BITS 32
-#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
-#define DIVMOD_WORD(q, r, hi, lo, w) \
- __asm__("div %2" : \
- "=d" (r), "=a" (q) : \
- "r" (w), "d" (hi), "a" (lo))
-#elif defined _MSC_VER && defined _M_IX86
-typedef unsigned __int32 BignumInt;
-typedef unsigned __int64 BignumDblInt;
-#define BIGNUM_INT_MASK 0xFFFFFFFFUL
-#define BIGNUM_TOP_BIT 0x80000000UL
-#define BIGNUM_INT_BITS 32
-#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
-/* Note: MASM interprets array subscripts in the macro arguments as
- * assembler syntax, which gives the wrong answer. Don't supply them.
- * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
-#define DIVMOD_WORD(q, r, hi, lo, w) do { \
- __asm mov edx, hi \
- __asm mov eax, lo \
- __asm div w \
- __asm mov r, edx \
- __asm mov q, eax \
-} while(0)
-#elif defined _LP64
-/* 64-bit architectures can do 32x32->64 chunks at a time */
-typedef unsigned int BignumInt;
-typedef unsigned long BignumDblInt;
-#define BIGNUM_INT_MASK 0xFFFFFFFFU
-#define BIGNUM_TOP_BIT 0x80000000U
-#define BIGNUM_INT_BITS 32
-#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
-#define DIVMOD_WORD(q, r, hi, lo, w) do { \
- BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
- q = n / w; \
- r = n % w; \
-} while (0)
-#elif defined _LLP64
-/* 64-bit architectures in which unsigned long is 32 bits, not 64 */
-typedef unsigned long BignumInt;
-typedef unsigned long long BignumDblInt;
-#define BIGNUM_INT_MASK 0xFFFFFFFFUL
-#define BIGNUM_TOP_BIT 0x80000000UL
-#define BIGNUM_INT_BITS 32
-#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
-#define DIVMOD_WORD(q, r, hi, lo, w) do { \
- BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
- q = n / w; \
- r = n % w; \
-} while (0)
-#else
-/* Fallback for all other cases */
-typedef unsigned short BignumInt;
-typedef unsigned long BignumDblInt;
-#define BIGNUM_INT_MASK 0xFFFFU
-#define BIGNUM_TOP_BIT 0x8000U
-#define BIGNUM_INT_BITS 16
-#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
-#define DIVMOD_WORD(q, r, hi, lo, w) do { \
- BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
- q = n / w; \
- r = n % w; \
-} while (0)
-#endif
-
-#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
-
-#define BIGNUM_INTERNAL
-typedef BignumInt *Bignum;
-
-#include "ssh.h"
-
-BignumInt bnZero[1] = { 0 };
-BignumInt bnOne[2] = { 1, 1 };
-
-/*
- * The Bignum format is an array of `BignumInt'. The first
- * element of the array counts the remaining elements. The
- * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
- * significant digit first. (So it's trivial to extract the bit
- * with value 2^n for any n.)
- *
- * All Bignums in this module are positive. Negative numbers must
- * be dealt with outside it.
- *
- * INVARIANT: the most significant word of any Bignum must be
- * nonzero.
- */
-
-Bignum Zero = bnZero, One = bnOne;
-
-static Bignum newbn(int length)
-{
- Bignum b = snewn(length + 1, BignumInt);
- if (!b)
- abort(); /* FIXME */
- memset(b, 0, (length + 1) * sizeof(*b));
- b[0] = length;
- return b;
-}
-
-void bn_restore_invariant(Bignum b)
-{
- while (b[0] > 1 && b[b[0]] == 0)
- b[0]--;
-}
-
-Bignum copybn(Bignum orig)
-{
- Bignum b = snewn(orig[0] + 1, BignumInt);
- if (!b)
- abort(); /* FIXME */
- memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
- return b;
-}
-
-void freebn(Bignum b)
-{
- /*
- * Burn the evidence, just in case.
- */
- memset(b, 0, sizeof(b[0]) * (b[0] + 1));
- sfree(b);
-}
-
-Bignum bn_power_2(int n)
-{
- Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
- bignum_set_bit(ret, n, 1);
- return ret;
-}
-
-/*
- * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
- * big-endian arrays of 'len' BignumInts. Returns a BignumInt carried
- * off the top.
- */
-static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
- BignumInt *c, int len)
-{
- int i;
- BignumDblInt carry = 0;
-
- for (i = len-1; i >= 0; i--) {
- carry += (BignumDblInt)a[i] + b[i];
- c[i] = (BignumInt)(carry&BIGNUM_INT_MASK);
- carry >>= BIGNUM_INT_BITS;
- }
-
- return (BignumInt)carry;
-}
-
-/*
- * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
- * all big-endian arrays of 'len' BignumInts. Any borrow from the top
- * is ignored.
- */
-static void internal_sub(const BignumInt *a, const BignumInt *b,
- BignumInt *c, int len)
-{
- int i;
- BignumDblInt carry = 1;
-
- for (i = len-1; i >= 0; i--) {
- carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
- c[i] = (BignumInt)(carry&BIGNUM_INT_MASK);
- carry >>= BIGNUM_INT_BITS;
- }
-}
-
-/*
- * Compute c = a * b.
- * Input is in the first len words of a and b.
- * Result is returned in the first 2*len words of c.
- *
- * 'scratch' must point to an array of BignumInt of size at least
- * mul_compute_scratch(len). (This covers the needs of internal_mul
- * and all its recursive calls to itself.)
- */
-#define KARATSUBA_THRESHOLD 50
-static int mul_compute_scratch(int len)
-{
- int ret = 0;
- while (len > KARATSUBA_THRESHOLD) {
- int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
- int midlen = botlen + 1;
- ret += 4*midlen;
- len = midlen;
- }
- return ret;
-}
-static void internal_mul(const BignumInt *a, const BignumInt *b,
- BignumInt *c, int len, BignumInt *scratch)
-{
- if (len > KARATSUBA_THRESHOLD) {
- int i;
-
- /*
- * Karatsuba divide-and-conquer algorithm. Cut each input in
- * half, so that it's expressed as two big 'digits' in a giant
- * base D:
- *
- * a = a_1 D + a_0
- * b = b_1 D + b_0
- *
- * Then the product is of course
- *
- * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
- *
- * and we compute the three coefficients by recursively
- * calling ourself to do half-length multiplications.
- *
- * The clever bit that makes this worth doing is that we only
- * need _one_ half-length multiplication for the central
- * coefficient rather than the two that it obviouly looks
- * like, because we can use a single multiplication to compute
- *
- * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
- *
- * and then we subtract the other two coefficients (a_1 b_1
- * and a_0 b_0) which we were computing anyway.
- *
- * Hence we get to multiply two numbers of length N in about
- * three times as much work as it takes to multiply numbers of
- * length N/2, which is obviously better than the four times
- * as much work it would take if we just did a long
- * conventional multiply.
- */
-
- int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
- int midlen = botlen + 1;
- BignumDblInt carry;
-#ifdef KARA_DEBUG
- int i;
-#endif
-
- /*
- * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
- * in the output array, so we can compute them immediately in
- * place.
- */
-
-#ifdef KARA_DEBUG
- printf("a1,a0 = 0x");
- for (i = 0; i < len; i++) {
- if (i == toplen) printf(", 0x");
- printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
- }
- printf("\n");
- printf("b1,b0 = 0x");
- for (i = 0; i < len; i++) {
- if (i == toplen) printf(", 0x");
- printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
- }
- printf("\n");
-#endif
-
- /* a_1 b_1 */
- internal_mul(a, b, c, toplen, scratch);
-#ifdef KARA_DEBUG
- printf("a1b1 = 0x");
- for (i = 0; i < 2*toplen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
- }
- printf("\n");
-#endif
-
- /* a_0 b_0 */
- internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
-#ifdef KARA_DEBUG
- printf("a0b0 = 0x");
- for (i = 0; i < 2*botlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
- }
- printf("\n");
-#endif
-
- /* Zero padding. midlen exceeds toplen by at most 2, so just
- * zero the first two words of each input and the rest will be
- * copied over. */
- scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
-
- for (i = 0; i < toplen; i++) {
- scratch[midlen - toplen + i] = a[i]; /* a_1 */
- scratch[2*midlen - toplen + i] = b[i]; /* b_1 */
- }
-
- /* compute a_1 + a_0 */
- scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
-#ifdef KARA_DEBUG
- printf("a1plusa0 = 0x");
- for (i = 0; i < midlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
- }
- printf("\n");
-#endif
- /* compute b_1 + b_0 */
- scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
- scratch+midlen+1, botlen);
-#ifdef KARA_DEBUG
- printf("b1plusb0 = 0x");
- for (i = 0; i < midlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
- }
- printf("\n");
-#endif
-
- /*
- * Now we can do the third multiplication.
- */
- internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
- scratch + 4*midlen);
-#ifdef KARA_DEBUG
- printf("a1plusa0timesb1plusb0 = 0x");
- for (i = 0; i < 2*midlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
- }
- printf("\n");
-#endif
-
- /*
- * Now we can reuse the first half of 'scratch' to compute the
- * sum of the outer two coefficients, to subtract from that
- * product to obtain the middle one.
- */
- scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
- for (i = 0; i < 2*toplen; i++)
- scratch[2*midlen - 2*toplen + i] = c[i];
- scratch[1] = internal_add(scratch+2, c + 2*toplen,
- scratch+2, 2*botlen);
-#ifdef KARA_DEBUG
- printf("a1b1plusa0b0 = 0x");
- for (i = 0; i < 2*midlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
- }
- printf("\n");
-#endif
-
- internal_sub(scratch + 2*midlen, scratch,
- scratch + 2*midlen, 2*midlen);
-#ifdef KARA_DEBUG
- printf("a1b0plusa0b1 = 0x");
- for (i = 0; i < 2*midlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
- }
- printf("\n");
-#endif
-
- /*
- * And now all we need to do is to add that middle coefficient
- * back into the output. We may have to propagate a carry
- * further up the output, but we can be sure it won't
- * propagate right the way off the top.
- */
- carry = internal_add(c + 2*len - botlen - 2*midlen,
- scratch + 2*midlen,
- c + 2*len - botlen - 2*midlen, 2*midlen);
- i = 2*len - botlen - 2*midlen - 1;
- while (carry) {
- assert(i >= 0);
- carry += c[i];
- c[i] = (BignumInt)carry;
- carry >>= BIGNUM_INT_BITS;
- i--;
- }
-#ifdef KARA_DEBUG
- printf("ab = 0x");
- for (i = 0; i < 2*len; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
- }
- printf("\n");
-#endif
-
- } else {
- int i;
- BignumInt carry;
- BignumDblInt t;
- const BignumInt *ap, *bp;
- BignumInt *cp, *cps;
-
- /*
- * Multiply in the ordinary O(N^2) way.
- */
-
- for (i = 0; i < 2 * len; i++)
- c[i] = 0;
-
- for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {
- carry = 0;
- for (cp = cps, bp = b + len; cp--, bp-- > b ;) {
- t = (MUL_WORD(*ap, *bp) + carry) + *cp;
- *cp = (BignumInt) (t & 0xffffffff);
- carry = (BignumInt)(t >> BIGNUM_INT_BITS);
- }
- *cp = carry;
- }
- }
-}
-
-/*
- * Variant form of internal_mul used for the initial step of
- * Montgomery reduction. Only bothers outputting 'len' words
- * (everything above that is thrown away).
- */
-static void internal_mul_low(const BignumInt *a, const BignumInt *b,
- BignumInt *c, int len, BignumInt *scratch)
-{
- if (len > KARATSUBA_THRESHOLD) {
- int i;
-
- /*
- * Karatsuba-aware version of internal_mul_low. As before, we
- * express each input value as a shifted combination of two
- * halves:
- *
- * a = a_1 D + a_0
- * b = b_1 D + b_0
- *
- * Then the full product is, as before,
- *
- * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
- *
- * Provided we choose D on the large side (so that a_0 and b_0
- * are _at least_ as long as a_1 and b_1), we don't need the
- * topmost term at all, and we only need half of the middle
- * term. So there's no point in doing the proper Karatsuba
- * optimisation which computes the middle term using the top
- * one, because we'd take as long computing the top one as
- * just computing the middle one directly.
- *
- * So instead, we do a much more obvious thing: we call the
- * fully optimised internal_mul to compute a_0 b_0, and we
- * recursively call ourself to compute the _bottom halves_ of
- * a_1 b_0 and a_0 b_1, each of which we add into the result
- * in the obvious way.
- *
- * In other words, there's no actual Karatsuba _optimisation_
- * in this function; the only benefit in doing it this way is
- * that we call internal_mul proper for a large part of the
- * work, and _that_ can optimise its operation.
- */
-
- int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
-
- /*
- * Scratch space for the various bits and pieces we're going
- * to be adding together: we need botlen*2 words for a_0 b_0
- * (though we may end up throwing away its topmost word), and
- * toplen words for each of a_1 b_0 and a_0 b_1. That adds up
- * to exactly 2*len.
- */
-
- /* a_0 b_0 */
- internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
- scratch + 2*len);
-
- /* a_1 b_0 */
- internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
- scratch + 2*len);
-
- /* a_0 b_1 */
- internal_mul_low(a + len - toplen, b, scratch, toplen,
- scratch + 2*len);
-
- /* Copy the bottom half of the big coefficient into place */
- for (i = 0; i < botlen; i++)
- c[toplen + i] = scratch[2*toplen + botlen + i];
-
- /* Add the two small coefficients, throwing away the returned carry */
- internal_add(scratch, scratch + toplen, scratch, toplen);
-
- /* And add that to the large coefficient, leaving the result in c. */
- internal_add(scratch, scratch + 2*toplen + botlen - toplen,
- c, toplen);
-
- } else {
- int i;
- BignumInt carry;
- BignumDblInt t;
- const BignumInt *ap, *bp;
- BignumInt *cp, *cps;
-
- /*
- * Multiply in the ordinary O(N^2) way.
- */
-
- for (i = 0; i < len; i++)
- c[i] = 0;
-
- for (cps = c + len, ap = a + len; ap-- > a; cps--) {
- carry = 0;
- for (cp = cps, bp = b + len; bp--, cp-- > c ;) {
- t = (MUL_WORD(*ap, *bp) + carry) + *cp;
- *cp = (BignumInt) (t&BIGNUM_INT_MASK);
- carry = (BignumInt)(t >> BIGNUM_INT_BITS);
- }
- }
- }
-}
-
-/*
- * Montgomery reduction. Expects x to be a big-endian array of 2*len
- * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
- * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
- * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
- * x' < n.
- *
- * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
- * each, containing respectively n and the multiplicative inverse of
- * -n mod r.
- *
- * 'tmp' is an array of BignumInt used as scratch space, of length at
- * least 3*len + mul_compute_scratch(len).
- */
-static void monty_reduce(BignumInt *x, const BignumInt *n,
- const BignumInt *mninv, BignumInt *tmp, int len)
-{
- int i;
- BignumInt carry;
-
- /*
- * Multiply x by (-n)^{-1} mod r. This gives us a value m such
- * that mn is congruent to -x mod r. Hence, mn+x is an exact
- * multiple of r, and is also (obviously) congruent to x mod n.
- */
- internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);
-
- /*
- * Compute t = (mn+x)/r in ordinary, non-modular, integer
- * arithmetic. By construction this is exact, and is congruent mod
- * n to x * r^{-1}, i.e. the answer we want.
- *
- * The following multiply leaves that answer in the _most_
- * significant half of the 'x' array, so then we must shift it
- * down.
- */
- internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
- carry = internal_add(x, tmp+len, x, 2*len);
- for (i = 0; i < len; i++)
- x[len + i] = x[i], x[i] = 0;
-
- /*
- * Reduce t mod n. This doesn't require a full-on division by n,
- * but merely a test and single optional subtraction, since we can
- * show that 0 <= t < 2n.
- *
- * Proof:
- * + we computed m mod r, so 0 <= m < r.
- * + so 0 <= mn < rn, obviously
- * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
- * + yielding 0 <= (mn+x)/r < 2n as required.
- */
- if (!carry) {
- for (i = 0; i < len; i++)
- if (x[len + i] != n[i])
- break;
- }
- if (carry || i >= len || x[len + i] > n[i])
- internal_sub(x+len, n, x+len, len);
-}
-
-static void internal_add_shifted(BignumInt *number,
- unsigned n, int shift)
-{
- int word = 1 + (shift / BIGNUM_INT_BITS);
- int bshift = shift % BIGNUM_INT_BITS;
- BignumDblInt addend;
-
- addend = (BignumDblInt)n << bshift;
-
- while (addend) {
- addend += number[word];
- number[word] = (BignumInt) (addend & BIGNUM_INT_MASK);
- addend >>= BIGNUM_INT_BITS;
- word++;
- }
-}
-
-/*
- * Compute a = a % m.
- * Input in first alen words of a and first mlen words of m.
- * Output in first alen words of a
- * (of which first alen-mlen words will be zero).
- * The MSW of m MUST have its high bit set.
- * Quotient is accumulated in the `quotient' array, which is a Bignum
- * rather than the internal bigendian format. Quotient parts are shifted
- * left by `qshift' before adding into quot.
- */
-static void internal_mod(BignumInt *a, int alen,
- BignumInt *m, int mlen,
- BignumInt *quot, int qshift)
-{
- BignumInt m0, m1;
- unsigned int h;
- int i, k;
-
- m0 = m[0];
- if (mlen > 1)
- m1 = m[1];
- else
- m1 = 0;
-
- for (i = 0; i <= alen - mlen; i++) {
- BignumDblInt t;
- unsigned int q, r, c, ai1;
-
- if (i == 0) {
- h = 0;
- } else {
- h = a[i - 1];
- a[i - 1] = 0;
- }
-
- if (i == alen - 1)
- ai1 = 0;
- else
- ai1 = a[i + 1];
-
- /* Find q = h:a[i] / m0 */
- if (h >= m0) {
- /*
- * Special case.
- *
- * To illustrate it, suppose a BignumInt is 8 bits, and
- * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
- * our initial division will be 0xA123 / 0xA1, which
- * will give a quotient of 0x100 and a divide overflow.
- * However, the invariants in this division algorithm
- * are not violated, since the full number A1:23:... is
- * _less_ than the quotient prefix A1:B2:... and so the
- * following correction loop would have sorted it out.
- *
- * In this situation we set q to be the largest
- * quotient we _can_ stomach (0xFF, of course).
- */
- q = BIGNUM_INT_MASK;
- } else {
- /* Macro doesn't want an array subscript expression passed
- * into it (see definition), so use a temporary. */
- BignumInt tmplo = a[i];
- DIVMOD_WORD(q, r, h, tmplo, m0);
-
- /* Refine our estimate of q by looking at
- h:a[i]:a[i+1] / m0:m1 */
- t = MUL_WORD(m1, q);
- if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
- q--;
- t -= m1;
- r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
- if (r >= (BignumDblInt) m0 &&
- t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
- }
- }
-
- /* Subtract q * m from a[i...] */
- c = 0;
- for (k = mlen - 1; k >= 0; k--) {
- t = MUL_WORD(q, m[k]);
- t += c;
- c = (unsigned)(t >> BIGNUM_INT_BITS);
- if (((BignumInt)(t&0xffffffff)) > a[i + k])
- c++;
- a[i + k] -= (BignumInt) (t&0xffffffff);
- }
-
- /* Add back m in case of borrow */
- if (c != h) {
- t = 0;
- for (k = mlen - 1; k >= 0; k--) {
- t += m[k];
- t += a[i + k];
- a[i + k] = (BignumInt) t;
- t = t >> BIGNUM_INT_BITS;
- }
- q--;
- }
- if (quot)
- internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
- }
-}
-
-/*
- * Compute (base ^ exp) % mod, the pedestrian way.
- */
-Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
-{
- BignumInt *a, *b, *n, *m, *scratch;
- int mshift;
- int mlen, scratchlen, i, j;
- Bignum base, result;
-
- /*
- * The most significant word of mod needs to be non-zero. It
- * should already be, but let's make sure.
- */
- assert(mod[mod[0]] != 0);
-
- /*
- * Make sure the base is smaller than the modulus, by reducing
- * it modulo the modulus if not.
- */
- base = bigmod(base_in, mod);
-
- /* Allocate m of size mlen, copy mod to m */
- /* We use big endian internally */
- mlen = mod[0];
- m = snewn(mlen, BignumInt);
- for (j = 0; j < mlen; j++)
- m[j] = mod[mod[0] - j];
-
- /* Shift m left to make msb bit set */
- for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
- if ((m[0] << mshift) & BIGNUM_TOP_BIT)
- break;
- if (mshift) {
- for (i = 0; i < mlen - 1; i++)
- m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
- m[mlen - 1] = m[mlen - 1] << mshift;
- }
-
- /* Allocate n of size mlen, copy base to n */
- n = snewn(mlen, BignumInt);
- i = mlen - base[0];
- for (j = 0; j < i; j++)
- n[j] = 0;
- for (j = 0; j < (int)base[0]; j++)
- n[i + j] = base[base[0] - j];
-
- /* Allocate a and b of size 2*mlen. Set a = 1 */
- a = snewn(2 * mlen, BignumInt);
- b = snewn(2 * mlen, BignumInt);
- for (i = 0; i < 2 * mlen; i++)
- a[i] = 0;
- a[2 * mlen - 1] = 1;
-
- /* Scratch space for multiplies */
- scratchlen = mul_compute_scratch(mlen);
- scratch = snewn(scratchlen, BignumInt);
-
- /* Skip leading zero bits of exp. */
- i = 0;
- j = BIGNUM_INT_BITS-1;
- while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
- j--;
- if (j < 0) {
- i++;
- j = BIGNUM_INT_BITS-1;
- }
- }
-
- /* Main computation */
- while (i < (int)exp[0]) {
- while (j >= 0) {
- internal_mul(a + mlen, a + mlen, b, mlen, scratch);
- internal_mod(b, mlen * 2, m, mlen, NULL, 0);
- if ((exp[exp[0] - i] & (1 << j)) != 0) {
- internal_mul(b + mlen, n, a, mlen, scratch);
- internal_mod(a, mlen * 2, m, mlen, NULL, 0);
- } else {
- BignumInt *t;
- t = a;
- a = b;
- b = t;
- }
- j--;
- }
- i++;
- j = BIGNUM_INT_BITS-1;
- }
-
- /* Fixup result in case the modulus was shifted */
- if (mshift) {
- for (i = mlen - 1; i < 2 * mlen - 1; i++)
- a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
- a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
- internal_mod(a, mlen * 2, m, mlen, NULL, 0);
- for (i = 2 * mlen - 1; i >= mlen; i--)
- a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
- }
-
- /* Copy result to buffer */
- result = newbn(mod[0]);
- for (i = 0; i < mlen; i++)
- result[result[0] - i] = a[i + mlen];
- while (result[0] > 1 && result[result[0]] == 0)
- result[0]--;
-
- /* Free temporary arrays */
- for (i = 0; i < 2 * mlen; i++)
- a[i] = 0;
- sfree(a);
- for (i = 0; i < scratchlen; i++)
- scratch[i] = 0;
- sfree(scratch);
- for (i = 0; i < 2 * mlen; i++)
- b[i] = 0;
- sfree(b);
- for (i = 0; i < mlen; i++)
- m[i] = 0;
- sfree(m);
- for (i = 0; i < mlen; i++)
- n[i] = 0;
- sfree(n);
-
- freebn(base);
-
- return result;
-}
-
-/*
- * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
- * technique where possible, falling back to modpow_simple otherwise.
- */
-Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
-{
- BignumInt *a, *b, *x, *n, *mninv, *scratch;
- int len, scratchlen, i, j;
- Bignum base, base2, r, rn, inv, result;
-
- /*
- * The most significant word of mod needs to be non-zero. It
- * should already be, but let's make sure.
- */
- assert(mod[mod[0]] != 0);
-
- /*
- * mod had better be odd, or we can't do Montgomery multiplication
- * using a power of two at all.
- */
- if (!(mod[1] & 1))
- return modpow_simple(base_in, exp, mod);
-
- /*
- * Make sure the base is smaller than the modulus, by reducing
- * it modulo the modulus if not.
- */
- base = bigmod(base_in, mod);
-
- /*
- * Compute the inverse of n mod r, for monty_reduce. (In fact we
- * want the inverse of _minus_ n mod r, but we'll sort that out
- * below.)
- */
- len = mod[0];
- r = bn_power_2(BIGNUM_INT_BITS * len);
- inv = modinv(mod, r);
-
- /*
- * Multiply the base by r mod n, to get it into Montgomery
- * representation.
- */
- base2 = modmul(base, r, mod);
- freebn(base);
- base = base2;
-
- rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
-
- freebn(r); /* won't need this any more */
-
- /*
- * Set up internal arrays of the right lengths, in big-endian
- * format, containing the base, the modulus, and the modulus's
- * inverse.
- */
- n = snewn(len, BignumInt);
- for (j = 0; j < len; j++)
- n[len - 1 - j] = mod[j + 1];
-
- mninv = snewn(len, BignumInt);
- for (j = 0; j < len; j++)
- mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);
- freebn(inv); /* we don't need this copy of it any more */
- /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
- x = snewn(len, BignumInt);
- for (j = 0; j < len; j++)
- x[j] = 0;
- internal_sub(x, mninv, mninv, len);
-
- /* x = snewn(len, BignumInt); */ /* already done above */
- for (j = 0; j < len; j++)
- x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);
- freebn(base); /* we don't need this copy of it any more */
-
- a = snewn(2*len, BignumInt);
- b = snewn(2*len, BignumInt);
- for (j = 0; j < len; j++)
- a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);
- freebn(rn);
-
- /* Scratch space for multiplies */
- scratchlen = 3*len + mul_compute_scratch(len);
- scratch = snewn(scratchlen, BignumInt);
-
- /* Skip leading zero bits of exp. */
- i = 0;
- j = BIGNUM_INT_BITS-1;
- while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
- j--;
- if (j < 0) {
- i++;
- j = BIGNUM_INT_BITS-1;
- }
- }
-
- /* Main computation */
- while (i < (int)exp[0]) {
- while (j >= 0) {
- internal_mul(a + len, a + len, b, len, scratch);
- monty_reduce(b, n, mninv, scratch, len);
- if ((exp[exp[0] - i] & (1 << j)) != 0) {
- internal_mul(b + len, x, a, len, scratch);
- monty_reduce(a, n, mninv, scratch, len);
- } else {
- BignumInt *t;
- t = a;
- a = b;
- b = t;
- }
- j--;
- }
- i++;
- j = BIGNUM_INT_BITS-1;
- }
-
- /*
- * Final monty_reduce to get back from the adjusted Montgomery
- * representation.
- */
- monty_reduce(a, n, mninv, scratch, len);
-
- /* Copy result to buffer */
- result = newbn(mod[0]);
- for (i = 0; i < len; i++)
- result[result[0] - i] = a[i + len];
- while (result[0] > 1 && result[result[0]] == 0)
- result[0]--;
-
- /* Free temporary arrays */
- for (i = 0; i < scratchlen; i++)
- scratch[i] = 0;
- sfree(scratch);
- for (i = 0; i < 2 * len; i++)
- a[i] = 0;
- sfree(a);
- for (i = 0; i < 2 * len; i++)
- b[i] = 0;
- sfree(b);
- for (i = 0; i < len; i++)
- mninv[i] = 0;
- sfree(mninv);
- for (i = 0; i < len; i++)
- n[i] = 0;
- sfree(n);
- for (i = 0; i < len; i++)
- x[i] = 0;
- sfree(x);
-
- return result;
-}
-
-/*
- * Compute (p * q) % mod.
- * The most significant word of mod MUST be non-zero.
- * We assume that the result array is the same size as the mod array.
- */
-Bignum modmul(Bignum p, Bignum q, Bignum mod)
-{
- BignumInt *a, *n, *m, *o, *scratch;
- int mshift, scratchlen;
- int pqlen, mlen, rlen, i, j;
- Bignum result;
-
- /* Allocate m of size mlen, copy mod to m */
- /* We use big endian internally */
- mlen = mod[0];
- m = snewn(mlen, BignumInt);
- for (j = 0; j < mlen; j++)
- m[j] = mod[mod[0] - j];
-
- /* Shift m left to make msb bit set */
- for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
- if ((m[0] << mshift) & BIGNUM_TOP_BIT)
- break;
- if (mshift) {
- for (i = 0; i < mlen - 1; i++)
- m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
- m[mlen - 1] = m[mlen - 1] << mshift;
- }
-
- pqlen = (p[0] > q[0] ? p[0] : q[0]);
-
- /* Allocate n of size pqlen, copy p to n */
- n = snewn(pqlen, BignumInt);
- i = pqlen - p[0];
- for (j = 0; j < i; j++)
- n[j] = 0;
- for (j = 0; j < (int)p[0]; j++)
- n[i + j] = p[p[0] - j];
-
- /* Allocate o of size pqlen, copy q to o */
- o = snewn(pqlen, BignumInt);
- i = pqlen - q[0];
- for (j = 0; j < i; j++)
- o[j] = 0;
- for (j = 0; j < (int)q[0]; j++)
- o[i + j] = q[q[0] - j];
-
- /* Allocate a of size 2*pqlen for result */
- a = snewn(2 * pqlen, BignumInt);
-
- /* Scratch space for multiplies */
- scratchlen = mul_compute_scratch(pqlen);
- scratch = snewn(scratchlen, BignumInt);
-
- /* Main computation */
- internal_mul(n, o, a, pqlen, scratch);
- internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
-
- /* Fixup result in case the modulus was shifted */
- if (mshift) {
- for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
- a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
- a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
- internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
- for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
- a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
- }
-
- /* Copy result to buffer */
- rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
- result = newbn(rlen);
- for (i = 0; i < rlen; i++)
- result[result[0] - i] = a[i + 2 * pqlen - rlen];
- while (result[0] > 1 && result[result[0]] == 0)
- result[0]--;
-
- /* Free temporary arrays */
- for (i = 0; i < scratchlen; i++)
- scratch[i] = 0;
- sfree(scratch);
- for (i = 0; i < 2 * pqlen; i++)
- a[i] = 0;
- sfree(a);
- for (i = 0; i < mlen; i++)
- m[i] = 0;
- sfree(m);
- for (i = 0; i < pqlen; i++)
- n[i] = 0;
- sfree(n);
- for (i = 0; i < pqlen; i++)
- o[i] = 0;
- sfree(o);
-
- return result;
-}
-
-/*
- * Compute p % mod.
- * The most significant word of mod MUST be non-zero.
- * We assume that the result array is the same size as the mod array.
- * We optionally write out a quotient if `quotient' is non-NULL.
- * We can avoid writing out the result if `result' is NULL.
- */
-static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
-{
- BignumInt *n, *m;
- int mshift;
- int plen, mlen, i, j;
-
- /* Allocate m of size mlen, copy mod to m */
- /* We use big endian internally */
- mlen = mod[0];
- m = snewn(mlen, BignumInt);
- for (j = 0; j < mlen; j++)
- m[j] = mod[mod[0] - j];
-
- /* Shift m left to make msb bit set */
- for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
- if ((m[0] << mshift) & BIGNUM_TOP_BIT)
- break;
- if (mshift) {
- for (i = 0; i < mlen - 1; i++)
- m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
- m[mlen - 1] = m[mlen - 1] << mshift;
- }
-
- plen = p[0];
- /* Ensure plen > mlen */
- if (plen <= mlen)
- plen = mlen + 1;
-
- /* Allocate n of size plen, copy p to n */
- n = snewn(plen, BignumInt);
- for (j = 0; j < plen; j++)
- n[j] = 0;
- for (j = 1; j <= (int)p[0]; j++)
- n[plen - j] = p[j];
-
- /* Main computation */
- internal_mod(n, plen, m, mlen, quotient, mshift);
-
- /* Fixup result in case the modulus was shifted */
- if (mshift) {
- for (i = plen - mlen - 1; i < plen - 1; i++)
- n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
- n[plen - 1] = n[plen - 1] << mshift;
- internal_mod(n, plen, m, mlen, quotient, 0);
- for (i = plen - 1; i >= plen - mlen; i--)
- n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
- }
-
- /* Copy result to buffer */
- if (result) {
- for (i = 1; i <= (int)result[0]; i++) {
- int j = plen - i;
- result[i] = j >= 0 ? n[j] : 0;
- }
- }
-
- /* Free temporary arrays */
- for (i = 0; i < mlen; i++)
- m[i] = 0;
- sfree(m);
- for (i = 0; i < plen; i++)
- n[i] = 0;
- sfree(n);
-}
-
-/*
- * Decrement a number.
- */
-void decbn(Bignum bn)
-{
- int i = 1;
- while (i < (int)bn[0] && bn[i] == 0)
- bn[i++] = BIGNUM_INT_MASK;
- bn[i]--;
-}
-
-Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
-{
- Bignum result;
- int w, i;
-
- w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
-
- result = newbn(w);
- for (i = 1; i <= w; i++)
- result[i] = 0;
- for (i = nbytes; i--;) {
- unsigned char byte = *data++;
- result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
- }
-
- while (result[0] > 1 && result[result[0]] == 0)
- result[0]--;
- return result;
-}
-
-/*
- * Read an SSH-1-format bignum from a data buffer. Return the number
- * of bytes consumed, or -1 if there wasn't enough data.
- */
-int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
-{
- const unsigned char *p = data;
- int i;
- int w, b;
-
- if (len < 2)
- return -1;
-
- w = 0;
- for (i = 0; i < 2; i++)
- w = (w << 8) + *p++;
- b = (w + 7) / 8; /* bits -> bytes */
-
- if (len < b+2)
- return -1;
-
- if (!result) /* just return length */
- return b + 2;
-
- *result = bignum_from_bytes(p, b);
-
- return p + b - data;
-}
-
-/*
- * Return the bit count of a bignum, for SSH-1 encoding.
- */
-int bignum_bitcount(Bignum bn)
-{
- int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
- while (bitcount >= 0
- && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
- return bitcount + 1;
-}
-
-/*
- * Return the byte length of a bignum when SSH-1 encoded.
- */
-int ssh1_bignum_length(Bignum bn)
-{
- return 2 + (bignum_bitcount(bn) + 7) / 8;
-}
-
-/*
- * Return the byte length of a bignum when SSH-2 encoded.
- */
-int ssh2_bignum_length(Bignum bn)
-{
- return 4 + (bignum_bitcount(bn) + 8) / 8;
-}
-
-/*
- * Return a byte from a bignum; 0 is least significant, etc.
- */
-int bignum_byte(Bignum bn, int i)
-{
- if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
- return 0; /* beyond the end */
- else
- return (bn[i / BIGNUM_INT_BYTES + 1] >>
- ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
-}
-
-/*
- * Return a bit from a bignum; 0 is least significant, etc.
- */
-int bignum_bit(Bignum bn, int i)
-{
- if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
- return 0; /* beyond the end */
- else
- return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
-}
-
-/*
- * Set a bit in a bignum; 0 is least significant, etc.
- */
-void bignum_set_bit(Bignum bn, int bitnum, int value)
-{
- if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
- abort(); /* beyond the end */
- else {
- int v = bitnum / BIGNUM_INT_BITS + 1;
- int mask = 1 << (bitnum % BIGNUM_INT_BITS);
- if (value)
- bn[v] |= mask;
- else
- bn[v] &= ~mask;
- }
-}
-
-/*
- * Write a SSH-1-format bignum into a buffer. It is assumed the
- * buffer is big enough. Returns the number of bytes used.
- */
-int ssh1_write_bignum(void *data, Bignum bn)
-{
- unsigned char *p = data;
- int len = ssh1_bignum_length(bn);
- int i;
- int bitc = bignum_bitcount(bn);
-
- *p++ = (bitc >> 8) & 0xFF;
- *p++ = (bitc) & 0xFF;
- for (i = len - 2; i--;)
- *p++ = bignum_byte(bn, i);
- return len;
-}
-
-/*
- * Compare two bignums. Returns like strcmp.
- */
-int bignum_cmp(Bignum a, Bignum b)
-{
- int amax = a[0], bmax = b[0];
- int i = (amax > bmax ? amax : bmax);
- while (i) {
- BignumInt aval = (i > amax ? 0 : a[i]);
- BignumInt bval = (i > bmax ? 0 : b[i]);
- if (aval < bval)
- return -1;
- if (aval > bval)
- return +1;
- i--;
- }
- return 0;
-}
-
-/*
- * Right-shift one bignum to form another.
- */
-Bignum bignum_rshift(Bignum a, int shift)
-{
- Bignum ret;
- int i, shiftw, shiftb, shiftbb, bits;
- BignumInt ai, ai1;
-
- bits = bignum_bitcount(a) - shift;
- ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
-
- if (ret) {
- shiftw = shift / BIGNUM_INT_BITS;
- shiftb = shift % BIGNUM_INT_BITS;
- shiftbb = BIGNUM_INT_BITS - shiftb;
-
- ai1 = a[shiftw + 1];
- for (i = 1; i <= (int)ret[0]; i++) {
- ai = ai1;
- ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
- ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
- }
- }
-
- return ret;
-}
-
-/*
- * Non-modular multiplication and addition.
- */
-Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
-{
- int alen = a[0], blen = b[0];
- int mlen = (alen > blen ? alen : blen);
- int rlen, i, maxspot;
- int wslen;
- BignumInt *workspace;
- Bignum ret;
-
- /* mlen space for a, mlen space for b, 2*mlen for result,
- * plus scratch space for multiplication */
- wslen = mlen * 4 + mul_compute_scratch(mlen);
- workspace = snewn(wslen, BignumInt);
- for (i = 0; i < mlen; i++) {
- workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
- workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
- }
-
- internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
- workspace + 2 * mlen, mlen, workspace + 4 * mlen);
-
- /* now just copy the result back */
- rlen = alen + blen + 1;
- if (addend && rlen <= (int)addend[0])
- rlen = addend[0] + 1;
- ret = newbn(rlen);
- maxspot = 0;
- for (i = 1; i <= (int)ret[0]; i++) {
- ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
- if (ret[i] != 0)
- maxspot = i;
- }
- ret[0] = maxspot;
-
- /* now add in the addend, if any */
- if (addend) {
- BignumDblInt carry = 0;
- for (i = 1; i <= rlen; i++) {
- carry += (i <= (int)ret[0] ? ret[i] : 0);
- carry += (i <= (int)addend[0] ? addend[i] : 0);
- ret[i] = (BignumInt) (carry & BIGNUM_INT_MASK);
- carry >>= BIGNUM_INT_BITS;
- if (ret[i] != 0 && i > maxspot)
- maxspot = i;
- }
- }
- ret[0] = maxspot;
-
- for (i = 0; i < wslen; i++)
- workspace[i] = 0;
- sfree(workspace);
- return ret;
-}
-
-/*
- * Non-modular multiplication.
- */
-Bignum bigmul(Bignum a, Bignum b)
-{
- return bigmuladd(a, b, NULL);
-}
-
-/*
- * Simple addition.
- */
-Bignum bigadd(Bignum a, Bignum b)
-{
- int alen = a[0], blen = b[0];
- int rlen = (alen > blen ? alen : blen) + 1;
- int i, maxspot;
- Bignum ret;
- BignumDblInt carry;
-
- ret = newbn(rlen);
-
- carry = 0;
- maxspot = 0;
- for (i = 1; i <= rlen; i++) {
- carry += (i <= (int)a[0] ? a[i] : 0);
- carry += (i <= (int)b[0] ? b[i] : 0);
- ret[i] = (BignumInt) (carry & BIGNUM_INT_MASK);
- carry >>= BIGNUM_INT_BITS;
- if (ret[i] != 0 && i > maxspot)
- maxspot = i;
- }
- ret[0] = maxspot;
-
- return ret;
-}
-
-/*
- * Subtraction. Returns a-b, or NULL if the result would come out
- * negative (recall that this entire bignum module only handles
- * positive numbers).
- */
-Bignum bigsub(Bignum a, Bignum b)
-{
- int alen = a[0], blen = b[0];
- int rlen = (alen > blen ? alen : blen);
- int i, maxspot;
- Bignum ret;
- BignumDblInt carry;
-
- ret = newbn(rlen);
-
- carry = 1;
- maxspot = 0;
- for (i = 1; i <= rlen; i++) {
- carry += (i <= (int)a[0] ? a[i] : 0);
- carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
- ret[i] = (BignumInt) (carry & BIGNUM_INT_MASK);
- carry >>= BIGNUM_INT_BITS;
- if (ret[i] != 0 && i > maxspot)
- maxspot = i;
- }
- ret[0] = maxspot;
-
- if (!carry) {
- freebn(ret);
- return NULL;
- }
-
- return ret;
-}
-
-/*
- * Create a bignum which is the bitmask covering another one. That
- * is, the smallest integer which is >= N and is also one less than
- * a power of two.
- */
-Bignum bignum_bitmask(Bignum n)
-{
- Bignum ret = copybn(n);
- int i;
- BignumInt j;
-
- i = ret[0];
- while (n[i] == 0 && i > 0)
- i--;
- if (i <= 0)
- return ret; /* input was zero */
- j = 1;
- while (j < n[i])
- j = 2 * j + 1;
- ret[i] = j;
- while (--i > 0)
- ret[i] = BIGNUM_INT_MASK;
- return ret;
-}
-
-/*
- * Convert a (max 32-bit) long into a bignum.
- */
-Bignum bignum_from_long(unsigned long nn)
-{
- Bignum ret;
- BignumDblInt n = nn;
-
- ret = newbn(3);
- ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
- ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
- ret[3] = 0;
- ret[0] = (ret[2] ? 2 : 1);
- return ret;
-}
-
-/*
- * Add a long to a bignum.
- */
-Bignum bignum_add_long(Bignum number, unsigned long addendx)
-{
- Bignum ret = newbn(number[0] + 1);
- int i, maxspot = 0;
- BignumDblInt carry = 0, addend = addendx;
-
- for (i = 1; i <= (int)ret[0]; i++) {
- carry += addend & BIGNUM_INT_MASK;
- carry += (i <= (int)number[0] ? number[i] : 0);
- addend >>= BIGNUM_INT_BITS;
- ret[i] = (BignumInt) (carry & BIGNUM_INT_MASK);
- carry >>= BIGNUM_INT_BITS;
- if (ret[i] != 0)
- maxspot = i;
- }
- ret[0] = maxspot;
- return ret;
-}
-
-/*
- * Compute the residue of a bignum, modulo a (max 16-bit) short.
- */
-unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
-{
- BignumDblInt mod, r;
- int i;
-
- r = 0;
- mod = modulus;
- for (i = number[0]; i > 0; i--)
- r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
- return (unsigned short) r;
-}
-
-#ifdef DEBUG
-void diagbn(char *prefix, Bignum md)
-{
- int i, nibbles, morenibbles;
- static const char hex[] = "0123456789ABCDEF";
-
- debug(("%s0x", prefix ? prefix : ""));
-
- nibbles = (3 + bignum_bitcount(md)) / 4;
- if (nibbles < 1)
- nibbles = 1;
- morenibbles = 4 * md[0] - nibbles;
- for (i = 0; i < morenibbles; i++)
- debug(("-"));
- for (i = nibbles; i--;)
- debug(("%c",
- hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
-
- if (prefix)
- debug(("\n"));
-}
-#endif
-
-/*
- * Simple division.
- */
-Bignum bigdiv(Bignum a, Bignum b)
-{
- Bignum q = newbn(a[0]);
- bigdivmod(a, b, NULL, q);
- return q;
-}
-
-/*
- * Simple remainder.
- */
-Bignum bigmod(Bignum a, Bignum b)
-{
- Bignum r = newbn(b[0]);
- bigdivmod(a, b, r, NULL);
- return r;
-}
-
-/*
- * Greatest common divisor.
- */
-Bignum biggcd(Bignum av, Bignum bv)
-{
- Bignum a = copybn(av);
- Bignum b = copybn(bv);
-
- while (bignum_cmp(b, Zero) != 0) {
- Bignum t = newbn(b[0]);
- bigdivmod(a, b, t, NULL);
- while (t[0] > 1 && t[t[0]] == 0)
- t[0]--;
- freebn(a);
- a = b;
- b = t;
- }
-
- freebn(b);
- return a;
-}
-
-/*
- * Modular inverse, using Euclid's extended algorithm.
- */
-Bignum modinv(Bignum number, Bignum modulus)
-{
- Bignum a = copybn(modulus);
- Bignum b = copybn(number);
- Bignum xp = copybn(Zero);
- Bignum x = copybn(One);
- int sign = +1;
-
- while (bignum_cmp(b, One) != 0) {
- Bignum t = newbn(b[0]);
- Bignum q = newbn(a[0]);
- bigdivmod(a, b, t, q);
- while (t[0] > 1 && t[t[0]] == 0)
- t[0]--;
- freebn(a);
- a = b;
- b = t;
- t = xp;
- xp = x;
- x = bigmuladd(q, xp, t);
- sign = -sign;
- freebn(t);
- freebn(q);
- }
-
- freebn(b);
- freebn(a);
- freebn(xp);
-
- /* now we know that sign * x == 1, and that x < modulus */
- if (sign < 0) {
- /* set a new x to be modulus - x */
- Bignum newx = newbn(modulus[0]);
- BignumInt carry = 0;
- int maxspot = 1;
- int i;
-
- for (i = 1; i <= (int)newx[0]; i++) {
- BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
- BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
- newx[i] = aword - bword - carry;
- bword = ~bword;
- carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
- if (newx[i] != 0)
- maxspot = i;
- }
- newx[0] = maxspot;
- freebn(x);
- x = newx;
- }
-
- /* and return. */
- return x;
-}
-
-/*
- * Render a bignum into decimal. Return a malloced string holding
- * the decimal representation.
- */
-char *bignum_decimal(Bignum x)
-{
- int ndigits, ndigit;
- int i, iszero;
- BignumDblInt carry;
- char *ret;
- BignumInt *workspace;
-
- /*
- * First, estimate the number of digits. Since log(10)/log(2)
- * is just greater than 93/28 (the joys of continued fraction
- * approximations...) we know that for every 93 bits, we need
- * at most 28 digits. This will tell us how much to malloc.
- *
- * Formally: if x has i bits, that means x is strictly less
- * than 2^i. Since 2 is less than 10^(28/93), this is less than
- * 10^(28i/93). We need an integer power of ten, so we must
- * round up (rounding down might make it less than x again).
- * Therefore if we multiply the bit count by 28/93, rounding
- * up, we will have enough digits.
- *
- * i=0 (i.e., x=0) is an irritating special case.
- */
- i = bignum_bitcount(x);
- if (!i)
- ndigits = 1; /* x = 0 */
- else
- ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
- ndigits++; /* allow for trailing \0 */
- ret = snewn(ndigits, char);
-
- /*
- * Now allocate some workspace to hold the binary form as we
- * repeatedly divide it by ten. Initialise this to the
- * big-endian form of the number.
- */
- workspace = snewn(x[0], BignumInt);
- for (i = 0; i < (int)x[0]; i++)
- workspace[i] = x[x[0] - i];
-
- /*
- * Next, write the decimal number starting with the last digit.
- * We use ordinary short division, dividing 10 into the
- * workspace.
- */
- ndigit = ndigits - 1;
- ret[ndigit] = '\0';
- do {
- iszero = 1;
- carry = 0;
- for (i = 0; i < (int)x[0]; i++) {
- carry = (carry << BIGNUM_INT_BITS) + workspace[i];
- workspace[i] = (BignumInt) (carry / 10);
- if (workspace[i])
- iszero = 0;
- carry %= 10;
- }
- ret[--ndigit] = (char) (carry + '0');
- } while (!iszero);
-
- /*
- * There's a chance we've fallen short of the start of the
- * string. Correct if so.
- */
- if (ndigit > 0)
- memmove(ret, ret + ndigit, ndigits - ndigit);
-
- /*
- * Done.
- */
- sfree(workspace);
- return ret;
-}
-
-#ifdef TESTBN
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <ctype.h>
-
-/*
- * gcc -g -O0 -DTESTBN -o testbn sshbn.c misc.c -I unix -I charset
- *
- * Then feed to this program's standard input the output of
- * testdata/bignum.py .
- */
-
-void modalfatalbox(char *p, ...)
-{
- va_list ap;
- fprintf(stderr, "FATAL ERROR: ");
- va_start(ap, p);
- vfprintf(stderr, p, ap);
- va_end(ap);
- fputc('\n', stderr);
- exit(1);
-}
-
-#define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
-
-int main(int argc, char **argv)
-{
- char *buf;
- int line = 0;
- int passes = 0, fails = 0;
-
- while ((buf = fgetline(stdin)) != NULL) {
- int maxlen = strlen(buf);
- unsigned char *data = snewn(maxlen, unsigned char);
- unsigned char *ptrs[5], *q;
- int ptrnum;
- char *bufp = buf;
-
- line++;
-
- q = data;
- ptrnum = 0;
-
- while (*bufp && !isspace((unsigned char)*bufp))
- bufp++;
- if (bufp)
- *bufp++ = '\0';
-
- while (*bufp) {
- char *start, *end;
- int i;
-
- while (*bufp && !isxdigit((unsigned char)*bufp))
- bufp++;
- start = bufp;
-
- if (!*bufp)
- break;
-
- while (*bufp && isxdigit((unsigned char)*bufp))
- bufp++;
- end = bufp;
-
- if (ptrnum >= lenof(ptrs))
- break;
- ptrs[ptrnum++] = q;
-
- for (i = -((end - start) & 1); i < end-start; i += 2) {
- unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
- val = val * 16 + fromxdigit(start[i+1]);
- *q++ = val;
- }
-
- ptrs[ptrnum] = q;
- }
-
- if (!strcmp(buf, "mul")) {
- Bignum a, b, c, p;
-
- if (ptrnum != 3) {
- printf("%d: mul with %d parameters, expected 3\n", line);
- exit(1);
- }
- a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
- b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
- c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
- p = bigmul(a, b);
-
- if (bignum_cmp(c, p) == 0) {
- passes++;
- } else {
- char *as = bignum_decimal(a);
- char *bs = bignum_decimal(b);
- char *cs = bignum_decimal(c);
- char *ps = bignum_decimal(p);
-
- printf("%d: fail: %s * %s gave %s expected %s\n",
- line, as, bs, ps, cs);
- fails++;
-
- sfree(as);
- sfree(bs);
- sfree(cs);
- sfree(ps);
- }
- freebn(a);
- freebn(b);
- freebn(c);
- freebn(p);
- } else if (!strcmp(buf, "pow")) {
- Bignum base, expt, modulus, expected, answer;
-
- if (ptrnum != 4) {
- printf("%d: mul with %d parameters, expected 3\n", line);
- exit(1);
- }
-
- base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
- expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
- modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
- expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
- answer = modpow(base, expt, modulus);
-
- if (bignum_cmp(expected, answer) == 0) {
- passes++;
- } else {
- char *as = bignum_decimal(base);
- char *bs = bignum_decimal(expt);
- char *cs = bignum_decimal(modulus);
- char *ds = bignum_decimal(answer);
- char *ps = bignum_decimal(expected);
-
- printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n",
- line, as, bs, cs, ds, ps);
- fails++;
-
- sfree(as);
- sfree(bs);
- sfree(cs);
- sfree(ds);
- sfree(ps);
- }
- freebn(base);
- freebn(expt);
- freebn(modulus);
- freebn(expected);
- freebn(answer);
- } else {
- printf("%d: unrecognised test keyword: '%s'\n", line, buf);
- exit(1);
- }
-
- sfree(buf);
- sfree(data);
- }
-
- printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
- return fails != 0;
-}
-
-#endif
+/* + * Bignum routines for RSA and DH and stuff. + */ + +#include <stdio.h> +#include <assert.h> +#include <stdlib.h> +#include <string.h> +#include <limits.h> + +#include "misc.h" + +/* + * Usage notes: + * * Do not call the DIVMOD_WORD macro with expressions such as array + * subscripts, as some implementations object to this (see below). + * * Note that none of the division methods below will cope if the + * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful + * to avoid this case. + * If this condition occurs, in the case of the x86 DIV instruction, + * an overflow exception will occur, which (according to a correspondent) + * will manifest on Windows as something like + * 0xC0000095: Integer overflow + * The C variant won't give the right answer, either. + */ + +#if defined __GNUC__ && defined __i386__ +typedef unsigned long BignumInt; +typedef unsigned long long BignumDblInt; +#define BIGNUM_INT_MASK 0xFFFFFFFFUL +#define BIGNUM_TOP_BIT 0x80000000UL +#define BIGNUM_INT_BITS 32 +#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) +#define DIVMOD_WORD(q, r, hi, lo, w) \ + __asm__("div %2" : \ + "=d" (r), "=a" (q) : \ + "r" (w), "d" (hi), "a" (lo)) +#elif defined _MSC_VER && defined _M_IX86 +typedef unsigned __int32 BignumInt; +typedef unsigned __int64 BignumDblInt; +#define BIGNUM_INT_MASK 0xFFFFFFFFUL +#define BIGNUM_TOP_BIT 0x80000000UL +#define BIGNUM_INT_BITS 32 +#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) +/* Note: MASM interprets array subscripts in the macro arguments as + * assembler syntax, which gives the wrong answer. Don't supply them. + * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */ +#define DIVMOD_WORD(q, r, hi, lo, w) do { \ + __asm mov edx, hi \ + __asm mov eax, lo \ + __asm div w \ + __asm mov r, edx \ + __asm mov q, eax \ +} while(0) +#elif defined _LP64 +/* 64-bit architectures can do 32x32->64 chunks at a time */ +typedef unsigned int BignumInt; +typedef unsigned long BignumDblInt; +#define BIGNUM_INT_MASK 0xFFFFFFFFU +#define BIGNUM_TOP_BIT 0x80000000U +#define BIGNUM_INT_BITS 32 +#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) +#define DIVMOD_WORD(q, r, hi, lo, w) do { \ + BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \ + q = n / w; \ + r = n % w; \ +} while (0) +#elif defined _LLP64 +/* 64-bit architectures in which unsigned long is 32 bits, not 64 */ +typedef unsigned long BignumInt; +typedef unsigned long long BignumDblInt; +#define BIGNUM_INT_MASK 0xFFFFFFFFUL +#define BIGNUM_TOP_BIT 0x80000000UL +#define BIGNUM_INT_BITS 32 +#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) +#define DIVMOD_WORD(q, r, hi, lo, w) do { \ + BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \ + q = n / w; \ + r = n % w; \ +} while (0) +#else +/* Fallback for all other cases */ +typedef unsigned short BignumInt; +typedef unsigned long BignumDblInt; +#define BIGNUM_INT_MASK 0xFFFFU +#define BIGNUM_TOP_BIT 0x8000U +#define BIGNUM_INT_BITS 16 +#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) +#define DIVMOD_WORD(q, r, hi, lo, w) do { \ + BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \ + q = n / w; \ + r = n % w; \ +} while (0) +#endif + +#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8) + +#define BIGNUM_INTERNAL +typedef BignumInt *Bignum; + +#include "ssh.h" + +BignumInt bnZero[1] = { 0 }; +BignumInt bnOne[2] = { 1, 1 }; + +/* + * The Bignum format is an array of `BignumInt'. The first + * element of the array counts the remaining elements. The + * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_ + * significant digit first. (So it's trivial to extract the bit + * with value 2^n for any n.) + * + * All Bignums in this module are positive. Negative numbers must + * be dealt with outside it. + * + * INVARIANT: the most significant word of any Bignum must be + * nonzero. + */ + +Bignum Zero = bnZero, One = bnOne; + +static Bignum newbn(int length) +{ + Bignum b; + + assert(length >= 0 && length < INT_MAX / BIGNUM_INT_BITS); + + b = snewn(length + 1, BignumInt); + if (!b) + abort(); /* FIXME */ + memset(b, 0, (length + 1) * sizeof(*b)); + b[0] = length; + return b; +} + +void bn_restore_invariant(Bignum b) +{ + while (b[0] > 1 && b[b[0]] == 0) + b[0]--; +} + +Bignum copybn(Bignum orig) +{ + Bignum b = snewn(orig[0] + 1, BignumInt); + if (!b) + abort(); /* FIXME */ + memcpy(b, orig, (orig[0] + 1) * sizeof(*b)); + return b; +} + +void freebn(Bignum b) +{ + /* + * Burn the evidence, just in case. + */ + smemclr(b, sizeof(b[0]) * (b[0] + 1)); + sfree(b); +} + +Bignum bn_power_2(int n) +{ + Bignum ret; + + assert(n >= 0); + + ret = newbn(n / BIGNUM_INT_BITS + 1); + bignum_set_bit(ret, n, 1); + return ret; +} + +/* + * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all + * big-endian arrays of 'len' BignumInts. Returns a BignumInt carried + * off the top. + */ +static BignumInt internal_add(const BignumInt *a, const BignumInt *b, + BignumInt *c, int len) +{ + int i; + BignumDblInt carry = 0; + + for (i = len-1; i >= 0; i--) { + carry += (BignumDblInt)a[i] + b[i]; + c[i] = (BignumInt)(carry&BIGNUM_INT_MASK); + carry >>= BIGNUM_INT_BITS; + } + + return (BignumInt)carry; +} + +/* + * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are + * all big-endian arrays of 'len' BignumInts. Any borrow from the top + * is ignored. + */ +static void internal_sub(const BignumInt *a, const BignumInt *b, + BignumInt *c, int len) +{ + int i; + BignumDblInt carry = 1; + + for (i = len-1; i >= 0; i--) { + carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK); + c[i] = (BignumInt)(carry&BIGNUM_INT_MASK); + carry >>= BIGNUM_INT_BITS; + } +} + +/* + * Compute c = a * b. + * Input is in the first len words of a and b. + * Result is returned in the first 2*len words of c. + * + * 'scratch' must point to an array of BignumInt of size at least + * mul_compute_scratch(len). (This covers the needs of internal_mul + * and all its recursive calls to itself.) + */ +#define KARATSUBA_THRESHOLD 50 +static int mul_compute_scratch(int len) +{ + int ret = 0; + while (len > KARATSUBA_THRESHOLD) { + int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */ + int midlen = botlen + 1; + ret += 4*midlen; + len = midlen; + } + return ret; +} +static void internal_mul(const BignumInt *a, const BignumInt *b, + BignumInt *c, int len, BignumInt *scratch) +{ + if (len > KARATSUBA_THRESHOLD) { + int i; + + /* + * Karatsuba divide-and-conquer algorithm. Cut each input in + * half, so that it's expressed as two big 'digits' in a giant + * base D: + * + * a = a_1 D + a_0 + * b = b_1 D + b_0 + * + * Then the product is of course + * + * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0 + * + * and we compute the three coefficients by recursively + * calling ourself to do half-length multiplications. + * + * The clever bit that makes this worth doing is that we only + * need _one_ half-length multiplication for the central + * coefficient rather than the two that it obviouly looks + * like, because we can use a single multiplication to compute + * + * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0 + * + * and then we subtract the other two coefficients (a_1 b_1 + * and a_0 b_0) which we were computing anyway. + * + * Hence we get to multiply two numbers of length N in about + * three times as much work as it takes to multiply numbers of + * length N/2, which is obviously better than the four times + * as much work it would take if we just did a long + * conventional multiply. + */ + + int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */ + int midlen = botlen + 1; + BignumDblInt carry; +#ifdef KARA_DEBUG + int i; +#endif + + /* + * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping + * in the output array, so we can compute them immediately in + * place. + */ + +#ifdef KARA_DEBUG + printf("a1,a0 = 0x"); + for (i = 0; i < len; i++) { + if (i == toplen) printf(", 0x"); + printf("%0*x", BIGNUM_INT_BITS/4, a[i]); + } + printf("\n"); + printf("b1,b0 = 0x"); + for (i = 0; i < len; i++) { + if (i == toplen) printf(", 0x"); + printf("%0*x", BIGNUM_INT_BITS/4, b[i]); + } + printf("\n"); +#endif + + /* a_1 b_1 */ + internal_mul(a, b, c, toplen, scratch); +#ifdef KARA_DEBUG + printf("a1b1 = 0x"); + for (i = 0; i < 2*toplen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, c[i]); + } + printf("\n"); +#endif + + /* a_0 b_0 */ + internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch); +#ifdef KARA_DEBUG + printf("a0b0 = 0x"); + for (i = 0; i < 2*botlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]); + } + printf("\n"); +#endif + + /* Zero padding. midlen exceeds toplen by at most 2, so just + * zero the first two words of each input and the rest will be + * copied over. */ + scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0; + + for (i = 0; i < toplen; i++) { + scratch[midlen - toplen + i] = a[i]; /* a_1 */ + scratch[2*midlen - toplen + i] = b[i]; /* b_1 */ + } + + /* compute a_1 + a_0 */ + scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen); +#ifdef KARA_DEBUG + printf("a1plusa0 = 0x"); + for (i = 0; i < midlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]); + } + printf("\n"); +#endif + /* compute b_1 + b_0 */ + scratch[midlen] = internal_add(scratch+midlen+1, b+toplen, + scratch+midlen+1, botlen); +#ifdef KARA_DEBUG + printf("b1plusb0 = 0x"); + for (i = 0; i < midlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]); + } + printf("\n"); +#endif + + /* + * Now we can do the third multiplication. + */ + internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen, + scratch + 4*midlen); +#ifdef KARA_DEBUG + printf("a1plusa0timesb1plusb0 = 0x"); + for (i = 0; i < 2*midlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]); + } + printf("\n"); +#endif + + /* + * Now we can reuse the first half of 'scratch' to compute the + * sum of the outer two coefficients, to subtract from that + * product to obtain the middle one. + */ + scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0; + for (i = 0; i < 2*toplen; i++) + scratch[2*midlen - 2*toplen + i] = c[i]; + scratch[1] = internal_add(scratch+2, c + 2*toplen, + scratch+2, 2*botlen); +#ifdef KARA_DEBUG + printf("a1b1plusa0b0 = 0x"); + for (i = 0; i < 2*midlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]); + } + printf("\n"); +#endif + + internal_sub(scratch + 2*midlen, scratch, + scratch + 2*midlen, 2*midlen); +#ifdef KARA_DEBUG + printf("a1b0plusa0b1 = 0x"); + for (i = 0; i < 2*midlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]); + } + printf("\n"); +#endif + + /* + * And now all we need to do is to add that middle coefficient + * back into the output. We may have to propagate a carry + * further up the output, but we can be sure it won't + * propagate right the way off the top. + */ + carry = internal_add(c + 2*len - botlen - 2*midlen, + scratch + 2*midlen, + c + 2*len - botlen - 2*midlen, 2*midlen); + i = 2*len - botlen - 2*midlen - 1; + while (carry) { + assert(i >= 0); + carry += c[i]; + c[i] = (BignumInt)carry; + carry >>= BIGNUM_INT_BITS; + i--; + } +#ifdef KARA_DEBUG + printf("ab = 0x"); + for (i = 0; i < 2*len; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, c[i]); + } + printf("\n"); +#endif + + } else { + int i; + BignumInt carry; + BignumDblInt t; + const BignumInt *ap, *bp; + BignumInt *cp, *cps; + + /* + * Multiply in the ordinary O(N^2) way. + */ + + for (i = 0; i < 2 * len; i++) + c[i] = 0; + + for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) { + carry = 0; + for (cp = cps, bp = b + len; cp--, bp-- > b ;) { + t = (MUL_WORD(*ap, *bp) + carry) + *cp; + *cp = (BignumInt) (t & 0xffffffff); + carry = (BignumInt)(t >> BIGNUM_INT_BITS); + } + *cp = carry; + } + } +} + +/* + * Variant form of internal_mul used for the initial step of + * Montgomery reduction. Only bothers outputting 'len' words + * (everything above that is thrown away). + */ +static void internal_mul_low(const BignumInt *a, const BignumInt *b, + BignumInt *c, int len, BignumInt *scratch) +{ + if (len > KARATSUBA_THRESHOLD) { + int i; + + /* + * Karatsuba-aware version of internal_mul_low. As before, we + * express each input value as a shifted combination of two + * halves: + * + * a = a_1 D + a_0 + * b = b_1 D + b_0 + * + * Then the full product is, as before, + * + * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0 + * + * Provided we choose D on the large side (so that a_0 and b_0 + * are _at least_ as long as a_1 and b_1), we don't need the + * topmost term at all, and we only need half of the middle + * term. So there's no point in doing the proper Karatsuba + * optimisation which computes the middle term using the top + * one, because we'd take as long computing the top one as + * just computing the middle one directly. + * + * So instead, we do a much more obvious thing: we call the + * fully optimised internal_mul to compute a_0 b_0, and we + * recursively call ourself to compute the _bottom halves_ of + * a_1 b_0 and a_0 b_1, each of which we add into the result + * in the obvious way. + * + * In other words, there's no actual Karatsuba _optimisation_ + * in this function; the only benefit in doing it this way is + * that we call internal_mul proper for a large part of the + * work, and _that_ can optimise its operation. + */ + + int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */ + + /* + * Scratch space for the various bits and pieces we're going + * to be adding together: we need botlen*2 words for a_0 b_0 + * (though we may end up throwing away its topmost word), and + * toplen words for each of a_1 b_0 and a_0 b_1. That adds up + * to exactly 2*len. + */ + + /* a_0 b_0 */ + internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen, + scratch + 2*len); + + /* a_1 b_0 */ + internal_mul_low(a, b + len - toplen, scratch + toplen, toplen, + scratch + 2*len); + + /* a_0 b_1 */ + internal_mul_low(a + len - toplen, b, scratch, toplen, + scratch + 2*len); + + /* Copy the bottom half of the big coefficient into place */ + for (i = 0; i < botlen; i++) + c[toplen + i] = scratch[2*toplen + botlen + i]; + + /* Add the two small coefficients, throwing away the returned carry */ + internal_add(scratch, scratch + toplen, scratch, toplen); + + /* And add that to the large coefficient, leaving the result in c. */ + internal_add(scratch, scratch + 2*toplen + botlen - toplen, + c, toplen); + + } else { + int i; + BignumInt carry; + BignumDblInt t; + const BignumInt *ap, *bp; + BignumInt *cp, *cps; + + /* + * Multiply in the ordinary O(N^2) way. + */ + + for (i = 0; i < len; i++) + c[i] = 0; + + for (cps = c + len, ap = a + len; ap-- > a; cps--) { + carry = 0; + for (cp = cps, bp = b + len; bp--, cp-- > c ;) { + t = (MUL_WORD(*ap, *bp) + carry) + *cp; + *cp = (BignumInt) (t&BIGNUM_INT_MASK); + carry = (BignumInt)(t >> BIGNUM_INT_BITS); + } + } + } +} + +/* + * Montgomery reduction. Expects x to be a big-endian array of 2*len + * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len * + * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array + * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <= + * x' < n. + * + * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts + * each, containing respectively n and the multiplicative inverse of + * -n mod r. + * + * 'tmp' is an array of BignumInt used as scratch space, of length at + * least 3*len + mul_compute_scratch(len). + */ +static void monty_reduce(BignumInt *x, const BignumInt *n, + const BignumInt *mninv, BignumInt *tmp, int len) +{ + int i; + BignumInt carry; + + /* + * Multiply x by (-n)^{-1} mod r. This gives us a value m such + * that mn is congruent to -x mod r. Hence, mn+x is an exact + * multiple of r, and is also (obviously) congruent to x mod n. + */ + internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len); + + /* + * Compute t = (mn+x)/r in ordinary, non-modular, integer + * arithmetic. By construction this is exact, and is congruent mod + * n to x * r^{-1}, i.e. the answer we want. + * + * The following multiply leaves that answer in the _most_ + * significant half of the 'x' array, so then we must shift it + * down. + */ + internal_mul(tmp, n, tmp+len, len, tmp + 3*len); + carry = internal_add(x, tmp+len, x, 2*len); + for (i = 0; i < len; i++) + x[len + i] = x[i], x[i] = 0; + + /* + * Reduce t mod n. This doesn't require a full-on division by n, + * but merely a test and single optional subtraction, since we can + * show that 0 <= t < 2n. + * + * Proof: + * + we computed m mod r, so 0 <= m < r. + * + so 0 <= mn < rn, obviously + * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn + * + yielding 0 <= (mn+x)/r < 2n as required. + */ + if (!carry) { + for (i = 0; i < len; i++) + if (x[len + i] != n[i]) + break; + } + if (carry || i >= len || x[len + i] > n[i]) + internal_sub(x+len, n, x+len, len); +} + +static void internal_add_shifted(BignumInt *number, + unsigned n, int shift) +{ + int word = 1 + (shift / BIGNUM_INT_BITS); + int bshift = shift % BIGNUM_INT_BITS; + BignumDblInt addend; + + addend = (BignumDblInt)n << bshift; + + while (addend) { + assert(word <= number[0]); + addend += number[word]; + number[word] = (BignumInt) (addend & BIGNUM_INT_MASK); + addend >>= BIGNUM_INT_BITS; + word++; + } +} + +/* + * Compute a = a % m. + * Input in first alen words of a and first mlen words of m. + * Output in first alen words of a + * (of which first alen-mlen words will be zero). + * The MSW of m MUST have its high bit set. + * Quotient is accumulated in the `quotient' array, which is a Bignum + * rather than the internal bigendian format. Quotient parts are shifted + * left by `qshift' before adding into quot. + */ +static void internal_mod(BignumInt *a, int alen, + BignumInt *m, int mlen, + BignumInt *quot, int qshift) +{ + BignumInt m0, m1; + unsigned int h; + int i, k; + + m0 = m[0]; + assert(m0 >> (BIGNUM_INT_BITS-1) == 1); + if (mlen > 1) + m1 = m[1]; + else + m1 = 0; + + for (i = 0; i <= alen - mlen; i++) { + BignumDblInt t; + unsigned int q, r, c, ai1; + + if (i == 0) { + h = 0; + } else { + h = a[i - 1]; + a[i - 1] = 0; + } + + if (i == alen - 1) + ai1 = 0; + else + ai1 = a[i + 1]; + + /* Find q = h:a[i] / m0 */ + if (h >= m0) { + /* + * Special case. + * + * To illustrate it, suppose a BignumInt is 8 bits, and + * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then + * our initial division will be 0xA123 / 0xA1, which + * will give a quotient of 0x100 and a divide overflow. + * However, the invariants in this division algorithm + * are not violated, since the full number A1:23:... is + * _less_ than the quotient prefix A1:B2:... and so the + * following correction loop would have sorted it out. + * + * In this situation we set q to be the largest + * quotient we _can_ stomach (0xFF, of course). + */ + q = BIGNUM_INT_MASK; + } else { + /* Macro doesn't want an array subscript expression passed + * into it (see definition), so use a temporary. */ + BignumInt tmplo = a[i]; + DIVMOD_WORD(q, r, h, tmplo, m0); + + /* Refine our estimate of q by looking at + h:a[i]:a[i+1] / m0:m1 */ + t = MUL_WORD(m1, q); + if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) { + q--; + t -= m1; + r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */ + if (r >= (BignumDblInt) m0 && + t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--; + } + } + + /* Subtract q * m from a[i...] */ + c = 0; + for (k = mlen - 1; k >= 0; k--) { + t = MUL_WORD(q, m[k]); + t += c; + c = (unsigned)(t >> BIGNUM_INT_BITS); + if (((BignumInt)(t&0xffffffff)) > a[i + k]) + c++; + a[i + k] -= (BignumInt) (t&0xffffffff); + } + + /* Add back m in case of borrow */ + if (c != h) { + t = 0; + for (k = mlen - 1; k >= 0; k--) { + t += m[k]; + t += a[i + k]; + a[i + k] = (BignumInt) t; + t = t >> BIGNUM_INT_BITS; + } + q--; + } + if (quot) + internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i)); + } +} + +/* + * Compute (base ^ exp) % mod, the pedestrian way. + */ +Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod) +{ + BignumInt *a, *b, *n, *m, *scratch; + int mshift; + int mlen, scratchlen, i, j; + Bignum base, result; + + /* + * The most significant word of mod needs to be non-zero. It + * should already be, but let's make sure. + */ + assert(mod[mod[0]] != 0); + + /* + * Make sure the base is smaller than the modulus, by reducing + * it modulo the modulus if not. + */ + base = bigmod(base_in, mod); + + /* Allocate m of size mlen, copy mod to m */ + /* We use big endian internally */ + mlen = mod[0]; + m = snewn(mlen, BignumInt); + for (j = 0; j < mlen; j++) + m[j] = mod[mod[0] - j]; + + /* Shift m left to make msb bit set */ + for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++) + if ((m[0] << mshift) & BIGNUM_TOP_BIT) + break; + if (mshift) { + for (i = 0; i < mlen - 1; i++) + m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift)); + m[mlen - 1] = m[mlen - 1] << mshift; + } + + /* Allocate n of size mlen, copy base to n */ + n = snewn(mlen, BignumInt); + i = mlen - base[0]; + for (j = 0; j < i; j++) + n[j] = 0; + for (j = 0; j < (int)base[0]; j++) + n[i + j] = base[base[0] - j]; + + /* Allocate a and b of size 2*mlen. Set a = 1 */ + a = snewn(2 * mlen, BignumInt); + b = snewn(2 * mlen, BignumInt); + for (i = 0; i < 2 * mlen; i++) + a[i] = 0; + a[2 * mlen - 1] = 1; + + /* Scratch space for multiplies */ + scratchlen = mul_compute_scratch(mlen); + scratch = snewn(scratchlen, BignumInt); + + /* Skip leading zero bits of exp. */ + i = 0; + j = BIGNUM_INT_BITS-1; + while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) { + j--; + if (j < 0) { + i++; + j = BIGNUM_INT_BITS-1; + } + } + + /* Main computation */ + while (i < (int)exp[0]) { + while (j >= 0) { + internal_mul(a + mlen, a + mlen, b, mlen, scratch); + internal_mod(b, mlen * 2, m, mlen, NULL, 0); + if ((exp[exp[0] - i] & (1 << j)) != 0) { + internal_mul(b + mlen, n, a, mlen, scratch); + internal_mod(a, mlen * 2, m, mlen, NULL, 0); + } else { + BignumInt *t; + t = a; + a = b; + b = t; + } + j--; + } + i++; + j = BIGNUM_INT_BITS-1; + } + + /* Fixup result in case the modulus was shifted */ + if (mshift) { + for (i = mlen - 1; i < 2 * mlen - 1; i++) + a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift)); + a[2 * mlen - 1] = a[2 * mlen - 1] << mshift; + internal_mod(a, mlen * 2, m, mlen, NULL, 0); + for (i = 2 * mlen - 1; i >= mlen; i--) + a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift)); + } + + /* Copy result to buffer */ + result = newbn(mod[0]); + for (i = 0; i < mlen; i++) + result[result[0] - i] = a[i + mlen]; + while (result[0] > 1 && result[result[0]] == 0) + result[0]--; + + /* Free temporary arrays */ + smemclr(a, 2 * mlen * sizeof(*a)); + sfree(a); + smemclr(scratch, scratchlen * sizeof(*scratch)); + sfree(scratch); + smemclr(b, 2 * mlen * sizeof(*b)); + sfree(b); + smemclr(m, mlen * sizeof(*m)); + sfree(m); + smemclr(n, mlen * sizeof(*n)); + sfree(n); + + freebn(base); + + return result; +} + +/* + * Compute (base ^ exp) % mod. Uses the Montgomery multiplication + * technique where possible, falling back to modpow_simple otherwise. + */ +Bignum modpow(Bignum base_in, Bignum exp, Bignum mod) +{ + BignumInt *a, *b, *x, *n, *mninv, *scratch; + int len, scratchlen, i, j; + Bignum base, base2, r, rn, inv, result; + + /* + * The most significant word of mod needs to be non-zero. It + * should already be, but let's make sure. + */ + assert(mod[mod[0]] != 0); + + /* + * mod had better be odd, or we can't do Montgomery multiplication + * using a power of two at all. + */ + if (!(mod[1] & 1)) + return modpow_simple(base_in, exp, mod); + + /* + * Make sure the base is smaller than the modulus, by reducing + * it modulo the modulus if not. + */ + base = bigmod(base_in, mod); + + /* + * Compute the inverse of n mod r, for monty_reduce. (In fact we + * want the inverse of _minus_ n mod r, but we'll sort that out + * below.) + */ + len = mod[0]; + r = bn_power_2(BIGNUM_INT_BITS * len); + inv = modinv(mod, r); + assert(inv); /* cannot fail, since mod is odd and r is a power of 2 */ + + /* + * Multiply the base by r mod n, to get it into Montgomery + * representation. + */ + base2 = modmul(base, r, mod); + freebn(base); + base = base2; + + rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */ + + freebn(r); /* won't need this any more */ + + /* + * Set up internal arrays of the right lengths, in big-endian + * format, containing the base, the modulus, and the modulus's + * inverse. + */ + n = snewn(len, BignumInt); + for (j = 0; j < len; j++) + n[len - 1 - j] = mod[j + 1]; + + mninv = snewn(len, BignumInt); + for (j = 0; j < len; j++) + mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0); + freebn(inv); /* we don't need this copy of it any more */ + /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */ + x = snewn(len, BignumInt); + for (j = 0; j < len; j++) + x[j] = 0; + internal_sub(x, mninv, mninv, len); + + /* x = snewn(len, BignumInt); */ /* already done above */ + for (j = 0; j < len; j++) + x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0); + freebn(base); /* we don't need this copy of it any more */ + + a = snewn(2*len, BignumInt); + b = snewn(2*len, BignumInt); + for (j = 0; j < len; j++) + a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0); + freebn(rn); + + /* Scratch space for multiplies */ + scratchlen = 3*len + mul_compute_scratch(len); + scratch = snewn(scratchlen, BignumInt); + + /* Skip leading zero bits of exp. */ + i = 0; + j = BIGNUM_INT_BITS-1; + while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) { + j--; + if (j < 0) { + i++; + j = BIGNUM_INT_BITS-1; + } + } + + /* Main computation */ + while (i < (int)exp[0]) { + while (j >= 0) { + internal_mul(a + len, a + len, b, len, scratch); + monty_reduce(b, n, mninv, scratch, len); + if ((exp[exp[0] - i] & (1 << j)) != 0) { + internal_mul(b + len, x, a, len, scratch); + monty_reduce(a, n, mninv, scratch, len); + } else { + BignumInt *t; + t = a; + a = b; + b = t; + } + j--; + } + i++; + j = BIGNUM_INT_BITS-1; + } + + /* + * Final monty_reduce to get back from the adjusted Montgomery + * representation. + */ + monty_reduce(a, n, mninv, scratch, len); + + /* Copy result to buffer */ + result = newbn(mod[0]); + for (i = 0; i < len; i++) + result[result[0] - i] = a[i + len]; + while (result[0] > 1 && result[result[0]] == 0) + result[0]--; + + /* Free temporary arrays */ + smemclr(scratch, scratchlen * sizeof(*scratch)); + sfree(scratch); + smemclr(a, 2 * len * sizeof(*a)); + sfree(a); + smemclr(b, 2 * len * sizeof(*b)); + sfree(b); + smemclr(mninv, len * sizeof(*mninv)); + sfree(mninv); + smemclr(n, len * sizeof(*n)); + sfree(n); + smemclr(x, len * sizeof(*x)); + sfree(x); + + return result; +} + +/* + * Compute (p * q) % mod. + * The most significant word of mod MUST be non-zero. + * We assume that the result array is the same size as the mod array. + */ +Bignum modmul(Bignum p, Bignum q, Bignum mod) +{ + BignumInt *a, *n, *m, *o, *scratch; + int mshift, scratchlen; + int pqlen, mlen, rlen, i, j; + Bignum result; + + /* + * The most significant word of mod needs to be non-zero. It + * should already be, but let's make sure. + */ + assert(mod[mod[0]] != 0); + + /* Allocate m of size mlen, copy mod to m */ + /* We use big endian internally */ + mlen = mod[0]; + m = snewn(mlen, BignumInt); + for (j = 0; j < mlen; j++) + m[j] = mod[mod[0] - j]; + + /* Shift m left to make msb bit set */ + for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++) + if ((m[0] << mshift) & BIGNUM_TOP_BIT) + break; + if (mshift) { + for (i = 0; i < mlen - 1; i++) + m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift)); + m[mlen - 1] = m[mlen - 1] << mshift; + } + + pqlen = (p[0] > q[0] ? p[0] : q[0]); + + /* + * Make sure that we're allowing enough space. The shifting below + * will underflow the vectors we allocate if pqlen is too small. + */ + if (2*pqlen <= mlen) + pqlen = mlen/2 + 1; + + /* Allocate n of size pqlen, copy p to n */ + n = snewn(pqlen, BignumInt); + i = pqlen - p[0]; + for (j = 0; j < i; j++) + n[j] = 0; + for (j = 0; j < (int)p[0]; j++) + n[i + j] = p[p[0] - j]; + + /* Allocate o of size pqlen, copy q to o */ + o = snewn(pqlen, BignumInt); + i = pqlen - q[0]; + for (j = 0; j < i; j++) + o[j] = 0; + for (j = 0; j < (int)q[0]; j++) + o[i + j] = q[q[0] - j]; + + /* Allocate a of size 2*pqlen for result */ + a = snewn(2 * pqlen, BignumInt); + + /* Scratch space for multiplies */ + scratchlen = mul_compute_scratch(pqlen); + scratch = snewn(scratchlen, BignumInt); + + /* Main computation */ + internal_mul(n, o, a, pqlen, scratch); + internal_mod(a, pqlen * 2, m, mlen, NULL, 0); + + /* Fixup result in case the modulus was shifted */ + if (mshift) { + for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++) + a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift)); + a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift; + internal_mod(a, pqlen * 2, m, mlen, NULL, 0); + for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--) + a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift)); + } + + /* Copy result to buffer */ + rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2); + result = newbn(rlen); + for (i = 0; i < rlen; i++) + result[result[0] - i] = a[i + 2 * pqlen - rlen]; + while (result[0] > 1 && result[result[0]] == 0) + result[0]--; + + /* Free temporary arrays */ + smemclr(scratch, scratchlen * sizeof(*scratch)); + sfree(scratch); + smemclr(a, 2 * pqlen * sizeof(*a)); + sfree(a); + smemclr(m, mlen * sizeof(*m)); + sfree(m); + smemclr(n, pqlen * sizeof(*n)); + sfree(n); + smemclr(o, pqlen * sizeof(*o)); + sfree(o); + + return result; +} + +/* + * Compute p % mod. + * The most significant word of mod MUST be non-zero. + * We assume that the result array is the same size as the mod array. + * We optionally write out a quotient if `quotient' is non-NULL. + * We can avoid writing out the result if `result' is NULL. + */ +static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient) +{ + BignumInt *n, *m; + int mshift; + int plen, mlen, i, j; + + /* + * The most significant word of mod needs to be non-zero. It + * should already be, but let's make sure. + */ + assert(mod[mod[0]] != 0); + + /* Allocate m of size mlen, copy mod to m */ + /* We use big endian internally */ + mlen = mod[0]; + m = snewn(mlen, BignumInt); + for (j = 0; j < mlen; j++) + m[j] = mod[mod[0] - j]; + + /* Shift m left to make msb bit set */ + for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++) + if ((m[0] << mshift) & BIGNUM_TOP_BIT) + break; + if (mshift) { + for (i = 0; i < mlen - 1; i++) + m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift)); + m[mlen - 1] = m[mlen - 1] << mshift; + } + + plen = p[0]; + /* Ensure plen > mlen */ + if (plen <= mlen) + plen = mlen + 1; + + /* Allocate n of size plen, copy p to n */ + n = snewn(plen, BignumInt); + for (j = 0; j < plen; j++) + n[j] = 0; + for (j = 1; j <= (int)p[0]; j++) + n[plen - j] = p[j]; + + /* Main computation */ + internal_mod(n, plen, m, mlen, quotient, mshift); + + /* Fixup result in case the modulus was shifted */ + if (mshift) { + for (i = plen - mlen - 1; i < plen - 1; i++) + n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift)); + n[plen - 1] = n[plen - 1] << mshift; + internal_mod(n, plen, m, mlen, quotient, 0); + for (i = plen - 1; i >= plen - mlen; i--) + n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift)); + } + + /* Copy result to buffer */ + if (result) { + for (i = 1; i <= (int)result[0]; i++) { + int j = plen - i; + result[i] = j >= 0 ? n[j] : 0; + } + } + + /* Free temporary arrays */ + smemclr(m, mlen * sizeof(*m)); + sfree(m); + smemclr(n, plen * sizeof(*n)); + sfree(n); +} + +/* + * Decrement a number. + */ +void decbn(Bignum bn) +{ + int i = 1; + while (i < (int)bn[0] && bn[i] == 0) + bn[i++] = BIGNUM_INT_MASK; + bn[i]--; +} + +Bignum bignum_from_bytes(const unsigned char *data, int nbytes) +{ + Bignum result; + int w, i; + + assert(nbytes >= 0 && nbytes < INT_MAX/8); + + w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */ + + result = newbn(w); + for (i = 1; i <= w; i++) + result[i] = 0; + for (i = nbytes; i--;) { + unsigned char byte = *data++; + result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS); + } + + while (result[0] > 1 && result[result[0]] == 0) + result[0]--; + return result; +} + +/* + * Read an SSH-1-format bignum from a data buffer. Return the number + * of bytes consumed, or -1 if there wasn't enough data. + */ +int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result) +{ + const unsigned char *p = data; + int i; + int w, b; + + if (len < 2) + return -1; + + w = 0; + for (i = 0; i < 2; i++) + w = (w << 8) + *p++; + b = (w + 7) / 8; /* bits -> bytes */ + + if (len < b+2) + return -1; + + if (!result) /* just return length */ + return b + 2; + + *result = bignum_from_bytes(p, b); + + return p + b - data; +} + +/* + * Return the bit count of a bignum, for SSH-1 encoding. + */ +int bignum_bitcount(Bignum bn) +{ + int bitcount = bn[0] * BIGNUM_INT_BITS - 1; + while (bitcount >= 0 + && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--; + return bitcount + 1; +} + +/* + * Return the byte length of a bignum when SSH-1 encoded. + */ +int ssh1_bignum_length(Bignum bn) +{ + return 2 + (bignum_bitcount(bn) + 7) / 8; +} + +/* + * Return the byte length of a bignum when SSH-2 encoded. + */ +int ssh2_bignum_length(Bignum bn) +{ + return 4 + (bignum_bitcount(bn) + 8) / 8; +} + +/* + * Return a byte from a bignum; 0 is least significant, etc. + */ +int bignum_byte(Bignum bn, int i) +{ + if (i < 0 || i >= (int)(BIGNUM_INT_BYTES * bn[0])) + return 0; /* beyond the end */ + else + return (bn[i / BIGNUM_INT_BYTES + 1] >> + ((i % BIGNUM_INT_BYTES)*8)) & 0xFF; +} + +/* + * Return a bit from a bignum; 0 is least significant, etc. + */ +int bignum_bit(Bignum bn, int i) +{ + if (i < 0 || i >= (int)(BIGNUM_INT_BITS * bn[0])) + return 0; /* beyond the end */ + else + return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1; +} + +/* + * Set a bit in a bignum; 0 is least significant, etc. + */ +void bignum_set_bit(Bignum bn, int bitnum, int value) +{ + if (bitnum < 0 || bitnum >= (int)(BIGNUM_INT_BITS * bn[0])) + abort(); /* beyond the end */ + else { + int v = bitnum / BIGNUM_INT_BITS + 1; + int mask = 1 << (bitnum % BIGNUM_INT_BITS); + if (value) + bn[v] |= mask; + else + bn[v] &= ~mask; + } +} + +/* + * Write a SSH-1-format bignum into a buffer. It is assumed the + * buffer is big enough. Returns the number of bytes used. + */ +int ssh1_write_bignum(void *data, Bignum bn) +{ + unsigned char *p = data; + int len = ssh1_bignum_length(bn); + int i; + int bitc = bignum_bitcount(bn); + + *p++ = (bitc >> 8) & 0xFF; + *p++ = (bitc) & 0xFF; + for (i = len - 2; i--;) + *p++ = bignum_byte(bn, i); + return len; +} + +/* + * Compare two bignums. Returns like strcmp. + */ +int bignum_cmp(Bignum a, Bignum b) +{ + int amax = a[0], bmax = b[0]; + int i; + + /* Annoyingly we have two representations of zero */ + if (amax == 1 && a[amax] == 0) + amax = 0; + if (bmax == 1 && b[bmax] == 0) + bmax = 0; + + assert(amax == 0 || a[amax] != 0); + assert(bmax == 0 || b[bmax] != 0); + + i = (amax > bmax ? amax : bmax); + while (i) { + BignumInt aval = (i > amax ? 0 : a[i]); + BignumInt bval = (i > bmax ? 0 : b[i]); + if (aval < bval) + return -1; + if (aval > bval) + return +1; + i--; + } + return 0; +} + +/* + * Right-shift one bignum to form another. + */ +Bignum bignum_rshift(Bignum a, int shift) +{ + Bignum ret; + int i, shiftw, shiftb, shiftbb, bits; + BignumInt ai, ai1; + + assert(shift >= 0); + + bits = bignum_bitcount(a) - shift; + ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS); + + if (ret) { + shiftw = shift / BIGNUM_INT_BITS; + shiftb = shift % BIGNUM_INT_BITS; + shiftbb = BIGNUM_INT_BITS - shiftb; + + ai1 = a[shiftw + 1]; + for (i = 1; i <= (int)ret[0]; i++) { + ai = ai1; + ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0); + ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK; + } + } + + return ret; +} + +/* + * Non-modular multiplication and addition. + */ +Bignum bigmuladd(Bignum a, Bignum b, Bignum addend) +{ + int alen = a[0], blen = b[0]; + int mlen = (alen > blen ? alen : blen); + int rlen, i, maxspot; + int wslen; + BignumInt *workspace; + Bignum ret; + + /* mlen space for a, mlen space for b, 2*mlen for result, + * plus scratch space for multiplication */ + wslen = mlen * 4 + mul_compute_scratch(mlen); + workspace = snewn(wslen, BignumInt); + for (i = 0; i < mlen; i++) { + workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0); + workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0); + } + + internal_mul(workspace + 0 * mlen, workspace + 1 * mlen, + workspace + 2 * mlen, mlen, workspace + 4 * mlen); + + /* now just copy the result back */ + rlen = alen + blen + 1; + if (addend && rlen <= (int)addend[0]) + rlen = addend[0] + 1; + ret = newbn(rlen); + maxspot = 0; + for (i = 1; i <= (int)ret[0]; i++) { + ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0); + if (ret[i] != 0) + maxspot = i; + } + ret[0] = maxspot; + + /* now add in the addend, if any */ + if (addend) { + BignumDblInt carry = 0; + for (i = 1; i <= rlen; i++) { + carry += (i <= (int)ret[0] ? ret[i] : 0); + carry += (i <= (int)addend[0] ? addend[i] : 0); + ret[i] = (BignumInt) (carry & BIGNUM_INT_MASK); + carry >>= BIGNUM_INT_BITS; + if (ret[i] != 0 && i > maxspot) + maxspot = i; + } + } + ret[0] = maxspot; + + smemclr(workspace, wslen * sizeof(*workspace)); + sfree(workspace); + return ret; +} + +/* + * Non-modular multiplication. + */ +Bignum bigmul(Bignum a, Bignum b) +{ + return bigmuladd(a, b, NULL); +} + +/* + * Simple addition. + */ +Bignum bigadd(Bignum a, Bignum b) +{ + int alen = a[0], blen = b[0]; + int rlen = (alen > blen ? alen : blen) + 1; + int i, maxspot; + Bignum ret; + BignumDblInt carry; + + ret = newbn(rlen); + + carry = 0; + maxspot = 0; + for (i = 1; i <= rlen; i++) { + carry += (i <= (int)a[0] ? a[i] : 0); + carry += (i <= (int)b[0] ? b[i] : 0); + ret[i] = (BignumInt) (carry & BIGNUM_INT_MASK); + carry >>= BIGNUM_INT_BITS; + if (ret[i] != 0 && i > maxspot) + maxspot = i; + } + ret[0] = maxspot; + + return ret; +} + +/* + * Subtraction. Returns a-b, or NULL if the result would come out + * negative (recall that this entire bignum module only handles + * positive numbers). + */ +Bignum bigsub(Bignum a, Bignum b) +{ + int alen = a[0], blen = b[0]; + int rlen = (alen > blen ? alen : blen); + int i, maxspot; + Bignum ret; + BignumDblInt carry; + + ret = newbn(rlen); + + carry = 1; + maxspot = 0; + for (i = 1; i <= rlen; i++) { + carry += (i <= (int)a[0] ? a[i] : 0); + carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK); + ret[i] = (BignumInt) (carry & BIGNUM_INT_MASK); + carry >>= BIGNUM_INT_BITS; + if (ret[i] != 0 && i > maxspot) + maxspot = i; + } + ret[0] = maxspot; + + if (!carry) { + freebn(ret); + return NULL; + } + + return ret; +} + +/* + * Create a bignum which is the bitmask covering another one. That + * is, the smallest integer which is >= N and is also one less than + * a power of two. + */ +Bignum bignum_bitmask(Bignum n) +{ + Bignum ret = copybn(n); + int i; + BignumInt j; + + i = ret[0]; + while (n[i] == 0 && i > 0) + i--; + if (i <= 0) + return ret; /* input was zero */ + j = 1; + while (j < n[i]) + j = 2 * j + 1; + ret[i] = j; + while (--i > 0) + ret[i] = BIGNUM_INT_MASK; + return ret; +} + +/* + * Convert a (max 32-bit) long into a bignum. + */ +Bignum bignum_from_long(unsigned long nn) +{ + Bignum ret; + BignumDblInt n = nn; + + ret = newbn(3); + ret[1] = (BignumInt)(n & BIGNUM_INT_MASK); + ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK); + ret[3] = 0; + ret[0] = (ret[2] ? 2 : 1); + return ret; +} + +/* + * Add a long to a bignum. + */ +Bignum bignum_add_long(Bignum number, unsigned long addendx) +{ + Bignum ret = newbn(number[0] + 1); + int i, maxspot = 0; + BignumDblInt carry = 0, addend = addendx; + + for (i = 1; i <= (int)ret[0]; i++) { + carry += addend & BIGNUM_INT_MASK; + carry += (i <= (int)number[0] ? number[i] : 0); + addend >>= BIGNUM_INT_BITS; + ret[i] = (BignumInt) (carry & BIGNUM_INT_MASK); + carry >>= BIGNUM_INT_BITS; + if (ret[i] != 0) + maxspot = i; + } + ret[0] = maxspot; + return ret; +} + +/* + * Compute the residue of a bignum, modulo a (max 16-bit) short. + */ +unsigned short bignum_mod_short(Bignum number, unsigned short modulus) +{ + BignumDblInt mod, r; + int i; + + r = 0; + mod = modulus; + for (i = number[0]; i > 0; i--) + r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod; + return (unsigned short) r; +} + +#ifdef DEBUG +void diagbn(char *prefix, Bignum md) +{ + int i, nibbles, morenibbles; + static const char hex[] = "0123456789ABCDEF"; + + debug(("%s0x", prefix ? prefix : "")); + + nibbles = (3 + bignum_bitcount(md)) / 4; + if (nibbles < 1) + nibbles = 1; + morenibbles = 4 * md[0] - nibbles; + for (i = 0; i < morenibbles; i++) + debug(("-")); + for (i = nibbles; i--;) + debug(("%c", + hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF])); + + if (prefix) + debug(("\n")); +} +#endif + +/* + * Simple division. + */ +Bignum bigdiv(Bignum a, Bignum b) +{ + Bignum q = newbn(a[0]); + bigdivmod(a, b, NULL, q); + return q; +} + +/* + * Simple remainder. + */ +Bignum bigmod(Bignum a, Bignum b) +{ + Bignum r = newbn(b[0]); + bigdivmod(a, b, r, NULL); + return r; +} + +/* + * Greatest common divisor. + */ +Bignum biggcd(Bignum av, Bignum bv) +{ + Bignum a = copybn(av); + Bignum b = copybn(bv); + + while (bignum_cmp(b, Zero) != 0) { + Bignum t = newbn(b[0]); + bigdivmod(a, b, t, NULL); + while (t[0] > 1 && t[t[0]] == 0) + t[0]--; + freebn(a); + a = b; + b = t; + } + + freebn(b); + return a; +} + +/* + * Modular inverse, using Euclid's extended algorithm. + */ +Bignum modinv(Bignum number, Bignum modulus) +{ + Bignum a = copybn(modulus); + Bignum b = copybn(number); + Bignum xp = copybn(Zero); + Bignum x = copybn(One); + int sign = +1; + + assert(number[number[0]] != 0); + assert(modulus[modulus[0]] != 0); + + while (bignum_cmp(b, One) != 0) { + Bignum t, q; + + if (bignum_cmp(b, Zero) == 0) { + /* + * Found a common factor between the inputs, so we cannot + * return a modular inverse at all. + */ + freebn(b); + freebn(a); + freebn(xp); + freebn(x); + return NULL; + } + + t = newbn(b[0]); + q = newbn(a[0]); + bigdivmod(a, b, t, q); + while (t[0] > 1 && t[t[0]] == 0) + t[0]--; + freebn(a); + a = b; + b = t; + t = xp; + xp = x; + x = bigmuladd(q, xp, t); + sign = -sign; + freebn(t); + freebn(q); + } + + freebn(b); + freebn(a); + freebn(xp); + + /* now we know that sign * x == 1, and that x < modulus */ + if (sign < 0) { + /* set a new x to be modulus - x */ + Bignum newx = newbn(modulus[0]); + BignumInt carry = 0; + int maxspot = 1; + int i; + + for (i = 1; i <= (int)newx[0]; i++) { + BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0); + BignumInt bword = (i <= (int)x[0] ? x[i] : 0); + newx[i] = aword - bword - carry; + bword = ~bword; + carry = carry ? (newx[i] >= bword) : (newx[i] > bword); + if (newx[i] != 0) + maxspot = i; + } + newx[0] = maxspot; + freebn(x); + x = newx; + } + + /* and return. */ + return x; +} + +/* + * Render a bignum into decimal. Return a malloced string holding + * the decimal representation. + */ +char *bignum_decimal(Bignum x) +{ + int ndigits, ndigit; + int i, iszero; + BignumDblInt carry; + char *ret; + BignumInt *workspace; + + /* + * First, estimate the number of digits. Since log(10)/log(2) + * is just greater than 93/28 (the joys of continued fraction + * approximations...) we know that for every 93 bits, we need + * at most 28 digits. This will tell us how much to malloc. + * + * Formally: if x has i bits, that means x is strictly less + * than 2^i. Since 2 is less than 10^(28/93), this is less than + * 10^(28i/93). We need an integer power of ten, so we must + * round up (rounding down might make it less than x again). + * Therefore if we multiply the bit count by 28/93, rounding + * up, we will have enough digits. + * + * i=0 (i.e., x=0) is an irritating special case. + */ + i = bignum_bitcount(x); + if (!i) + ndigits = 1; /* x = 0 */ + else + ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */ + ndigits++; /* allow for trailing \0 */ + ret = snewn(ndigits, char); + + /* + * Now allocate some workspace to hold the binary form as we + * repeatedly divide it by ten. Initialise this to the + * big-endian form of the number. + */ + workspace = snewn(x[0], BignumInt); + for (i = 0; i < (int)x[0]; i++) + workspace[i] = x[x[0] - i]; + + /* + * Next, write the decimal number starting with the last digit. + * We use ordinary short division, dividing 10 into the + * workspace. + */ + ndigit = ndigits - 1; + ret[ndigit] = '\0'; + do { + iszero = 1; + carry = 0; + for (i = 0; i < (int)x[0]; i++) { + carry = (carry << BIGNUM_INT_BITS) + workspace[i]; + workspace[i] = (BignumInt) (carry / 10); + if (workspace[i]) + iszero = 0; + carry %= 10; + } + ret[--ndigit] = (char) (carry + '0'); + } while (!iszero); + + /* + * There's a chance we've fallen short of the start of the + * string. Correct if so. + */ + if (ndigit > 0) + memmove(ret, ret + ndigit, ndigits - ndigit); + + /* + * Done. + */ + smemclr(workspace, x[0] * sizeof(*workspace)); + sfree(workspace); + return ret; +} + +#ifdef TESTBN + +#include <stdio.h> +#include <stdlib.h> +#include <ctype.h> + +/* + * gcc -Wall -g -O0 -DTESTBN -o testbn sshbn.c misc.c conf.c tree234.c unix/uxmisc.c -I. -I unix -I charset + * + * Then feed to this program's standard input the output of + * testdata/bignum.py . + */ + +void modalfatalbox(char *p, ...) +{ + va_list ap; + fprintf(stderr, "FATAL ERROR: "); + va_start(ap, p); + vfprintf(stderr, p, ap); + va_end(ap); + fputc('\n', stderr); + exit(1); +} + +#define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' ) + +int main(int argc, char **argv) +{ + char *buf; + int line = 0; + int passes = 0, fails = 0; + + while ((buf = fgetline(stdin)) != NULL) { + int maxlen = strlen(buf); + unsigned char *data = snewn(maxlen, unsigned char); + unsigned char *ptrs[5], *q; + int ptrnum; + char *bufp = buf; + + line++; + + q = data; + ptrnum = 0; + + while (*bufp && !isspace((unsigned char)*bufp)) + bufp++; + if (bufp) + *bufp++ = '\0'; + + while (*bufp) { + char *start, *end; + int i; + + while (*bufp && !isxdigit((unsigned char)*bufp)) + bufp++; + start = bufp; + + if (!*bufp) + break; + + while (*bufp && isxdigit((unsigned char)*bufp)) + bufp++; + end = bufp; + + if (ptrnum >= lenof(ptrs)) + break; + ptrs[ptrnum++] = q; + + for (i = -((end - start) & 1); i < end-start; i += 2) { + unsigned char val = (i < 0 ? 0 : fromxdigit(start[i])); + val = val * 16 + fromxdigit(start[i+1]); + *q++ = val; + } + + ptrs[ptrnum] = q; + } + + if (!strcmp(buf, "mul")) { + Bignum a, b, c, p; + + if (ptrnum != 3) { + printf("%d: mul with %d parameters, expected 3\n", line, ptrnum); + exit(1); + } + a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]); + b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]); + c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]); + p = bigmul(a, b); + + if (bignum_cmp(c, p) == 0) { + passes++; + } else { + char *as = bignum_decimal(a); + char *bs = bignum_decimal(b); + char *cs = bignum_decimal(c); + char *ps = bignum_decimal(p); + + printf("%d: fail: %s * %s gave %s expected %s\n", + line, as, bs, ps, cs); + fails++; + + sfree(as); + sfree(bs); + sfree(cs); + sfree(ps); + } + freebn(a); + freebn(b); + freebn(c); + freebn(p); + } else if (!strcmp(buf, "modmul")) { + Bignum a, b, m, c, p; + + if (ptrnum != 4) { + printf("%d: modmul with %d parameters, expected 4\n", + line, ptrnum); + exit(1); + } + a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]); + b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]); + m = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]); + c = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]); + p = modmul(a, b, m); + + if (bignum_cmp(c, p) == 0) { + passes++; + } else { + char *as = bignum_decimal(a); + char *bs = bignum_decimal(b); + char *ms = bignum_decimal(m); + char *cs = bignum_decimal(c); + char *ps = bignum_decimal(p); + + printf("%d: fail: %s * %s mod %s gave %s expected %s\n", + line, as, bs, ms, ps, cs); + fails++; + + sfree(as); + sfree(bs); + sfree(ms); + sfree(cs); + sfree(ps); + } + freebn(a); + freebn(b); + freebn(m); + freebn(c); + freebn(p); + } else if (!strcmp(buf, "pow")) { + Bignum base, expt, modulus, expected, answer; + + if (ptrnum != 4) { + printf("%d: mul with %d parameters, expected 4\n", line, ptrnum); + exit(1); + } + + base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]); + expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]); + modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]); + expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]); + answer = modpow(base, expt, modulus); + + if (bignum_cmp(expected, answer) == 0) { + passes++; + } else { + char *as = bignum_decimal(base); + char *bs = bignum_decimal(expt); + char *cs = bignum_decimal(modulus); + char *ds = bignum_decimal(answer); + char *ps = bignum_decimal(expected); + + printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n", + line, as, bs, cs, ds, ps); + fails++; + + sfree(as); + sfree(bs); + sfree(cs); + sfree(ds); + sfree(ps); + } + freebn(base); + freebn(expt); + freebn(modulus); + freebn(expected); + freebn(answer); + } else { + printf("%d: unrecognised test keyword: '%s'\n", line, buf); + exit(1); + } + + sfree(buf); + sfree(data); + } + + printf("passed %d failed %d total %d\n", passes, fails, passes+fails); + return fails != 0; +} + +#endif |