diff options
author | marha <marha@users.sourceforge.net> | 2014-04-14 23:49:11 +0200 |
---|---|---|
committer | marha <marha@users.sourceforge.net> | 2014-04-14 23:49:11 +0200 |
commit | 3053928d3e9e12e59c46917113bad496487f1d28 (patch) | |
tree | 591c17cafc365399cc88774bba985af7276d957e /tools/plink/sshrsa.c | |
parent | 7c21629fbeb51b65fd0625bb36d888587d62fd89 (diff) | |
parent | a3fe3e22d85e8aa795df85c21814fc84cac42e99 (diff) | |
download | vcxsrv-3053928d3e9e12e59c46917113bad496487f1d28.tar.gz vcxsrv-3053928d3e9e12e59c46917113bad496487f1d28.tar.bz2 vcxsrv-3053928d3e9e12e59c46917113bad496487f1d28.zip |
Merge remote-tracking branch 'origin/released'
Conflicts:
tools/plink/misc.h
tools/plink/ssh.c
tools/plink/sshbn.c
tools/plink/winplink.c
Diffstat (limited to 'tools/plink/sshrsa.c')
-rw-r--r-- | tools/plink/sshrsa.c | 2191 |
1 files changed, 1105 insertions, 1086 deletions
diff --git a/tools/plink/sshrsa.c b/tools/plink/sshrsa.c index ea6440bc5..25f9cf7e6 100644 --- a/tools/plink/sshrsa.c +++ b/tools/plink/sshrsa.c @@ -1,1086 +1,1105 @@ -/*
- * RSA implementation for PuTTY.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <assert.h>
-
-#include "ssh.h"
-#include "misc.h"
-
-int makekey(unsigned char *data, int len, struct RSAKey *result,
- unsigned char **keystr, int order)
-{
- unsigned char *p = data;
- int i, n;
-
- if (len < 4)
- return -1;
-
- if (result) {
- result->bits = 0;
- for (i = 0; i < 4; i++)
- result->bits = (result->bits << 8) + *p++;
- } else
- p += 4;
-
- len -= 4;
-
- /*
- * order=0 means exponent then modulus (the keys sent by the
- * server). order=1 means modulus then exponent (the keys
- * stored in a keyfile).
- */
-
- if (order == 0) {
- n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
- if (n < 0) return -1;
- p += n;
- len -= n;
- }
-
- n = ssh1_read_bignum(p, len, result ? &result->modulus : NULL);
- if (n < 0 || (result && bignum_bitcount(result->modulus) == 0)) return -1;
- if (result)
- result->bytes = n - 2;
- if (keystr)
- *keystr = p + 2;
- p += n;
- len -= n;
-
- if (order == 1) {
- n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
- if (n < 0) return -1;
- p += n;
- len -= n;
- }
- return p - data;
-}
-
-int makeprivate(unsigned char *data, int len, struct RSAKey *result)
-{
- return ssh1_read_bignum(data, len, &result->private_exponent);
-}
-
-int rsaencrypt(unsigned char *data, int length, struct RSAKey *key)
-{
- Bignum b1, b2;
- int i;
- unsigned char *p;
-
- if (key->bytes < length + 4)
- return 0; /* RSA key too short! */
-
- memmove(data + key->bytes - length, data, length);
- data[0] = 0;
- data[1] = 2;
-
- for (i = 2; i < key->bytes - length - 1; i++) {
- do {
- data[i] = random_byte();
- } while (data[i] == 0);
- }
- data[key->bytes - length - 1] = 0;
-
- b1 = bignum_from_bytes(data, key->bytes);
-
- b2 = modpow(b1, key->exponent, key->modulus);
-
- p = data;
- for (i = key->bytes; i--;) {
- *p++ = bignum_byte(b2, i);
- }
-
- freebn(b1);
- freebn(b2);
-
- return 1;
-}
-
-static void sha512_mpint(SHA512_State * s, Bignum b)
-{
- unsigned char lenbuf[4];
- int len;
- len = (bignum_bitcount(b) + 8) / 8;
- PUT_32BIT(lenbuf, len);
- SHA512_Bytes(s, lenbuf, 4);
- while (len-- > 0) {
- lenbuf[0] = bignum_byte(b, len);
- SHA512_Bytes(s, lenbuf, 1);
- }
- memset(lenbuf, 0, sizeof(lenbuf));
-}
-
-/*
- * Compute (base ^ exp) % mod, provided mod == p * q, with p,q
- * distinct primes, and iqmp is the multiplicative inverse of q mod p.
- * Uses Chinese Remainder Theorem to speed computation up over the
- * obvious implementation of a single big modpow.
- */
-Bignum crt_modpow(Bignum base, Bignum exp, Bignum mod,
- Bignum p, Bignum q, Bignum iqmp)
-{
- Bignum pm1, qm1, pexp, qexp, presult, qresult, diff, multiplier, ret0, ret;
-
- /*
- * Reduce the exponent mod phi(p) and phi(q), to save time when
- * exponentiating mod p and mod q respectively. Of course, since p
- * and q are prime, phi(p) == p-1 and similarly for q.
- */
- pm1 = copybn(p);
- decbn(pm1);
- qm1 = copybn(q);
- decbn(qm1);
- pexp = bigmod(exp, pm1);
- qexp = bigmod(exp, qm1);
-
- /*
- * Do the two modpows.
- */
- presult = modpow(base, pexp, p);
- qresult = modpow(base, qexp, q);
-
- /*
- * Recombine the results. We want a value which is congruent to
- * qresult mod q, and to presult mod p.
- *
- * We know that iqmp * q is congruent to 1 * mod p (by definition
- * of iqmp) and to 0 mod q (obviously). So we start with qresult
- * (which is congruent to qresult mod both primes), and add on
- * (presult-qresult) * (iqmp * q) which adjusts it to be congruent
- * to presult mod p without affecting its value mod q.
- */
- if (bignum_cmp(presult, qresult) < 0) {
- /*
- * Can't subtract presult from qresult without first adding on
- * p.
- */
- Bignum tmp = presult;
- presult = bigadd(presult, p);
- freebn(tmp);
- }
- diff = bigsub(presult, qresult);
- multiplier = bigmul(iqmp, q);
- ret0 = bigmuladd(multiplier, diff, qresult);
-
- /*
- * Finally, reduce the result mod n.
- */
- ret = bigmod(ret0, mod);
-
- /*
- * Free all the intermediate results before returning.
- */
- freebn(pm1);
- freebn(qm1);
- freebn(pexp);
- freebn(qexp);
- freebn(presult);
- freebn(qresult);
- freebn(diff);
- freebn(multiplier);
- freebn(ret0);
-
- return ret;
-}
-
-/*
- * This function is a wrapper on modpow(). It has the same effect as
- * modpow(), but employs RSA blinding to protect against timing
- * attacks and also uses the Chinese Remainder Theorem (implemented
- * above, in crt_modpow()) to speed up the main operation.
- */
-static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
-{
- Bignum random, random_encrypted, random_inverse;
- Bignum input_blinded, ret_blinded;
- Bignum ret;
-
- SHA512_State ss;
- unsigned char digest512[64];
- int digestused = lenof(digest512);
- int hashseq = 0;
-
- /*
- * Start by inventing a random number chosen uniformly from the
- * range 2..modulus-1. (We do this by preparing a random number
- * of the right length and retrying if it's greater than the
- * modulus, to prevent any potential Bleichenbacher-like
- * attacks making use of the uneven distribution within the
- * range that would arise from just reducing our number mod n.
- * There are timing implications to the potential retries, of
- * course, but all they tell you is the modulus, which you
- * already knew.)
- *
- * To preserve determinism and avoid Pageant needing to share
- * the random number pool, we actually generate this `random'
- * number by hashing stuff with the private key.
- */
- while (1) {
- int bits, byte, bitsleft, v;
- random = copybn(key->modulus);
- /*
- * Find the topmost set bit. (This function will return its
- * index plus one.) Then we'll set all bits from that one
- * downwards randomly.
- */
- bits = bignum_bitcount(random);
- byte = 0;
- bitsleft = 0;
- while (bits--) {
- if (bitsleft <= 0) {
- bitsleft = 8;
- /*
- * Conceptually the following few lines are equivalent to
- * byte = random_byte();
- */
- if (digestused >= lenof(digest512)) {
- unsigned char seqbuf[4];
- PUT_32BIT(seqbuf, hashseq);
- SHA512_Init(&ss);
- SHA512_Bytes(&ss, "RSA deterministic blinding", 26);
- SHA512_Bytes(&ss, seqbuf, sizeof(seqbuf));
- sha512_mpint(&ss, key->private_exponent);
- SHA512_Final(&ss, digest512);
- hashseq++;
-
- /*
- * Now hash that digest plus the signature
- * input.
- */
- SHA512_Init(&ss);
- SHA512_Bytes(&ss, digest512, sizeof(digest512));
- sha512_mpint(&ss, input);
- SHA512_Final(&ss, digest512);
-
- digestused = 0;
- }
- byte = digest512[digestused++];
- }
- v = byte & 1;
- byte >>= 1;
- bitsleft--;
- bignum_set_bit(random, bits, v);
- }
-
- /*
- * Now check that this number is strictly greater than
- * zero, and strictly less than modulus.
- */
- if (bignum_cmp(random, Zero) <= 0 ||
- bignum_cmp(random, key->modulus) >= 0) {
- freebn(random);
- continue;
- } else {
- break;
- }
- }
-
- /*
- * RSA blinding relies on the fact that (xy)^d mod n is equal
- * to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
- * y and y^d; then we multiply x by y, raise to the power d mod
- * n as usual, and divide by y^d to recover x^d. Thus an
- * attacker can't correlate the timing of the modpow with the
- * input, because they don't know anything about the number
- * that was input to the actual modpow.
- *
- * The clever bit is that we don't have to do a huge modpow to
- * get y and y^d; we will use the number we just invented as
- * _y^d_, and use the _public_ exponent to compute (y^d)^e = y
- * from it, which is much faster to do.
- */
- random_encrypted = crt_modpow(random, key->exponent,
- key->modulus, key->p, key->q, key->iqmp);
- random_inverse = modinv(random, key->modulus);
- input_blinded = modmul(input, random_encrypted, key->modulus);
- ret_blinded = crt_modpow(input_blinded, key->private_exponent,
- key->modulus, key->p, key->q, key->iqmp);
- ret = modmul(ret_blinded, random_inverse, key->modulus);
-
- freebn(ret_blinded);
- freebn(input_blinded);
- freebn(random_inverse);
- freebn(random_encrypted);
- freebn(random);
-
- return ret;
-}
-
-Bignum rsadecrypt(Bignum input, struct RSAKey *key)
-{
- return rsa_privkey_op(input, key);
-}
-
-int rsastr_len(struct RSAKey *key)
-{
- Bignum md, ex;
- int mdlen, exlen;
-
- md = key->modulus;
- ex = key->exponent;
- mdlen = (bignum_bitcount(md) + 15) / 16;
- exlen = (bignum_bitcount(ex) + 15) / 16;
- return 4 * (mdlen + exlen) + 20;
-}
-
-void rsastr_fmt(char *str, struct RSAKey *key)
-{
- Bignum md, ex;
- int len = 0, i, nibbles;
- static const char hex[] = "0123456789abcdef";
-
- md = key->modulus;
- ex = key->exponent;
-
- len += sprintf(str + len, "0x");
-
- nibbles = (3 + bignum_bitcount(ex)) / 4;
- if (nibbles < 1)
- nibbles = 1;
- for (i = nibbles; i--;)
- str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];
-
- len += sprintf(str + len, ",0x");
-
- nibbles = (3 + bignum_bitcount(md)) / 4;
- if (nibbles < 1)
- nibbles = 1;
- for (i = nibbles; i--;)
- str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];
-
- str[len] = '\0';
-}
-
-/*
- * Generate a fingerprint string for the key. Compatible with the
- * OpenSSH fingerprint code.
- */
-void rsa_fingerprint(char *str, int len, struct RSAKey *key)
-{
- struct MD5Context md5c;
- unsigned char digest[16];
- char buffer[16 * 3 + 40];
- int numlen, slen, i;
-
- MD5Init(&md5c);
- numlen = ssh1_bignum_length(key->modulus) - 2;
- for (i = numlen; i--;) {
- unsigned char c = bignum_byte(key->modulus, i);
- MD5Update(&md5c, &c, 1);
- }
- numlen = ssh1_bignum_length(key->exponent) - 2;
- for (i = numlen; i--;) {
- unsigned char c = bignum_byte(key->exponent, i);
- MD5Update(&md5c, &c, 1);
- }
- MD5Final(digest, &md5c);
-
- sprintf(buffer, "%d ", bignum_bitcount(key->modulus));
- for (i = 0; i < 16; i++)
- sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
- digest[i]);
- strncpy(str, buffer, len);
- str[len - 1] = '\0';
- slen = strlen(str);
- if (key->comment && slen < len - 1) {
- str[slen] = ' ';
- strncpy(str + slen + 1, key->comment, len - slen - 1);
- str[len - 1] = '\0';
- }
-}
-
-/*
- * Verify that the public data in an RSA key matches the private
- * data. We also check the private data itself: we ensure that p >
- * q and that iqmp really is the inverse of q mod p.
- */
-int rsa_verify(struct RSAKey *key)
-{
- Bignum n, ed, pm1, qm1;
- int cmp;
-
- /* n must equal pq. */
- n = bigmul(key->p, key->q);
- cmp = bignum_cmp(n, key->modulus);
- freebn(n);
- if (cmp != 0)
- return 0;
-
- /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
- pm1 = copybn(key->p);
- decbn(pm1);
- ed = modmul(key->exponent, key->private_exponent, pm1);
- cmp = bignum_cmp(ed, One);
- sfree(ed);
- if (cmp != 0)
- return 0;
-
- qm1 = copybn(key->q);
- decbn(qm1);
- ed = modmul(key->exponent, key->private_exponent, qm1);
- cmp = bignum_cmp(ed, One);
- sfree(ed);
- if (cmp != 0)
- return 0;
-
- /*
- * Ensure p > q.
- *
- * I have seen key blobs in the wild which were generated with
- * p < q, so instead of rejecting the key in this case we
- * should instead flip them round into the canonical order of
- * p > q. This also involves regenerating iqmp.
- */
- if (bignum_cmp(key->p, key->q) <= 0) {
- Bignum tmp = key->p;
- key->p = key->q;
- key->q = tmp;
-
- freebn(key->iqmp);
- key->iqmp = modinv(key->q, key->p);
- }
-
- /*
- * Ensure iqmp * q is congruent to 1, modulo p.
- */
- n = modmul(key->iqmp, key->q, key->p);
- cmp = bignum_cmp(n, One);
- sfree(n);
- if (cmp != 0)
- return 0;
-
- return 1;
-}
-
-/* Public key blob as used by Pageant: exponent before modulus. */
-unsigned char *rsa_public_blob(struct RSAKey *key, int *len)
-{
- int length, pos;
- unsigned char *ret;
-
- length = (ssh1_bignum_length(key->modulus) +
- ssh1_bignum_length(key->exponent) + 4);
- ret = snewn(length, unsigned char);
-
- PUT_32BIT(ret, bignum_bitcount(key->modulus));
- pos = 4;
- pos += ssh1_write_bignum(ret + pos, key->exponent);
- pos += ssh1_write_bignum(ret + pos, key->modulus);
-
- *len = length;
- return ret;
-}
-
-/* Given a public blob, determine its length. */
-int rsa_public_blob_len(void *data, int maxlen)
-{
- unsigned char *p = (unsigned char *)data;
- int n;
-
- if (maxlen < 4)
- return -1;
- p += 4; /* length word */
- maxlen -= 4;
-
- n = ssh1_read_bignum(p, maxlen, NULL); /* exponent */
- if (n < 0)
- return -1;
- p += n;
-
- n = ssh1_read_bignum(p, maxlen, NULL); /* modulus */
- if (n < 0)
- return -1;
- p += n;
-
- return p - (unsigned char *)data;
-}
-
-void freersakey(struct RSAKey *key)
-{
- if (key->modulus)
- freebn(key->modulus);
- if (key->exponent)
- freebn(key->exponent);
- if (key->private_exponent)
- freebn(key->private_exponent);
- if (key->p)
- freebn(key->p);
- if (key->q)
- freebn(key->q);
- if (key->iqmp)
- freebn(key->iqmp);
- if (key->comment)
- sfree(key->comment);
-}
-
-/* ----------------------------------------------------------------------
- * Implementation of the ssh-rsa signing key type.
- */
-
-static void getstring(char **data, int *datalen, char **p, int *length)
-{
- *p = NULL;
- if (*datalen < 4)
- return;
- *length = GET_32BIT(*data);
- *datalen -= 4;
- *data += 4;
- if (*datalen < *length)
- return;
- *p = *data;
- *data += *length;
- *datalen -= *length;
-}
-static Bignum getmp(char **data, int *datalen)
-{
- char *p;
- int length;
- Bignum b;
-
- getstring(data, datalen, &p, &length);
- if (!p)
- return NULL;
- b = bignum_from_bytes((unsigned char *)p, length);
- return b;
-}
-
-static void *rsa2_newkey(char *data, int len)
-{
- char *p;
- int slen;
- struct RSAKey *rsa;
-
- rsa = snew(struct RSAKey);
- if (!rsa)
- return NULL;
- getstring(&data, &len, &p, &slen);
-
- if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
- sfree(rsa);
- return NULL;
- }
- rsa->exponent = getmp(&data, &len);
- rsa->modulus = getmp(&data, &len);
- rsa->private_exponent = NULL;
- rsa->p = rsa->q = rsa->iqmp = NULL;
- rsa->comment = NULL;
-
- return rsa;
-}
-
-static void rsa2_freekey(void *key)
-{
- struct RSAKey *rsa = (struct RSAKey *) key;
- freersakey(rsa);
- sfree(rsa);
-}
-
-static char *rsa2_fmtkey(void *key)
-{
- struct RSAKey *rsa = (struct RSAKey *) key;
- char *p;
- int len;
-
- len = rsastr_len(rsa);
- p = snewn(len, char);
- rsastr_fmt(p, rsa);
- return p;
-}
-
-static unsigned char *rsa2_public_blob(void *key, int *len)
-{
- struct RSAKey *rsa = (struct RSAKey *) key;
- int elen, mlen, bloblen;
- int i;
- unsigned char *blob, *p;
-
- elen = (bignum_bitcount(rsa->exponent) + 8) / 8;
- mlen = (bignum_bitcount(rsa->modulus) + 8) / 8;
-
- /*
- * string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen.
- * (three length fields, 12+7=19).
- */
- bloblen = 19 + elen + mlen;
- blob = snewn(bloblen, unsigned char);
- p = blob;
- PUT_32BIT(p, 7);
- p += 4;
- memcpy(p, "ssh-rsa", 7);
- p += 7;
- PUT_32BIT(p, elen);
- p += 4;
- for (i = elen; i--;)
- *p++ = bignum_byte(rsa->exponent, i);
- PUT_32BIT(p, mlen);
- p += 4;
- for (i = mlen; i--;)
- *p++ = bignum_byte(rsa->modulus, i);
- assert(p == blob + bloblen);
- *len = bloblen;
- return blob;
-}
-
-static unsigned char *rsa2_private_blob(void *key, int *len)
-{
- struct RSAKey *rsa = (struct RSAKey *) key;
- int dlen, plen, qlen, ulen, bloblen;
- int i;
- unsigned char *blob, *p;
-
- dlen = (bignum_bitcount(rsa->private_exponent) + 8) / 8;
- plen = (bignum_bitcount(rsa->p) + 8) / 8;
- qlen = (bignum_bitcount(rsa->q) + 8) / 8;
- ulen = (bignum_bitcount(rsa->iqmp) + 8) / 8;
-
- /*
- * mpint private_exp, mpint p, mpint q, mpint iqmp. Total 16 +
- * sum of lengths.
- */
- bloblen = 16 + dlen + plen + qlen + ulen;
- blob = snewn(bloblen, unsigned char);
- p = blob;
- PUT_32BIT(p, dlen);
- p += 4;
- for (i = dlen; i--;)
- *p++ = bignum_byte(rsa->private_exponent, i);
- PUT_32BIT(p, plen);
- p += 4;
- for (i = plen; i--;)
- *p++ = bignum_byte(rsa->p, i);
- PUT_32BIT(p, qlen);
- p += 4;
- for (i = qlen; i--;)
- *p++ = bignum_byte(rsa->q, i);
- PUT_32BIT(p, ulen);
- p += 4;
- for (i = ulen; i--;)
- *p++ = bignum_byte(rsa->iqmp, i);
- assert(p == blob + bloblen);
- *len = bloblen;
- return blob;
-}
-
-static void *rsa2_createkey(unsigned char *pub_blob, int pub_len,
- unsigned char *priv_blob, int priv_len)
-{
- struct RSAKey *rsa;
- char *pb = (char *) priv_blob;
-
- rsa = rsa2_newkey((char *) pub_blob, pub_len);
- rsa->private_exponent = getmp(&pb, &priv_len);
- rsa->p = getmp(&pb, &priv_len);
- rsa->q = getmp(&pb, &priv_len);
- rsa->iqmp = getmp(&pb, &priv_len);
-
- if (!rsa_verify(rsa)) {
- rsa2_freekey(rsa);
- return NULL;
- }
-
- return rsa;
-}
-
-static void *rsa2_openssh_createkey(unsigned char **blob, int *len)
-{
- char **b = (char **) blob;
- struct RSAKey *rsa;
-
- rsa = snew(struct RSAKey);
- if (!rsa)
- return NULL;
- rsa->comment = NULL;
-
- rsa->modulus = getmp(b, len);
- rsa->exponent = getmp(b, len);
- rsa->private_exponent = getmp(b, len);
- rsa->iqmp = getmp(b, len);
- rsa->p = getmp(b, len);
- rsa->q = getmp(b, len);
-
- if (!rsa->modulus || !rsa->exponent || !rsa->private_exponent ||
- !rsa->iqmp || !rsa->p || !rsa->q) {
- sfree(rsa->modulus);
- sfree(rsa->exponent);
- sfree(rsa->private_exponent);
- sfree(rsa->iqmp);
- sfree(rsa->p);
- sfree(rsa->q);
- sfree(rsa);
- return NULL;
- }
-
- return rsa;
-}
-
-static int rsa2_openssh_fmtkey(void *key, unsigned char *blob, int len)
-{
- struct RSAKey *rsa = (struct RSAKey *) key;
- int bloblen, i;
-
- bloblen =
- ssh2_bignum_length(rsa->modulus) +
- ssh2_bignum_length(rsa->exponent) +
- ssh2_bignum_length(rsa->private_exponent) +
- ssh2_bignum_length(rsa->iqmp) +
- ssh2_bignum_length(rsa->p) + ssh2_bignum_length(rsa->q);
-
- if (bloblen > len)
- return bloblen;
-
- bloblen = 0;
-#define ENC(x) \
- PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
- for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
- ENC(rsa->modulus);
- ENC(rsa->exponent);
- ENC(rsa->private_exponent);
- ENC(rsa->iqmp);
- ENC(rsa->p);
- ENC(rsa->q);
-
- return bloblen;
-}
-
-static int rsa2_pubkey_bits(void *blob, int len)
-{
- struct RSAKey *rsa;
- int ret;
-
- rsa = rsa2_newkey((char *) blob, len);
- ret = bignum_bitcount(rsa->modulus);
- rsa2_freekey(rsa);
-
- return ret;
-}
-
-static char *rsa2_fingerprint(void *key)
-{
- struct RSAKey *rsa = (struct RSAKey *) key;
- struct MD5Context md5c;
- unsigned char digest[16], lenbuf[4];
- char buffer[16 * 3 + 40];
- char *ret;
- int numlen, i;
-
- MD5Init(&md5c);
- MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-rsa", 11);
-
-#define ADD_BIGNUM(bignum) \
- numlen = (bignum_bitcount(bignum)+8)/8; \
- PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
- for (i = numlen; i-- ;) { \
- unsigned char c = bignum_byte(bignum, i); \
- MD5Update(&md5c, &c, 1); \
- }
- ADD_BIGNUM(rsa->exponent);
- ADD_BIGNUM(rsa->modulus);
-#undef ADD_BIGNUM
-
- MD5Final(digest, &md5c);
-
- sprintf(buffer, "ssh-rsa %d ", bignum_bitcount(rsa->modulus));
- for (i = 0; i < 16; i++)
- sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
- digest[i]);
- ret = snewn(strlen(buffer) + 1, char);
- if (ret)
- strcpy(ret, buffer);
- return ret;
-}
-
-/*
- * This is the magic ASN.1/DER prefix that goes in the decoded
- * signature, between the string of FFs and the actual SHA hash
- * value. The meaning of it is:
- *
- * 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
- *
- * 30 21 -- a constructed SEQUENCE of length 0x21
- * 30 09 -- a constructed sub-SEQUENCE of length 9
- * 06 05 -- an object identifier, length 5
- * 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
- * (the 1,3 comes from 0x2B = 43 = 40*1+3)
- * 05 00 -- NULL
- * 04 14 -- a primitive OCTET STRING of length 0x14
- * [0x14 bytes of hash data follows]
- *
- * The object id in the middle there is listed as `id-sha1' in
- * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
- * ASN module for PKCS #1) and its expanded form is as follows:
- *
- * id-sha1 OBJECT IDENTIFIER ::= {
- * iso(1) identified-organization(3) oiw(14) secsig(3)
- * algorithms(2) 26 }
- */
-static const unsigned char asn1_weird_stuff[] = {
- 0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
- 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
-};
-
-#define ASN1_LEN ( (int) sizeof(asn1_weird_stuff) )
-
-static int rsa2_verifysig(void *key, char *sig, int siglen,
- char *data, int datalen)
-{
- struct RSAKey *rsa = (struct RSAKey *) key;
- Bignum in, out;
- char *p;
- int slen;
- int bytes, i, j, ret;
- unsigned char hash[20];
-
- getstring(&sig, &siglen, &p, &slen);
- if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
- return 0;
- }
- in = getmp(&sig, &siglen);
- out = modpow(in, rsa->exponent, rsa->modulus);
- freebn(in);
-
- ret = 1;
-
- bytes = (bignum_bitcount(rsa->modulus)+7) / 8;
- /* Top (partial) byte should be zero. */
- if (bignum_byte(out, bytes - 1) != 0)
- ret = 0;
- /* First whole byte should be 1. */
- if (bignum_byte(out, bytes - 2) != 1)
- ret = 0;
- /* Most of the rest should be FF. */
- for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) {
- if (bignum_byte(out, i) != 0xFF)
- ret = 0;
- }
- /* Then we expect to see the asn1_weird_stuff. */
- for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) {
- if (bignum_byte(out, i) != asn1_weird_stuff[j])
- ret = 0;
- }
- /* Finally, we expect to see the SHA-1 hash of the signed data. */
- SHA_Simple(data, datalen, hash);
- for (i = 19, j = 0; i >= 0; i--, j++) {
- if (bignum_byte(out, i) != hash[j])
- ret = 0;
- }
- freebn(out);
-
- return ret;
-}
-
-static unsigned char *rsa2_sign(void *key, char *data, int datalen,
- int *siglen)
-{
- struct RSAKey *rsa = (struct RSAKey *) key;
- unsigned char *bytes;
- int nbytes;
- unsigned char hash[20];
- Bignum in, out;
- int i, j;
-
- SHA_Simple(data, datalen, hash);
-
- nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;
- assert(1 <= nbytes - 20 - ASN1_LEN);
- bytes = snewn(nbytes, unsigned char);
-
- bytes[0] = 1;
- for (i = 1; i < nbytes - 20 - ASN1_LEN; i++)
- bytes[i] = 0xFF;
- for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++)
- bytes[i] = asn1_weird_stuff[j];
- for (i = nbytes - 20, j = 0; i < nbytes; i++, j++)
- bytes[i] = hash[j];
-
- in = bignum_from_bytes(bytes, nbytes);
- sfree(bytes);
-
- out = rsa_privkey_op(in, rsa);
- freebn(in);
-
- nbytes = (bignum_bitcount(out) + 7) / 8;
- bytes = snewn(4 + 7 + 4 + nbytes, unsigned char);
- PUT_32BIT(bytes, 7);
- memcpy(bytes + 4, "ssh-rsa", 7);
- PUT_32BIT(bytes + 4 + 7, nbytes);
- for (i = 0; i < nbytes; i++)
- bytes[4 + 7 + 4 + i] = bignum_byte(out, nbytes - 1 - i);
- freebn(out);
-
- *siglen = 4 + 7 + 4 + nbytes;
- return bytes;
-}
-
-const struct ssh_signkey ssh_rsa = {
- rsa2_newkey,
- rsa2_freekey,
- rsa2_fmtkey,
- rsa2_public_blob,
- rsa2_private_blob,
- rsa2_createkey,
- rsa2_openssh_createkey,
- rsa2_openssh_fmtkey,
- rsa2_pubkey_bits,
- rsa2_fingerprint,
- rsa2_verifysig,
- rsa2_sign,
- "ssh-rsa",
- "rsa2"
-};
-
-void *ssh_rsakex_newkey(char *data, int len)
-{
- return rsa2_newkey(data, len);
-}
-
-void ssh_rsakex_freekey(void *key)
-{
- rsa2_freekey(key);
-}
-
-int ssh_rsakex_klen(void *key)
-{
- struct RSAKey *rsa = (struct RSAKey *) key;
-
- return bignum_bitcount(rsa->modulus);
-}
-
-static void oaep_mask(const struct ssh_hash *h, void *seed, int seedlen,
- void *vdata, int datalen)
-{
- unsigned char *data = (unsigned char *)vdata;
- unsigned count = 0;
-
- while (datalen > 0) {
- int i, max = (datalen > h->hlen ? h->hlen : datalen);
- void *s;
- unsigned char counter[4], hash[SSH2_KEX_MAX_HASH_LEN];
-
- assert(h->hlen <= SSH2_KEX_MAX_HASH_LEN);
- PUT_32BIT(counter, count);
- s = h->init();
- h->bytes(s, seed, seedlen);
- h->bytes(s, counter, 4);
- h->final(s, hash);
- count++;
-
- for (i = 0; i < max; i++)
- data[i] ^= hash[i];
-
- data += max;
- datalen -= max;
- }
-}
-
-void ssh_rsakex_encrypt(const struct ssh_hash *h, unsigned char *in, int inlen,
- unsigned char *out, int outlen,
- void *key)
-{
- Bignum b1, b2;
- struct RSAKey *rsa = (struct RSAKey *) key;
- int k, i;
- char *p;
- const int HLEN = h->hlen;
-
- /*
- * Here we encrypt using RSAES-OAEP. Essentially this means:
- *
- * - we have a SHA-based `mask generation function' which
- * creates a pseudo-random stream of mask data
- * deterministically from an input chunk of data.
- *
- * - we have a random chunk of data called a seed.
- *
- * - we use the seed to generate a mask which we XOR with our
- * plaintext.
- *
- * - then we use _the masked plaintext_ to generate a mask
- * which we XOR with the seed.
- *
- * - then we concatenate the masked seed and the masked
- * plaintext, and RSA-encrypt that lot.
- *
- * The result is that the data input to the encryption function
- * is random-looking and (hopefully) contains no exploitable
- * structure such as PKCS1-v1_5 does.
- *
- * For a precise specification, see RFC 3447, section 7.1.1.
- * Some of the variable names below are derived from that, so
- * it'd probably help to read it anyway.
- */
-
- /* k denotes the length in octets of the RSA modulus. */
- k = (7 + bignum_bitcount(rsa->modulus)) / 8;
-
- /* The length of the input data must be at most k - 2hLen - 2. */
- assert(inlen > 0 && inlen <= k - 2*HLEN - 2);
-
- /* The length of the output data wants to be precisely k. */
- assert(outlen == k);
-
- /*
- * Now perform EME-OAEP encoding. First set up all the unmasked
- * output data.
- */
- /* Leading byte zero. */
- out[0] = 0;
- /* At position 1, the seed: HLEN bytes of random data. */
- for (i = 0; i < HLEN; i++)
- out[i + 1] = random_byte();
- /* At position 1+HLEN, the data block DB, consisting of: */
- /* The hash of the label (we only support an empty label here) */
- h->final(h->init(), out + HLEN + 1);
- /* A bunch of zero octets */
- memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
- /* A single 1 octet, followed by the input message data. */
- out[outlen - inlen - 1] = 1;
- memcpy(out + outlen - inlen, in, inlen);
-
- /*
- * Now use the seed data to mask the block DB.
- */
- oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
-
- /*
- * And now use the masked DB to mask the seed itself.
- */
- oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
-
- /*
- * Now `out' contains precisely the data we want to
- * RSA-encrypt.
- */
- b1 = bignum_from_bytes(out, outlen);
- b2 = modpow(b1, rsa->exponent, rsa->modulus);
- p = (char *)out;
- for (i = outlen; i--;) {
- *p++ = bignum_byte(b2, i);
- }
- freebn(b1);
- freebn(b2);
-
- /*
- * And we're done.
- */
-}
-
-static const struct ssh_kex ssh_rsa_kex_sha1 = {
- "rsa1024-sha1", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha1
-};
-
-static const struct ssh_kex ssh_rsa_kex_sha256 = {
- "rsa2048-sha256", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha256
-};
-
-static const struct ssh_kex *const rsa_kex_list[] = {
- &ssh_rsa_kex_sha256,
- &ssh_rsa_kex_sha1
-};
-
-const struct ssh_kexes ssh_rsa_kex = {
- sizeof(rsa_kex_list) / sizeof(*rsa_kex_list),
- rsa_kex_list
-};
+/* + * RSA implementation for PuTTY. + */ + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <assert.h> + +#include "ssh.h" +#include "misc.h" + +int makekey(unsigned char *data, int len, struct RSAKey *result, + unsigned char **keystr, int order) +{ + unsigned char *p = data; + int i, n; + + if (len < 4) + return -1; + + if (result) { + result->bits = 0; + for (i = 0; i < 4; i++) + result->bits = (result->bits << 8) + *p++; + } else + p += 4; + + len -= 4; + + /* + * order=0 means exponent then modulus (the keys sent by the + * server). order=1 means modulus then exponent (the keys + * stored in a keyfile). + */ + + if (order == 0) { + n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL); + if (n < 0) return -1; + p += n; + len -= n; + } + + n = ssh1_read_bignum(p, len, result ? &result->modulus : NULL); + if (n < 0 || (result && bignum_bitcount(result->modulus) == 0)) return -1; + if (result) + result->bytes = n - 2; + if (keystr) + *keystr = p + 2; + p += n; + len -= n; + + if (order == 1) { + n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL); + if (n < 0) return -1; + p += n; + len -= n; + } + return p - data; +} + +int makeprivate(unsigned char *data, int len, struct RSAKey *result) +{ + return ssh1_read_bignum(data, len, &result->private_exponent); +} + +int rsaencrypt(unsigned char *data, int length, struct RSAKey *key) +{ + Bignum b1, b2; + int i; + unsigned char *p; + + if (key->bytes < length + 4) + return 0; /* RSA key too short! */ + + memmove(data + key->bytes - length, data, length); + data[0] = 0; + data[1] = 2; + + for (i = 2; i < key->bytes - length - 1; i++) { + do { + data[i] = random_byte(); + } while (data[i] == 0); + } + data[key->bytes - length - 1] = 0; + + b1 = bignum_from_bytes(data, key->bytes); + + b2 = modpow(b1, key->exponent, key->modulus); + + p = data; + for (i = key->bytes; i--;) { + *p++ = bignum_byte(b2, i); + } + + freebn(b1); + freebn(b2); + + return 1; +} + +static void sha512_mpint(SHA512_State * s, Bignum b) +{ + unsigned char lenbuf[4]; + int len; + len = (bignum_bitcount(b) + 8) / 8; + PUT_32BIT(lenbuf, len); + SHA512_Bytes(s, lenbuf, 4); + while (len-- > 0) { + lenbuf[0] = bignum_byte(b, len); + SHA512_Bytes(s, lenbuf, 1); + } + smemclr(lenbuf, sizeof(lenbuf)); +} + +/* + * Compute (base ^ exp) % mod, provided mod == p * q, with p,q + * distinct primes, and iqmp is the multiplicative inverse of q mod p. + * Uses Chinese Remainder Theorem to speed computation up over the + * obvious implementation of a single big modpow. + */ +Bignum crt_modpow(Bignum base, Bignum exp, Bignum mod, + Bignum p, Bignum q, Bignum iqmp) +{ + Bignum pm1, qm1, pexp, qexp, presult, qresult, diff, multiplier, ret0, ret; + + /* + * Reduce the exponent mod phi(p) and phi(q), to save time when + * exponentiating mod p and mod q respectively. Of course, since p + * and q are prime, phi(p) == p-1 and similarly for q. + */ + pm1 = copybn(p); + decbn(pm1); + qm1 = copybn(q); + decbn(qm1); + pexp = bigmod(exp, pm1); + qexp = bigmod(exp, qm1); + + /* + * Do the two modpows. + */ + presult = modpow(base, pexp, p); + qresult = modpow(base, qexp, q); + + /* + * Recombine the results. We want a value which is congruent to + * qresult mod q, and to presult mod p. + * + * We know that iqmp * q is congruent to 1 * mod p (by definition + * of iqmp) and to 0 mod q (obviously). So we start with qresult + * (which is congruent to qresult mod both primes), and add on + * (presult-qresult) * (iqmp * q) which adjusts it to be congruent + * to presult mod p without affecting its value mod q. + */ + if (bignum_cmp(presult, qresult) < 0) { + /* + * Can't subtract presult from qresult without first adding on + * p. + */ + Bignum tmp = presult; + presult = bigadd(presult, p); + freebn(tmp); + } + diff = bigsub(presult, qresult); + multiplier = bigmul(iqmp, q); + ret0 = bigmuladd(multiplier, diff, qresult); + + /* + * Finally, reduce the result mod n. + */ + ret = bigmod(ret0, mod); + + /* + * Free all the intermediate results before returning. + */ + freebn(pm1); + freebn(qm1); + freebn(pexp); + freebn(qexp); + freebn(presult); + freebn(qresult); + freebn(diff); + freebn(multiplier); + freebn(ret0); + + return ret; +} + +/* + * This function is a wrapper on modpow(). It has the same effect as + * modpow(), but employs RSA blinding to protect against timing + * attacks and also uses the Chinese Remainder Theorem (implemented + * above, in crt_modpow()) to speed up the main operation. + */ +static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key) +{ + Bignum random, random_encrypted, random_inverse; + Bignum input_blinded, ret_blinded; + Bignum ret; + + SHA512_State ss; + unsigned char digest512[64]; + int digestused = lenof(digest512); + int hashseq = 0; + + /* + * Start by inventing a random number chosen uniformly from the + * range 2..modulus-1. (We do this by preparing a random number + * of the right length and retrying if it's greater than the + * modulus, to prevent any potential Bleichenbacher-like + * attacks making use of the uneven distribution within the + * range that would arise from just reducing our number mod n. + * There are timing implications to the potential retries, of + * course, but all they tell you is the modulus, which you + * already knew.) + * + * To preserve determinism and avoid Pageant needing to share + * the random number pool, we actually generate this `random' + * number by hashing stuff with the private key. + */ + while (1) { + int bits, byte, bitsleft, v; + random = copybn(key->modulus); + /* + * Find the topmost set bit. (This function will return its + * index plus one.) Then we'll set all bits from that one + * downwards randomly. + */ + bits = bignum_bitcount(random); + byte = 0; + bitsleft = 0; + while (bits--) { + if (bitsleft <= 0) { + bitsleft = 8; + /* + * Conceptually the following few lines are equivalent to + * byte = random_byte(); + */ + if (digestused >= lenof(digest512)) { + unsigned char seqbuf[4]; + PUT_32BIT(seqbuf, hashseq); + SHA512_Init(&ss); + SHA512_Bytes(&ss, "RSA deterministic blinding", 26); + SHA512_Bytes(&ss, seqbuf, sizeof(seqbuf)); + sha512_mpint(&ss, key->private_exponent); + SHA512_Final(&ss, digest512); + hashseq++; + + /* + * Now hash that digest plus the signature + * input. + */ + SHA512_Init(&ss); + SHA512_Bytes(&ss, digest512, sizeof(digest512)); + sha512_mpint(&ss, input); + SHA512_Final(&ss, digest512); + + digestused = 0; + } + byte = digest512[digestused++]; + } + v = byte & 1; + byte >>= 1; + bitsleft--; + bignum_set_bit(random, bits, v); + } + bn_restore_invariant(random); + + /* + * Now check that this number is strictly greater than + * zero, and strictly less than modulus. + */ + if (bignum_cmp(random, Zero) <= 0 || + bignum_cmp(random, key->modulus) >= 0) { + freebn(random); + continue; + } + + /* + * Also, make sure it has an inverse mod modulus. + */ + random_inverse = modinv(random, key->modulus); + if (!random_inverse) { + freebn(random); + continue; + } + + break; + } + + /* + * RSA blinding relies on the fact that (xy)^d mod n is equal + * to (x^d mod n) * (y^d mod n) mod n. We invent a random pair + * y and y^d; then we multiply x by y, raise to the power d mod + * n as usual, and divide by y^d to recover x^d. Thus an + * attacker can't correlate the timing of the modpow with the + * input, because they don't know anything about the number + * that was input to the actual modpow. + * + * The clever bit is that we don't have to do a huge modpow to + * get y and y^d; we will use the number we just invented as + * _y^d_, and use the _public_ exponent to compute (y^d)^e = y + * from it, which is much faster to do. + */ + random_encrypted = crt_modpow(random, key->exponent, + key->modulus, key->p, key->q, key->iqmp); + input_blinded = modmul(input, random_encrypted, key->modulus); + ret_blinded = crt_modpow(input_blinded, key->private_exponent, + key->modulus, key->p, key->q, key->iqmp); + ret = modmul(ret_blinded, random_inverse, key->modulus); + + freebn(ret_blinded); + freebn(input_blinded); + freebn(random_inverse); + freebn(random_encrypted); + freebn(random); + + return ret; +} + +Bignum rsadecrypt(Bignum input, struct RSAKey *key) +{ + return rsa_privkey_op(input, key); +} + +int rsastr_len(struct RSAKey *key) +{ + Bignum md, ex; + int mdlen, exlen; + + md = key->modulus; + ex = key->exponent; + mdlen = (bignum_bitcount(md) + 15) / 16; + exlen = (bignum_bitcount(ex) + 15) / 16; + return 4 * (mdlen + exlen) + 20; +} + +void rsastr_fmt(char *str, struct RSAKey *key) +{ + Bignum md, ex; + int len = 0, i, nibbles; + static const char hex[] = "0123456789abcdef"; + + md = key->modulus; + ex = key->exponent; + + len += sprintf(str + len, "0x"); + + nibbles = (3 + bignum_bitcount(ex)) / 4; + if (nibbles < 1) + nibbles = 1; + for (i = nibbles; i--;) + str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF]; + + len += sprintf(str + len, ",0x"); + + nibbles = (3 + bignum_bitcount(md)) / 4; + if (nibbles < 1) + nibbles = 1; + for (i = nibbles; i--;) + str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]; + + str[len] = '\0'; +} + +/* + * Generate a fingerprint string for the key. Compatible with the + * OpenSSH fingerprint code. + */ +void rsa_fingerprint(char *str, int len, struct RSAKey *key) +{ + struct MD5Context md5c; + unsigned char digest[16]; + char buffer[16 * 3 + 40]; + int numlen, slen, i; + + MD5Init(&md5c); + numlen = ssh1_bignum_length(key->modulus) - 2; + for (i = numlen; i--;) { + unsigned char c = bignum_byte(key->modulus, i); + MD5Update(&md5c, &c, 1); + } + numlen = ssh1_bignum_length(key->exponent) - 2; + for (i = numlen; i--;) { + unsigned char c = bignum_byte(key->exponent, i); + MD5Update(&md5c, &c, 1); + } + MD5Final(digest, &md5c); + + sprintf(buffer, "%d ", bignum_bitcount(key->modulus)); + for (i = 0; i < 16; i++) + sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "", + digest[i]); + strncpy(str, buffer, len); + str[len - 1] = '\0'; + slen = strlen(str); + if (key->comment && slen < len - 1) { + str[slen] = ' '; + strncpy(str + slen + 1, key->comment, len - slen - 1); + str[len - 1] = '\0'; + } +} + +/* + * Verify that the public data in an RSA key matches the private + * data. We also check the private data itself: we ensure that p > + * q and that iqmp really is the inverse of q mod p. + */ +int rsa_verify(struct RSAKey *key) +{ + Bignum n, ed, pm1, qm1; + int cmp; + + /* n must equal pq. */ + n = bigmul(key->p, key->q); + cmp = bignum_cmp(n, key->modulus); + freebn(n); + if (cmp != 0) + return 0; + + /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */ + pm1 = copybn(key->p); + decbn(pm1); + ed = modmul(key->exponent, key->private_exponent, pm1); + freebn(pm1); + cmp = bignum_cmp(ed, One); + freebn(ed); + if (cmp != 0) + return 0; + + qm1 = copybn(key->q); + decbn(qm1); + ed = modmul(key->exponent, key->private_exponent, qm1); + freebn(qm1); + cmp = bignum_cmp(ed, One); + freebn(ed); + if (cmp != 0) + return 0; + + /* + * Ensure p > q. + * + * I have seen key blobs in the wild which were generated with + * p < q, so instead of rejecting the key in this case we + * should instead flip them round into the canonical order of + * p > q. This also involves regenerating iqmp. + */ + if (bignum_cmp(key->p, key->q) <= 0) { + Bignum tmp = key->p; + key->p = key->q; + key->q = tmp; + + freebn(key->iqmp); + key->iqmp = modinv(key->q, key->p); + if (!key->iqmp) + return 0; + } + + /* + * Ensure iqmp * q is congruent to 1, modulo p. + */ + n = modmul(key->iqmp, key->q, key->p); + cmp = bignum_cmp(n, One); + freebn(n); + if (cmp != 0) + return 0; + + return 1; +} + +/* Public key blob as used by Pageant: exponent before modulus. */ +unsigned char *rsa_public_blob(struct RSAKey *key, int *len) +{ + int length, pos; + unsigned char *ret; + + length = (ssh1_bignum_length(key->modulus) + + ssh1_bignum_length(key->exponent) + 4); + ret = snewn(length, unsigned char); + + PUT_32BIT(ret, bignum_bitcount(key->modulus)); + pos = 4; + pos += ssh1_write_bignum(ret + pos, key->exponent); + pos += ssh1_write_bignum(ret + pos, key->modulus); + + *len = length; + return ret; +} + +/* Given a public blob, determine its length. */ +int rsa_public_blob_len(void *data, int maxlen) +{ + unsigned char *p = (unsigned char *)data; + int n; + + if (maxlen < 4) + return -1; + p += 4; /* length word */ + maxlen -= 4; + + n = ssh1_read_bignum(p, maxlen, NULL); /* exponent */ + if (n < 0) + return -1; + p += n; + + n = ssh1_read_bignum(p, maxlen, NULL); /* modulus */ + if (n < 0) + return -1; + p += n; + + return p - (unsigned char *)data; +} + +void freersakey(struct RSAKey *key) +{ + if (key->modulus) + freebn(key->modulus); + if (key->exponent) + freebn(key->exponent); + if (key->private_exponent) + freebn(key->private_exponent); + if (key->p) + freebn(key->p); + if (key->q) + freebn(key->q); + if (key->iqmp) + freebn(key->iqmp); + if (key->comment) + sfree(key->comment); +} + +/* ---------------------------------------------------------------------- + * Implementation of the ssh-rsa signing key type. + */ + +static void getstring(char **data, int *datalen, char **p, int *length) +{ + *p = NULL; + if (*datalen < 4) + return; + *length = toint(GET_32BIT(*data)); + if (*length < 0) + return; + *datalen -= 4; + *data += 4; + if (*datalen < *length) + return; + *p = *data; + *data += *length; + *datalen -= *length; +} +static Bignum getmp(char **data, int *datalen) +{ + char *p; + int length; + Bignum b; + + getstring(data, datalen, &p, &length); + if (!p) + return NULL; + b = bignum_from_bytes((unsigned char *)p, length); + return b; +} + +static void rsa2_freekey(void *key); /* forward reference */ + +static void *rsa2_newkey(char *data, int len) +{ + char *p; + int slen; + struct RSAKey *rsa; + + rsa = snew(struct RSAKey); + getstring(&data, &len, &p, &slen); + + if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) { + sfree(rsa); + return NULL; + } + rsa->exponent = getmp(&data, &len); + rsa->modulus = getmp(&data, &len); + rsa->private_exponent = NULL; + rsa->p = rsa->q = rsa->iqmp = NULL; + rsa->comment = NULL; + + if (!rsa->exponent || !rsa->modulus) { + rsa2_freekey(rsa); + return NULL; + } + + return rsa; +} + +static void rsa2_freekey(void *key) +{ + struct RSAKey *rsa = (struct RSAKey *) key; + freersakey(rsa); + sfree(rsa); +} + +static char *rsa2_fmtkey(void *key) +{ + struct RSAKey *rsa = (struct RSAKey *) key; + char *p; + int len; + + len = rsastr_len(rsa); + p = snewn(len, char); + rsastr_fmt(p, rsa); + return p; +} + +static unsigned char *rsa2_public_blob(void *key, int *len) +{ + struct RSAKey *rsa = (struct RSAKey *) key; + int elen, mlen, bloblen; + int i; + unsigned char *blob, *p; + + elen = (bignum_bitcount(rsa->exponent) + 8) / 8; + mlen = (bignum_bitcount(rsa->modulus) + 8) / 8; + + /* + * string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen. + * (three length fields, 12+7=19). + */ + bloblen = 19 + elen + mlen; + blob = snewn(bloblen, unsigned char); + p = blob; + PUT_32BIT(p, 7); + p += 4; + memcpy(p, "ssh-rsa", 7); + p += 7; + PUT_32BIT(p, elen); + p += 4; + for (i = elen; i--;) + *p++ = bignum_byte(rsa->exponent, i); + PUT_32BIT(p, mlen); + p += 4; + for (i = mlen; i--;) + *p++ = bignum_byte(rsa->modulus, i); + assert(p == blob + bloblen); + *len = bloblen; + return blob; +} + +static unsigned char *rsa2_private_blob(void *key, int *len) +{ + struct RSAKey *rsa = (struct RSAKey *) key; + int dlen, plen, qlen, ulen, bloblen; + int i; + unsigned char *blob, *p; + + dlen = (bignum_bitcount(rsa->private_exponent) + 8) / 8; + plen = (bignum_bitcount(rsa->p) + 8) / 8; + qlen = (bignum_bitcount(rsa->q) + 8) / 8; + ulen = (bignum_bitcount(rsa->iqmp) + 8) / 8; + + /* + * mpint private_exp, mpint p, mpint q, mpint iqmp. Total 16 + + * sum of lengths. + */ + bloblen = 16 + dlen + plen + qlen + ulen; + blob = snewn(bloblen, unsigned char); + p = blob; + PUT_32BIT(p, dlen); + p += 4; + for (i = dlen; i--;) + *p++ = bignum_byte(rsa->private_exponent, i); + PUT_32BIT(p, plen); + p += 4; + for (i = plen; i--;) + *p++ = bignum_byte(rsa->p, i); + PUT_32BIT(p, qlen); + p += 4; + for (i = qlen; i--;) + *p++ = bignum_byte(rsa->q, i); + PUT_32BIT(p, ulen); + p += 4; + for (i = ulen; i--;) + *p++ = bignum_byte(rsa->iqmp, i); + assert(p == blob + bloblen); + *len = bloblen; + return blob; +} + +static void *rsa2_createkey(unsigned char *pub_blob, int pub_len, + unsigned char *priv_blob, int priv_len) +{ + struct RSAKey *rsa; + char *pb = (char *) priv_blob; + + rsa = rsa2_newkey((char *) pub_blob, pub_len); + rsa->private_exponent = getmp(&pb, &priv_len); + rsa->p = getmp(&pb, &priv_len); + rsa->q = getmp(&pb, &priv_len); + rsa->iqmp = getmp(&pb, &priv_len); + + if (!rsa_verify(rsa)) { + rsa2_freekey(rsa); + return NULL; + } + + return rsa; +} + +static void *rsa2_openssh_createkey(unsigned char **blob, int *len) +{ + char **b = (char **) blob; + struct RSAKey *rsa; + + rsa = snew(struct RSAKey); + rsa->comment = NULL; + + rsa->modulus = getmp(b, len); + rsa->exponent = getmp(b, len); + rsa->private_exponent = getmp(b, len); + rsa->iqmp = getmp(b, len); + rsa->p = getmp(b, len); + rsa->q = getmp(b, len); + + if (!rsa->modulus || !rsa->exponent || !rsa->private_exponent || + !rsa->iqmp || !rsa->p || !rsa->q) { + rsa2_freekey(rsa); + return NULL; + } + + if (!rsa_verify(rsa)) { + rsa2_freekey(rsa); + return NULL; + } + + return rsa; +} + +static int rsa2_openssh_fmtkey(void *key, unsigned char *blob, int len) +{ + struct RSAKey *rsa = (struct RSAKey *) key; + int bloblen, i; + + bloblen = + ssh2_bignum_length(rsa->modulus) + + ssh2_bignum_length(rsa->exponent) + + ssh2_bignum_length(rsa->private_exponent) + + ssh2_bignum_length(rsa->iqmp) + + ssh2_bignum_length(rsa->p) + ssh2_bignum_length(rsa->q); + + if (bloblen > len) + return bloblen; + + bloblen = 0; +#define ENC(x) \ + PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \ + for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i); + ENC(rsa->modulus); + ENC(rsa->exponent); + ENC(rsa->private_exponent); + ENC(rsa->iqmp); + ENC(rsa->p); + ENC(rsa->q); + + return bloblen; +} + +static int rsa2_pubkey_bits(void *blob, int len) +{ + struct RSAKey *rsa; + int ret; + + rsa = rsa2_newkey((char *) blob, len); + ret = bignum_bitcount(rsa->modulus); + rsa2_freekey(rsa); + + return ret; +} + +static char *rsa2_fingerprint(void *key) +{ + struct RSAKey *rsa = (struct RSAKey *) key; + struct MD5Context md5c; + unsigned char digest[16], lenbuf[4]; + char buffer[16 * 3 + 40]; + char *ret; + int numlen, i; + + MD5Init(&md5c); + MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-rsa", 11); + +#define ADD_BIGNUM(bignum) \ + numlen = (bignum_bitcount(bignum)+8)/8; \ + PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \ + for (i = numlen; i-- ;) { \ + unsigned char c = bignum_byte(bignum, i); \ + MD5Update(&md5c, &c, 1); \ + } + ADD_BIGNUM(rsa->exponent); + ADD_BIGNUM(rsa->modulus); +#undef ADD_BIGNUM + + MD5Final(digest, &md5c); + + sprintf(buffer, "ssh-rsa %d ", bignum_bitcount(rsa->modulus)); + for (i = 0; i < 16; i++) + sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "", + digest[i]); + ret = snewn(strlen(buffer) + 1, char); + if (ret) + strcpy(ret, buffer); + return ret; +} + +/* + * This is the magic ASN.1/DER prefix that goes in the decoded + * signature, between the string of FFs and the actual SHA hash + * value. The meaning of it is: + * + * 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself + * + * 30 21 -- a constructed SEQUENCE of length 0x21 + * 30 09 -- a constructed sub-SEQUENCE of length 9 + * 06 05 -- an object identifier, length 5 + * 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 } + * (the 1,3 comes from 0x2B = 43 = 40*1+3) + * 05 00 -- NULL + * 04 14 -- a primitive OCTET STRING of length 0x14 + * [0x14 bytes of hash data follows] + * + * The object id in the middle there is listed as `id-sha1' in + * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the + * ASN module for PKCS #1) and its expanded form is as follows: + * + * id-sha1 OBJECT IDENTIFIER ::= { + * iso(1) identified-organization(3) oiw(14) secsig(3) + * algorithms(2) 26 } + */ +static const unsigned char asn1_weird_stuff[] = { + 0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, + 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14, +}; + +#define ASN1_LEN ( (int) sizeof(asn1_weird_stuff) ) + +static int rsa2_verifysig(void *key, char *sig, int siglen, + char *data, int datalen) +{ + struct RSAKey *rsa = (struct RSAKey *) key; + Bignum in, out; + char *p; + int slen; + int bytes, i, j, ret; + unsigned char hash[20]; + + getstring(&sig, &siglen, &p, &slen); + if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) { + return 0; + } + in = getmp(&sig, &siglen); + if (!in) + return 0; + out = modpow(in, rsa->exponent, rsa->modulus); + freebn(in); + + ret = 1; + + bytes = (bignum_bitcount(rsa->modulus)+7) / 8; + /* Top (partial) byte should be zero. */ + if (bignum_byte(out, bytes - 1) != 0) + ret = 0; + /* First whole byte should be 1. */ + if (bignum_byte(out, bytes - 2) != 1) + ret = 0; + /* Most of the rest should be FF. */ + for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) { + if (bignum_byte(out, i) != 0xFF) + ret = 0; + } + /* Then we expect to see the asn1_weird_stuff. */ + for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) { + if (bignum_byte(out, i) != asn1_weird_stuff[j]) + ret = 0; + } + /* Finally, we expect to see the SHA-1 hash of the signed data. */ + SHA_Simple(data, datalen, hash); + for (i = 19, j = 0; i >= 0; i--, j++) { + if (bignum_byte(out, i) != hash[j]) + ret = 0; + } + freebn(out); + + return ret; +} + +static unsigned char *rsa2_sign(void *key, char *data, int datalen, + int *siglen) +{ + struct RSAKey *rsa = (struct RSAKey *) key; + unsigned char *bytes; + int nbytes; + unsigned char hash[20]; + Bignum in, out; + int i, j; + + SHA_Simple(data, datalen, hash); + + nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8; + assert(1 <= nbytes - 20 - ASN1_LEN); + bytes = snewn(nbytes, unsigned char); + + bytes[0] = 1; + for (i = 1; i < nbytes - 20 - ASN1_LEN; i++) + bytes[i] = 0xFF; + for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++) + bytes[i] = asn1_weird_stuff[j]; + for (i = nbytes - 20, j = 0; i < nbytes; i++, j++) + bytes[i] = hash[j]; + + in = bignum_from_bytes(bytes, nbytes); + sfree(bytes); + + out = rsa_privkey_op(in, rsa); + freebn(in); + + nbytes = (bignum_bitcount(out) + 7) / 8; + bytes = snewn(4 + 7 + 4 + nbytes, unsigned char); + PUT_32BIT(bytes, 7); + memcpy(bytes + 4, "ssh-rsa", 7); + PUT_32BIT(bytes + 4 + 7, nbytes); + for (i = 0; i < nbytes; i++) + bytes[4 + 7 + 4 + i] = bignum_byte(out, nbytes - 1 - i); + freebn(out); + + *siglen = 4 + 7 + 4 + nbytes; + return bytes; +} + +const struct ssh_signkey ssh_rsa = { + rsa2_newkey, + rsa2_freekey, + rsa2_fmtkey, + rsa2_public_blob, + rsa2_private_blob, + rsa2_createkey, + rsa2_openssh_createkey, + rsa2_openssh_fmtkey, + rsa2_pubkey_bits, + rsa2_fingerprint, + rsa2_verifysig, + rsa2_sign, + "ssh-rsa", + "rsa2" +}; + +void *ssh_rsakex_newkey(char *data, int len) +{ + return rsa2_newkey(data, len); +} + +void ssh_rsakex_freekey(void *key) +{ + rsa2_freekey(key); +} + +int ssh_rsakex_klen(void *key) +{ + struct RSAKey *rsa = (struct RSAKey *) key; + + return bignum_bitcount(rsa->modulus); +} + +static void oaep_mask(const struct ssh_hash *h, void *seed, int seedlen, + void *vdata, int datalen) +{ + unsigned char *data = (unsigned char *)vdata; + unsigned count = 0; + + while (datalen > 0) { + int i, max = (datalen > h->hlen ? h->hlen : datalen); + void *s; + unsigned char counter[4], hash[SSH2_KEX_MAX_HASH_LEN]; + + assert(h->hlen <= SSH2_KEX_MAX_HASH_LEN); + PUT_32BIT(counter, count); + s = h->init(); + h->bytes(s, seed, seedlen); + h->bytes(s, counter, 4); + h->final(s, hash); + count++; + + for (i = 0; i < max; i++) + data[i] ^= hash[i]; + + data += max; + datalen -= max; + } +} + +void ssh_rsakex_encrypt(const struct ssh_hash *h, unsigned char *in, int inlen, + unsigned char *out, int outlen, + void *key) +{ + Bignum b1, b2; + struct RSAKey *rsa = (struct RSAKey *) key; + int k, i; + char *p; + const int HLEN = h->hlen; + + /* + * Here we encrypt using RSAES-OAEP. Essentially this means: + * + * - we have a SHA-based `mask generation function' which + * creates a pseudo-random stream of mask data + * deterministically from an input chunk of data. + * + * - we have a random chunk of data called a seed. + * + * - we use the seed to generate a mask which we XOR with our + * plaintext. + * + * - then we use _the masked plaintext_ to generate a mask + * which we XOR with the seed. + * + * - then we concatenate the masked seed and the masked + * plaintext, and RSA-encrypt that lot. + * + * The result is that the data input to the encryption function + * is random-looking and (hopefully) contains no exploitable + * structure such as PKCS1-v1_5 does. + * + * For a precise specification, see RFC 3447, section 7.1.1. + * Some of the variable names below are derived from that, so + * it'd probably help to read it anyway. + */ + + /* k denotes the length in octets of the RSA modulus. */ + k = (7 + bignum_bitcount(rsa->modulus)) / 8; + + /* The length of the input data must be at most k - 2hLen - 2. */ + assert(inlen > 0 && inlen <= k - 2*HLEN - 2); + + /* The length of the output data wants to be precisely k. */ + assert(outlen == k); + + /* + * Now perform EME-OAEP encoding. First set up all the unmasked + * output data. + */ + /* Leading byte zero. */ + out[0] = 0; + /* At position 1, the seed: HLEN bytes of random data. */ + for (i = 0; i < HLEN; i++) + out[i + 1] = random_byte(); + /* At position 1+HLEN, the data block DB, consisting of: */ + /* The hash of the label (we only support an empty label here) */ + h->final(h->init(), out + HLEN + 1); + /* A bunch of zero octets */ + memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1)); + /* A single 1 octet, followed by the input message data. */ + out[outlen - inlen - 1] = 1; + memcpy(out + outlen - inlen, in, inlen); + + /* + * Now use the seed data to mask the block DB. + */ + oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1); + + /* + * And now use the masked DB to mask the seed itself. + */ + oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN); + + /* + * Now `out' contains precisely the data we want to + * RSA-encrypt. + */ + b1 = bignum_from_bytes(out, outlen); + b2 = modpow(b1, rsa->exponent, rsa->modulus); + p = (char *)out; + for (i = outlen; i--;) { + *p++ = bignum_byte(b2, i); + } + freebn(b1); + freebn(b2); + + /* + * And we're done. + */ +} + +static const struct ssh_kex ssh_rsa_kex_sha1 = { + "rsa1024-sha1", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha1 +}; + +static const struct ssh_kex ssh_rsa_kex_sha256 = { + "rsa2048-sha256", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha256 +}; + +static const struct ssh_kex *const rsa_kex_list[] = { + &ssh_rsa_kex_sha256, + &ssh_rsa_kex_sha1 +}; + +const struct ssh_kexes ssh_rsa_kex = { + sizeof(rsa_kex_list) / sizeof(*rsa_kex_list), + rsa_kex_list +}; |