diff options
Diffstat (limited to 'mesalib/src/glsl/ir_mat_op_to_vec.cpp')
-rw-r--r-- | mesalib/src/glsl/ir_mat_op_to_vec.cpp | 488 |
1 files changed, 488 insertions, 0 deletions
diff --git a/mesalib/src/glsl/ir_mat_op_to_vec.cpp b/mesalib/src/glsl/ir_mat_op_to_vec.cpp new file mode 100644 index 000000000..244fe4892 --- /dev/null +++ b/mesalib/src/glsl/ir_mat_op_to_vec.cpp @@ -0,0 +1,488 @@ +/* + * Copyright © 2010 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +/** + * \file ir_mat_op_to_vec.cpp + * + * Breaks matrix operation expressions down to a series of vector operations. + * + * Generally this is how we have to codegen matrix operations for a + * GPU, so this gives us the chance to constant fold operations on a + * column or row. + */ + +#include "ir.h" +#include "ir_expression_flattening.h" +#include "glsl_types.h" + +class ir_mat_op_to_vec_visitor : public ir_hierarchical_visitor { +public: + ir_mat_op_to_vec_visitor() + { + this->made_progress = false; + this->mem_ctx = NULL; + } + + ir_visitor_status visit_leave(ir_assignment *); + + ir_dereference *get_column(ir_variable *var, int col); + ir_rvalue *get_element(ir_variable *var, int col, int row); + + void do_mul_mat_mat(ir_variable *result_var, + ir_variable *a_var, ir_variable *b_var); + void do_mul_mat_vec(ir_variable *result_var, + ir_variable *a_var, ir_variable *b_var); + void do_mul_vec_mat(ir_variable *result_var, + ir_variable *a_var, ir_variable *b_var); + void do_mul_mat_scalar(ir_variable *result_var, + ir_variable *a_var, ir_variable *b_var); + void do_equal_mat_mat(ir_variable *result_var, ir_variable *a_var, + ir_variable *b_var, bool test_equal); + + void *mem_ctx; + bool made_progress; +}; + +static bool +mat_op_to_vec_predicate(ir_instruction *ir) +{ + ir_expression *expr = ir->as_expression(); + unsigned int i; + + if (!expr) + return false; + + for (i = 0; i < expr->get_num_operands(); i++) { + if (expr->operands[i]->type->is_matrix()) + return true; + } + + return false; +} + +bool +do_mat_op_to_vec(exec_list *instructions) +{ + ir_mat_op_to_vec_visitor v; + + /* Pull out any matrix expression to a separate assignment to a + * temp. This will make our handling of the breakdown to + * operations on the matrix's vector components much easier. + */ + do_expression_flattening(instructions, mat_op_to_vec_predicate); + + visit_list_elements(&v, instructions); + + return v.made_progress; +} + +ir_rvalue * +ir_mat_op_to_vec_visitor::get_element(ir_variable *var, int col, int row) +{ + ir_dereference *deref; + + deref = new(mem_ctx) ir_dereference_variable(var); + + if (var->type->is_matrix()) { + deref = new(mem_ctx) ir_dereference_array(var, + new(mem_ctx) ir_constant(col)); + } else { + assert(col == 0); + } + + return new(mem_ctx) ir_swizzle(deref, row, 0, 0, 0, 1); +} + +ir_dereference * +ir_mat_op_to_vec_visitor::get_column(ir_variable *var, int row) +{ + ir_dereference *deref; + + if (!var->type->is_matrix()) { + deref = new(mem_ctx) ir_dereference_variable(var); + } else { + deref = new(mem_ctx) ir_dereference_variable(var); + deref = new(mem_ctx) ir_dereference_array(deref, + new(mem_ctx) ir_constant(row)); + } + + return deref; +} + +void +ir_mat_op_to_vec_visitor::do_mul_mat_mat(ir_variable *result_var, + ir_variable *a_var, + ir_variable *b_var) +{ + int b_col, i; + ir_assignment *assign; + ir_expression *expr; + + for (b_col = 0; b_col < b_var->type->matrix_columns; b_col++) { + ir_rvalue *a = get_column(a_var, 0); + ir_rvalue *b = get_element(b_var, b_col, 0); + + /* first column */ + expr = new(mem_ctx) ir_expression(ir_binop_mul, + a->type, + a, + b); + + /* following columns */ + for (i = 1; i < a_var->type->matrix_columns; i++) { + ir_expression *mul_expr; + + a = get_column(a_var, i); + b = get_element(b_var, b_col, i); + + mul_expr = new(mem_ctx) ir_expression(ir_binop_mul, + a->type, + a, + b); + expr = new(mem_ctx) ir_expression(ir_binop_add, + a->type, + expr, + mul_expr); + } + + ir_rvalue *result = get_column(result_var, b_col); + assign = new(mem_ctx) ir_assignment(result, + expr, + NULL); + base_ir->insert_before(assign); + } +} + +void +ir_mat_op_to_vec_visitor::do_mul_mat_vec(ir_variable *result_var, + ir_variable *a_var, + ir_variable *b_var) +{ + int i; + ir_rvalue *a = get_column(a_var, 0); + ir_rvalue *b = get_element(b_var, 0, 0); + ir_assignment *assign; + ir_expression *expr; + + /* first column */ + expr = new(mem_ctx) ir_expression(ir_binop_mul, + result_var->type, + a, + b); + + /* following columns */ + for (i = 1; i < a_var->type->matrix_columns; i++) { + ir_expression *mul_expr; + + a = get_column(a_var, i); + b = get_element(b_var, 0, i); + + mul_expr = new(mem_ctx) ir_expression(ir_binop_mul, + result_var->type, + a, + b); + expr = new(mem_ctx) ir_expression(ir_binop_add, + result_var->type, + expr, + mul_expr); + } + + ir_rvalue *result = new(mem_ctx) ir_dereference_variable(result_var); + assign = new(mem_ctx) ir_assignment(result, + expr, + NULL); + base_ir->insert_before(assign); +} + +void +ir_mat_op_to_vec_visitor::do_mul_vec_mat(ir_variable *result_var, + ir_variable *a_var, + ir_variable *b_var) +{ + int i; + + for (i = 0; i < b_var->type->matrix_columns; i++) { + ir_rvalue *a = new(mem_ctx) ir_dereference_variable(a_var); + ir_rvalue *b = get_column(b_var, i); + ir_rvalue *result; + ir_expression *column_expr; + ir_assignment *column_assign; + + result = new(mem_ctx) ir_dereference_variable(result_var); + result = new(mem_ctx) ir_swizzle(result, i, 0, 0, 0, 1); + + column_expr = new(mem_ctx) ir_expression(ir_binop_dot, + result->type, + a, + b); + + column_assign = new(mem_ctx) ir_assignment(result, + column_expr, + NULL); + base_ir->insert_before(column_assign); + } +} + +void +ir_mat_op_to_vec_visitor::do_mul_mat_scalar(ir_variable *result_var, + ir_variable *a_var, + ir_variable *b_var) +{ + int i; + + for (i = 0; i < a_var->type->matrix_columns; i++) { + ir_rvalue *a = get_column(a_var, i); + ir_rvalue *b = new(mem_ctx) ir_dereference_variable(b_var); + ir_rvalue *result = get_column(result_var, i); + ir_expression *column_expr; + ir_assignment *column_assign; + + column_expr = new(mem_ctx) ir_expression(ir_binop_mul, + result->type, + a, + b); + + column_assign = new(mem_ctx) ir_assignment(result, + column_expr, + NULL); + base_ir->insert_before(column_assign); + } +} + +void +ir_mat_op_to_vec_visitor::do_equal_mat_mat(ir_variable *result_var, + ir_variable *a_var, + ir_variable *b_var, + bool test_equal) +{ + /* This essentially implements the following GLSL: + * + * bool equal(mat4 a, mat4 b) + * { + * return !any(bvec4(a[0] != b[0], + * a[1] != b[1], + * a[2] != b[2], + * a[3] != b[3]); + * } + * + * bool nequal(mat4 a, mat4 b) + * { + * return any(bvec4(a[0] != b[0], + * a[1] != b[1], + * a[2] != b[2], + * a[3] != b[3]); + * } + */ + const unsigned columns = a_var->type->matrix_columns; + const glsl_type *const bvec_type = + glsl_type::get_instance(GLSL_TYPE_BOOL, columns, 1); + + ir_variable *const tmp_bvec = + new(this->mem_ctx) ir_variable(bvec_type, "mat_cmp_bvec", + ir_var_temporary); + this->base_ir->insert_before(tmp_bvec); + + for (unsigned i = 0; i < columns; i++) { + ir_dereference *const op0 = get_column(a_var, i); + ir_dereference *const op1 = get_column(b_var, i); + + ir_expression *const cmp = + new(this->mem_ctx) ir_expression(ir_binop_any_nequal, + glsl_type::bool_type, op0, op1); + + ir_dereference *const lhs = + new(this->mem_ctx) ir_dereference_variable(tmp_bvec); + + ir_assignment *const assign = + new(this->mem_ctx) ir_assignment(lhs, cmp, NULL, (1U << i)); + + this->base_ir->insert_before(assign); + } + + ir_rvalue *const val = + new(this->mem_ctx) ir_dereference_variable(tmp_bvec); + + ir_expression *any = + new(this->mem_ctx) ir_expression(ir_unop_any, glsl_type::bool_type, + val, NULL); + + if (test_equal) + any = new(this->mem_ctx) ir_expression(ir_unop_logic_not, + glsl_type::bool_type, + any, NULL); + + ir_rvalue *const result = + new(this->mem_ctx) ir_dereference_variable(result_var); + + ir_assignment *const assign = + new(mem_ctx) ir_assignment(result, any, NULL); + base_ir->insert_before(assign); +} + +static bool +has_matrix_operand(const ir_expression *expr, unsigned &columns) +{ + for (unsigned i = 0; i < expr->get_num_operands(); i++) { + if (expr->operands[i]->type->is_matrix()) { + columns = expr->operands[i]->type->matrix_columns; + return true; + } + } + + return false; +} + + +ir_visitor_status +ir_mat_op_to_vec_visitor::visit_leave(ir_assignment *orig_assign) +{ + ir_expression *orig_expr = orig_assign->rhs->as_expression(); + unsigned int i, matrix_columns = 1; + ir_variable *op_var[2]; + + if (!orig_expr) + return visit_continue; + + if (!has_matrix_operand(orig_expr, matrix_columns)) + return visit_continue; + + mem_ctx = talloc_parent(orig_assign); + + ir_dereference_variable *lhs_deref = + orig_assign->lhs->as_dereference_variable(); + assert(lhs_deref); + + ir_variable *result_var = lhs_deref->var; + + /* Store the expression operands in temps so we can use them + * multiple times. + */ + for (i = 0; i < orig_expr->get_num_operands(); i++) { + ir_assignment *assign; + + op_var[i] = new(mem_ctx) ir_variable(orig_expr->operands[i]->type, + "mat_op_to_vec", + ir_var_temporary); + base_ir->insert_before(op_var[i]); + + lhs_deref = new(mem_ctx) ir_dereference_variable(op_var[i]); + assign = new(mem_ctx) ir_assignment(lhs_deref, + orig_expr->operands[i], + NULL); + base_ir->insert_before(assign); + } + + /* OK, time to break down this matrix operation. */ + switch (orig_expr->operation) { + case ir_unop_neg: { + const unsigned mask = (1U << result_var->type->vector_elements) - 1; + + /* Apply the operation to each column.*/ + for (i = 0; i < matrix_columns; i++) { + ir_rvalue *op0 = get_column(op_var[0], i); + ir_dereference *result = get_column(result_var, i); + ir_expression *column_expr; + ir_assignment *column_assign; + + column_expr = new(mem_ctx) ir_expression(orig_expr->operation, + result->type, + op0, + NULL); + + column_assign = new(mem_ctx) ir_assignment(result, + column_expr, + NULL, + mask); + assert(column_assign->write_mask != 0); + base_ir->insert_before(column_assign); + } + break; + } + case ir_binop_add: + case ir_binop_sub: + case ir_binop_div: + case ir_binop_mod: { + const unsigned mask = (1U << result_var->type->vector_elements) - 1; + + /* For most operations, the matrix version is just going + * column-wise through and applying the operation to each column + * if available. + */ + for (i = 0; i < matrix_columns; i++) { + ir_rvalue *op0 = get_column(op_var[0], i); + ir_rvalue *op1 = get_column(op_var[1], i); + ir_dereference *result = get_column(result_var, i); + ir_expression *column_expr; + ir_assignment *column_assign; + + column_expr = new(mem_ctx) ir_expression(orig_expr->operation, + result->type, + op0, + op1); + + column_assign = new(mem_ctx) ir_assignment(result, + column_expr, + NULL, + mask); + assert(column_assign->write_mask != 0); + base_ir->insert_before(column_assign); + } + break; + } + case ir_binop_mul: + if (op_var[0]->type->is_matrix()) { + if (op_var[1]->type->is_matrix()) { + do_mul_mat_mat(result_var, op_var[0], op_var[1]); + } else if (op_var[1]->type->is_vector()) { + do_mul_mat_vec(result_var, op_var[0], op_var[1]); + } else { + assert(op_var[1]->type->is_scalar()); + do_mul_mat_scalar(result_var, op_var[0], op_var[1]); + } + } else { + assert(op_var[1]->type->is_matrix()); + if (op_var[0]->type->is_vector()) { + do_mul_vec_mat(result_var, op_var[0], op_var[1]); + } else { + assert(op_var[0]->type->is_scalar()); + do_mul_mat_scalar(result_var, op_var[1], op_var[0]); + } + } + break; + + case ir_binop_all_equal: + case ir_binop_any_nequal: + do_equal_mat_mat(result_var, op_var[1], op_var[0], + (orig_expr->operation == ir_binop_all_equal)); + break; + + default: + printf("FINISHME: Handle matrix operation for %s\n", + orig_expr->operator_string()); + abort(); + } + orig_assign->remove(); + this->made_progress = true; + + return visit_continue; +} |