diff options
Diffstat (limited to 'mesalib/src/glsl/lower_mat_op_to_vec.cpp')
-rw-r--r-- | mesalib/src/glsl/lower_mat_op_to_vec.cpp | 983 |
1 files changed, 490 insertions, 493 deletions
diff --git a/mesalib/src/glsl/lower_mat_op_to_vec.cpp b/mesalib/src/glsl/lower_mat_op_to_vec.cpp index bdc53a1f8..dc46ed417 100644 --- a/mesalib/src/glsl/lower_mat_op_to_vec.cpp +++ b/mesalib/src/glsl/lower_mat_op_to_vec.cpp @@ -1,493 +1,490 @@ -/* - * Copyright © 2010 Intel Corporation - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice (including the next - * paragraph) shall be included in all copies or substantial portions of the - * Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING - * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - * DEALINGS IN THE SOFTWARE. - */ - -/** - * \file lower_mat_op_to_vec.cpp - * - * Breaks matrix operation expressions down to a series of vector operations. - * - * Generally this is how we have to codegen matrix operations for a - * GPU, so this gives us the chance to constant fold operations on a - * column or row. - */ - -#include "ir.h" -#include "ir_expression_flattening.h" -#include "glsl_types.h" - -using std::abort; -using std::printf; - -class ir_mat_op_to_vec_visitor : public ir_hierarchical_visitor { -public: - ir_mat_op_to_vec_visitor() - { - this->made_progress = false; - this->mem_ctx = NULL; - } - - ir_visitor_status visit_leave(ir_assignment *); - - ir_dereference *get_column(ir_variable *var, int col); - ir_rvalue *get_element(ir_variable *var, int col, int row); - - void do_mul_mat_mat(ir_variable *result_var, - ir_variable *a_var, ir_variable *b_var); - void do_mul_mat_vec(ir_variable *result_var, - ir_variable *a_var, ir_variable *b_var); - void do_mul_vec_mat(ir_variable *result_var, - ir_variable *a_var, ir_variable *b_var); - void do_mul_mat_scalar(ir_variable *result_var, - ir_variable *a_var, ir_variable *b_var); - void do_equal_mat_mat(ir_variable *result_var, ir_variable *a_var, - ir_variable *b_var, bool test_equal); - - void *mem_ctx; - bool made_progress; -}; - -static bool -mat_op_to_vec_predicate(ir_instruction *ir) -{ - ir_expression *expr = ir->as_expression(); - unsigned int i; - - if (!expr) - return false; - - for (i = 0; i < expr->get_num_operands(); i++) { - if (expr->operands[i]->type->is_matrix()) - return true; - } - - return false; -} - -bool -do_mat_op_to_vec(exec_list *instructions) -{ - ir_mat_op_to_vec_visitor v; - - /* Pull out any matrix expression to a separate assignment to a - * temp. This will make our handling of the breakdown to - * operations on the matrix's vector components much easier. - */ - do_expression_flattening(instructions, mat_op_to_vec_predicate); - - visit_list_elements(&v, instructions); - - return v.made_progress; -} - -ir_rvalue * -ir_mat_op_to_vec_visitor::get_element(ir_variable *var, int col, int row) -{ - ir_dereference *deref; - - deref = new(mem_ctx) ir_dereference_variable(var); - - if (var->type->is_matrix()) { - deref = new(mem_ctx) ir_dereference_array(var, - new(mem_ctx) ir_constant(col)); - } else { - assert(col == 0); - } - - return new(mem_ctx) ir_swizzle(deref, row, 0, 0, 0, 1); -} - -ir_dereference * -ir_mat_op_to_vec_visitor::get_column(ir_variable *var, int row) -{ - ir_dereference *deref; - - if (!var->type->is_matrix()) { - deref = new(mem_ctx) ir_dereference_variable(var); - } else { - deref = new(mem_ctx) ir_dereference_variable(var); - deref = new(mem_ctx) ir_dereference_array(deref, - new(mem_ctx) ir_constant(row)); - } - - return deref; -} - -void -ir_mat_op_to_vec_visitor::do_mul_mat_mat(ir_variable *result_var, - ir_variable *a_var, - ir_variable *b_var) -{ - int b_col, i; - ir_assignment *assign; - ir_expression *expr; - - for (b_col = 0; b_col < b_var->type->matrix_columns; b_col++) { - ir_rvalue *a = get_column(a_var, 0); - ir_rvalue *b = get_element(b_var, b_col, 0); - - /* first column */ - expr = new(mem_ctx) ir_expression(ir_binop_mul, - a->type, - a, - b); - - /* following columns */ - for (i = 1; i < a_var->type->matrix_columns; i++) { - ir_expression *mul_expr; - - a = get_column(a_var, i); - b = get_element(b_var, b_col, i); - - mul_expr = new(mem_ctx) ir_expression(ir_binop_mul, - a->type, - a, - b); - expr = new(mem_ctx) ir_expression(ir_binop_add, - a->type, - expr, - mul_expr); - } - - ir_rvalue *result = get_column(result_var, b_col); - assign = new(mem_ctx) ir_assignment(result, - expr, - NULL); - base_ir->insert_before(assign); - } -} - -void -ir_mat_op_to_vec_visitor::do_mul_mat_vec(ir_variable *result_var, - ir_variable *a_var, - ir_variable *b_var) -{ - int i; - ir_rvalue *a = get_column(a_var, 0); - ir_rvalue *b = get_element(b_var, 0, 0); - ir_assignment *assign; - ir_expression *expr; - - /* first column */ - expr = new(mem_ctx) ir_expression(ir_binop_mul, - result_var->type, - a, - b); - - /* following columns */ - for (i = 1; i < a_var->type->matrix_columns; i++) { - ir_expression *mul_expr; - - a = get_column(a_var, i); - b = get_element(b_var, 0, i); - - mul_expr = new(mem_ctx) ir_expression(ir_binop_mul, - result_var->type, - a, - b); - expr = new(mem_ctx) ir_expression(ir_binop_add, - result_var->type, - expr, - mul_expr); - } - - ir_rvalue *result = new(mem_ctx) ir_dereference_variable(result_var); - assign = new(mem_ctx) ir_assignment(result, - expr, - NULL); - base_ir->insert_before(assign); -} - -void -ir_mat_op_to_vec_visitor::do_mul_vec_mat(ir_variable *result_var, - ir_variable *a_var, - ir_variable *b_var) -{ - int i; - - for (i = 0; i < b_var->type->matrix_columns; i++) { - ir_rvalue *a = new(mem_ctx) ir_dereference_variable(a_var); - ir_rvalue *b = get_column(b_var, i); - ir_rvalue *result; - ir_expression *column_expr; - ir_assignment *column_assign; - - result = new(mem_ctx) ir_dereference_variable(result_var); - result = new(mem_ctx) ir_swizzle(result, i, 0, 0, 0, 1); - - column_expr = new(mem_ctx) ir_expression(ir_binop_dot, - result->type, - a, - b); - - column_assign = new(mem_ctx) ir_assignment(result, - column_expr, - NULL); - base_ir->insert_before(column_assign); - } -} - -void -ir_mat_op_to_vec_visitor::do_mul_mat_scalar(ir_variable *result_var, - ir_variable *a_var, - ir_variable *b_var) -{ - int i; - - for (i = 0; i < a_var->type->matrix_columns; i++) { - ir_rvalue *a = get_column(a_var, i); - ir_rvalue *b = new(mem_ctx) ir_dereference_variable(b_var); - ir_rvalue *result = get_column(result_var, i); - ir_expression *column_expr; - ir_assignment *column_assign; - - column_expr = new(mem_ctx) ir_expression(ir_binop_mul, - result->type, - a, - b); - - column_assign = new(mem_ctx) ir_assignment(result, - column_expr, - NULL); - base_ir->insert_before(column_assign); - } -} - -void -ir_mat_op_to_vec_visitor::do_equal_mat_mat(ir_variable *result_var, - ir_variable *a_var, - ir_variable *b_var, - bool test_equal) -{ - /* This essentially implements the following GLSL: - * - * bool equal(mat4 a, mat4 b) - * { - * return !any(bvec4(a[0] != b[0], - * a[1] != b[1], - * a[2] != b[2], - * a[3] != b[3]); - * } - * - * bool nequal(mat4 a, mat4 b) - * { - * return any(bvec4(a[0] != b[0], - * a[1] != b[1], - * a[2] != b[2], - * a[3] != b[3]); - * } - */ - const unsigned columns = a_var->type->matrix_columns; - const glsl_type *const bvec_type = - glsl_type::get_instance(GLSL_TYPE_BOOL, columns, 1); - - ir_variable *const tmp_bvec = - new(this->mem_ctx) ir_variable(bvec_type, "mat_cmp_bvec", - ir_var_temporary); - this->base_ir->insert_before(tmp_bvec); - - for (unsigned i = 0; i < columns; i++) { - ir_dereference *const op0 = get_column(a_var, i); - ir_dereference *const op1 = get_column(b_var, i); - - ir_expression *const cmp = - new(this->mem_ctx) ir_expression(ir_binop_any_nequal, - glsl_type::bool_type, op0, op1); - - ir_dereference *const lhs = - new(this->mem_ctx) ir_dereference_variable(tmp_bvec); - - ir_assignment *const assign = - new(this->mem_ctx) ir_assignment(lhs, cmp, NULL, (1U << i)); - - this->base_ir->insert_before(assign); - } - - ir_rvalue *const val = - new(this->mem_ctx) ir_dereference_variable(tmp_bvec); - - ir_expression *any = - new(this->mem_ctx) ir_expression(ir_unop_any, glsl_type::bool_type, - val, NULL); - - if (test_equal) - any = new(this->mem_ctx) ir_expression(ir_unop_logic_not, - glsl_type::bool_type, - any, NULL); - - ir_rvalue *const result = - new(this->mem_ctx) ir_dereference_variable(result_var); - - ir_assignment *const assign = - new(mem_ctx) ir_assignment(result, any, NULL); - base_ir->insert_before(assign); -} - -static bool -has_matrix_operand(const ir_expression *expr, unsigned &columns) -{ - for (unsigned i = 0; i < expr->get_num_operands(); i++) { - if (expr->operands[i]->type->is_matrix()) { - columns = expr->operands[i]->type->matrix_columns; - return true; - } - } - - return false; -} - - -ir_visitor_status -ir_mat_op_to_vec_visitor::visit_leave(ir_assignment *orig_assign) -{ - ir_expression *orig_expr = orig_assign->rhs->as_expression(); - unsigned int i, matrix_columns = 1; - ir_variable *op_var[2]; - - if (!orig_expr) - return visit_continue; - - if (!has_matrix_operand(orig_expr, matrix_columns)) - return visit_continue; - - assert(orig_expr->get_num_operands() <= 2); - - mem_ctx = ralloc_parent(orig_assign); - - ir_dereference_variable *lhs_deref = - orig_assign->lhs->as_dereference_variable(); - assert(lhs_deref); - - ir_variable *result_var = lhs_deref->var; - - /* Store the expression operands in temps so we can use them - * multiple times. - */ - for (i = 0; i < orig_expr->get_num_operands(); i++) { - ir_assignment *assign; - - op_var[i] = new(mem_ctx) ir_variable(orig_expr->operands[i]->type, - "mat_op_to_vec", - ir_var_temporary); - base_ir->insert_before(op_var[i]); - - lhs_deref = new(mem_ctx) ir_dereference_variable(op_var[i]); - assign = new(mem_ctx) ir_assignment(lhs_deref, - orig_expr->operands[i], - NULL); - base_ir->insert_before(assign); - } - - /* OK, time to break down this matrix operation. */ - switch (orig_expr->operation) { - case ir_unop_neg: { - const unsigned mask = (1U << result_var->type->vector_elements) - 1; - - /* Apply the operation to each column.*/ - for (i = 0; i < matrix_columns; i++) { - ir_rvalue *op0 = get_column(op_var[0], i); - ir_dereference *result = get_column(result_var, i); - ir_expression *column_expr; - ir_assignment *column_assign; - - column_expr = new(mem_ctx) ir_expression(orig_expr->operation, - result->type, - op0, - NULL); - - column_assign = new(mem_ctx) ir_assignment(result, - column_expr, - NULL, - mask); - assert(column_assign->write_mask != 0); - base_ir->insert_before(column_assign); - } - break; - } - case ir_binop_add: - case ir_binop_sub: - case ir_binop_div: - case ir_binop_mod: { - const unsigned mask = (1U << result_var->type->vector_elements) - 1; - - /* For most operations, the matrix version is just going - * column-wise through and applying the operation to each column - * if available. - */ - for (i = 0; i < matrix_columns; i++) { - ir_rvalue *op0 = get_column(op_var[0], i); - ir_rvalue *op1 = get_column(op_var[1], i); - ir_dereference *result = get_column(result_var, i); - ir_expression *column_expr; - ir_assignment *column_assign; - - column_expr = new(mem_ctx) ir_expression(orig_expr->operation, - result->type, - op0, - op1); - - column_assign = new(mem_ctx) ir_assignment(result, - column_expr, - NULL, - mask); - assert(column_assign->write_mask != 0); - base_ir->insert_before(column_assign); - } - break; - } - case ir_binop_mul: - if (op_var[0]->type->is_matrix()) { - if (op_var[1]->type->is_matrix()) { - do_mul_mat_mat(result_var, op_var[0], op_var[1]); - } else if (op_var[1]->type->is_vector()) { - do_mul_mat_vec(result_var, op_var[0], op_var[1]); - } else { - assert(op_var[1]->type->is_scalar()); - do_mul_mat_scalar(result_var, op_var[0], op_var[1]); - } - } else { - assert(op_var[1]->type->is_matrix()); - if (op_var[0]->type->is_vector()) { - do_mul_vec_mat(result_var, op_var[0], op_var[1]); - } else { - assert(op_var[0]->type->is_scalar()); - do_mul_mat_scalar(result_var, op_var[1], op_var[0]); - } - } - break; - - case ir_binop_all_equal: - case ir_binop_any_nequal: - do_equal_mat_mat(result_var, op_var[1], op_var[0], - (orig_expr->operation == ir_binop_all_equal)); - break; - - default: - printf("FINISHME: Handle matrix operation for %s\n", - orig_expr->operator_string()); - abort(); - } - orig_assign->remove(); - this->made_progress = true; - - return visit_continue; -} +/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file lower_mat_op_to_vec.cpp
+ *
+ * Breaks matrix operation expressions down to a series of vector operations.
+ *
+ * Generally this is how we have to codegen matrix operations for a
+ * GPU, so this gives us the chance to constant fold operations on a
+ * column or row.
+ */
+
+#include "ir.h"
+#include "ir_expression_flattening.h"
+#include "glsl_types.h"
+
+class ir_mat_op_to_vec_visitor : public ir_hierarchical_visitor {
+public:
+ ir_mat_op_to_vec_visitor()
+ {
+ this->made_progress = false;
+ this->mem_ctx = NULL;
+ }
+
+ ir_visitor_status visit_leave(ir_assignment *);
+
+ ir_dereference *get_column(ir_variable *var, int col);
+ ir_rvalue *get_element(ir_variable *var, int col, int row);
+
+ void do_mul_mat_mat(ir_variable *result_var,
+ ir_variable *a_var, ir_variable *b_var);
+ void do_mul_mat_vec(ir_variable *result_var,
+ ir_variable *a_var, ir_variable *b_var);
+ void do_mul_vec_mat(ir_variable *result_var,
+ ir_variable *a_var, ir_variable *b_var);
+ void do_mul_mat_scalar(ir_variable *result_var,
+ ir_variable *a_var, ir_variable *b_var);
+ void do_equal_mat_mat(ir_variable *result_var, ir_variable *a_var,
+ ir_variable *b_var, bool test_equal);
+
+ void *mem_ctx;
+ bool made_progress;
+};
+
+static bool
+mat_op_to_vec_predicate(ir_instruction *ir)
+{
+ ir_expression *expr = ir->as_expression();
+ unsigned int i;
+
+ if (!expr)
+ return false;
+
+ for (i = 0; i < expr->get_num_operands(); i++) {
+ if (expr->operands[i]->type->is_matrix())
+ return true;
+ }
+
+ return false;
+}
+
+bool
+do_mat_op_to_vec(exec_list *instructions)
+{
+ ir_mat_op_to_vec_visitor v;
+
+ /* Pull out any matrix expression to a separate assignment to a
+ * temp. This will make our handling of the breakdown to
+ * operations on the matrix's vector components much easier.
+ */
+ do_expression_flattening(instructions, mat_op_to_vec_predicate);
+
+ visit_list_elements(&v, instructions);
+
+ return v.made_progress;
+}
+
+ir_rvalue *
+ir_mat_op_to_vec_visitor::get_element(ir_variable *var, int col, int row)
+{
+ ir_dereference *deref;
+
+ deref = new(mem_ctx) ir_dereference_variable(var);
+
+ if (var->type->is_matrix()) {
+ deref = new(mem_ctx) ir_dereference_array(var,
+ new(mem_ctx) ir_constant(col));
+ } else {
+ assert(col == 0);
+ }
+
+ return new(mem_ctx) ir_swizzle(deref, row, 0, 0, 0, 1);
+}
+
+ir_dereference *
+ir_mat_op_to_vec_visitor::get_column(ir_variable *var, int row)
+{
+ ir_dereference *deref;
+
+ if (!var->type->is_matrix()) {
+ deref = new(mem_ctx) ir_dereference_variable(var);
+ } else {
+ deref = new(mem_ctx) ir_dereference_variable(var);
+ deref = new(mem_ctx) ir_dereference_array(deref,
+ new(mem_ctx) ir_constant(row));
+ }
+
+ return deref;
+}
+
+void
+ir_mat_op_to_vec_visitor::do_mul_mat_mat(ir_variable *result_var,
+ ir_variable *a_var,
+ ir_variable *b_var)
+{
+ int b_col, i;
+ ir_assignment *assign;
+ ir_expression *expr;
+
+ for (b_col = 0; b_col < b_var->type->matrix_columns; b_col++) {
+ ir_rvalue *a = get_column(a_var, 0);
+ ir_rvalue *b = get_element(b_var, b_col, 0);
+
+ /* first column */
+ expr = new(mem_ctx) ir_expression(ir_binop_mul,
+ a->type,
+ a,
+ b);
+
+ /* following columns */
+ for (i = 1; i < a_var->type->matrix_columns; i++) {
+ ir_expression *mul_expr;
+
+ a = get_column(a_var, i);
+ b = get_element(b_var, b_col, i);
+
+ mul_expr = new(mem_ctx) ir_expression(ir_binop_mul,
+ a->type,
+ a,
+ b);
+ expr = new(mem_ctx) ir_expression(ir_binop_add,
+ a->type,
+ expr,
+ mul_expr);
+ }
+
+ ir_rvalue *result = get_column(result_var, b_col);
+ assign = new(mem_ctx) ir_assignment(result,
+ expr,
+ NULL);
+ base_ir->insert_before(assign);
+ }
+}
+
+void
+ir_mat_op_to_vec_visitor::do_mul_mat_vec(ir_variable *result_var,
+ ir_variable *a_var,
+ ir_variable *b_var)
+{
+ int i;
+ ir_rvalue *a = get_column(a_var, 0);
+ ir_rvalue *b = get_element(b_var, 0, 0);
+ ir_assignment *assign;
+ ir_expression *expr;
+
+ /* first column */
+ expr = new(mem_ctx) ir_expression(ir_binop_mul,
+ result_var->type,
+ a,
+ b);
+
+ /* following columns */
+ for (i = 1; i < a_var->type->matrix_columns; i++) {
+ ir_expression *mul_expr;
+
+ a = get_column(a_var, i);
+ b = get_element(b_var, 0, i);
+
+ mul_expr = new(mem_ctx) ir_expression(ir_binop_mul,
+ result_var->type,
+ a,
+ b);
+ expr = new(mem_ctx) ir_expression(ir_binop_add,
+ result_var->type,
+ expr,
+ mul_expr);
+ }
+
+ ir_rvalue *result = new(mem_ctx) ir_dereference_variable(result_var);
+ assign = new(mem_ctx) ir_assignment(result,
+ expr,
+ NULL);
+ base_ir->insert_before(assign);
+}
+
+void
+ir_mat_op_to_vec_visitor::do_mul_vec_mat(ir_variable *result_var,
+ ir_variable *a_var,
+ ir_variable *b_var)
+{
+ int i;
+
+ for (i = 0; i < b_var->type->matrix_columns; i++) {
+ ir_rvalue *a = new(mem_ctx) ir_dereference_variable(a_var);
+ ir_rvalue *b = get_column(b_var, i);
+ ir_rvalue *result;
+ ir_expression *column_expr;
+ ir_assignment *column_assign;
+
+ result = new(mem_ctx) ir_dereference_variable(result_var);
+ result = new(mem_ctx) ir_swizzle(result, i, 0, 0, 0, 1);
+
+ column_expr = new(mem_ctx) ir_expression(ir_binop_dot,
+ result->type,
+ a,
+ b);
+
+ column_assign = new(mem_ctx) ir_assignment(result,
+ column_expr,
+ NULL);
+ base_ir->insert_before(column_assign);
+ }
+}
+
+void
+ir_mat_op_to_vec_visitor::do_mul_mat_scalar(ir_variable *result_var,
+ ir_variable *a_var,
+ ir_variable *b_var)
+{
+ int i;
+
+ for (i = 0; i < a_var->type->matrix_columns; i++) {
+ ir_rvalue *a = get_column(a_var, i);
+ ir_rvalue *b = new(mem_ctx) ir_dereference_variable(b_var);
+ ir_rvalue *result = get_column(result_var, i);
+ ir_expression *column_expr;
+ ir_assignment *column_assign;
+
+ column_expr = new(mem_ctx) ir_expression(ir_binop_mul,
+ result->type,
+ a,
+ b);
+
+ column_assign = new(mem_ctx) ir_assignment(result,
+ column_expr,
+ NULL);
+ base_ir->insert_before(column_assign);
+ }
+}
+
+void
+ir_mat_op_to_vec_visitor::do_equal_mat_mat(ir_variable *result_var,
+ ir_variable *a_var,
+ ir_variable *b_var,
+ bool test_equal)
+{
+ /* This essentially implements the following GLSL:
+ *
+ * bool equal(mat4 a, mat4 b)
+ * {
+ * return !any(bvec4(a[0] != b[0],
+ * a[1] != b[1],
+ * a[2] != b[2],
+ * a[3] != b[3]);
+ * }
+ *
+ * bool nequal(mat4 a, mat4 b)
+ * {
+ * return any(bvec4(a[0] != b[0],
+ * a[1] != b[1],
+ * a[2] != b[2],
+ * a[3] != b[3]);
+ * }
+ */
+ const unsigned columns = a_var->type->matrix_columns;
+ const glsl_type *const bvec_type =
+ glsl_type::get_instance(GLSL_TYPE_BOOL, columns, 1);
+
+ ir_variable *const tmp_bvec =
+ new(this->mem_ctx) ir_variable(bvec_type, "mat_cmp_bvec",
+ ir_var_temporary);
+ this->base_ir->insert_before(tmp_bvec);
+
+ for (unsigned i = 0; i < columns; i++) {
+ ir_dereference *const op0 = get_column(a_var, i);
+ ir_dereference *const op1 = get_column(b_var, i);
+
+ ir_expression *const cmp =
+ new(this->mem_ctx) ir_expression(ir_binop_any_nequal,
+ glsl_type::bool_type, op0, op1);
+
+ ir_dereference *const lhs =
+ new(this->mem_ctx) ir_dereference_variable(tmp_bvec);
+
+ ir_assignment *const assign =
+ new(this->mem_ctx) ir_assignment(lhs, cmp, NULL, (1U << i));
+
+ this->base_ir->insert_before(assign);
+ }
+
+ ir_rvalue *const val =
+ new(this->mem_ctx) ir_dereference_variable(tmp_bvec);
+
+ ir_expression *any =
+ new(this->mem_ctx) ir_expression(ir_unop_any, glsl_type::bool_type,
+ val, NULL);
+
+ if (test_equal)
+ any = new(this->mem_ctx) ir_expression(ir_unop_logic_not,
+ glsl_type::bool_type,
+ any, NULL);
+
+ ir_rvalue *const result =
+ new(this->mem_ctx) ir_dereference_variable(result_var);
+
+ ir_assignment *const assign =
+ new(mem_ctx) ir_assignment(result, any, NULL);
+ base_ir->insert_before(assign);
+}
+
+static bool
+has_matrix_operand(const ir_expression *expr, unsigned &columns)
+{
+ for (unsigned i = 0; i < expr->get_num_operands(); i++) {
+ if (expr->operands[i]->type->is_matrix()) {
+ columns = expr->operands[i]->type->matrix_columns;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+ir_visitor_status
+ir_mat_op_to_vec_visitor::visit_leave(ir_assignment *orig_assign)
+{
+ ir_expression *orig_expr = orig_assign->rhs->as_expression();
+ unsigned int i, matrix_columns = 1;
+ ir_variable *op_var[2];
+
+ if (!orig_expr)
+ return visit_continue;
+
+ if (!has_matrix_operand(orig_expr, matrix_columns))
+ return visit_continue;
+
+ assert(orig_expr->get_num_operands() <= 2);
+
+ mem_ctx = ralloc_parent(orig_assign);
+
+ ir_dereference_variable *lhs_deref =
+ orig_assign->lhs->as_dereference_variable();
+ assert(lhs_deref);
+
+ ir_variable *result_var = lhs_deref->var;
+
+ /* Store the expression operands in temps so we can use them
+ * multiple times.
+ */
+ for (i = 0; i < orig_expr->get_num_operands(); i++) {
+ ir_assignment *assign;
+
+ op_var[i] = new(mem_ctx) ir_variable(orig_expr->operands[i]->type,
+ "mat_op_to_vec",
+ ir_var_temporary);
+ base_ir->insert_before(op_var[i]);
+
+ lhs_deref = new(mem_ctx) ir_dereference_variable(op_var[i]);
+ assign = new(mem_ctx) ir_assignment(lhs_deref,
+ orig_expr->operands[i],
+ NULL);
+ base_ir->insert_before(assign);
+ }
+
+ /* OK, time to break down this matrix operation. */
+ switch (orig_expr->operation) {
+ case ir_unop_neg: {
+ const unsigned mask = (1U << result_var->type->vector_elements) - 1;
+
+ /* Apply the operation to each column.*/
+ for (i = 0; i < matrix_columns; i++) {
+ ir_rvalue *op0 = get_column(op_var[0], i);
+ ir_dereference *result = get_column(result_var, i);
+ ir_expression *column_expr;
+ ir_assignment *column_assign;
+
+ column_expr = new(mem_ctx) ir_expression(orig_expr->operation,
+ result->type,
+ op0,
+ NULL);
+
+ column_assign = new(mem_ctx) ir_assignment(result,
+ column_expr,
+ NULL,
+ mask);
+ assert(column_assign->write_mask != 0);
+ base_ir->insert_before(column_assign);
+ }
+ break;
+ }
+ case ir_binop_add:
+ case ir_binop_sub:
+ case ir_binop_div:
+ case ir_binop_mod: {
+ const unsigned mask = (1U << result_var->type->vector_elements) - 1;
+
+ /* For most operations, the matrix version is just going
+ * column-wise through and applying the operation to each column
+ * if available.
+ */
+ for (i = 0; i < matrix_columns; i++) {
+ ir_rvalue *op0 = get_column(op_var[0], i);
+ ir_rvalue *op1 = get_column(op_var[1], i);
+ ir_dereference *result = get_column(result_var, i);
+ ir_expression *column_expr;
+ ir_assignment *column_assign;
+
+ column_expr = new(mem_ctx) ir_expression(orig_expr->operation,
+ result->type,
+ op0,
+ op1);
+
+ column_assign = new(mem_ctx) ir_assignment(result,
+ column_expr,
+ NULL,
+ mask);
+ assert(column_assign->write_mask != 0);
+ base_ir->insert_before(column_assign);
+ }
+ break;
+ }
+ case ir_binop_mul:
+ if (op_var[0]->type->is_matrix()) {
+ if (op_var[1]->type->is_matrix()) {
+ do_mul_mat_mat(result_var, op_var[0], op_var[1]);
+ } else if (op_var[1]->type->is_vector()) {
+ do_mul_mat_vec(result_var, op_var[0], op_var[1]);
+ } else {
+ assert(op_var[1]->type->is_scalar());
+ do_mul_mat_scalar(result_var, op_var[0], op_var[1]);
+ }
+ } else {
+ assert(op_var[1]->type->is_matrix());
+ if (op_var[0]->type->is_vector()) {
+ do_mul_vec_mat(result_var, op_var[0], op_var[1]);
+ } else {
+ assert(op_var[0]->type->is_scalar());
+ do_mul_mat_scalar(result_var, op_var[1], op_var[0]);
+ }
+ }
+ break;
+
+ case ir_binop_all_equal:
+ case ir_binop_any_nequal:
+ do_equal_mat_mat(result_var, op_var[1], op_var[0],
+ (orig_expr->operation == ir_binop_all_equal));
+ break;
+
+ default:
+ printf("FINISHME: Handle matrix operation for %s\n",
+ orig_expr->operator_string());
+ abort();
+ }
+ orig_assign->remove();
+ this->made_progress = true;
+
+ return visit_continue;
+}
|