aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/glu/sgi/libnurbs/interface/insurfeval.cc
diff options
context:
space:
mode:
Diffstat (limited to 'mesalib/src/glu/sgi/libnurbs/interface/insurfeval.cc')
-rw-r--r--mesalib/src/glu/sgi/libnurbs/interface/insurfeval.cc2064
1 files changed, 0 insertions, 2064 deletions
diff --git a/mesalib/src/glu/sgi/libnurbs/interface/insurfeval.cc b/mesalib/src/glu/sgi/libnurbs/interface/insurfeval.cc
deleted file mode 100644
index 9d0c82a91..000000000
--- a/mesalib/src/glu/sgi/libnurbs/interface/insurfeval.cc
+++ /dev/null
@@ -1,2064 +0,0 @@
-/*
-** License Applicability. Except to the extent portions of this file are
-** made subject to an alternative license as permitted in the SGI Free
-** Software License B, Version 1.1 (the "License"), the contents of this
-** file are subject only to the provisions of the License. You may not use
-** this file except in compliance with the License. You may obtain a copy
-** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
-** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
-**
-** http://oss.sgi.com/projects/FreeB
-**
-** Note that, as provided in the License, the Software is distributed on an
-** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
-** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
-** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
-** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
-**
-** Original Code. The Original Code is: OpenGL Sample Implementation,
-** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
-** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
-** Copyright in any portions created by third parties is as indicated
-** elsewhere herein. All Rights Reserved.
-**
-** Additional Notice Provisions: The application programming interfaces
-** established by SGI in conjunction with the Original Code are The
-** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
-** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
-** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
-** Window System(R) (Version 1.3), released October 19, 1998. This software
-** was created using the OpenGL(R) version 1.2.1 Sample Implementation
-** published by SGI, but has not been independently verified as being
-** compliant with the OpenGL(R) version 1.2.1 Specification.
-**
-*/
-/*
-*/
-
-#include "gluos.h"
-#include <stdlib.h>
-#include <stdio.h>
-#include <GL/gl.h>
-#include <math.h>
-#include <assert.h>
-
-#include "glsurfeval.h"
-
-//extern int surfcount;
-
-//#define CRACK_TEST
-
-#define AVOID_ZERO_NORMAL
-
-#ifdef AVOID_ZERO_NORMAL
-#define myabs(x) ((x>0)? x: (-x))
-#define MYZERO 0.000001
-#define MYDELTA 0.001
-#endif
-
-//#define USE_LOD
-#ifdef USE_LOD
-//#define LOD_EVAL_COORD(u,v) inDoEvalCoord2EM(u,v)
-#define LOD_EVAL_COORD(u,v) glEvalCoord2f(u,v)
-
-static void LOD_interpolate(REAL A[2], REAL B[2], REAL C[2], int j, int k, int pow2_level,
- REAL& u, REAL& v)
-{
- REAL a,a1,b,b1;
-
- a = ((REAL) j) / ((REAL) pow2_level);
- a1 = 1-a;
-
- if(j != 0)
- {
- b = ((REAL) k) / ((REAL)j);
- b1 = 1-b;
- }
- REAL x,y,z;
- x = a1;
- if(j==0)
- {
- y=0; z=0;
- }
- else{
- y = b1*a;
- z = b *a;
- }
-
- u = x*A[0] + y*B[0] + z*C[0];
- v = x*A[1] + y*B[1] + z*C[1];
-}
-
-void OpenGLSurfaceEvaluator::LOD_triangle(REAL A[2], REAL B[2], REAL C[2],
- int level)
-{
- int k,j;
- int pow2_level;
- /*compute 2^level*/
- pow2_level = 1;
-
- for(j=0; j<level; j++)
- pow2_level *= 2;
- for(j=0; j<=pow2_level-1; j++)
- {
- REAL u,v;
-
-/* beginCallBack(GL_TRIANGLE_STRIP);*/
-glBegin(GL_TRIANGLE_STRIP);
- LOD_interpolate(A,B,C, j+1, j+1, pow2_level, u,v);
-#ifdef USE_LOD
- LOD_EVAL_COORD(u,v);
-// glEvalCoord2f(u,v);
-#else
- inDoEvalCoord2EM(u,v);
-#endif
-
- for(k=0; k<=j; k++)
- {
- LOD_interpolate(A,B,C,j,j-k,pow2_level, u,v);
-#ifdef USE_LOD
- LOD_EVAL_COORD(u,v);
-// glEvalCoord2f(u,v);
-#else
- inDoEvalCoord2EM(u,v);
-#endif
-
- LOD_interpolate(A,B,C,j+1,j-k,pow2_level, u,v);
-
-#ifdef USE_LOD
- LOD_EVAL_COORD(u,v);
-// glEvalCoord2f(u,v);
-#else
- inDoEvalCoord2EM(u,v);
-#endif
- }
-// endCallBack();
-glEnd();
- }
-}
-
-void OpenGLSurfaceEvaluator::LOD_eval(int num_vert, REAL* verts, int type,
- int level
- )
-{
- int i,k;
- switch(type){
- case GL_TRIANGLE_STRIP:
- case GL_QUAD_STRIP:
- for(i=2, k=4; i<=num_vert-2; i+=2, k+=4)
- {
- LOD_triangle(verts+k-4, verts+k-2, verts+k,
- level
- );
- LOD_triangle(verts+k-2, verts+k+2, verts+k,
- level
- );
- }
- if(num_vert % 2 ==1)
- {
- LOD_triangle(verts+2*(num_vert-3), verts+2*(num_vert-2), verts+2*(num_vert-1),
- level
- );
- }
- break;
- case GL_TRIANGLE_FAN:
- for(i=1, k=2; i<=num_vert-2; i++, k+=2)
- {
- LOD_triangle(verts,verts+k, verts+k+2,
- level
- );
- }
- break;
-
- default:
- fprintf(stderr, "typy not supported in LOD_\n");
- }
-}
-
-
-#endif //USE_LOD
-
-//#define GENERIC_TEST
-#ifdef GENERIC_TEST
-extern float xmin, xmax, ymin, ymax, zmin, zmax; /*bounding box*/
-extern int temp_signal;
-
-static void gTessVertexSphere(float u, float v, float temp_normal[3], float temp_vertex[3])
-{
- float r=2.0;
- float Ox = 0.5*(xmin+xmax);
- float Oy = 0.5*(ymin+ymax);
- float Oz = 0.5*(zmin+zmax);
- float nx = cos(v) * sin(u);
- float ny = sin(v) * sin(u);
- float nz = cos(u);
- float x= Ox+r * nx;
- float y= Oy+r * ny;
- float z= Oz+r * nz;
-
- temp_normal[0] = nx;
- temp_normal[1] = ny;
- temp_normal[2] = nz;
- temp_vertex[0] = x;
- temp_vertex[1] = y;
- temp_vertex[2] = z;
-
-// glNormal3f(nx,ny,nz);
-// glVertex3f(x,y,z);
-}
-
-static void gTessVertexCyl(float u, float v, float temp_normal[3], float temp_vertex[3])
-{
- float r=2.0;
- float Ox = 0.5*(xmin+xmax);
- float Oy = 0.5*(ymin+ymax);
- float Oz = 0.5*(zmin+zmax);
- float nx = cos(v);
- float ny = sin(v);
- float nz = 0;
- float x= Ox+r * nx;
- float y= Oy+r * ny;
- float z= Oz - 2*u;
-
- temp_normal[0] = nx;
- temp_normal[1] = ny;
- temp_normal[2] = nz;
- temp_vertex[0] = x;
- temp_vertex[1] = y;
- temp_vertex[2] = z;
-
-/*
- glNormal3f(nx,ny,nz);
- glVertex3f(x,y,z);
-*/
-}
-
-#endif //GENERIC_TEST
-
-void OpenGLSurfaceEvaluator::inBPMListEval(bezierPatchMesh* list)
-{
- bezierPatchMesh* temp;
- for(temp = list; temp != NULL; temp = temp->next)
- {
- inBPMEval(temp);
- }
-}
-
-void OpenGLSurfaceEvaluator::inBPMEval(bezierPatchMesh* bpm)
-{
- int i,j,k,l;
- float u,v;
-
- int ustride = bpm->bpatch->dimension * bpm->bpatch->vorder;
- int vstride = bpm->bpatch->dimension;
- inMap2f(
- (bpm->bpatch->dimension == 3)? GL_MAP2_VERTEX_3 : GL_MAP2_VERTEX_4,
- bpm->bpatch->umin,
- bpm->bpatch->umax,
- ustride,
- bpm->bpatch->uorder,
- bpm->bpatch->vmin,
- bpm->bpatch->vmax,
- vstride,
- bpm->bpatch->vorder,
- bpm->bpatch->ctlpoints);
-
- bpm->vertex_array = (float*) malloc(sizeof(float)* (bpm->index_UVarray/2) * 3+1); /*in case the origional dimenion is 4, then we need 4 space to pass to evaluator.*/
- assert(bpm->vertex_array);
- bpm->normal_array = (float*) malloc(sizeof(float)* (bpm->index_UVarray/2) * 3);
- assert(bpm->normal_array);
-#ifdef CRACK_TEST
-if( global_ev_u1 ==2 && global_ev_u2 == 3
- && global_ev_v1 ==2 && global_ev_v2 == 3)
-{
-REAL vertex[4];
-REAL normal[4];
-#ifdef DEBUG
-printf("***number 1\n");
-#endif
-
-beginCallBack(GL_QUAD_STRIP, NULL);
-inEvalCoord2f(3.0, 3.0);
-inEvalCoord2f(2.0, 3.0);
-inEvalCoord2f(3.0, 2.7);
-inEvalCoord2f(2.0, 2.7);
-inEvalCoord2f(3.0, 2.0);
-inEvalCoord2f(2.0, 2.0);
-endCallBack(NULL);
-
-
-beginCallBack(GL_TRIANGLE_STRIP, NULL);
-inEvalCoord2f(2.0, 3.0);
-inEvalCoord2f(2.0, 2.0);
-inEvalCoord2f(2.0, 2.7);
-endCallBack(NULL);
-
-}
-
-/*
-if( global_ev_u1 ==2 && global_ev_u2 == 3
- && global_ev_v1 ==1 && global_ev_v2 == 2)
-{
-#ifdef DEBUG
-printf("***number 2\n");
-#endif
-beginCallBack(GL_QUAD_STRIP);
-inEvalCoord2f(2.0, 2.0);
-inEvalCoord2f(2.0, 1.0);
-inEvalCoord2f(3.0, 2.0);
-inEvalCoord2f(3.0, 1.0);
-endCallBack();
-}
-*/
-if( global_ev_u1 ==1 && global_ev_u2 == 2
- && global_ev_v1 ==2 && global_ev_v2 == 3)
-{
-#ifdef DEBUG
-printf("***number 3\n");
-#endif
-beginCallBack(GL_QUAD_STRIP, NULL);
-inEvalCoord2f(2.0, 3.0);
-inEvalCoord2f(1.0, 3.0);
-inEvalCoord2f(2.0, 2.3);
-inEvalCoord2f(1.0, 2.3);
-inEvalCoord2f(2.0, 2.0);
-inEvalCoord2f(1.0, 2.0);
-endCallBack(NULL);
-
-beginCallBack(GL_TRIANGLE_STRIP, NULL);
-inEvalCoord2f(2.0, 2.3);
-inEvalCoord2f(2.0, 2.0);
-inEvalCoord2f(2.0, 3.0);
-endCallBack(NULL);
-
-}
-return;
-#endif
-
- k=0;
- l=0;
-
- for(i=0; i<bpm->index_length_array; i++)
- {
- beginCallBack(bpm->type_array[i], userData);
- for(j=0; j<bpm->length_array[i]; j++)
- {
- u = bpm->UVarray[k];
- v = bpm->UVarray[k+1];
- inDoEvalCoord2NOGE(u,v,
- bpm->vertex_array+l,
- bpm->normal_array+l);
-
- normalCallBack(bpm->normal_array+l, userData);
- vertexCallBack(bpm->vertex_array+l, userData);
-
- k += 2;
- l += 3;
- }
- endCallBack(userData);
- }
-}
-
-void OpenGLSurfaceEvaluator::inEvalPoint2(int i, int j)
-{
- REAL du, dv;
- REAL point[4];
- REAL normal[3];
- REAL u,v;
- du = (global_grid_u1 - global_grid_u0) / (REAL)global_grid_nu;
- dv = (global_grid_v1 - global_grid_v0) / (REAL)global_grid_nv;
- u = (i==global_grid_nu)? global_grid_u1:(global_grid_u0 + i*du);
- v = (j == global_grid_nv)? global_grid_v1: (global_grid_v0 +j*dv);
- inDoEvalCoord2(u,v,point,normal);
-}
-
-void OpenGLSurfaceEvaluator::inEvalCoord2f(REAL u, REAL v)
-{
-
- REAL point[4];
- REAL normal[3];
- inDoEvalCoord2(u,v,point, normal);
-}
-
-
-
-/*define a grid. store the values into the global variabls:
- * global_grid_*
- *These values will be used later by evaluating functions
- */
-void OpenGLSurfaceEvaluator::inMapGrid2f(int nu, REAL u0, REAL u1,
- int nv, REAL v0, REAL v1)
-{
- global_grid_u0 = u0;
- global_grid_u1 = u1;
- global_grid_nu = nu;
- global_grid_v0 = v0;
- global_grid_v1 = v1;
- global_grid_nv = nv;
-}
-
-void OpenGLSurfaceEvaluator::inEvalMesh2(int lowU, int lowV, int highU, int highV)
-{
- REAL du, dv;
- int i,j;
- REAL point[4];
- REAL normal[3];
- if(global_grid_nu == 0 || global_grid_nv == 0)
- return; /*no points need to be output*/
- du = (global_grid_u1 - global_grid_u0) / (REAL)global_grid_nu;
- dv = (global_grid_v1 - global_grid_v0) / (REAL)global_grid_nv;
-
- if(global_grid_nu >= global_grid_nv){
- for(i=lowU; i<highU; i++){
- REAL u1 = (i==global_grid_nu)? global_grid_u1:(global_grid_u0 + i*du);
- REAL u2 = ((i+1) == global_grid_nu)? global_grid_u1: (global_grid_u0+(i+1)*du);
-
- bgnqstrip();
- for(j=highV; j>=lowV; j--){
- REAL v1 = (j == global_grid_nv)? global_grid_v1: (global_grid_v0 +j*dv);
-
- inDoEvalCoord2(u1, v1, point, normal);
- inDoEvalCoord2(u2, v1, point, normal);
- }
- endqstrip();
- }
- }
-
- else{
- for(i=lowV; i<highV; i++){
- REAL v1 = (i==global_grid_nv)? global_grid_v1:(global_grid_v0 + i*dv);
- REAL v2 = ((i+1) == global_grid_nv)? global_grid_v1: (global_grid_v0+(i+1)*dv);
-
- bgnqstrip();
- for(j=highU; j>=lowU; j--){
- REAL u1 = (j == global_grid_nu)? global_grid_u1: (global_grid_u0 +j*du);
- inDoEvalCoord2(u1, v2, point, normal);
- inDoEvalCoord2(u1, v1, point, normal);
- }
- endqstrip();
- }
- }
-
-}
-
-void OpenGLSurfaceEvaluator::inMap2f(int k,
- REAL ulower,
- REAL uupper,
- int ustride,
- int uorder,
- REAL vlower,
- REAL vupper,
- int vstride,
- int vorder,
- REAL *ctlPoints)
-{
- int i,j,x;
- REAL *data = global_ev_ctlPoints;
-
-
-
- if(k == GL_MAP2_VERTEX_3) k=3;
- else if (k==GL_MAP2_VERTEX_4) k =4;
- else {
- printf("error in inMap2f, maptype=%i is wrong, k,map is not updated\n", k);
- return;
- }
-
- global_ev_k = k;
- global_ev_u1 = ulower;
- global_ev_u2 = uupper;
- global_ev_ustride = ustride;
- global_ev_uorder = uorder;
- global_ev_v1 = vlower;
- global_ev_v2 = vupper;
- global_ev_vstride = vstride;
- global_ev_vorder = vorder;
-
- /*copy the contrl points from ctlPoints to global_ev_ctlPoints*/
- for (i=0; i<uorder; i++) {
- for (j=0; j<vorder; j++) {
- for (x=0; x<k; x++) {
- data[x] = ctlPoints[x];
- }
- ctlPoints += vstride;
- data += k;
- }
- ctlPoints += ustride - vstride * vorder;
- }
-
-}
-
-
-/*
- *given a point p with homegeneous coordiante (x,y,z,w),
- *let pu(x,y,z,w) be its partial derivative vector with
- *respect to u
- *and pv(x,y,z,w) be its partial derivative vector with repect to v.
- *This function returns the partial derivative vectors of the
- *inhomegensous coordinates, i.e.,
- * (x/w, y/w, z/w) with respect to u and v.
- */
-void OpenGLSurfaceEvaluator::inComputeFirstPartials(REAL *p, REAL *pu, REAL *pv)
-{
- pu[0] = pu[0]*p[3] - pu[3]*p[0];
- pu[1] = pu[1]*p[3] - pu[3]*p[1];
- pu[2] = pu[2]*p[3] - pu[3]*p[2];
-
- pv[0] = pv[0]*p[3] - pv[3]*p[0];
- pv[1] = pv[1]*p[3] - pv[3]*p[1];
- pv[2] = pv[2]*p[3] - pv[3]*p[2];
-}
-
-/*compute the cross product of pu and pv and normalize.
- *the normal is returned in retNormal
- * pu: dimension 3
- * pv: dimension 3
- * n: return normal, of dimension 3
- */
-void OpenGLSurfaceEvaluator::inComputeNormal2(REAL *pu, REAL *pv, REAL *n)
-{
- REAL mag;
-
- n[0] = pu[1]*pv[2] - pu[2]*pv[1];
- n[1] = pu[2]*pv[0] - pu[0]*pv[2];
- n[2] = pu[0]*pv[1] - pu[1]*pv[0];
-
- mag = sqrt(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]);
-
- if (mag > 0.0) {
- n[0] /= mag;
- n[1] /= mag;
- n[2] /= mag;
- }
-}
-
-
-
-/*Compute point and normal
- *see the head of inDoDomain2WithDerivs
- *for the meaning of the arguments
- */
-void OpenGLSurfaceEvaluator::inDoEvalCoord2(REAL u, REAL v,
- REAL *retPoint, REAL *retNormal)
-{
-
- REAL du[4];
- REAL dv[4];
-
-
- assert(global_ev_k>=3 && global_ev_k <= 4);
- /*compute homegeneous point and partial derivatives*/
- inDoDomain2WithDerivs(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
-
-#ifdef AVOID_ZERO_NORMAL
-
- if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
- {
-
- REAL tempdu[4];
- REAL tempdata[4];
- REAL u1 = global_ev_u1;
- REAL u2 = global_ev_u2;
- if(u-MYDELTA*(u2-u1) < u1)
- u = u+ MYDELTA*(u2-u1);
- else
- u = u-MYDELTA*(u2-u1);
- inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
- }
- if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
- {
- REAL tempdv[4];
- REAL tempdata[4];
- REAL v1 = global_ev_v1;
- REAL v2 = global_ev_v2;
- if(v-MYDELTA*(v2-v1) < v1)
- v = v+ MYDELTA*(v2-v1);
- else
- v = v-MYDELTA*(v2-v1);
- inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
- }
-#endif
-
-
- /*compute normal*/
- switch(global_ev_k){
- case 3:
- inComputeNormal2(du, dv, retNormal);
-
- break;
- case 4:
- inComputeFirstPartials(retPoint, du, dv);
- inComputeNormal2(du, dv, retNormal);
- /*transform the homegeneous coordinate of retPoint into inhomogenous one*/
- retPoint[0] /= retPoint[3];
- retPoint[1] /= retPoint[3];
- retPoint[2] /= retPoint[3];
- break;
- }
- /*output this vertex*/
-/* inMeshStreamInsert(global_ms, retPoint, retNormal);*/
-
-
-
- glNormal3fv(retNormal);
- glVertex3fv(retPoint);
-
-
-
-
- #ifdef DEBUG
- printf("vertex(%f,%f,%f)\n", retPoint[0],retPoint[1],retPoint[2]);
- #endif
-
-
-
-}
-
-/*Compute point and normal
- *see the head of inDoDomain2WithDerivs
- *for the meaning of the arguments
- */
-void OpenGLSurfaceEvaluator::inDoEvalCoord2NOGE_BU(REAL u, REAL v,
- REAL *retPoint, REAL *retNormal)
-{
-
- REAL du[4];
- REAL dv[4];
-
-
- assert(global_ev_k>=3 && global_ev_k <= 4);
- /*compute homegeneous point and partial derivatives*/
-// inPreEvaluateBU(global_ev_k, global_ev_uorder, global_ev_vorder, (u-global_ev_u1)/(global_ev_u2-global_ev_u1), global_ev_ctlPoints);
- inDoDomain2WithDerivsBU(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
-
-
-#ifdef AVOID_ZERO_NORMAL
-
- if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
- {
-
- REAL tempdu[4];
- REAL tempdata[4];
- REAL u1 = global_ev_u1;
- REAL u2 = global_ev_u2;
- if(u-MYDELTA*(u2-u1) < u1)
- u = u+ MYDELTA*(u2-u1);
- else
- u = u-MYDELTA*(u2-u1);
- inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
- }
- if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
- {
- REAL tempdv[4];
- REAL tempdata[4];
- REAL v1 = global_ev_v1;
- REAL v2 = global_ev_v2;
- if(v-MYDELTA*(v2-v1) < v1)
- v = v+ MYDELTA*(v2-v1);
- else
- v = v-MYDELTA*(v2-v1);
- inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
- }
-#endif
-
- /*compute normal*/
- switch(global_ev_k){
- case 3:
- inComputeNormal2(du, dv, retNormal);
- break;
- case 4:
- inComputeFirstPartials(retPoint, du, dv);
- inComputeNormal2(du, dv, retNormal);
- /*transform the homegeneous coordinate of retPoint into inhomogenous one*/
- retPoint[0] /= retPoint[3];
- retPoint[1] /= retPoint[3];
- retPoint[2] /= retPoint[3];
- break;
- }
-}
-
-/*Compute point and normal
- *see the head of inDoDomain2WithDerivs
- *for the meaning of the arguments
- */
-void OpenGLSurfaceEvaluator::inDoEvalCoord2NOGE_BV(REAL u, REAL v,
- REAL *retPoint, REAL *retNormal)
-{
-
- REAL du[4];
- REAL dv[4];
-
-
- assert(global_ev_k>=3 && global_ev_k <= 4);
- /*compute homegeneous point and partial derivatives*/
-// inPreEvaluateBV(global_ev_k, global_ev_uorder, global_ev_vorder, (v-global_ev_v1)/(global_ev_v2-global_ev_v1), global_ev_ctlPoints);
-
- inDoDomain2WithDerivsBV(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
-
-
-#ifdef AVOID_ZERO_NORMAL
-
- if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
- {
-
- REAL tempdu[4];
- REAL tempdata[4];
- REAL u1 = global_ev_u1;
- REAL u2 = global_ev_u2;
- if(u-MYDELTA*(u2-u1) < u1)
- u = u+ MYDELTA*(u2-u1);
- else
- u = u-MYDELTA*(u2-u1);
- inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
- }
- if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
- {
- REAL tempdv[4];
- REAL tempdata[4];
- REAL v1 = global_ev_v1;
- REAL v2 = global_ev_v2;
- if(v-MYDELTA*(v2-v1) < v1)
- v = v+ MYDELTA*(v2-v1);
- else
- v = v-MYDELTA*(v2-v1);
- inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
- }
-#endif
-
- /*compute normal*/
- switch(global_ev_k){
- case 3:
- inComputeNormal2(du, dv, retNormal);
- break;
- case 4:
- inComputeFirstPartials(retPoint, du, dv);
- inComputeNormal2(du, dv, retNormal);
- /*transform the homegeneous coordinate of retPoint into inhomogenous one*/
- retPoint[0] /= retPoint[3];
- retPoint[1] /= retPoint[3];
- retPoint[2] /= retPoint[3];
- break;
- }
-}
-
-
-/*Compute point and normal
- *see the head of inDoDomain2WithDerivs
- *for the meaning of the arguments
- */
-void OpenGLSurfaceEvaluator::inDoEvalCoord2NOGE(REAL u, REAL v,
- REAL *retPoint, REAL *retNormal)
-{
-
- REAL du[4];
- REAL dv[4];
-
-
- assert(global_ev_k>=3 && global_ev_k <= 4);
- /*compute homegeneous point and partial derivatives*/
- inDoDomain2WithDerivs(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
-
-
-#ifdef AVOID_ZERO_NORMAL
-
- if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
- {
-
- REAL tempdu[4];
- REAL tempdata[4];
- REAL u1 = global_ev_u1;
- REAL u2 = global_ev_u2;
- if(u-MYDELTA*(u2-u1) < u1)
- u = u+ MYDELTA*(u2-u1);
- else
- u = u-MYDELTA*(u2-u1);
- inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
- }
- if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
- {
- REAL tempdv[4];
- REAL tempdata[4];
- REAL v1 = global_ev_v1;
- REAL v2 = global_ev_v2;
- if(v-MYDELTA*(v2-v1) < v1)
- v = v+ MYDELTA*(v2-v1);
- else
- v = v-MYDELTA*(v2-v1);
- inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
- }
-#endif
-
- /*compute normal*/
- switch(global_ev_k){
- case 3:
- inComputeNormal2(du, dv, retNormal);
- break;
- case 4:
- inComputeFirstPartials(retPoint, du, dv);
- inComputeNormal2(du, dv, retNormal);
- /*transform the homegeneous coordinate of retPoint into inhomogenous one*/
- retPoint[0] /= retPoint[3];
- retPoint[1] /= retPoint[3];
- retPoint[2] /= retPoint[3];
- break;
- }
-// glNormal3fv(retNormal);
-// glVertex3fv(retPoint);
-}
-
-void OpenGLSurfaceEvaluator::inPreEvaluateBV(int k, int uorder, int vorder, REAL vprime, REAL *baseData)
-{
- int j,row,col;
- REAL p, pdv;
- REAL *data;
-
- if(global_vprime != vprime || global_vorder != vorder) {
- inPreEvaluateWithDeriv(vorder, vprime, global_vcoeff, global_vcoeffDeriv);
- global_vprime = vprime;
- global_vorder = vorder;
- }
-
- for(j=0; j<k; j++){
- data = baseData+j;
- for(row=0; row<uorder; row++){
- p = global_vcoeff[0] * (*data);
- pdv = global_vcoeffDeriv[0] * (*data);
- data += k;
- for(col = 1; col < vorder; col++){
- p += global_vcoeff[col] * (*data);
- pdv += global_vcoeffDeriv[col] * (*data);
- data += k;
- }
- global_BV[row][j] = p;
- global_PBV[row][j] = pdv;
- }
- }
-}
-
-void OpenGLSurfaceEvaluator::inPreEvaluateBU(int k, int uorder, int vorder, REAL uprime, REAL *baseData)
-{
- int j,row,col;
- REAL p, pdu;
- REAL *data;
-
- if(global_uprime != uprime || global_uorder != uorder) {
- inPreEvaluateWithDeriv(uorder, uprime, global_ucoeff, global_ucoeffDeriv);
- global_uprime = uprime;
- global_uorder = uorder;
- }
-
- for(j=0; j<k; j++){
- data = baseData+j;
- for(col=0; col<vorder; col++){
- data = baseData+j + k*col;
- p = global_ucoeff[0] * (*data);
- pdu = global_ucoeffDeriv[0] * (*data);
- data += k*uorder;
- for(row = 1; row < uorder; row++){
- p += global_ucoeff[row] * (*data);
- pdu += global_ucoeffDeriv[row] * (*data);
- data += k * uorder;
- }
- global_BU[col][j] = p;
- global_PBU[col][j] = pdu;
- }
- }
-}
-
-void OpenGLSurfaceEvaluator::inDoDomain2WithDerivsBU(int k, REAL u, REAL v,
- REAL u1, REAL u2, int uorder,
- REAL v1, REAL v2, int vorder,
- REAL *baseData,
- REAL *retPoint, REAL* retdu, REAL *retdv)
-{
- int j, col;
-
- REAL vprime;
-
-
- if((u2 == u1) || (v2 == v1))
- return;
-
- vprime = (v - v1) / (v2 - v1);
-
-
- if(global_vprime != vprime || global_vorder != vorder) {
- inPreEvaluateWithDeriv(vorder, vprime, global_vcoeff, global_vcoeffDeriv);
- global_vprime = vprime;
- global_vorder = vorder;
- }
-
-
- for(j=0; j<k; j++)
- {
- retPoint[j] = retdu[j] = retdv[j] = 0.0;
- for (col = 0; col < vorder; col++) {
- retPoint[j] += global_BU[col][j] * global_vcoeff[col];
- retdu[j] += global_PBU[col][j] * global_vcoeff[col];
- retdv[j] += global_BU[col][j] * global_vcoeffDeriv[col];
- }
- }
-}
-
-void OpenGLSurfaceEvaluator::inDoDomain2WithDerivsBV(int k, REAL u, REAL v,
- REAL u1, REAL u2, int uorder,
- REAL v1, REAL v2, int vorder,
- REAL *baseData,
- REAL *retPoint, REAL* retdu, REAL *retdv)
-{
- int j, row;
- REAL uprime;
-
-
- if((u2 == u1) || (v2 == v1))
- return;
- uprime = (u - u1) / (u2 - u1);
-
-
- if(global_uprime != uprime || global_uorder != uorder) {
- inPreEvaluateWithDeriv(uorder, uprime, global_ucoeff, global_ucoeffDeriv);
- global_uprime = uprime;
- global_uorder = uorder;
- }
-
-
- for(j=0; j<k; j++)
- {
- retPoint[j] = retdu[j] = retdv[j] = 0.0;
- for (row = 0; row < uorder; row++) {
- retPoint[j] += global_BV[row][j] * global_ucoeff[row];
- retdu[j] += global_BV[row][j] * global_ucoeffDeriv[row];
- retdv[j] += global_PBV[row][j] * global_ucoeff[row];
- }
- }
-}
-
-
-/*
- *given a Bezier surface, and parameter (u,v), compute the point in the object space,
- *and the normal
- *k: the dimension of the object space: usually 2,3,or 4.
- *u,v: the paramter pair.
- *u1,u2,uorder: the Bezier polynomial of u coord is defined on [u1,u2] with order uorder.
- *v1,v2,vorder: the Bezier polynomial of v coord is defined on [v1,v2] with order vorder.
- *baseData: contrl points. arranged as: (u,v,k).
- *retPoint: the computed point (one point) with dimension k.
- *retdu: the computed partial derivative with respect to u.
- *retdv: the computed partial derivative with respect to v.
- */
-void OpenGLSurfaceEvaluator::inDoDomain2WithDerivs(int k, REAL u, REAL v,
- REAL u1, REAL u2, int uorder,
- REAL v1, REAL v2, int vorder,
- REAL *baseData,
- REAL *retPoint, REAL *retdu, REAL *retdv)
-{
- int j, row, col;
- REAL uprime;
- REAL vprime;
- REAL p;
- REAL pdv;
- REAL *data;
-
- if((u2 == u1) || (v2 == v1))
- return;
- uprime = (u - u1) / (u2 - u1);
- vprime = (v - v1) / (v2 - v1);
-
- /* Compute coefficients for values and derivs */
-
- /* Use already cached values if possible */
- if(global_uprime != uprime || global_uorder != uorder) {
- inPreEvaluateWithDeriv(uorder, uprime, global_ucoeff, global_ucoeffDeriv);
- global_uorder = uorder;
- global_uprime = uprime;
- }
- if (global_vprime != vprime ||
- global_vorder != vorder) {
- inPreEvaluateWithDeriv(vorder, vprime, global_vcoeff, global_vcoeffDeriv);
- global_vorder = vorder;
- global_vprime = vprime;
- }
-
- for (j = 0; j < k; j++) {
- data=baseData+j;
- retPoint[j] = retdu[j] = retdv[j] = 0.0;
- for (row = 0; row < uorder; row++) {
- /*
- ** Minor optimization.
- ** The col == 0 part of the loop is extracted so we don't
- ** have to initialize p and pdv to 0.
- */
- p = global_vcoeff[0] * (*data);
- pdv = global_vcoeffDeriv[0] * (*data);
- data += k;
- for (col = 1; col < vorder; col++) {
- /* Incrementally build up p, pdv value */
- p += global_vcoeff[col] * (*data);
- pdv += global_vcoeffDeriv[col] * (*data);
- data += k;
- }
- /* Use p, pdv value to incrementally add up r, du, dv */
- retPoint[j] += global_ucoeff[row] * p;
- retdu[j] += global_ucoeffDeriv[row] * p;
- retdv[j] += global_ucoeff[row] * pdv;
- }
- }
-}
-
-
-/*
- *compute the Bezier polynomials C[n,j](v) for all j at v with
- *return values stored in coeff[], where
- * C[n,j](v) = (n,j) * v^j * (1-v)^(n-j),
- * j=0,1,2,...,n.
- *order : n+1
- *vprime: v
- *coeff : coeff[j]=C[n,j](v), this array store the returned values.
- *The algorithm is a recursive scheme:
- * C[0,0]=1;
- * C[n,j](v) = (1-v)*C[n-1,j](v) + v*C[n-1,j-1](v), n>=1
- *This code is copied from opengl/soft/so_eval.c:PreEvaluate
- */
-void OpenGLSurfaceEvaluator::inPreEvaluate(int order, REAL vprime, REAL *coeff)
-{
- int i, j;
- REAL oldval, temp;
- REAL oneMinusvprime;
-
- /*
- * Minor optimization
- * Compute orders 1 and 2 outright, and set coeff[0], coeff[1] to
- * their i==1 loop values to avoid the initialization and the i==1 loop.
- */
- if (order == 1) {
- coeff[0] = 1.0;
- return;
- }
-
- oneMinusvprime = 1-vprime;
- coeff[0] = oneMinusvprime;
- coeff[1] = vprime;
- if (order == 2) return;
-
- for (i = 2; i < order; i++) {
- oldval = coeff[0] * vprime;
- coeff[0] = oneMinusvprime * coeff[0];
- for (j = 1; j < i; j++) {
- temp = oldval;
- oldval = coeff[j] * vprime;
- coeff[j] = temp + oneMinusvprime * coeff[j];
- }
- coeff[j] = oldval;
- }
-}
-
-/*
- *compute the Bezier polynomials C[n,j](v) and derivatives for all j at v with
- *return values stored in coeff[] and coeffDeriv[].
- *see the head of function inPreEvaluate for the definition of C[n,j](v)
- *and how to compute the values.
- *The algorithm to compute the derivative is:
- * dC[0,0](v) = 0.
- * dC[n,j](v) = n*(dC[n-1,j-1](v) - dC[n-1,j](v)).
- *
- *This code is copied from opengl/soft/so_eval.c:PreEvaluateWidthDeriv
- */
-void OpenGLSurfaceEvaluator::inPreEvaluateWithDeriv(int order, REAL vprime,
- REAL *coeff, REAL *coeffDeriv)
-{
- int i, j;
- REAL oldval, temp;
- REAL oneMinusvprime;
-
- oneMinusvprime = 1-vprime;
- /*
- * Minor optimization
- * Compute orders 1 and 2 outright, and set coeff[0], coeff[1] to
- * their i==1 loop values to avoid the initialization and the i==1 loop.
- */
- if (order == 1) {
- coeff[0] = 1.0;
- coeffDeriv[0] = 0.0;
- return;
- } else if (order == 2) {
- coeffDeriv[0] = -1.0;
- coeffDeriv[1] = 1.0;
- coeff[0] = oneMinusvprime;
- coeff[1] = vprime;
- return;
- }
- coeff[0] = oneMinusvprime;
- coeff[1] = vprime;
- for (i = 2; i < order - 1; i++) {
- oldval = coeff[0] * vprime;
- coeff[0] = oneMinusvprime * coeff[0];
- for (j = 1; j < i; j++) {
- temp = oldval;
- oldval = coeff[j] * vprime;
- coeff[j] = temp + oneMinusvprime * coeff[j];
- }
- coeff[j] = oldval;
- }
- coeffDeriv[0] = -coeff[0];
- /*
- ** Minor optimization:
- ** Would make this a "for (j=1; j<order-1; j++)" loop, but it is always
- ** executed at least once, so this is more efficient.
- */
- j=1;
- do {
- coeffDeriv[j] = coeff[j-1] - coeff[j];
- j++;
- } while (j < order - 1);
- coeffDeriv[j] = coeff[j-1];
-
- oldval = coeff[0] * vprime;
- coeff[0] = oneMinusvprime * coeff[0];
- for (j = 1; j < i; j++) {
- temp = oldval;
- oldval = coeff[j] * vprime;
- coeff[j] = temp + oneMinusvprime * coeff[j];
- }
- coeff[j] = oldval;
-}
-
-void OpenGLSurfaceEvaluator::inEvalULine(int n_points, REAL v, REAL* u_vals,
- int stride, REAL ret_points[][3], REAL ret_normals[][3])
-{
- int i,k;
- REAL temp[4];
-inPreEvaluateBV_intfac(v);
-
- for(i=0,k=0; i<n_points; i++, k += stride)
- {
- inDoEvalCoord2NOGE_BV(u_vals[k],v,temp, ret_normals[i]);
-
- ret_points[i][0] = temp[0];
- ret_points[i][1] = temp[1];
- ret_points[i][2] = temp[2];
-
- }
-
-}
-
-void OpenGLSurfaceEvaluator::inEvalVLine(int n_points, REAL u, REAL* v_vals,
- int stride, REAL ret_points[][3], REAL ret_normals[][3])
-{
- int i,k;
- REAL temp[4];
-inPreEvaluateBU_intfac(u);
- for(i=0,k=0; i<n_points; i++, k += stride)
- {
- inDoEvalCoord2NOGE_BU(u, v_vals[k], temp, ret_normals[i]);
- ret_points[i][0] = temp[0];
- ret_points[i][1] = temp[1];
- ret_points[i][2] = temp[2];
- }
-}
-
-
-/*triangulate a strip bounded by two lines which are parallel to U-axis
- *upperVerts: the verteces on the upper line
- *lowerVertx: the verteces on the lower line
- *n_upper >=1
- *n_lower >=1
- */
-void OpenGLSurfaceEvaluator::inEvalUStrip(int n_upper, REAL v_upper, REAL* upper_val, int n_lower, REAL v_lower, REAL* lower_val)
-{
- int i,j,k,l;
- REAL leftMostV[2];
- typedef REAL REAL3[3];
-
- REAL3* upperXYZ = (REAL3*) malloc(sizeof(REAL3)*n_upper);
- assert(upperXYZ);
- REAL3* upperNormal = (REAL3*) malloc(sizeof(REAL3) * n_upper);
- assert(upperNormal);
- REAL3* lowerXYZ = (REAL3*) malloc(sizeof(REAL3)*n_lower);
- assert(lowerXYZ);
- REAL3* lowerNormal = (REAL3*) malloc(sizeof(REAL3) * n_lower);
- assert(lowerNormal);
-
- inEvalULine(n_upper, v_upper, upper_val, 1, upperXYZ, upperNormal);
- inEvalULine(n_lower, v_lower, lower_val, 1, lowerXYZ, lowerNormal);
-
-
-
- REAL* leftMostXYZ;
- REAL* leftMostNormal;
-
- /*
- *the algorithm works by scanning from left to right.
- *leftMostV: the left most of the remaining verteces (on both upper and lower).
- * it could an element of upperVerts or lowerVerts.
- *i: upperVerts[i] is the first vertex to the right of leftMostV on upper line *j: lowerVerts[j] is the first vertex to the right of leftMostV on lower line */
-
- /*initialize i,j,and leftMostV
- */
- if(upper_val[0] <= lower_val[0])
- {
- i=1;
- j=0;
-
- leftMostV[0] = upper_val[0];
- leftMostV[1] = v_upper;
- leftMostXYZ = upperXYZ[0];
- leftMostNormal = upperNormal[0];
- }
- else
- {
- i=0;
- j=1;
-
- leftMostV[0] = lower_val[0];
- leftMostV[1] = v_lower;
-
- leftMostXYZ = lowerXYZ[0];
- leftMostNormal = lowerNormal[0];
- }
-
- /*the main loop.
- *the invariance is that:
- *at the beginning of each loop, the meaning of i,j,and leftMostV are
- *maintained
- */
- while(1)
- {
- if(i >= n_upper) /*case1: no more in upper*/
- {
- if(j<n_lower-1) /*at least two vertices in lower*/
- {
- bgntfan();
- glNormal3fv(leftMostNormal);
- glVertex3fv(leftMostXYZ);
-
- while(j<n_lower){
- glNormal3fv(lowerNormal[j]);
- glVertex3fv(lowerXYZ[j]);
- j++;
-
- }
- endtfan();
- }
- break; /*exit the main loop*/
- }
- else if(j>= n_lower) /*case2: no more in lower*/
- {
- if(i<n_upper-1) /*at least two vertices in upper*/
- {
- bgntfan();
- glNormal3fv(leftMostNormal);
- glVertex3fv(leftMostXYZ);
-
- for(k=n_upper-1; k>=i; k--) /*reverse order for two-side lighting*/
- {
- glNormal3fv(upperNormal[k]);
- glVertex3fv(upperXYZ[k]);
- }
-
- endtfan();
- }
- break; /*exit the main loop*/
- }
- else /* case3: neither is empty, plus the leftMostV, there is at least one triangle to output*/
- {
- if(upper_val[i] <= lower_val[j])
- {
- bgntfan();
-
- glNormal3fv(lowerNormal[j]);
- glVertex3fv(lowerXYZ[j]);
-
- /*find the last k>=i such that
- *upperverts[k][0] <= lowerverts[j][0]
- */
- k=i;
-
- while(k<n_upper)
- {
- if(upper_val[k] > lower_val[j])
- break;
- k++;
-
- }
- k--;
-
-
- for(l=k; l>=i; l--)/*the reverse is for two-side lighting*/
- {
- glNormal3fv(upperNormal[l]);
- glVertex3fv(upperXYZ[l]);
-
- }
- glNormal3fv(leftMostNormal);
- glVertex3fv(leftMostXYZ);
-
- endtfan();
-
- /*update i and leftMostV for next loop
- */
- i = k+1;
-
- leftMostV[0] = upper_val[k];
- leftMostV[1] = v_upper;
- leftMostNormal = upperNormal[k];
- leftMostXYZ = upperXYZ[k];
- }
- else /*upperVerts[i][0] > lowerVerts[j][0]*/
- {
- bgntfan();
- glNormal3fv(upperNormal[i]);
- glVertex3fv(upperXYZ[i]);
-
- glNormal3fv(leftMostNormal);
- glVertex3fv(leftMostXYZ);
-
-
- /*find the last k>=j such that
- *lowerverts[k][0] < upperverts[i][0]
- */
- k=j;
- while(k< n_lower)
- {
- if(lower_val[k] >= upper_val[i])
- break;
- glNormal3fv(lowerNormal[k]);
- glVertex3fv(lowerXYZ[k]);
-
- k++;
- }
- endtfan();
-
- /*update j and leftMostV for next loop
- */
- j=k;
- leftMostV[0] = lower_val[j-1];
- leftMostV[1] = v_lower;
-
- leftMostNormal = lowerNormal[j-1];
- leftMostXYZ = lowerXYZ[j-1];
- }
- }
- }
- //clean up
- free(upperXYZ);
- free(lowerXYZ);
- free(upperNormal);
- free(lowerNormal);
-}
-
-/*triangulate a strip bounded by two lines which are parallel to V-axis
- *leftVerts: the verteces on the left line
- *rightVertx: the verteces on the right line
- *n_left >=1
- *n_right >=1
- */
-void OpenGLSurfaceEvaluator::inEvalVStrip(int n_left, REAL u_left, REAL* left_val, int n_right, REAL u_right, REAL* right_val)
-{
- int i,j,k,l;
- REAL botMostV[2];
- typedef REAL REAL3[3];
-
- REAL3* leftXYZ = (REAL3*) malloc(sizeof(REAL3)*n_left);
- assert(leftXYZ);
- REAL3* leftNormal = (REAL3*) malloc(sizeof(REAL3) * n_left);
- assert(leftNormal);
- REAL3* rightXYZ = (REAL3*) malloc(sizeof(REAL3)*n_right);
- assert(rightXYZ);
- REAL3* rightNormal = (REAL3*) malloc(sizeof(REAL3) * n_right);
- assert(rightNormal);
-
- inEvalVLine(n_left, u_left, left_val, 1, leftXYZ, leftNormal);
- inEvalVLine(n_right, u_right, right_val, 1, rightXYZ, rightNormal);
-
-
-
- REAL* botMostXYZ;
- REAL* botMostNormal;
-
- /*
- *the algorithm works by scanning from bot to top.
- *botMostV: the bot most of the remaining verteces (on both left and right).
- * it could an element of leftVerts or rightVerts.
- *i: leftVerts[i] is the first vertex to the top of botMostV on left line
- *j: rightVerts[j] is the first vertex to the top of botMostV on rightline */
-
- /*initialize i,j,and botMostV
- */
- if(left_val[0] <= right_val[0])
- {
- i=1;
- j=0;
-
- botMostV[0] = u_left;
- botMostV[1] = left_val[0];
- botMostXYZ = leftXYZ[0];
- botMostNormal = leftNormal[0];
- }
- else
- {
- i=0;
- j=1;
-
- botMostV[0] = u_right;
- botMostV[1] = right_val[0];
-
- botMostXYZ = rightXYZ[0];
- botMostNormal = rightNormal[0];
- }
-
- /*the main loop.
- *the invariance is that:
- *at the beginning of each loop, the meaning of i,j,and botMostV are
- *maintained
- */
- while(1)
- {
- if(i >= n_left) /*case1: no more in left*/
- {
- if(j<n_right-1) /*at least two vertices in right*/
- {
- bgntfan();
- glNormal3fv(botMostNormal);
- glVertex3fv(botMostXYZ);
-
- while(j<n_right){
- glNormal3fv(rightNormal[j]);
- glVertex3fv(rightXYZ[j]);
- j++;
-
- }
- endtfan();
- }
- break; /*exit the main loop*/
- }
- else if(j>= n_right) /*case2: no more in right*/
- {
- if(i<n_left-1) /*at least two vertices in left*/
- {
- bgntfan();
- glNormal3fv(botMostNormal);
- glVertex3fv(botMostXYZ);
-
- for(k=n_left-1; k>=i; k--) /*reverse order for two-side lighting*/
- {
- glNormal3fv(leftNormal[k]);
- glVertex3fv(leftXYZ[k]);
- }
-
- endtfan();
- }
- break; /*exit the main loop*/
- }
- else /* case3: neither is empty, plus the botMostV, there is at least one triangle to output*/
- {
- if(left_val[i] <= right_val[j])
- {
- bgntfan();
-
- glNormal3fv(rightNormal[j]);
- glVertex3fv(rightXYZ[j]);
-
- /*find the last k>=i such that
- *leftverts[k][0] <= rightverts[j][0]
- */
- k=i;
-
- while(k<n_left)
- {
- if(left_val[k] > right_val[j])
- break;
- k++;
-
- }
- k--;
-
-
- for(l=k; l>=i; l--)/*the reverse is for two-side lighting*/
- {
- glNormal3fv(leftNormal[l]);
- glVertex3fv(leftXYZ[l]);
-
- }
- glNormal3fv(botMostNormal);
- glVertex3fv(botMostXYZ);
-
- endtfan();
-
- /*update i and botMostV for next loop
- */
- i = k+1;
-
- botMostV[0] = u_left;
- botMostV[1] = left_val[k];
- botMostNormal = leftNormal[k];
- botMostXYZ = leftXYZ[k];
- }
- else /*left_val[i] > right_val[j])*/
- {
- bgntfan();
- glNormal3fv(leftNormal[i]);
- glVertex3fv(leftXYZ[i]);
-
- glNormal3fv(botMostNormal);
- glVertex3fv(botMostXYZ);
-
-
- /*find the last k>=j such that
- *rightverts[k][0] < leftverts[i][0]
- */
- k=j;
- while(k< n_right)
- {
- if(right_val[k] >= left_val[i])
- break;
- glNormal3fv(rightNormal[k]);
- glVertex3fv(rightXYZ[k]);
-
- k++;
- }
- endtfan();
-
- /*update j and botMostV for next loop
- */
- j=k;
- botMostV[0] = u_right;
- botMostV[1] = right_val[j-1];
-
- botMostNormal = rightNormal[j-1];
- botMostXYZ = rightXYZ[j-1];
- }
- }
- }
- //clean up
- free(leftXYZ);
- free(rightXYZ);
- free(leftNormal);
- free(rightNormal);
-}
-
-/*-----------------------begin evalMachine-------------------*/
-void OpenGLSurfaceEvaluator::inMap2fEM(int which, int k,
- REAL ulower,
- REAL uupper,
- int ustride,
- int uorder,
- REAL vlower,
- REAL vupper,
- int vstride,
- int vorder,
- REAL *ctlPoints)
-{
- int i,j,x;
- surfEvalMachine *temp_em;
- switch(which){
- case 0: //vertex
- vertex_flag = 1;
- temp_em = &em_vertex;
- break;
- case 1: //normal
- normal_flag = 1;
- temp_em = &em_normal;
- break;
- case 2: //color
- color_flag = 1;
- temp_em = &em_color;
- break;
- default:
- texcoord_flag = 1;
- temp_em = &em_texcoord;
- break;
- }
-
- REAL *data = temp_em->ctlPoints;
-
- temp_em->uprime = -1;//initilized
- temp_em->vprime = -1;
-
- temp_em->k = k;
- temp_em->u1 = ulower;
- temp_em->u2 = uupper;
- temp_em->ustride = ustride;
- temp_em->uorder = uorder;
- temp_em->v1 = vlower;
- temp_em->v2 = vupper;
- temp_em->vstride = vstride;
- temp_em->vorder = vorder;
-
- /*copy the contrl points from ctlPoints to global_ev_ctlPoints*/
- for (i=0; i<uorder; i++) {
- for (j=0; j<vorder; j++) {
- for (x=0; x<k; x++) {
- data[x] = ctlPoints[x];
- }
- ctlPoints += vstride;
- data += k;
- }
- ctlPoints += ustride - vstride * vorder;
- }
-}
-
-void OpenGLSurfaceEvaluator::inDoDomain2WithDerivsEM(surfEvalMachine *em, REAL u, REAL v,
- REAL *retPoint, REAL *retdu, REAL *retdv)
-{
- int j, row, col;
- REAL the_uprime;
- REAL the_vprime;
- REAL p;
- REAL pdv;
- REAL *data;
-
- if((em->u2 == em->u1) || (em->v2 == em->v1))
- return;
- the_uprime = (u - em->u1) / (em->u2 - em->u1);
- the_vprime = (v - em->v1) / (em->v2 - em->v1);
-
- /* Compute coefficients for values and derivs */
-
- /* Use already cached values if possible */
- if(em->uprime != the_uprime) {
- inPreEvaluateWithDeriv(em->uorder, the_uprime, em->ucoeff, em->ucoeffDeriv);
- em->uprime = the_uprime;
- }
- if (em->vprime != the_vprime) {
- inPreEvaluateWithDeriv(em->vorder, the_vprime, em->vcoeff, em->vcoeffDeriv);
- em->vprime = the_vprime;
- }
-
- for (j = 0; j < em->k; j++) {
- data=em->ctlPoints+j;
- retPoint[j] = retdu[j] = retdv[j] = 0.0;
- for (row = 0; row < em->uorder; row++) {
- /*
- ** Minor optimization.
- ** The col == 0 part of the loop is extracted so we don't
- ** have to initialize p and pdv to 0.
- */
- p = em->vcoeff[0] * (*data);
- pdv = em->vcoeffDeriv[0] * (*data);
- data += em->k;
- for (col = 1; col < em->vorder; col++) {
- /* Incrementally build up p, pdv value */
- p += em->vcoeff[col] * (*data);
- pdv += em->vcoeffDeriv[col] * (*data);
- data += em->k;
- }
- /* Use p, pdv value to incrementally add up r, du, dv */
- retPoint[j] += em->ucoeff[row] * p;
- retdu[j] += em->ucoeffDeriv[row] * p;
- retdv[j] += em->ucoeff[row] * pdv;
- }
- }
-}
-
-void OpenGLSurfaceEvaluator::inDoDomain2EM(surfEvalMachine *em, REAL u, REAL v,
- REAL *retPoint)
-{
- int j, row, col;
- REAL the_uprime;
- REAL the_vprime;
- REAL p;
- REAL *data;
-
- if((em->u2 == em->u1) || (em->v2 == em->v1))
- return;
- the_uprime = (u - em->u1) / (em->u2 - em->u1);
- the_vprime = (v - em->v1) / (em->v2 - em->v1);
-
- /* Compute coefficients for values and derivs */
-
- /* Use already cached values if possible */
- if(em->uprime != the_uprime) {
- inPreEvaluate(em->uorder, the_uprime, em->ucoeff);
- em->uprime = the_uprime;
- }
- if (em->vprime != the_vprime) {
- inPreEvaluate(em->vorder, the_vprime, em->vcoeff);
- em->vprime = the_vprime;
- }
-
- for (j = 0; j < em->k; j++) {
- data=em->ctlPoints+j;
- retPoint[j] = 0.0;
- for (row = 0; row < em->uorder; row++) {
- /*
- ** Minor optimization.
- ** The col == 0 part of the loop is extracted so we don't
- ** have to initialize p and pdv to 0.
- */
- p = em->vcoeff[0] * (*data);
- data += em->k;
- for (col = 1; col < em->vorder; col++) {
- /* Incrementally build up p, pdv value */
- p += em->vcoeff[col] * (*data);
- data += em->k;
- }
- /* Use p, pdv value to incrementally add up r, du, dv */
- retPoint[j] += em->ucoeff[row] * p;
- }
- }
-}
-
-
-void OpenGLSurfaceEvaluator::inDoEvalCoord2EM(REAL u, REAL v)
-{
- REAL temp_vertex[5];
- REAL temp_normal[3];
- REAL temp_color[4];
- REAL temp_texcoord[4];
-
- if(texcoord_flag)
- {
- inDoDomain2EM(&em_texcoord, u,v, temp_texcoord);
- texcoordCallBack(temp_texcoord, userData);
- }
- if(color_flag)
- {
- inDoDomain2EM(&em_color, u,v, temp_color);
- colorCallBack(temp_color, userData);
- }
-
- if(normal_flag) //there is a normla map
- {
- inDoDomain2EM(&em_normal, u,v, temp_normal);
- normalCallBack(temp_normal, userData);
-
- if(vertex_flag)
- {
- inDoDomain2EM(&em_vertex, u,v,temp_vertex);
- if(em_vertex.k == 4)
- {
- temp_vertex[0] /= temp_vertex[3];
- temp_vertex[1] /= temp_vertex[3];
- temp_vertex[2] /= temp_vertex[3];
- }
- temp_vertex[3]=u;
- temp_vertex[4]=v;
- vertexCallBack(temp_vertex, userData);
- }
- }
- else if(auto_normal_flag) //no normal map but there is a normal callbackfunctin
- {
- REAL du[4];
- REAL dv[4];
-
- /*compute homegeneous point and partial derivatives*/
- inDoDomain2WithDerivsEM(&em_vertex, u,v,temp_vertex,du,dv);
-
- if(em_vertex.k ==4)
- inComputeFirstPartials(temp_vertex, du, dv);
-
-#ifdef AVOID_ZERO_NORMAL
- if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
- {
-
- REAL tempdu[4];
- REAL tempdata[4];
- REAL u1 = em_vertex.u1;
- REAL u2 = em_vertex.u2;
- if(u-MYDELTA*(u2-u1) < u1)
- u = u+ MYDELTA*(u2-u1);
- else
- u = u-MYDELTA*(u2-u1);
- inDoDomain2WithDerivsEM(&em_vertex,u,v, tempdata, tempdu, dv);
-
- if(em_vertex.k ==4)
- inComputeFirstPartials(temp_vertex, du, dv);
- }
- else if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
- {
- REAL tempdv[4];
- REAL tempdata[4];
- REAL v1 = em_vertex.v1;
- REAL v2 = em_vertex.v2;
- if(v-MYDELTA*(v2-v1) < v1)
- v = v+ MYDELTA*(v2-v1);
- else
- v = v-MYDELTA*(v2-v1);
- inDoDomain2WithDerivsEM(&em_vertex,u,v, tempdata, du, tempdv);
-
- if(em_vertex.k ==4)
- inComputeFirstPartials(temp_vertex, du, dv);
- }
-#endif
-
- /*compute normal*/
- switch(em_vertex.k){
- case 3:
-
- inComputeNormal2(du, dv, temp_normal);
- break;
- case 4:
-
-// inComputeFirstPartials(temp_vertex, du, dv);
- inComputeNormal2(du, dv, temp_normal);
-
- /*transform the homegeneous coordinate of retPoint into inhomogenous one*/
- temp_vertex[0] /= temp_vertex[3];
- temp_vertex[1] /= temp_vertex[3];
- temp_vertex[2] /= temp_vertex[3];
- break;
- }
- normalCallBack(temp_normal, userData);
- temp_vertex[3] = u;
- temp_vertex[4] = v;
- vertexCallBack(temp_vertex, userData);
-
- }/*end if auto_normal*/
- else //no normal map, and no normal callback function
- {
- if(vertex_flag)
- {
- inDoDomain2EM(&em_vertex, u,v,temp_vertex);
- if(em_vertex.k == 4)
- {
- temp_vertex[0] /= temp_vertex[3];
- temp_vertex[1] /= temp_vertex[3];
- temp_vertex[2] /= temp_vertex[3];
- }
- temp_vertex[3] = u;
- temp_vertex[4] = v;
- vertexCallBack(temp_vertex, userData);
- }
- }
-}
-
-
-void OpenGLSurfaceEvaluator::inBPMEvalEM(bezierPatchMesh* bpm)
-{
- int i,j,k;
- float u,v;
-
- int ustride;
- int vstride;
-
-#ifdef USE_LOD
- if(bpm->bpatch != NULL)
- {
- bezierPatch* p=bpm->bpatch;
- ustride = p->dimension * p->vorder;
- vstride = p->dimension;
-
- glMap2f( (p->dimension == 3)? GL_MAP2_VERTEX_3 : GL_MAP2_VERTEX_4,
- p->umin,
- p->umax,
- ustride,
- p->uorder,
- p->vmin,
- p->vmax,
- vstride,
- p->vorder,
- p->ctlpoints);
-
-
-/*
- inMap2fEM(0, p->dimension,
- p->umin,
- p->umax,
- ustride,
- p->uorder,
- p->vmin,
- p->vmax,
- vstride,
- p->vorder,
- p->ctlpoints);
-*/
- }
-#else
-
- if(bpm->bpatch != NULL){
- bezierPatch* p = bpm->bpatch;
- ustride = p->dimension * p->vorder;
- vstride = p->dimension;
- inMap2fEM(0, p->dimension,
- p->umin,
- p->umax,
- ustride,
- p->uorder,
- p->vmin,
- p->vmax,
- vstride,
- p->vorder,
- p->ctlpoints);
- }
- if(bpm->bpatch_normal != NULL){
- bezierPatch* p = bpm->bpatch_normal;
- ustride = p->dimension * p->vorder;
- vstride = p->dimension;
- inMap2fEM(1, p->dimension,
- p->umin,
- p->umax,
- ustride,
- p->uorder,
- p->vmin,
- p->vmax,
- vstride,
- p->vorder,
- p->ctlpoints);
- }
- if(bpm->bpatch_color != NULL){
- bezierPatch* p = bpm->bpatch_color;
- ustride = p->dimension * p->vorder;
- vstride = p->dimension;
- inMap2fEM(2, p->dimension,
- p->umin,
- p->umax,
- ustride,
- p->uorder,
- p->vmin,
- p->vmax,
- vstride,
- p->vorder,
- p->ctlpoints);
- }
- if(bpm->bpatch_texcoord != NULL){
- bezierPatch* p = bpm->bpatch_texcoord;
- ustride = p->dimension * p->vorder;
- vstride = p->dimension;
- inMap2fEM(3, p->dimension,
- p->umin,
- p->umax,
- ustride,
- p->uorder,
- p->vmin,
- p->vmax,
- vstride,
- p->vorder,
- p->ctlpoints);
- }
-#endif
-
-
- k=0;
- for(i=0; i<bpm->index_length_array; i++)
- {
-#ifdef USE_LOD
- if(bpm->type_array[i] == GL_POLYGON) //a mesh
- {
- GLfloat *temp = bpm->UVarray+k;
- GLfloat u0 = temp[0];
- GLfloat v0 = temp[1];
- GLfloat u1 = temp[2];
- GLfloat v1 = temp[3];
- GLint nu = (GLint) ( temp[4]);
- GLint nv = (GLint) ( temp[5]);
- GLint umin = (GLint) ( temp[6]);
- GLint vmin = (GLint) ( temp[7]);
- GLint umax = (GLint) ( temp[8]);
- GLint vmax = (GLint) ( temp[9]);
-
- glMapGrid2f(LOD_eval_level*nu, u0, u1, LOD_eval_level*nv, v0, v1);
- glEvalMesh2(GL_FILL, LOD_eval_level*umin, LOD_eval_level*umax, LOD_eval_level*vmin, LOD_eval_level*vmax);
- }
- else
- {
- LOD_eval(bpm->length_array[i], bpm->UVarray+k, bpm->type_array[i],
- 0
- );
- }
- k+= 2*bpm->length_array[i];
-
-#else //undef USE_LOD
-
-#ifdef CRACK_TEST
-if( bpm->bpatch->umin == 2 && bpm->bpatch->umax == 3
- && bpm->bpatch->vmin ==2 && bpm->bpatch->vmax == 3)
-{
-REAL vertex[4];
-REAL normal[4];
-#ifdef DEBUG
-printf("***number ****1\n");
-#endif
-
-beginCallBack(GL_QUAD_STRIP, NULL);
-inDoEvalCoord2EM(3.0, 3.0);
-inDoEvalCoord2EM(2.0, 3.0);
-inDoEvalCoord2EM(3.0, 2.7);
-inDoEvalCoord2EM(2.0, 2.7);
-inDoEvalCoord2EM(3.0, 2.0);
-inDoEvalCoord2EM(2.0, 2.0);
-endCallBack(NULL);
-
-beginCallBack(GL_TRIANGLE_STRIP, NULL);
-inDoEvalCoord2EM(2.0, 3.0);
-inDoEvalCoord2EM(2.0, 2.0);
-inDoEvalCoord2EM(2.0, 2.7);
-endCallBack(NULL);
-
-}
-if( bpm->bpatch->umin == 1 && bpm->bpatch->umax == 2
- && bpm->bpatch->vmin ==2 && bpm->bpatch->vmax == 3)
-{
-#ifdef DEBUG
-printf("***number 3\n");
-#endif
-beginCallBack(GL_QUAD_STRIP, NULL);
-inDoEvalCoord2EM(2.0, 3.0);
-inDoEvalCoord2EM(1.0, 3.0);
-inDoEvalCoord2EM(2.0, 2.3);
-inDoEvalCoord2EM(1.0, 2.3);
-inDoEvalCoord2EM(2.0, 2.0);
-inDoEvalCoord2EM(1.0, 2.0);
-endCallBack(NULL);
-
-beginCallBack(GL_TRIANGLE_STRIP, NULL);
-inDoEvalCoord2EM(2.0, 2.3);
-inDoEvalCoord2EM(2.0, 2.0);
-inDoEvalCoord2EM(2.0, 3.0);
-endCallBack(NULL);
-
-}
-return;
-#endif //CRACK_TEST
-
- beginCallBack(bpm->type_array[i], userData);
-
- for(j=0; j<bpm->length_array[i]; j++)
- {
- u = bpm->UVarray[k];
- v = bpm->UVarray[k+1];
-#ifdef USE_LOD
- LOD_EVAL_COORD(u,v);
-// glEvalCoord2f(u,v);
-#else
-
-#ifdef GENERIC_TEST
- float temp_normal[3];
- float temp_vertex[3];
- if(temp_signal == 0)
- {
- gTessVertexSphere(u,v, temp_normal, temp_vertex);
-//printf("normal=(%f,%f,%f)\n", temp_normal[0], temp_normal[1], temp_normal[2])//printf("veretx=(%f,%f,%f)\n", temp_vertex[0], temp_vertex[1], temp_vertex[2]);
- normalCallBack(temp_normal, userData);
- vertexCallBack(temp_vertex, userData);
- }
- else if(temp_signal == 1)
- {
- gTessVertexCyl(u,v, temp_normal, temp_vertex);
-//printf("normal=(%f,%f,%f)\n", temp_normal[0], temp_normal[1], temp_normal[2])//printf("veretx=(%f,%f,%f)\n", temp_vertex[0], temp_vertex[1], temp_vertex[2]);
- normalCallBack(temp_normal, userData);
- vertexCallBack(temp_vertex, userData);
- }
- else
-#endif //GENERIC_TEST
-
- inDoEvalCoord2EM(u,v);
-
-#endif //USE_LOD
-
- k += 2;
- }
- endCallBack(userData);
-
-#endif //USE_LOD
- }
-}
-
-void OpenGLSurfaceEvaluator::inBPMListEvalEM(bezierPatchMesh* list)
-{
- bezierPatchMesh* temp;
- for(temp = list; temp != NULL; temp = temp->next)
- {
- inBPMEvalEM(temp);
- }
-}
-