diff options
Diffstat (limited to 'mesalib/src/mapi/glapi/gen/glX_server_table.py')
-rw-r--r-- | mesalib/src/mapi/glapi/gen/glX_server_table.py | 686 |
1 files changed, 343 insertions, 343 deletions
diff --git a/mesalib/src/mapi/glapi/gen/glX_server_table.py b/mesalib/src/mapi/glapi/gen/glX_server_table.py index 15397533f..47aa11116 100644 --- a/mesalib/src/mapi/glapi/gen/glX_server_table.py +++ b/mesalib/src/mapi/glapi/gen/glX_server_table.py @@ -30,381 +30,381 @@ import sys, getopt def log2(value): - for i in range(0, 30): - p = 1 << i - if p >= value: - return i + for i in range(0, 30): + p = 1 << i + if p >= value: + return i - return -1 + return -1 def round_down_to_power_of_two(n): - """Returns the nearest power-of-two less than or equal to n.""" + """Returns the nearest power-of-two less than or equal to n.""" - for i in range(30, 0, -1): - p = 1 << i - if p <= n: - return p + for i in range(30, 0, -1): + p = 1 << i + if p <= n: + return p - return -1 + return -1 class function_table: - def __init__(self, name, do_size_check): - self.name_base = name - self.do_size_check = do_size_check - - - self.max_bits = 1 - self.next_opcode_threshold = (1 << self.max_bits) - self.max_opcode = 0 - - self.functions = {} - self.lookup_table = [] - - # Minimum number of opcodes in a leaf node. - self.min_op_bits = 3 - self.min_op_count = (1 << self.min_op_bits) - return + def __init__(self, name, do_size_check): + self.name_base = name + self.do_size_check = do_size_check - def append(self, opcode, func): - self.functions[opcode] = func + self.max_bits = 1 + self.next_opcode_threshold = (1 << self.max_bits) + self.max_opcode = 0 - if opcode > self.max_opcode: - self.max_opcode = opcode + self.functions = {} + self.lookup_table = [] - if opcode > self.next_opcode_threshold: - bits = log2(opcode) - if (1 << bits) <= opcode: - bits += 1 + # Minimum number of opcodes in a leaf node. + self.min_op_bits = 3 + self.min_op_count = (1 << self.min_op_bits) + return - self.max_bits = bits - self.next_opcode_threshold = 1 << bits - return + def append(self, opcode, func): + self.functions[opcode] = func - def divide_group(self, min_opcode, total): - """Divide the group starting min_opcode into subgroups. - Returns a tuple containing the number of bits consumed by - the node, the list of the children's tuple, and the number - of entries in the final array used by this node and its - children, and the depth of the subtree rooted at the node.""" - - remaining_bits = self.max_bits - total - next_opcode = min_opcode + (1 << remaining_bits) - empty_children = 0 - - for M in range(0, remaining_bits): - op_count = 1 << (remaining_bits - M); - child_count = 1 << M; - - empty_children = 0 - full_children = 0 - for i in range(min_opcode, next_opcode, op_count): - used = 0 - empty = 0 + if opcode > self.max_opcode: + self.max_opcode = opcode - for j in range(i, i + op_count): - if self.functions.has_key(j): - used += 1; - else: - empty += 1; - + if opcode > self.next_opcode_threshold: + bits = log2(opcode) + if (1 << bits) <= opcode: + bits += 1 - if empty == op_count: - empty_children += 1 - - if used == op_count: - full_children += 1 - - if (empty_children > 0) or (full_children == child_count) or (op_count <= self.min_op_count): - break + self.max_bits = bits + self.next_opcode_threshold = 1 << bits + return - # If all the remaining bits are used by this node, as is the - # case when M is 0 or remaining_bits, the node is a leaf. - - if (M == 0) or (M == remaining_bits): - return [remaining_bits, [], 0, 0] - else: - children = [] - count = 1 - depth = 1 - all_children_are_nonempty_leaf_nodes = 1 - for i in range(min_opcode, next_opcode, op_count): - n = self.divide_group(i, total + M) + def divide_group(self, min_opcode, total): + """Divide the group starting min_opcode into subgroups. + Returns a tuple containing the number of bits consumed by + the node, the list of the children's tuple, and the number + of entries in the final array used by this node and its + children, and the depth of the subtree rooted at the node.""" - if not (n[1] == [] and not self.is_empty_leaf(i, n[0])): - all_children_are_nonempty_leaf_nodes = 0 + remaining_bits = self.max_bits - total + next_opcode = min_opcode + (1 << remaining_bits) + empty_children = 0 - children.append(n) - count += n[2] + 1 - - if n[3] >= depth: - depth = n[3] + 1 - - # If all of the child nodes are non-empty leaf nodes, pull - # them up and make this node a leaf. - - if all_children_are_nonempty_leaf_nodes: - return [remaining_bits, [], 0, 0] - else: - return [M, children, count, depth] - - - def is_empty_leaf(self, base_opcode, M): - for op in range(base_opcode, base_opcode + (1 << M)): - if self.functions.has_key(op): - return 0 - break - - return 1 - - - def dump_tree(self, node, base_opcode, remaining_bits, base_entry, depth): - M = node[0] - children = node[1] - child_M = remaining_bits - M - - - # This actually an error condition. - if children == []: - return - - print ' /* [%u] -> opcode range [%u, %u], node depth %u */' % (base_entry, base_opcode, base_opcode + (1 << remaining_bits), depth) - print ' %u,' % (M) - - base_entry += (1 << M) + 1 - - child_index = base_entry - child_base_opcode = base_opcode - for child in children: - if child[1] == []: - if self.is_empty_leaf(child_base_opcode, child_M): - print ' EMPTY_LEAF,' - else: - # Emit the index of the next dispatch - # function. Then add all the - # dispatch functions for this leaf - # node to the dispatch function - # lookup table. - - print ' LEAF(%u),' % (len(self.lookup_table)) - - for op in range(child_base_opcode, child_base_opcode + (1 << child_M)): - if self.functions.has_key(op): - func = self.functions[op] - size = func.command_fixed_length() - - if func.glx_rop != 0: - size += 4 - - size = ((size + 3) & ~3) - - if func.has_variable_size_request(): - size_name = "__glX%sReqSize" % (func.name) - else: - size_name = "" - - if func.glx_vendorpriv == op: - func_name = func.glx_vendorpriv_names[0] - else: - func_name = func.name - - temp = [op, "__glXDisp_%s" % (func_name), "__glXDispSwap_%s" % (func_name), size, size_name] - else: - temp = [op, "NULL", "NULL", 0, ""] - - self.lookup_table.append(temp) - else: - print ' %u,' % (child_index) - child_index += child[2] - - child_base_opcode += 1 << child_M - - print '' - - child_index = base_entry - for child in children: - if child[1] != []: - self.dump_tree(child, base_opcode, remaining_bits - M, child_index, depth + 1) - child_index += child[2] - - base_opcode += 1 << (remaining_bits - M) - - - def Print(self): - # Each dispatch table consists of two data structures. - # - # The first structure is an N-way tree where the opcode for - # the function is the key. Each node switches on a range of - # bits from the opcode. M bits are extracted from the opcde - # and are used as an index to select one of the N, where - # N = 2^M, children. - # - # The tree is stored as a flat array. The first value is the - # number of bits, M, used by the node. For inner nodes, the - # following 2^M values are indexes into the array for the - # child nodes. For leaf nodes, the followign 2^M values are - # indexes into the second data structure. - # - # If an inner node's child index is 0, the child is an empty - # leaf node. That is, none of the opcodes selectable from - # that child exist. Since most of the possible opcode space - # is unused, this allows compact data storage. - # - # The second data structure is an array of pairs of function - # pointers. Each function contains a pointer to a protocol - # decode function and a pointer to a byte-swapped protocol - # decode function. Elements in this array are selected by the - # leaf nodes of the first data structure. - # - # As the tree is traversed, an accumulator is kept. This - # accumulator counts the bits of the opcode consumed by the - # traversal. When accumulator + M = B, where B is the - # maximum number of bits in an opcode, the traversal has - # reached a leaf node. The traversal starts with the most - # significant bits and works down to the least significant - # bits. - # - # Creation of the tree is the most complicated part. At - # each node the elements are divided into groups of 2^M - # elements. The value of M selected is the smallest possible - # value where all of the groups are either empty or full, or - # the groups are a preset minimum size. If all the children - # of a node are non-empty leaf nodes, the children are merged - # to create a single leaf node that replaces the parent. - - tree = self.divide_group(0, 0) - - print '/*****************************************************************/' - print '/* tree depth = %u */' % (tree[3]) - print 'static const int_fast16_t %s_dispatch_tree[%u] = {' % (self.name_base, tree[2]) - self.dump_tree(tree, 0, self.max_bits, 0, 1) - print '};\n' - - # After dumping the tree, dump the function lookup table. - - print 'static const void *%s_function_table[%u][2] = {' % (self.name_base, len(self.lookup_table)) - index = 0 - for func in self.lookup_table: - opcode = func[0] - name = func[1] - name_swap = func[2] - - print ' /* [% 3u] = %5u */ {%s, %s},' % (index, opcode, name, name_swap) - - index += 1 - - print '};\n' - - if self.do_size_check: - var_table = [] - - print 'static const int_fast16_t %s_size_table[%u][2] = {' % (self.name_base, len(self.lookup_table)) - index = 0 - var_table = [] - for func in self.lookup_table: - opcode = func[0] - fixed = func[3] - var = func[4] - - if var != "": - var_offset = "%2u" % (len(var_table)) - var_table.append(var) - else: - var_offset = "~0" - - print ' /* [%3u] = %5u */ {%3u, %s},' % (index, opcode, fixed, var_offset) - index += 1 - - - print '};\n' - - - print 'static const gl_proto_size_func %s_size_func_table[%u] = {' % (self.name_base, len(var_table)) - for func in var_table: - print ' %s,' % (func) - - print '};\n' - - - print 'const struct __glXDispatchInfo %s_dispatch_info = {' % (self.name_base) - print ' %u,' % (self.max_bits) - print ' %s_dispatch_tree,' % (self.name_base) - print ' %s_function_table,' % (self.name_base) - if self.do_size_check: - print ' %s_size_table,' % (self.name_base) - print ' %s_size_func_table' % (self.name_base) - else: - print ' NULL,' - print ' NULL' - print '};\n' - return + for M in range(0, remaining_bits): + op_count = 1 << (remaining_bits - M); + child_count = 1 << M; + + empty_children = 0 + full_children = 0 + for i in range(min_opcode, next_opcode, op_count): + used = 0 + empty = 0 + + for j in range(i, i + op_count): + if self.functions.has_key(j): + used += 1; + else: + empty += 1; + + + if empty == op_count: + empty_children += 1 + + if used == op_count: + full_children += 1 + + if (empty_children > 0) or (full_children == child_count) or (op_count <= self.min_op_count): + break + + + # If all the remaining bits are used by this node, as is the + # case when M is 0 or remaining_bits, the node is a leaf. + + if (M == 0) or (M == remaining_bits): + return [remaining_bits, [], 0, 0] + else: + children = [] + count = 1 + depth = 1 + all_children_are_nonempty_leaf_nodes = 1 + for i in range(min_opcode, next_opcode, op_count): + n = self.divide_group(i, total + M) + + if not (n[1] == [] and not self.is_empty_leaf(i, n[0])): + all_children_are_nonempty_leaf_nodes = 0 + + children.append(n) + count += n[2] + 1 + + if n[3] >= depth: + depth = n[3] + 1 + + # If all of the child nodes are non-empty leaf nodes, pull + # them up and make this node a leaf. + + if all_children_are_nonempty_leaf_nodes: + return [remaining_bits, [], 0, 0] + else: + return [M, children, count, depth] + + + def is_empty_leaf(self, base_opcode, M): + for op in range(base_opcode, base_opcode + (1 << M)): + if self.functions.has_key(op): + return 0 + break + + return 1 + + + def dump_tree(self, node, base_opcode, remaining_bits, base_entry, depth): + M = node[0] + children = node[1] + child_M = remaining_bits - M + + + # This actually an error condition. + if children == []: + return + + print ' /* [%u] -> opcode range [%u, %u], node depth %u */' % (base_entry, base_opcode, base_opcode + (1 << remaining_bits), depth) + print ' %u,' % (M) + + base_entry += (1 << M) + 1 + + child_index = base_entry + child_base_opcode = base_opcode + for child in children: + if child[1] == []: + if self.is_empty_leaf(child_base_opcode, child_M): + print ' EMPTY_LEAF,' + else: + # Emit the index of the next dispatch + # function. Then add all the + # dispatch functions for this leaf + # node to the dispatch function + # lookup table. + + print ' LEAF(%u),' % (len(self.lookup_table)) + + for op in range(child_base_opcode, child_base_opcode + (1 << child_M)): + if self.functions.has_key(op): + func = self.functions[op] + size = func.command_fixed_length() + + if func.glx_rop != 0: + size += 4 + + size = ((size + 3) & ~3) + + if func.has_variable_size_request(): + size_name = "__glX%sReqSize" % (func.name) + else: + size_name = "" + + if func.glx_vendorpriv == op: + func_name = func.glx_vendorpriv_names[0] + else: + func_name = func.name + + temp = [op, "__glXDisp_%s" % (func_name), "__glXDispSwap_%s" % (func_name), size, size_name] + else: + temp = [op, "NULL", "NULL", 0, ""] + + self.lookup_table.append(temp) + else: + print ' %u,' % (child_index) + child_index += child[2] + + child_base_opcode += 1 << child_M + + print '' + + child_index = base_entry + for child in children: + if child[1] != []: + self.dump_tree(child, base_opcode, remaining_bits - M, child_index, depth + 1) + child_index += child[2] + + base_opcode += 1 << (remaining_bits - M) + + + def Print(self): + # Each dispatch table consists of two data structures. + # + # The first structure is an N-way tree where the opcode for + # the function is the key. Each node switches on a range of + # bits from the opcode. M bits are extracted from the opcde + # and are used as an index to select one of the N, where + # N = 2^M, children. + # + # The tree is stored as a flat array. The first value is the + # number of bits, M, used by the node. For inner nodes, the + # following 2^M values are indexes into the array for the + # child nodes. For leaf nodes, the followign 2^M values are + # indexes into the second data structure. + # + # If an inner node's child index is 0, the child is an empty + # leaf node. That is, none of the opcodes selectable from + # that child exist. Since most of the possible opcode space + # is unused, this allows compact data storage. + # + # The second data structure is an array of pairs of function + # pointers. Each function contains a pointer to a protocol + # decode function and a pointer to a byte-swapped protocol + # decode function. Elements in this array are selected by the + # leaf nodes of the first data structure. + # + # As the tree is traversed, an accumulator is kept. This + # accumulator counts the bits of the opcode consumed by the + # traversal. When accumulator + M = B, where B is the + # maximum number of bits in an opcode, the traversal has + # reached a leaf node. The traversal starts with the most + # significant bits and works down to the least significant + # bits. + # + # Creation of the tree is the most complicated part. At + # each node the elements are divided into groups of 2^M + # elements. The value of M selected is the smallest possible + # value where all of the groups are either empty or full, or + # the groups are a preset minimum size. If all the children + # of a node are non-empty leaf nodes, the children are merged + # to create a single leaf node that replaces the parent. + + tree = self.divide_group(0, 0) + + print '/*****************************************************************/' + print '/* tree depth = %u */' % (tree[3]) + print 'static const int_fast16_t %s_dispatch_tree[%u] = {' % (self.name_base, tree[2]) + self.dump_tree(tree, 0, self.max_bits, 0, 1) + print '};\n' + + # After dumping the tree, dump the function lookup table. + + print 'static const void *%s_function_table[%u][2] = {' % (self.name_base, len(self.lookup_table)) + index = 0 + for func in self.lookup_table: + opcode = func[0] + name = func[1] + name_swap = func[2] + + print ' /* [% 3u] = %5u */ {%s, %s},' % (index, opcode, name, name_swap) + + index += 1 + + print '};\n' + + if self.do_size_check: + var_table = [] + + print 'static const int_fast16_t %s_size_table[%u][2] = {' % (self.name_base, len(self.lookup_table)) + index = 0 + var_table = [] + for func in self.lookup_table: + opcode = func[0] + fixed = func[3] + var = func[4] + + if var != "": + var_offset = "%2u" % (len(var_table)) + var_table.append(var) + else: + var_offset = "~0" + + print ' /* [%3u] = %5u */ {%3u, %s},' % (index, opcode, fixed, var_offset) + index += 1 + + + print '};\n' + + + print 'static const gl_proto_size_func %s_size_func_table[%u] = {' % (self.name_base, len(var_table)) + for func in var_table: + print ' %s,' % (func) + + print '};\n' + + + print 'const struct __glXDispatchInfo %s_dispatch_info = {' % (self.name_base) + print ' %u,' % (self.max_bits) + print ' %s_dispatch_tree,' % (self.name_base) + print ' %s_function_table,' % (self.name_base) + if self.do_size_check: + print ' %s_size_table,' % (self.name_base) + print ' %s_size_func_table' % (self.name_base) + else: + print ' NULL,' + print ' NULL' + print '};\n' + return class PrintGlxDispatchTables(glX_proto_common.glx_print_proto): - def __init__(self): - gl_XML.gl_print_base.__init__(self) - self.name = "glX_server_table.py (from Mesa)" - self.license = license.bsd_license_template % ( "(C) Copyright IBM Corporation 2005, 2006", "IBM") - - self.rop_functions = function_table("Render", 1) - self.sop_functions = function_table("Single", 0) - self.vop_functions = function_table("VendorPriv", 0) - return - - - def printRealHeader(self): - print '#include <inttypes.h>' - print '#include "glxserver.h"' - print '#include "glxext.h"' - print '#include "indirect_dispatch.h"' - print '#include "indirect_reqsize.h"' - print '#include "indirect_table.h"' - print '' - return - - - def printBody(self, api): - for f in api.functionIterateAll(): - if not f.ignore and f.vectorequiv == None: - if f.glx_rop != 0: - self.rop_functions.append(f.glx_rop, f) - if f.glx_sop != 0: - self.sop_functions.append(f.glx_sop, f) - if f.glx_vendorpriv != 0: - self.vop_functions.append(f.glx_vendorpriv, f) - - self.sop_functions.Print() - self.rop_functions.Print() - self.vop_functions.Print() - return + def __init__(self): + gl_XML.gl_print_base.__init__(self) + self.name = "glX_server_table.py (from Mesa)" + self.license = license.bsd_license_template % ( "(C) Copyright IBM Corporation 2005, 2006", "IBM") + + self.rop_functions = function_table("Render", 1) + self.sop_functions = function_table("Single", 0) + self.vop_functions = function_table("VendorPriv", 0) + return + + + def printRealHeader(self): + print '#include <inttypes.h>' + print '#include "glxserver.h"' + print '#include "glxext.h"' + print '#include "indirect_dispatch.h"' + print '#include "indirect_reqsize.h"' + print '#include "indirect_table.h"' + print '' + return + + + def printBody(self, api): + for f in api.functionIterateAll(): + if not f.ignore and f.vectorequiv == None: + if f.glx_rop != 0: + self.rop_functions.append(f.glx_rop, f) + if f.glx_sop != 0: + self.sop_functions.append(f.glx_sop, f) + if f.glx_vendorpriv != 0: + self.vop_functions.append(f.glx_vendorpriv, f) + + self.sop_functions.Print() + self.rop_functions.Print() + self.vop_functions.Print() + return if __name__ == '__main__': - file_name = "gl_API.xml" + file_name = "gl_API.xml" - try: - (args, trail) = getopt.getopt(sys.argv[1:], "f:m") - except Exception,e: - show_usage() + try: + (args, trail) = getopt.getopt(sys.argv[1:], "f:m") + except Exception,e: + show_usage() - mode = "table_c" - for (arg,val) in args: - if arg == "-f": - file_name = val - elif arg == "-m": - mode = val + mode = "table_c" + for (arg,val) in args: + if arg == "-f": + file_name = val + elif arg == "-m": + mode = val - if mode == "table_c": - printer = PrintGlxDispatchTables() - else: - show_usage() + if mode == "table_c": + printer = PrintGlxDispatchTables() + else: + show_usage() - api = gl_XML.parse_GL_API( file_name, glX_XML.glx_item_factory() ) + api = gl_XML.parse_GL_API( file_name, glX_XML.glx_item_factory() ) - printer.Print( api ) + printer.Print( api ) |