diff options
Diffstat (limited to 'mesalib/src/mesa/main/texcompress_fxt1.c')
-rw-r--r-- | mesalib/src/mesa/main/texcompress_fxt1.c | 3303 |
1 files changed, 1650 insertions, 1653 deletions
diff --git a/mesalib/src/mesa/main/texcompress_fxt1.c b/mesalib/src/mesa/main/texcompress_fxt1.c index c8b45bd3a..e6dd7f364 100644 --- a/mesalib/src/mesa/main/texcompress_fxt1.c +++ b/mesalib/src/mesa/main/texcompress_fxt1.c @@ -1,1653 +1,1650 @@ -/* - * Mesa 3-D graphics library - * Version: 7.1 - * - * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included - * in all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS - * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN - * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - */ - - -/** - * \file texcompress_fxt1.c - * GL_EXT_texture_compression_fxt1 support. - */ - - -#include "glheader.h" -#include "imports.h" -#include "colormac.h" -#include "convolve.h" -#include "image.h" -#include "macros.h" -#include "mipmap.h" -#include "texcompress.h" -#include "texcompress_fxt1.h" -#include "texstore.h" - - -#if FEATURE_texture_fxt1 - - -static void -fxt1_encode (GLuint width, GLuint height, GLint comps, - const void *source, GLint srcRowStride, - void *dest, GLint destRowStride); - -void -fxt1_decode_1 (const void *texture, GLint stride, - GLint i, GLint j, GLchan *rgba); - - -/** - * Store user's image in rgb_fxt1 format. - */ -GLboolean -_mesa_texstore_rgb_fxt1(TEXSTORE_PARAMS) -{ - const GLchan *pixels; - GLint srcRowStride; - GLubyte *dst; - const GLint texWidth = dstRowStride * 8 / 16; /* a bit of a hack */ - const GLchan *tempImage = NULL; - - ASSERT(dstFormat == MESA_FORMAT_RGB_FXT1); - ASSERT(dstXoffset % 8 == 0); - ASSERT(dstYoffset % 4 == 0); - ASSERT(dstZoffset == 0); - (void) dstZoffset; - (void) dstImageOffsets; - - if (srcFormat != GL_RGB || - srcType != CHAN_TYPE || - ctx->_ImageTransferState || - srcPacking->SwapBytes) { - /* convert image to RGB/GLchan */ - tempImage = _mesa_make_temp_chan_image(ctx, dims, - baseInternalFormat, - _mesa_get_format_base_format(dstFormat), - srcWidth, srcHeight, srcDepth, - srcFormat, srcType, srcAddr, - srcPacking); - if (!tempImage) - return GL_FALSE; /* out of memory */ - _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); - pixels = tempImage; - srcRowStride = 3 * srcWidth; - srcFormat = GL_RGB; - } - else { - pixels = (const GLchan *) srcAddr; - srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, - srcType) / sizeof(GLchan); - } - - dst = _mesa_compressed_image_address(dstXoffset, dstYoffset, 0, - dstFormat, - texWidth, (GLubyte *) dstAddr); - - fxt1_encode(srcWidth, srcHeight, 3, pixels, srcRowStride, - dst, dstRowStride); - - if (tempImage) - free((void*) tempImage); - - return GL_TRUE; -} - - -/** - * Store user's image in rgba_fxt1 format. - */ -GLboolean -_mesa_texstore_rgba_fxt1(TEXSTORE_PARAMS) -{ - const GLchan *pixels; - GLint srcRowStride; - GLubyte *dst; - GLint texWidth = dstRowStride * 8 / 16; /* a bit of a hack */ - const GLchan *tempImage = NULL; - - ASSERT(dstFormat == MESA_FORMAT_RGBA_FXT1); - ASSERT(dstXoffset % 8 == 0); - ASSERT(dstYoffset % 4 == 0); - ASSERT(dstZoffset == 0); - (void) dstZoffset; - (void) dstImageOffsets; - - if (srcFormat != GL_RGBA || - srcType != CHAN_TYPE || - ctx->_ImageTransferState || - srcPacking->SwapBytes) { - /* convert image to RGBA/GLchan */ - tempImage = _mesa_make_temp_chan_image(ctx, dims, - baseInternalFormat, - _mesa_get_format_base_format(dstFormat), - srcWidth, srcHeight, srcDepth, - srcFormat, srcType, srcAddr, - srcPacking); - if (!tempImage) - return GL_FALSE; /* out of memory */ - _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); - pixels = tempImage; - srcRowStride = 4 * srcWidth; - srcFormat = GL_RGBA; - } - else { - pixels = (const GLchan *) srcAddr; - srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, - srcType) / sizeof(GLchan); - } - - dst = _mesa_compressed_image_address(dstXoffset, dstYoffset, 0, - dstFormat, - texWidth, (GLubyte *) dstAddr); - - fxt1_encode(srcWidth, srcHeight, 4, pixels, srcRowStride, - dst, dstRowStride); - - if (tempImage) - free((void*) tempImage); - - return GL_TRUE; -} - - -void -_mesa_fetch_texel_2d_f_rgba_fxt1( const struct gl_texture_image *texImage, - GLint i, GLint j, GLint k, GLfloat *texel ) -{ - /* just sample as GLchan and convert to float here */ - GLchan rgba[4]; - (void) k; - fxt1_decode_1(texImage->Data, texImage->RowStride, i, j, rgba); - texel[RCOMP] = CHAN_TO_FLOAT(rgba[RCOMP]); - texel[GCOMP] = CHAN_TO_FLOAT(rgba[GCOMP]); - texel[BCOMP] = CHAN_TO_FLOAT(rgba[BCOMP]); - texel[ACOMP] = CHAN_TO_FLOAT(rgba[ACOMP]); -} - - -void -_mesa_fetch_texel_2d_f_rgb_fxt1( const struct gl_texture_image *texImage, - GLint i, GLint j, GLint k, GLfloat *texel ) -{ - /* just sample as GLchan and convert to float here */ - GLchan rgba[4]; - (void) k; - fxt1_decode_1(texImage->Data, texImage->RowStride, i, j, rgba); - texel[RCOMP] = CHAN_TO_FLOAT(rgba[RCOMP]); - texel[GCOMP] = CHAN_TO_FLOAT(rgba[GCOMP]); - texel[BCOMP] = CHAN_TO_FLOAT(rgba[BCOMP]); - texel[ACOMP] = 1.0F; -} - - - -/***************************************************************************\ - * FXT1 encoder - * - * The encoder was built by reversing the decoder, - * and is vaguely based on Texus2 by 3dfx. Note that this code - * is merely a proof of concept, since it is highly UNoptimized; - * moreover, it is sub-optimal due to initial conditions passed - * to Lloyd's algorithm (the interpolation modes are even worse). -\***************************************************************************/ - - -#define MAX_COMP 4 /* ever needed maximum number of components in texel */ -#define MAX_VECT 4 /* ever needed maximum number of base vectors to find */ -#define N_TEXELS 32 /* number of texels in a block (always 32) */ -#define LL_N_REP 50 /* number of iterations in lloyd's vq */ -#define LL_RMS_D 10 /* fault tolerance (maximum delta) */ -#define LL_RMS_E 255 /* fault tolerance (maximum error) */ -#define ALPHA_TS 2 /* alpha threshold: (255 - ALPHA_TS) deemed opaque */ -#define ISTBLACK(v) (*((GLuint *)(v)) == 0) - - -/* - * Define a 64-bit unsigned integer type and macros - */ -#if 1 - -#define FX64_NATIVE 1 - -typedef uint64_t Fx64; - -#define FX64_MOV32(a, b) a = b -#define FX64_OR32(a, b) a |= b -#define FX64_SHL(a, c) a <<= c - -#else - -#define FX64_NATIVE 0 - -typedef struct { - GLuint lo, hi; -} Fx64; - -#define FX64_MOV32(a, b) a.lo = b -#define FX64_OR32(a, b) a.lo |= b - -#define FX64_SHL(a, c) \ - do { \ - if ((c) >= 32) { \ - a.hi = a.lo << ((c) - 32); \ - a.lo = 0; \ - } else { \ - a.hi = (a.hi << (c)) | (a.lo >> (32 - (c))); \ - a.lo <<= (c); \ - } \ - } while (0) - -#endif - - -#define F(i) (GLfloat)1 /* can be used to obtain an oblong metric: 0.30 / 0.59 / 0.11 */ -#define SAFECDOT 1 /* for paranoids */ - -#define MAKEIVEC(NV, NC, IV, B, V0, V1) \ - do { \ - /* compute interpolation vector */ \ - GLfloat d2 = 0.0F; \ - GLfloat rd2; \ - \ - for (i = 0; i < NC; i++) { \ - IV[i] = (V1[i] - V0[i]) * F(i); \ - d2 += IV[i] * IV[i]; \ - } \ - rd2 = (GLfloat)NV / d2; \ - B = 0; \ - for (i = 0; i < NC; i++) { \ - IV[i] *= F(i); \ - B -= IV[i] * V0[i]; \ - IV[i] *= rd2; \ - } \ - B = B * rd2 + 0.5f; \ - } while (0) - -#define CALCCDOT(TEXEL, NV, NC, IV, B, V)\ - do { \ - GLfloat dot = 0.0F; \ - for (i = 0; i < NC; i++) { \ - dot += V[i] * IV[i]; \ - } \ - TEXEL = (GLint)(dot + B); \ - if (SAFECDOT) { \ - if (TEXEL < 0) { \ - TEXEL = 0; \ - } else if (TEXEL > NV) { \ - TEXEL = NV; \ - } \ - } \ - } while (0) - - -static GLint -fxt1_bestcol (GLfloat vec[][MAX_COMP], GLint nv, - GLubyte input[MAX_COMP], GLint nc) -{ - GLint i, j, best = -1; - GLfloat err = 1e9; /* big enough */ - - for (j = 0; j < nv; j++) { - GLfloat e = 0.0F; - for (i = 0; i < nc; i++) { - e += (vec[j][i] - input[i]) * (vec[j][i] - input[i]); - } - if (e < err) { - err = e; - best = j; - } - } - - return best; -} - - -static GLint -fxt1_worst (GLfloat vec[MAX_COMP], - GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n) -{ - GLint i, k, worst = -1; - GLfloat err = -1.0F; /* small enough */ - - for (k = 0; k < n; k++) { - GLfloat e = 0.0F; - for (i = 0; i < nc; i++) { - e += (vec[i] - input[k][i]) * (vec[i] - input[k][i]); - } - if (e > err) { - err = e; - worst = k; - } - } - - return worst; -} - - -static GLint -fxt1_variance (GLdouble variance[MAX_COMP], - GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n) -{ - GLint i, k, best = 0; - GLint sx, sx2; - GLdouble var, maxvar = -1; /* small enough */ - GLdouble teenth = 1.0 / n; - - for (i = 0; i < nc; i++) { - sx = sx2 = 0; - for (k = 0; k < n; k++) { - GLint t = input[k][i]; - sx += t; - sx2 += t * t; - } - var = sx2 * teenth - sx * sx * teenth * teenth; - if (maxvar < var) { - maxvar = var; - best = i; - } - if (variance) { - variance[i] = var; - } - } - - return best; -} - - -static GLint -fxt1_choose (GLfloat vec[][MAX_COMP], GLint nv, - GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n) -{ -#if 0 - /* Choose colors from a grid. - */ - GLint i, j; - - for (j = 0; j < nv; j++) { - GLint m = j * (n - 1) / (nv - 1); - for (i = 0; i < nc; i++) { - vec[j][i] = input[m][i]; - } - } -#else - /* Our solution here is to find the darkest and brightest colors in - * the 8x4 tile and use those as the two representative colors. - * There are probably better algorithms to use (histogram-based). - */ - GLint i, j, k; - GLint minSum = 2000; /* big enough */ - GLint maxSum = -1; /* small enough */ - GLint minCol = 0; /* phoudoin: silent compiler! */ - GLint maxCol = 0; /* phoudoin: silent compiler! */ - - struct { - GLint flag; - GLint key; - GLint freq; - GLint idx; - } hist[N_TEXELS]; - GLint lenh = 0; - - memset(hist, 0, sizeof(hist)); - - for (k = 0; k < n; k++) { - GLint l; - GLint key = 0; - GLint sum = 0; - for (i = 0; i < nc; i++) { - key <<= 8; - key |= input[k][i]; - sum += input[k][i]; - } - for (l = 0; l < n; l++) { - if (!hist[l].flag) { - /* alloc new slot */ - hist[l].flag = !0; - hist[l].key = key; - hist[l].freq = 1; - hist[l].idx = k; - lenh = l + 1; - break; - } else if (hist[l].key == key) { - hist[l].freq++; - break; - } - } - if (minSum > sum) { - minSum = sum; - minCol = k; - } - if (maxSum < sum) { - maxSum = sum; - maxCol = k; - } - } - - if (lenh <= nv) { - for (j = 0; j < lenh; j++) { - for (i = 0; i < nc; i++) { - vec[j][i] = (GLfloat)input[hist[j].idx][i]; - } - } - for (; j < nv; j++) { - for (i = 0; i < nc; i++) { - vec[j][i] = vec[0][i]; - } - } - return 0; - } - - for (j = 0; j < nv; j++) { - for (i = 0; i < nc; i++) { - vec[j][i] = ((nv - 1 - j) * input[minCol][i] + j * input[maxCol][i] + (nv - 1) / 2) / (GLfloat)(nv - 1); - } - } -#endif - - return !0; -} - - -static GLint -fxt1_lloyd (GLfloat vec[][MAX_COMP], GLint nv, - GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n) -{ - /* Use the generalized lloyd's algorithm for VQ: - * find 4 color vectors. - * - * for each sample color - * sort to nearest vector. - * - * replace each vector with the centroid of its matching colors. - * - * repeat until RMS doesn't improve. - * - * if a color vector has no samples, or becomes the same as another - * vector, replace it with the color which is farthest from a sample. - * - * vec[][MAX_COMP] initial vectors and resulting colors - * nv number of resulting colors required - * input[N_TEXELS][MAX_COMP] input texels - * nc number of components in input / vec - * n number of input samples - */ - - GLint sum[MAX_VECT][MAX_COMP]; /* used to accumulate closest texels */ - GLint cnt[MAX_VECT]; /* how many times a certain vector was chosen */ - GLfloat error, lasterror = 1e9; - - GLint i, j, k, rep; - - /* the quantizer */ - for (rep = 0; rep < LL_N_REP; rep++) { - /* reset sums & counters */ - for (j = 0; j < nv; j++) { - for (i = 0; i < nc; i++) { - sum[j][i] = 0; - } - cnt[j] = 0; - } - error = 0; - - /* scan whole block */ - for (k = 0; k < n; k++) { -#if 1 - GLint best = -1; - GLfloat err = 1e9; /* big enough */ - /* determine best vector */ - for (j = 0; j < nv; j++) { - GLfloat e = (vec[j][0] - input[k][0]) * (vec[j][0] - input[k][0]) + - (vec[j][1] - input[k][1]) * (vec[j][1] - input[k][1]) + - (vec[j][2] - input[k][2]) * (vec[j][2] - input[k][2]); - if (nc == 4) { - e += (vec[j][3] - input[k][3]) * (vec[j][3] - input[k][3]); - } - if (e < err) { - err = e; - best = j; - } - } -#else - GLint best = fxt1_bestcol(vec, nv, input[k], nc, &err); -#endif - assert(best >= 0); - /* add in closest color */ - for (i = 0; i < nc; i++) { - sum[best][i] += input[k][i]; - } - /* mark this vector as used */ - cnt[best]++; - /* accumulate error */ - error += err; - } - - /* check RMS */ - if ((error < LL_RMS_E) || - ((error < lasterror) && ((lasterror - error) < LL_RMS_D))) { - return !0; /* good match */ - } - lasterror = error; - - /* move each vector to the barycenter of its closest colors */ - for (j = 0; j < nv; j++) { - if (cnt[j]) { - GLfloat div = 1.0F / cnt[j]; - for (i = 0; i < nc; i++) { - vec[j][i] = div * sum[j][i]; - } - } else { - /* this vec has no samples or is identical with a previous vec */ - GLint worst = fxt1_worst(vec[j], input, nc, n); - for (i = 0; i < nc; i++) { - vec[j][i] = input[worst][i]; - } - } - } - } - - return 0; /* could not converge fast enough */ -} - - -static void -fxt1_quantize_CHROMA (GLuint *cc, - GLubyte input[N_TEXELS][MAX_COMP]) -{ - const GLint n_vect = 4; /* 4 base vectors to find */ - const GLint n_comp = 3; /* 3 components: R, G, B */ - GLfloat vec[MAX_VECT][MAX_COMP]; - GLint i, j, k; - Fx64 hi; /* high quadword */ - GLuint lohi, lolo; /* low quadword: hi dword, lo dword */ - - if (fxt1_choose(vec, n_vect, input, n_comp, N_TEXELS) != 0) { - fxt1_lloyd(vec, n_vect, input, n_comp, N_TEXELS); - } - - FX64_MOV32(hi, 4); /* cc-chroma = "010" + unused bit */ - for (j = n_vect - 1; j >= 0; j--) { - for (i = 0; i < n_comp; i++) { - /* add in colors */ - FX64_SHL(hi, 5); - FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F)); - } - } - ((Fx64 *)cc)[1] = hi; - - lohi = lolo = 0; - /* right microtile */ - for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) { - lohi <<= 2; - lohi |= fxt1_bestcol(vec, n_vect, input[k], n_comp); - } - /* left microtile */ - for (; k >= 0; k--) { - lolo <<= 2; - lolo |= fxt1_bestcol(vec, n_vect, input[k], n_comp); - } - cc[1] = lohi; - cc[0] = lolo; -} - - -static void -fxt1_quantize_ALPHA0 (GLuint *cc, - GLubyte input[N_TEXELS][MAX_COMP], - GLubyte reord[N_TEXELS][MAX_COMP], GLint n) -{ - const GLint n_vect = 3; /* 3 base vectors to find */ - const GLint n_comp = 4; /* 4 components: R, G, B, A */ - GLfloat vec[MAX_VECT][MAX_COMP]; - GLint i, j, k; - Fx64 hi; /* high quadword */ - GLuint lohi, lolo; /* low quadword: hi dword, lo dword */ - - /* the last vector indicates zero */ - for (i = 0; i < n_comp; i++) { - vec[n_vect][i] = 0; - } - - /* the first n texels in reord are guaranteed to be non-zero */ - if (fxt1_choose(vec, n_vect, reord, n_comp, n) != 0) { - fxt1_lloyd(vec, n_vect, reord, n_comp, n); - } - - FX64_MOV32(hi, 6); /* alpha = "011" + lerp = 0 */ - for (j = n_vect - 1; j >= 0; j--) { - /* add in alphas */ - FX64_SHL(hi, 5); - FX64_OR32(hi, (GLuint)(vec[j][ACOMP] / 8.0F)); - } - for (j = n_vect - 1; j >= 0; j--) { - for (i = 0; i < n_comp - 1; i++) { - /* add in colors */ - FX64_SHL(hi, 5); - FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F)); - } - } - ((Fx64 *)cc)[1] = hi; - - lohi = lolo = 0; - /* right microtile */ - for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) { - lohi <<= 2; - lohi |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp); - } - /* left microtile */ - for (; k >= 0; k--) { - lolo <<= 2; - lolo |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp); - } - cc[1] = lohi; - cc[0] = lolo; -} - - -static void -fxt1_quantize_ALPHA1 (GLuint *cc, - GLubyte input[N_TEXELS][MAX_COMP]) -{ - const GLint n_vect = 3; /* highest vector number in each microtile */ - const GLint n_comp = 4; /* 4 components: R, G, B, A */ - GLfloat vec[1 + 1 + 1][MAX_COMP]; /* 1.5 extrema for each sub-block */ - GLfloat b, iv[MAX_COMP]; /* interpolation vector */ - GLint i, j, k; - Fx64 hi; /* high quadword */ - GLuint lohi, lolo; /* low quadword: hi dword, lo dword */ - - GLint minSum; - GLint maxSum; - GLint minColL = 0, maxColL = 0; - GLint minColR = 0, maxColR = 0; - GLint sumL = 0, sumR = 0; - GLint nn_comp; - /* Our solution here is to find the darkest and brightest colors in - * the 4x4 tile and use those as the two representative colors. - * There are probably better algorithms to use (histogram-based). - */ - nn_comp = n_comp; - while ((minColL == maxColL) && nn_comp) { - minSum = 2000; /* big enough */ - maxSum = -1; /* small enough */ - for (k = 0; k < N_TEXELS / 2; k++) { - GLint sum = 0; - for (i = 0; i < nn_comp; i++) { - sum += input[k][i]; - } - if (minSum > sum) { - minSum = sum; - minColL = k; - } - if (maxSum < sum) { - maxSum = sum; - maxColL = k; - } - sumL += sum; - } - - nn_comp--; - } - - nn_comp = n_comp; - while ((minColR == maxColR) && nn_comp) { - minSum = 2000; /* big enough */ - maxSum = -1; /* small enough */ - for (k = N_TEXELS / 2; k < N_TEXELS; k++) { - GLint sum = 0; - for (i = 0; i < nn_comp; i++) { - sum += input[k][i]; - } - if (minSum > sum) { - minSum = sum; - minColR = k; - } - if (maxSum < sum) { - maxSum = sum; - maxColR = k; - } - sumR += sum; - } - - nn_comp--; - } - - /* choose the common vector (yuck!) */ - { - GLint j1, j2; - GLint v1 = 0, v2 = 0; - GLfloat err = 1e9; /* big enough */ - GLfloat tv[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ - for (i = 0; i < n_comp; i++) { - tv[0][i] = input[minColL][i]; - tv[1][i] = input[maxColL][i]; - tv[2][i] = input[minColR][i]; - tv[3][i] = input[maxColR][i]; - } - for (j1 = 0; j1 < 2; j1++) { - for (j2 = 2; j2 < 4; j2++) { - GLfloat e = 0.0F; - for (i = 0; i < n_comp; i++) { - e += (tv[j1][i] - tv[j2][i]) * (tv[j1][i] - tv[j2][i]); - } - if (e < err) { - err = e; - v1 = j1; - v2 = j2; - } - } - } - for (i = 0; i < n_comp; i++) { - vec[0][i] = tv[1 - v1][i]; - vec[1][i] = (tv[v1][i] * sumL + tv[v2][i] * sumR) / (sumL + sumR); - vec[2][i] = tv[5 - v2][i]; - } - } - - /* left microtile */ - cc[0] = 0; - if (minColL != maxColL) { - /* compute interpolation vector */ - MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]); - - /* add in texels */ - lolo = 0; - for (k = N_TEXELS / 2 - 1; k >= 0; k--) { - GLint texel; - /* interpolate color */ - CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); - /* add in texel */ - lolo <<= 2; - lolo |= texel; - } - - cc[0] = lolo; - } - - /* right microtile */ - cc[1] = 0; - if (minColR != maxColR) { - /* compute interpolation vector */ - MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[1]); - - /* add in texels */ - lohi = 0; - for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { - GLint texel; - /* interpolate color */ - CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); - /* add in texel */ - lohi <<= 2; - lohi |= texel; - } - - cc[1] = lohi; - } - - FX64_MOV32(hi, 7); /* alpha = "011" + lerp = 1 */ - for (j = n_vect - 1; j >= 0; j--) { - /* add in alphas */ - FX64_SHL(hi, 5); - FX64_OR32(hi, (GLuint)(vec[j][ACOMP] / 8.0F)); - } - for (j = n_vect - 1; j >= 0; j--) { - for (i = 0; i < n_comp - 1; i++) { - /* add in colors */ - FX64_SHL(hi, 5); - FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F)); - } - } - ((Fx64 *)cc)[1] = hi; -} - - -static void -fxt1_quantize_HI (GLuint *cc, - GLubyte input[N_TEXELS][MAX_COMP], - GLubyte reord[N_TEXELS][MAX_COMP], GLint n) -{ - const GLint n_vect = 6; /* highest vector number */ - const GLint n_comp = 3; /* 3 components: R, G, B */ - GLfloat b = 0.0F; /* phoudoin: silent compiler! */ - GLfloat iv[MAX_COMP]; /* interpolation vector */ - GLint i, k; - GLuint hihi; /* high quadword: hi dword */ - - GLint minSum = 2000; /* big enough */ - GLint maxSum = -1; /* small enough */ - GLint minCol = 0; /* phoudoin: silent compiler! */ - GLint maxCol = 0; /* phoudoin: silent compiler! */ - - /* Our solution here is to find the darkest and brightest colors in - * the 8x4 tile and use those as the two representative colors. - * There are probably better algorithms to use (histogram-based). - */ - for (k = 0; k < n; k++) { - GLint sum = 0; - for (i = 0; i < n_comp; i++) { - sum += reord[k][i]; - } - if (minSum > sum) { - minSum = sum; - minCol = k; - } - if (maxSum < sum) { - maxSum = sum; - maxCol = k; - } - } - - hihi = 0; /* cc-hi = "00" */ - for (i = 0; i < n_comp; i++) { - /* add in colors */ - hihi <<= 5; - hihi |= reord[maxCol][i] >> 3; - } - for (i = 0; i < n_comp; i++) { - /* add in colors */ - hihi <<= 5; - hihi |= reord[minCol][i] >> 3; - } - cc[3] = hihi; - cc[0] = cc[1] = cc[2] = 0; - - /* compute interpolation vector */ - if (minCol != maxCol) { - MAKEIVEC(n_vect, n_comp, iv, b, reord[minCol], reord[maxCol]); - } - - /* add in texels */ - for (k = N_TEXELS - 1; k >= 0; k--) { - GLint t = k * 3; - GLuint *kk = (GLuint *)((char *)cc + t / 8); - GLint texel = n_vect + 1; /* transparent black */ - - if (!ISTBLACK(input[k])) { - if (minCol != maxCol) { - /* interpolate color */ - CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); - /* add in texel */ - kk[0] |= texel << (t & 7); - } - } else { - /* add in texel */ - kk[0] |= texel << (t & 7); - } - } -} - - -static void -fxt1_quantize_MIXED1 (GLuint *cc, - GLubyte input[N_TEXELS][MAX_COMP]) -{ - const GLint n_vect = 2; /* highest vector number in each microtile */ - const GLint n_comp = 3; /* 3 components: R, G, B */ - GLubyte vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ - GLfloat b, iv[MAX_COMP]; /* interpolation vector */ - GLint i, j, k; - Fx64 hi; /* high quadword */ - GLuint lohi, lolo; /* low quadword: hi dword, lo dword */ - - GLint minSum; - GLint maxSum; - GLint minColL = 0, maxColL = -1; - GLint minColR = 0, maxColR = -1; - - /* Our solution here is to find the darkest and brightest colors in - * the 4x4 tile and use those as the two representative colors. - * There are probably better algorithms to use (histogram-based). - */ - minSum = 2000; /* big enough */ - maxSum = -1; /* small enough */ - for (k = 0; k < N_TEXELS / 2; k++) { - if (!ISTBLACK(input[k])) { - GLint sum = 0; - for (i = 0; i < n_comp; i++) { - sum += input[k][i]; - } - if (minSum > sum) { - minSum = sum; - minColL = k; - } - if (maxSum < sum) { - maxSum = sum; - maxColL = k; - } - } - } - minSum = 2000; /* big enough */ - maxSum = -1; /* small enough */ - for (; k < N_TEXELS; k++) { - if (!ISTBLACK(input[k])) { - GLint sum = 0; - for (i = 0; i < n_comp; i++) { - sum += input[k][i]; - } - if (minSum > sum) { - minSum = sum; - minColR = k; - } - if (maxSum < sum) { - maxSum = sum; - maxColR = k; - } - } - } - - /* left microtile */ - if (maxColL == -1) { - /* all transparent black */ - cc[0] = ~0u; - for (i = 0; i < n_comp; i++) { - vec[0][i] = 0; - vec[1][i] = 0; - } - } else { - cc[0] = 0; - for (i = 0; i < n_comp; i++) { - vec[0][i] = input[minColL][i]; - vec[1][i] = input[maxColL][i]; - } - if (minColL != maxColL) { - /* compute interpolation vector */ - MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]); - - /* add in texels */ - lolo = 0; - for (k = N_TEXELS / 2 - 1; k >= 0; k--) { - GLint texel = n_vect + 1; /* transparent black */ - if (!ISTBLACK(input[k])) { - /* interpolate color */ - CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); - } - /* add in texel */ - lolo <<= 2; - lolo |= texel; - } - cc[0] = lolo; - } - } - - /* right microtile */ - if (maxColR == -1) { - /* all transparent black */ - cc[1] = ~0u; - for (i = 0; i < n_comp; i++) { - vec[2][i] = 0; - vec[3][i] = 0; - } - } else { - cc[1] = 0; - for (i = 0; i < n_comp; i++) { - vec[2][i] = input[minColR][i]; - vec[3][i] = input[maxColR][i]; - } - if (minColR != maxColR) { - /* compute interpolation vector */ - MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]); - - /* add in texels */ - lohi = 0; - for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { - GLint texel = n_vect + 1; /* transparent black */ - if (!ISTBLACK(input[k])) { - /* interpolate color */ - CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); - } - /* add in texel */ - lohi <<= 2; - lohi |= texel; - } - cc[1] = lohi; - } - } - - FX64_MOV32(hi, 9 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */ - for (j = 2 * 2 - 1; j >= 0; j--) { - for (i = 0; i < n_comp; i++) { - /* add in colors */ - FX64_SHL(hi, 5); - FX64_OR32(hi, vec[j][i] >> 3); - } - } - ((Fx64 *)cc)[1] = hi; -} - - -static void -fxt1_quantize_MIXED0 (GLuint *cc, - GLubyte input[N_TEXELS][MAX_COMP]) -{ - const GLint n_vect = 3; /* highest vector number in each microtile */ - const GLint n_comp = 3; /* 3 components: R, G, B */ - GLubyte vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ - GLfloat b, iv[MAX_COMP]; /* interpolation vector */ - GLint i, j, k; - Fx64 hi; /* high quadword */ - GLuint lohi, lolo; /* low quadword: hi dword, lo dword */ - - GLint minColL = 0, maxColL = 0; - GLint minColR = 0, maxColR = 0; -#if 0 - GLint minSum; - GLint maxSum; - - /* Our solution here is to find the darkest and brightest colors in - * the 4x4 tile and use those as the two representative colors. - * There are probably better algorithms to use (histogram-based). - */ - minSum = 2000; /* big enough */ - maxSum = -1; /* small enough */ - for (k = 0; k < N_TEXELS / 2; k++) { - GLint sum = 0; - for (i = 0; i < n_comp; i++) { - sum += input[k][i]; - } - if (minSum > sum) { - minSum = sum; - minColL = k; - } - if (maxSum < sum) { - maxSum = sum; - maxColL = k; - } - } - minSum = 2000; /* big enough */ - maxSum = -1; /* small enough */ - for (; k < N_TEXELS; k++) { - GLint sum = 0; - for (i = 0; i < n_comp; i++) { - sum += input[k][i]; - } - if (minSum > sum) { - minSum = sum; - minColR = k; - } - if (maxSum < sum) { - maxSum = sum; - maxColR = k; - } - } -#else - GLint minVal; - GLint maxVal; - GLint maxVarL = fxt1_variance(NULL, input, n_comp, N_TEXELS / 2); - GLint maxVarR = fxt1_variance(NULL, &input[N_TEXELS / 2], n_comp, N_TEXELS / 2); - - /* Scan the channel with max variance for lo & hi - * and use those as the two representative colors. - */ - minVal = 2000; /* big enough */ - maxVal = -1; /* small enough */ - for (k = 0; k < N_TEXELS / 2; k++) { - GLint t = input[k][maxVarL]; - if (minVal > t) { - minVal = t; - minColL = k; - } - if (maxVal < t) { - maxVal = t; - maxColL = k; - } - } - minVal = 2000; /* big enough */ - maxVal = -1; /* small enough */ - for (; k < N_TEXELS; k++) { - GLint t = input[k][maxVarR]; - if (minVal > t) { - minVal = t; - minColR = k; - } - if (maxVal < t) { - maxVal = t; - maxColR = k; - } - } -#endif - - /* left microtile */ - cc[0] = 0; - for (i = 0; i < n_comp; i++) { - vec[0][i] = input[minColL][i]; - vec[1][i] = input[maxColL][i]; - } - if (minColL != maxColL) { - /* compute interpolation vector */ - MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]); - - /* add in texels */ - lolo = 0; - for (k = N_TEXELS / 2 - 1; k >= 0; k--) { - GLint texel; - /* interpolate color */ - CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); - /* add in texel */ - lolo <<= 2; - lolo |= texel; - } - - /* funky encoding for LSB of green */ - if ((GLint)((lolo >> 1) & 1) != (((vec[1][GCOMP] ^ vec[0][GCOMP]) >> 2) & 1)) { - for (i = 0; i < n_comp; i++) { - vec[1][i] = input[minColL][i]; - vec[0][i] = input[maxColL][i]; - } - lolo = ~lolo; - } - - cc[0] = lolo; - } - - /* right microtile */ - cc[1] = 0; - for (i = 0; i < n_comp; i++) { - vec[2][i] = input[minColR][i]; - vec[3][i] = input[maxColR][i]; - } - if (minColR != maxColR) { - /* compute interpolation vector */ - MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]); - - /* add in texels */ - lohi = 0; - for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { - GLint texel; - /* interpolate color */ - CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]); - /* add in texel */ - lohi <<= 2; - lohi |= texel; - } - - /* funky encoding for LSB of green */ - if ((GLint)((lohi >> 1) & 1) != (((vec[3][GCOMP] ^ vec[2][GCOMP]) >> 2) & 1)) { - for (i = 0; i < n_comp; i++) { - vec[3][i] = input[minColR][i]; - vec[2][i] = input[maxColR][i]; - } - lohi = ~lohi; - } - - cc[1] = lohi; - } - - FX64_MOV32(hi, 8 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */ - for (j = 2 * 2 - 1; j >= 0; j--) { - for (i = 0; i < n_comp; i++) { - /* add in colors */ - FX64_SHL(hi, 5); - FX64_OR32(hi, vec[j][i] >> 3); - } - } - ((Fx64 *)cc)[1] = hi; -} - - -static void -fxt1_quantize (GLuint *cc, const GLubyte *lines[], GLint comps) -{ - GLint trualpha; - GLubyte reord[N_TEXELS][MAX_COMP]; - - GLubyte input[N_TEXELS][MAX_COMP]; - GLint i, k, l; - - if (comps == 3) { - /* make the whole block opaque */ - memset(input, -1, sizeof(input)); - } - - /* 8 texels each line */ - for (l = 0; l < 4; l++) { - for (k = 0; k < 4; k++) { - for (i = 0; i < comps; i++) { - input[k + l * 4][i] = *lines[l]++; - } - } - for (; k < 8; k++) { - for (i = 0; i < comps; i++) { - input[k + l * 4 + 12][i] = *lines[l]++; - } - } - } - - /* block layout: - * 00, 01, 02, 03, 08, 09, 0a, 0b - * 10, 11, 12, 13, 18, 19, 1a, 1b - * 04, 05, 06, 07, 0c, 0d, 0e, 0f - * 14, 15, 16, 17, 1c, 1d, 1e, 1f - */ - - /* [dBorca] - * stupidity flows forth from this - */ - l = N_TEXELS; - trualpha = 0; - if (comps == 4) { - /* skip all transparent black texels */ - l = 0; - for (k = 0; k < N_TEXELS; k++) { - /* test all components against 0 */ - if (!ISTBLACK(input[k])) { - /* texel is not transparent black */ - COPY_4UBV(reord[l], input[k]); - if (reord[l][ACOMP] < (255 - ALPHA_TS)) { - /* non-opaque texel */ - trualpha = !0; - } - l++; - } - } - } - -#if 0 - if (trualpha) { - fxt1_quantize_ALPHA0(cc, input, reord, l); - } else if (l == 0) { - cc[0] = cc[1] = cc[2] = -1; - cc[3] = 0; - } else if (l < N_TEXELS) { - fxt1_quantize_HI(cc, input, reord, l); - } else { - fxt1_quantize_CHROMA(cc, input); - } - (void)fxt1_quantize_ALPHA1; - (void)fxt1_quantize_MIXED1; - (void)fxt1_quantize_MIXED0; -#else - if (trualpha) { - fxt1_quantize_ALPHA1(cc, input); - } else if (l == 0) { - cc[0] = cc[1] = cc[2] = ~0u; - cc[3] = 0; - } else if (l < N_TEXELS) { - fxt1_quantize_MIXED1(cc, input); - } else { - fxt1_quantize_MIXED0(cc, input); - } - (void)fxt1_quantize_ALPHA0; - (void)fxt1_quantize_HI; - (void)fxt1_quantize_CHROMA; -#endif -} - - -static void -fxt1_encode (GLuint width, GLuint height, GLint comps, - const void *source, GLint srcRowStride, - void *dest, GLint destRowStride) -{ - GLuint x, y; - const GLubyte *data; - GLuint *encoded = (GLuint *)dest; - void *newSource = NULL; - - assert(comps == 3 || comps == 4); - - /* Replicate image if width is not M8 or height is not M4 */ - if ((width & 7) | (height & 3)) { - GLint newWidth = (width + 7) & ~7; - GLint newHeight = (height + 3) & ~3; - newSource = malloc(comps * newWidth * newHeight * sizeof(GLchan)); - if (!newSource) { - GET_CURRENT_CONTEXT(ctx); - _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture compression"); - goto cleanUp; - } - _mesa_upscale_teximage2d(width, height, newWidth, newHeight, - comps, (const GLchan *) source, - srcRowStride, (GLchan *) newSource); - source = newSource; - width = newWidth; - height = newHeight; - srcRowStride = comps * newWidth; - } - - /* convert from 16/32-bit channels to GLubyte if needed */ - if (CHAN_TYPE != GL_UNSIGNED_BYTE) { - const GLuint n = width * height * comps; - const GLchan *src = (const GLchan *) source; - GLubyte *dest = (GLubyte *) malloc(n * sizeof(GLubyte)); - GLuint i; - if (!dest) { - GET_CURRENT_CONTEXT(ctx); - _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture compression"); - goto cleanUp; - } - for (i = 0; i < n; i++) { - dest[i] = CHAN_TO_UBYTE(src[i]); - } - if (newSource != NULL) { - free(newSource); - } - newSource = dest; /* we'll free this buffer before returning */ - source = dest; /* the new, GLubyte incoming image */ - } - - data = (const GLubyte *) source; - destRowStride = (destRowStride - width * 2) / 4; - for (y = 0; y < height; y += 4) { - GLuint offs = 0 + (y + 0) * srcRowStride; - for (x = 0; x < width; x += 8) { - const GLubyte *lines[4]; - lines[0] = &data[offs]; - lines[1] = lines[0] + srcRowStride; - lines[2] = lines[1] + srcRowStride; - lines[3] = lines[2] + srcRowStride; - offs += 8 * comps; - fxt1_quantize(encoded, lines, comps); - /* 128 bits per 8x4 block */ - encoded += 4; - } - encoded += destRowStride; - } - - cleanUp: - if (newSource != NULL) { - free(newSource); - } -} - - -/***************************************************************************\ - * FXT1 decoder - * - * The decoder is based on GL_3DFX_texture_compression_FXT1 - * specification and serves as a concept for the encoder. -\***************************************************************************/ - - -/* lookup table for scaling 5 bit colors up to 8 bits */ -static const GLubyte _rgb_scale_5[] = { - 0, 8, 16, 25, 33, 41, 49, 58, - 66, 74, 82, 90, 99, 107, 115, 123, - 132, 140, 148, 156, 165, 173, 181, 189, - 197, 206, 214, 222, 230, 239, 247, 255 -}; - -/* lookup table for scaling 6 bit colors up to 8 bits */ -static const GLubyte _rgb_scale_6[] = { - 0, 4, 8, 12, 16, 20, 24, 28, - 32, 36, 40, 45, 49, 53, 57, 61, - 65, 69, 73, 77, 81, 85, 89, 93, - 97, 101, 105, 109, 113, 117, 121, 125, - 130, 134, 138, 142, 146, 150, 154, 158, - 162, 166, 170, 174, 178, 182, 186, 190, - 194, 198, 202, 206, 210, 215, 219, 223, - 227, 231, 235, 239, 243, 247, 251, 255 -}; - - -#define CC_SEL(cc, which) (((GLuint *)(cc))[(which) / 32] >> ((which) & 31)) -#define UP5(c) _rgb_scale_5[(c) & 31] -#define UP6(c, b) _rgb_scale_6[(((c) & 31) << 1) | ((b) & 1)] -#define LERP(n, t, c0, c1) (((n) - (t)) * (c0) + (t) * (c1) + (n) / 2) / (n) - - -static void -fxt1_decode_1HI (const GLubyte *code, GLint t, GLchan *rgba) -{ - const GLuint *cc; - - t *= 3; - cc = (const GLuint *)(code + t / 8); - t = (cc[0] >> (t & 7)) & 7; - - if (t == 7) { - rgba[RCOMP] = rgba[GCOMP] = rgba[BCOMP] = rgba[ACOMP] = 0; - } else { - GLubyte r, g, b; - cc = (const GLuint *)(code + 12); - if (t == 0) { - b = UP5(CC_SEL(cc, 0)); - g = UP5(CC_SEL(cc, 5)); - r = UP5(CC_SEL(cc, 10)); - } else if (t == 6) { - b = UP5(CC_SEL(cc, 15)); - g = UP5(CC_SEL(cc, 20)); - r = UP5(CC_SEL(cc, 25)); - } else { - b = LERP(6, t, UP5(CC_SEL(cc, 0)), UP5(CC_SEL(cc, 15))); - g = LERP(6, t, UP5(CC_SEL(cc, 5)), UP5(CC_SEL(cc, 20))); - r = LERP(6, t, UP5(CC_SEL(cc, 10)), UP5(CC_SEL(cc, 25))); - } - rgba[RCOMP] = UBYTE_TO_CHAN(r); - rgba[GCOMP] = UBYTE_TO_CHAN(g); - rgba[BCOMP] = UBYTE_TO_CHAN(b); - rgba[ACOMP] = CHAN_MAX; - } -} - - -static void -fxt1_decode_1CHROMA (const GLubyte *code, GLint t, GLchan *rgba) -{ - const GLuint *cc; - GLuint kk; - - cc = (const GLuint *)code; - if (t & 16) { - cc++; - t &= 15; - } - t = (cc[0] >> (t * 2)) & 3; - - t *= 15; - cc = (const GLuint *)(code + 8 + t / 8); - kk = cc[0] >> (t & 7); - rgba[BCOMP] = UBYTE_TO_CHAN( UP5(kk) ); - rgba[GCOMP] = UBYTE_TO_CHAN( UP5(kk >> 5) ); - rgba[RCOMP] = UBYTE_TO_CHAN( UP5(kk >> 10) ); - rgba[ACOMP] = CHAN_MAX; -} - - -static void -fxt1_decode_1MIXED (const GLubyte *code, GLint t, GLchan *rgba) -{ - const GLuint *cc; - GLuint col[2][3]; - GLint glsb, selb; - - cc = (const GLuint *)code; - if (t & 16) { - t &= 15; - t = (cc[1] >> (t * 2)) & 3; - /* col 2 */ - col[0][BCOMP] = (*(const GLuint *)(code + 11)) >> 6; - col[0][GCOMP] = CC_SEL(cc, 99); - col[0][RCOMP] = CC_SEL(cc, 104); - /* col 3 */ - col[1][BCOMP] = CC_SEL(cc, 109); - col[1][GCOMP] = CC_SEL(cc, 114); - col[1][RCOMP] = CC_SEL(cc, 119); - glsb = CC_SEL(cc, 126); - selb = CC_SEL(cc, 33); - } else { - t = (cc[0] >> (t * 2)) & 3; - /* col 0 */ - col[0][BCOMP] = CC_SEL(cc, 64); - col[0][GCOMP] = CC_SEL(cc, 69); - col[0][RCOMP] = CC_SEL(cc, 74); - /* col 1 */ - col[1][BCOMP] = CC_SEL(cc, 79); - col[1][GCOMP] = CC_SEL(cc, 84); - col[1][RCOMP] = CC_SEL(cc, 89); - glsb = CC_SEL(cc, 125); - selb = CC_SEL(cc, 1); - } - - if (CC_SEL(cc, 124) & 1) { - /* alpha[0] == 1 */ - - if (t == 3) { - /* zero */ - rgba[RCOMP] = rgba[BCOMP] = rgba[GCOMP] = rgba[ACOMP] = 0; - } else { - GLubyte r, g, b; - if (t == 0) { - b = UP5(col[0][BCOMP]); - g = UP5(col[0][GCOMP]); - r = UP5(col[0][RCOMP]); - } else if (t == 2) { - b = UP5(col[1][BCOMP]); - g = UP6(col[1][GCOMP], glsb); - r = UP5(col[1][RCOMP]); - } else { - b = (UP5(col[0][BCOMP]) + UP5(col[1][BCOMP])) / 2; - g = (UP5(col[0][GCOMP]) + UP6(col[1][GCOMP], glsb)) / 2; - r = (UP5(col[0][RCOMP]) + UP5(col[1][RCOMP])) / 2; - } - rgba[RCOMP] = UBYTE_TO_CHAN(r); - rgba[GCOMP] = UBYTE_TO_CHAN(g); - rgba[BCOMP] = UBYTE_TO_CHAN(b); - rgba[ACOMP] = CHAN_MAX; - } - } else { - /* alpha[0] == 0 */ - GLubyte r, g, b; - if (t == 0) { - b = UP5(col[0][BCOMP]); - g = UP6(col[0][GCOMP], glsb ^ selb); - r = UP5(col[0][RCOMP]); - } else if (t == 3) { - b = UP5(col[1][BCOMP]); - g = UP6(col[1][GCOMP], glsb); - r = UP5(col[1][RCOMP]); - } else { - b = LERP(3, t, UP5(col[0][BCOMP]), UP5(col[1][BCOMP])); - g = LERP(3, t, UP6(col[0][GCOMP], glsb ^ selb), - UP6(col[1][GCOMP], glsb)); - r = LERP(3, t, UP5(col[0][RCOMP]), UP5(col[1][RCOMP])); - } - rgba[RCOMP] = UBYTE_TO_CHAN(r); - rgba[GCOMP] = UBYTE_TO_CHAN(g); - rgba[BCOMP] = UBYTE_TO_CHAN(b); - rgba[ACOMP] = CHAN_MAX; - } -} - - -static void -fxt1_decode_1ALPHA (const GLubyte *code, GLint t, GLchan *rgba) -{ - const GLuint *cc; - GLubyte r, g, b, a; - - cc = (const GLuint *)code; - if (CC_SEL(cc, 124) & 1) { - /* lerp == 1 */ - GLuint col0[4]; - - if (t & 16) { - t &= 15; - t = (cc[1] >> (t * 2)) & 3; - /* col 2 */ - col0[BCOMP] = (*(const GLuint *)(code + 11)) >> 6; - col0[GCOMP] = CC_SEL(cc, 99); - col0[RCOMP] = CC_SEL(cc, 104); - col0[ACOMP] = CC_SEL(cc, 119); - } else { - t = (cc[0] >> (t * 2)) & 3; - /* col 0 */ - col0[BCOMP] = CC_SEL(cc, 64); - col0[GCOMP] = CC_SEL(cc, 69); - col0[RCOMP] = CC_SEL(cc, 74); - col0[ACOMP] = CC_SEL(cc, 109); - } - - if (t == 0) { - b = UP5(col0[BCOMP]); - g = UP5(col0[GCOMP]); - r = UP5(col0[RCOMP]); - a = UP5(col0[ACOMP]); - } else if (t == 3) { - b = UP5(CC_SEL(cc, 79)); - g = UP5(CC_SEL(cc, 84)); - r = UP5(CC_SEL(cc, 89)); - a = UP5(CC_SEL(cc, 114)); - } else { - b = LERP(3, t, UP5(col0[BCOMP]), UP5(CC_SEL(cc, 79))); - g = LERP(3, t, UP5(col0[GCOMP]), UP5(CC_SEL(cc, 84))); - r = LERP(3, t, UP5(col0[RCOMP]), UP5(CC_SEL(cc, 89))); - a = LERP(3, t, UP5(col0[ACOMP]), UP5(CC_SEL(cc, 114))); - } - } else { - /* lerp == 0 */ - - if (t & 16) { - cc++; - t &= 15; - } - t = (cc[0] >> (t * 2)) & 3; - - if (t == 3) { - /* zero */ - r = g = b = a = 0; - } else { - GLuint kk; - cc = (const GLuint *)code; - a = UP5(cc[3] >> (t * 5 + 13)); - t *= 15; - cc = (const GLuint *)(code + 8 + t / 8); - kk = cc[0] >> (t & 7); - b = UP5(kk); - g = UP5(kk >> 5); - r = UP5(kk >> 10); - } - } - rgba[RCOMP] = UBYTE_TO_CHAN(r); - rgba[GCOMP] = UBYTE_TO_CHAN(g); - rgba[BCOMP] = UBYTE_TO_CHAN(b); - rgba[ACOMP] = UBYTE_TO_CHAN(a); -} - - -void -fxt1_decode_1 (const void *texture, GLint stride, /* in pixels */ - GLint i, GLint j, GLchan *rgba) -{ - static void (*decode_1[]) (const GLubyte *, GLint, GLchan *) = { - fxt1_decode_1HI, /* cc-high = "00?" */ - fxt1_decode_1HI, /* cc-high = "00?" */ - fxt1_decode_1CHROMA, /* cc-chroma = "010" */ - fxt1_decode_1ALPHA, /* alpha = "011" */ - fxt1_decode_1MIXED, /* mixed = "1??" */ - fxt1_decode_1MIXED, /* mixed = "1??" */ - fxt1_decode_1MIXED, /* mixed = "1??" */ - fxt1_decode_1MIXED /* mixed = "1??" */ - }; - - const GLubyte *code = (const GLubyte *)texture + - ((j / 4) * (stride / 8) + (i / 8)) * 16; - GLint mode = CC_SEL(code, 125); - GLint t = i & 7; - - if (t & 4) { - t += 12; - } - t += (j & 3) * 4; - - decode_1[mode](code, t, rgba); -} - - -#endif /* FEATURE_texture_fxt1 */ +/*
+ * Mesa 3-D graphics library
+ * Version: 7.1
+ *
+ * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+/**
+ * \file texcompress_fxt1.c
+ * GL_3DFX_texture_compression_FXT1 support.
+ */
+
+
+#include "glheader.h"
+#include "imports.h"
+#include "colormac.h"
+#include "image.h"
+#include "macros.h"
+#include "mipmap.h"
+#include "texcompress.h"
+#include "texcompress_fxt1.h"
+#include "texstore.h"
+
+
+#if FEATURE_texture_fxt1
+
+
+static void
+fxt1_encode (GLuint width, GLuint height, GLint comps,
+ const void *source, GLint srcRowStride,
+ void *dest, GLint destRowStride);
+
+void
+fxt1_decode_1 (const void *texture, GLint stride,
+ GLint i, GLint j, GLchan *rgba);
+
+
+/**
+ * Store user's image in rgb_fxt1 format.
+ */
+GLboolean
+_mesa_texstore_rgb_fxt1(TEXSTORE_PARAMS)
+{
+ const GLchan *pixels;
+ GLint srcRowStride;
+ GLubyte *dst;
+ const GLint texWidth = dstRowStride * 8 / 16; /* a bit of a hack */
+ const GLchan *tempImage = NULL;
+
+ ASSERT(dstFormat == MESA_FORMAT_RGB_FXT1);
+ ASSERT(dstXoffset % 8 == 0);
+ ASSERT(dstYoffset % 4 == 0);
+ ASSERT(dstZoffset == 0);
+ (void) dstZoffset;
+ (void) dstImageOffsets;
+
+ if (srcFormat != GL_RGB ||
+ srcType != CHAN_TYPE ||
+ ctx->_ImageTransferState ||
+ srcPacking->SwapBytes) {
+ /* convert image to RGB/GLchan */
+ tempImage = _mesa_make_temp_chan_image(ctx, dims,
+ baseInternalFormat,
+ _mesa_get_format_base_format(dstFormat),
+ srcWidth, srcHeight, srcDepth,
+ srcFormat, srcType, srcAddr,
+ srcPacking);
+ if (!tempImage)
+ return GL_FALSE; /* out of memory */
+ pixels = tempImage;
+ srcRowStride = 3 * srcWidth;
+ srcFormat = GL_RGB;
+ }
+ else {
+ pixels = (const GLchan *) srcAddr;
+ srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat,
+ srcType) / sizeof(GLchan);
+ }
+
+ dst = _mesa_compressed_image_address(dstXoffset, dstYoffset, 0,
+ dstFormat,
+ texWidth, (GLubyte *) dstAddr);
+
+ fxt1_encode(srcWidth, srcHeight, 3, pixels, srcRowStride,
+ dst, dstRowStride);
+
+ if (tempImage)
+ free((void*) tempImage);
+
+ return GL_TRUE;
+}
+
+
+/**
+ * Store user's image in rgba_fxt1 format.
+ */
+GLboolean
+_mesa_texstore_rgba_fxt1(TEXSTORE_PARAMS)
+{
+ const GLchan *pixels;
+ GLint srcRowStride;
+ GLubyte *dst;
+ GLint texWidth = dstRowStride * 8 / 16; /* a bit of a hack */
+ const GLchan *tempImage = NULL;
+
+ ASSERT(dstFormat == MESA_FORMAT_RGBA_FXT1);
+ ASSERT(dstXoffset % 8 == 0);
+ ASSERT(dstYoffset % 4 == 0);
+ ASSERT(dstZoffset == 0);
+ (void) dstZoffset;
+ (void) dstImageOffsets;
+
+ if (srcFormat != GL_RGBA ||
+ srcType != CHAN_TYPE ||
+ ctx->_ImageTransferState ||
+ srcPacking->SwapBytes) {
+ /* convert image to RGBA/GLchan */
+ tempImage = _mesa_make_temp_chan_image(ctx, dims,
+ baseInternalFormat,
+ _mesa_get_format_base_format(dstFormat),
+ srcWidth, srcHeight, srcDepth,
+ srcFormat, srcType, srcAddr,
+ srcPacking);
+ if (!tempImage)
+ return GL_FALSE; /* out of memory */
+ pixels = tempImage;
+ srcRowStride = 4 * srcWidth;
+ srcFormat = GL_RGBA;
+ }
+ else {
+ pixels = (const GLchan *) srcAddr;
+ srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat,
+ srcType) / sizeof(GLchan);
+ }
+
+ dst = _mesa_compressed_image_address(dstXoffset, dstYoffset, 0,
+ dstFormat,
+ texWidth, (GLubyte *) dstAddr);
+
+ fxt1_encode(srcWidth, srcHeight, 4, pixels, srcRowStride,
+ dst, dstRowStride);
+
+ if (tempImage)
+ free((void*) tempImage);
+
+ return GL_TRUE;
+}
+
+
+void
+_mesa_fetch_texel_2d_f_rgba_fxt1( const struct gl_texture_image *texImage,
+ GLint i, GLint j, GLint k, GLfloat *texel )
+{
+ /* just sample as GLchan and convert to float here */
+ GLchan rgba[4];
+ (void) k;
+ fxt1_decode_1(texImage->Data, texImage->RowStride, i, j, rgba);
+ texel[RCOMP] = CHAN_TO_FLOAT(rgba[RCOMP]);
+ texel[GCOMP] = CHAN_TO_FLOAT(rgba[GCOMP]);
+ texel[BCOMP] = CHAN_TO_FLOAT(rgba[BCOMP]);
+ texel[ACOMP] = CHAN_TO_FLOAT(rgba[ACOMP]);
+}
+
+
+void
+_mesa_fetch_texel_2d_f_rgb_fxt1( const struct gl_texture_image *texImage,
+ GLint i, GLint j, GLint k, GLfloat *texel )
+{
+ /* just sample as GLchan and convert to float here */
+ GLchan rgba[4];
+ (void) k;
+ fxt1_decode_1(texImage->Data, texImage->RowStride, i, j, rgba);
+ texel[RCOMP] = CHAN_TO_FLOAT(rgba[RCOMP]);
+ texel[GCOMP] = CHAN_TO_FLOAT(rgba[GCOMP]);
+ texel[BCOMP] = CHAN_TO_FLOAT(rgba[BCOMP]);
+ texel[ACOMP] = 1.0F;
+}
+
+
+
+/***************************************************************************\
+ * FXT1 encoder
+ *
+ * The encoder was built by reversing the decoder,
+ * and is vaguely based on Texus2 by 3dfx. Note that this code
+ * is merely a proof of concept, since it is highly UNoptimized;
+ * moreover, it is sub-optimal due to initial conditions passed
+ * to Lloyd's algorithm (the interpolation modes are even worse).
+\***************************************************************************/
+
+
+#define MAX_COMP 4 /* ever needed maximum number of components in texel */
+#define MAX_VECT 4 /* ever needed maximum number of base vectors to find */
+#define N_TEXELS 32 /* number of texels in a block (always 32) */
+#define LL_N_REP 50 /* number of iterations in lloyd's vq */
+#define LL_RMS_D 10 /* fault tolerance (maximum delta) */
+#define LL_RMS_E 255 /* fault tolerance (maximum error) */
+#define ALPHA_TS 2 /* alpha threshold: (255 - ALPHA_TS) deemed opaque */
+#define ISTBLACK(v) (*((GLuint *)(v)) == 0)
+
+
+/*
+ * Define a 64-bit unsigned integer type and macros
+ */
+#if 1
+
+#define FX64_NATIVE 1
+
+typedef uint64_t Fx64;
+
+#define FX64_MOV32(a, b) a = b
+#define FX64_OR32(a, b) a |= b
+#define FX64_SHL(a, c) a <<= c
+
+#else
+
+#define FX64_NATIVE 0
+
+typedef struct {
+ GLuint lo, hi;
+} Fx64;
+
+#define FX64_MOV32(a, b) a.lo = b
+#define FX64_OR32(a, b) a.lo |= b
+
+#define FX64_SHL(a, c) \
+ do { \
+ if ((c) >= 32) { \
+ a.hi = a.lo << ((c) - 32); \
+ a.lo = 0; \
+ } else { \
+ a.hi = (a.hi << (c)) | (a.lo >> (32 - (c))); \
+ a.lo <<= (c); \
+ } \
+ } while (0)
+
+#endif
+
+
+#define F(i) (GLfloat)1 /* can be used to obtain an oblong metric: 0.30 / 0.59 / 0.11 */
+#define SAFECDOT 1 /* for paranoids */
+
+#define MAKEIVEC(NV, NC, IV, B, V0, V1) \
+ do { \
+ /* compute interpolation vector */ \
+ GLfloat d2 = 0.0F; \
+ GLfloat rd2; \
+ \
+ for (i = 0; i < NC; i++) { \
+ IV[i] = (V1[i] - V0[i]) * F(i); \
+ d2 += IV[i] * IV[i]; \
+ } \
+ rd2 = (GLfloat)NV / d2; \
+ B = 0; \
+ for (i = 0; i < NC; i++) { \
+ IV[i] *= F(i); \
+ B -= IV[i] * V0[i]; \
+ IV[i] *= rd2; \
+ } \
+ B = B * rd2 + 0.5f; \
+ } while (0)
+
+#define CALCCDOT(TEXEL, NV, NC, IV, B, V)\
+ do { \
+ GLfloat dot = 0.0F; \
+ for (i = 0; i < NC; i++) { \
+ dot += V[i] * IV[i]; \
+ } \
+ TEXEL = (GLint)(dot + B); \
+ if (SAFECDOT) { \
+ if (TEXEL < 0) { \
+ TEXEL = 0; \
+ } else if (TEXEL > NV) { \
+ TEXEL = NV; \
+ } \
+ } \
+ } while (0)
+
+
+static GLint
+fxt1_bestcol (GLfloat vec[][MAX_COMP], GLint nv,
+ GLubyte input[MAX_COMP], GLint nc)
+{
+ GLint i, j, best = -1;
+ GLfloat err = 1e9; /* big enough */
+
+ for (j = 0; j < nv; j++) {
+ GLfloat e = 0.0F;
+ for (i = 0; i < nc; i++) {
+ e += (vec[j][i] - input[i]) * (vec[j][i] - input[i]);
+ }
+ if (e < err) {
+ err = e;
+ best = j;
+ }
+ }
+
+ return best;
+}
+
+
+static GLint
+fxt1_worst (GLfloat vec[MAX_COMP],
+ GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n)
+{
+ GLint i, k, worst = -1;
+ GLfloat err = -1.0F; /* small enough */
+
+ for (k = 0; k < n; k++) {
+ GLfloat e = 0.0F;
+ for (i = 0; i < nc; i++) {
+ e += (vec[i] - input[k][i]) * (vec[i] - input[k][i]);
+ }
+ if (e > err) {
+ err = e;
+ worst = k;
+ }
+ }
+
+ return worst;
+}
+
+
+static GLint
+fxt1_variance (GLdouble variance[MAX_COMP],
+ GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n)
+{
+ GLint i, k, best = 0;
+ GLint sx, sx2;
+ GLdouble var, maxvar = -1; /* small enough */
+ GLdouble teenth = 1.0 / n;
+
+ for (i = 0; i < nc; i++) {
+ sx = sx2 = 0;
+ for (k = 0; k < n; k++) {
+ GLint t = input[k][i];
+ sx += t;
+ sx2 += t * t;
+ }
+ var = sx2 * teenth - sx * sx * teenth * teenth;
+ if (maxvar < var) {
+ maxvar = var;
+ best = i;
+ }
+ if (variance) {
+ variance[i] = var;
+ }
+ }
+
+ return best;
+}
+
+
+static GLint
+fxt1_choose (GLfloat vec[][MAX_COMP], GLint nv,
+ GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n)
+{
+#if 0
+ /* Choose colors from a grid.
+ */
+ GLint i, j;
+
+ for (j = 0; j < nv; j++) {
+ GLint m = j * (n - 1) / (nv - 1);
+ for (i = 0; i < nc; i++) {
+ vec[j][i] = input[m][i];
+ }
+ }
+#else
+ /* Our solution here is to find the darkest and brightest colors in
+ * the 8x4 tile and use those as the two representative colors.
+ * There are probably better algorithms to use (histogram-based).
+ */
+ GLint i, j, k;
+ GLint minSum = 2000; /* big enough */
+ GLint maxSum = -1; /* small enough */
+ GLint minCol = 0; /* phoudoin: silent compiler! */
+ GLint maxCol = 0; /* phoudoin: silent compiler! */
+
+ struct {
+ GLint flag;
+ GLint key;
+ GLint freq;
+ GLint idx;
+ } hist[N_TEXELS];
+ GLint lenh = 0;
+
+ memset(hist, 0, sizeof(hist));
+
+ for (k = 0; k < n; k++) {
+ GLint l;
+ GLint key = 0;
+ GLint sum = 0;
+ for (i = 0; i < nc; i++) {
+ key <<= 8;
+ key |= input[k][i];
+ sum += input[k][i];
+ }
+ for (l = 0; l < n; l++) {
+ if (!hist[l].flag) {
+ /* alloc new slot */
+ hist[l].flag = !0;
+ hist[l].key = key;
+ hist[l].freq = 1;
+ hist[l].idx = k;
+ lenh = l + 1;
+ break;
+ } else if (hist[l].key == key) {
+ hist[l].freq++;
+ break;
+ }
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minCol = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxCol = k;
+ }
+ }
+
+ if (lenh <= nv) {
+ for (j = 0; j < lenh; j++) {
+ for (i = 0; i < nc; i++) {
+ vec[j][i] = (GLfloat)input[hist[j].idx][i];
+ }
+ }
+ for (; j < nv; j++) {
+ for (i = 0; i < nc; i++) {
+ vec[j][i] = vec[0][i];
+ }
+ }
+ return 0;
+ }
+
+ for (j = 0; j < nv; j++) {
+ for (i = 0; i < nc; i++) {
+ vec[j][i] = ((nv - 1 - j) * input[minCol][i] + j * input[maxCol][i] + (nv - 1) / 2) / (GLfloat)(nv - 1);
+ }
+ }
+#endif
+
+ return !0;
+}
+
+
+static GLint
+fxt1_lloyd (GLfloat vec[][MAX_COMP], GLint nv,
+ GLubyte input[N_TEXELS][MAX_COMP], GLint nc, GLint n)
+{
+ /* Use the generalized lloyd's algorithm for VQ:
+ * find 4 color vectors.
+ *
+ * for each sample color
+ * sort to nearest vector.
+ *
+ * replace each vector with the centroid of its matching colors.
+ *
+ * repeat until RMS doesn't improve.
+ *
+ * if a color vector has no samples, or becomes the same as another
+ * vector, replace it with the color which is farthest from a sample.
+ *
+ * vec[][MAX_COMP] initial vectors and resulting colors
+ * nv number of resulting colors required
+ * input[N_TEXELS][MAX_COMP] input texels
+ * nc number of components in input / vec
+ * n number of input samples
+ */
+
+ GLint sum[MAX_VECT][MAX_COMP]; /* used to accumulate closest texels */
+ GLint cnt[MAX_VECT]; /* how many times a certain vector was chosen */
+ GLfloat error, lasterror = 1e9;
+
+ GLint i, j, k, rep;
+
+ /* the quantizer */
+ for (rep = 0; rep < LL_N_REP; rep++) {
+ /* reset sums & counters */
+ for (j = 0; j < nv; j++) {
+ for (i = 0; i < nc; i++) {
+ sum[j][i] = 0;
+ }
+ cnt[j] = 0;
+ }
+ error = 0;
+
+ /* scan whole block */
+ for (k = 0; k < n; k++) {
+#if 1
+ GLint best = -1;
+ GLfloat err = 1e9; /* big enough */
+ /* determine best vector */
+ for (j = 0; j < nv; j++) {
+ GLfloat e = (vec[j][0] - input[k][0]) * (vec[j][0] - input[k][0]) +
+ (vec[j][1] - input[k][1]) * (vec[j][1] - input[k][1]) +
+ (vec[j][2] - input[k][2]) * (vec[j][2] - input[k][2]);
+ if (nc == 4) {
+ e += (vec[j][3] - input[k][3]) * (vec[j][3] - input[k][3]);
+ }
+ if (e < err) {
+ err = e;
+ best = j;
+ }
+ }
+#else
+ GLint best = fxt1_bestcol(vec, nv, input[k], nc, &err);
+#endif
+ assert(best >= 0);
+ /* add in closest color */
+ for (i = 0; i < nc; i++) {
+ sum[best][i] += input[k][i];
+ }
+ /* mark this vector as used */
+ cnt[best]++;
+ /* accumulate error */
+ error += err;
+ }
+
+ /* check RMS */
+ if ((error < LL_RMS_E) ||
+ ((error < lasterror) && ((lasterror - error) < LL_RMS_D))) {
+ return !0; /* good match */
+ }
+ lasterror = error;
+
+ /* move each vector to the barycenter of its closest colors */
+ for (j = 0; j < nv; j++) {
+ if (cnt[j]) {
+ GLfloat div = 1.0F / cnt[j];
+ for (i = 0; i < nc; i++) {
+ vec[j][i] = div * sum[j][i];
+ }
+ } else {
+ /* this vec has no samples or is identical with a previous vec */
+ GLint worst = fxt1_worst(vec[j], input, nc, n);
+ for (i = 0; i < nc; i++) {
+ vec[j][i] = input[worst][i];
+ }
+ }
+ }
+ }
+
+ return 0; /* could not converge fast enough */
+}
+
+
+static void
+fxt1_quantize_CHROMA (GLuint *cc,
+ GLubyte input[N_TEXELS][MAX_COMP])
+{
+ const GLint n_vect = 4; /* 4 base vectors to find */
+ const GLint n_comp = 3; /* 3 components: R, G, B */
+ GLfloat vec[MAX_VECT][MAX_COMP];
+ GLint i, j, k;
+ Fx64 hi; /* high quadword */
+ GLuint lohi, lolo; /* low quadword: hi dword, lo dword */
+
+ if (fxt1_choose(vec, n_vect, input, n_comp, N_TEXELS) != 0) {
+ fxt1_lloyd(vec, n_vect, input, n_comp, N_TEXELS);
+ }
+
+ FX64_MOV32(hi, 4); /* cc-chroma = "010" + unused bit */
+ for (j = n_vect - 1; j >= 0; j--) {
+ for (i = 0; i < n_comp; i++) {
+ /* add in colors */
+ FX64_SHL(hi, 5);
+ FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F));
+ }
+ }
+ ((Fx64 *)cc)[1] = hi;
+
+ lohi = lolo = 0;
+ /* right microtile */
+ for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) {
+ lohi <<= 2;
+ lohi |= fxt1_bestcol(vec, n_vect, input[k], n_comp);
+ }
+ /* left microtile */
+ for (; k >= 0; k--) {
+ lolo <<= 2;
+ lolo |= fxt1_bestcol(vec, n_vect, input[k], n_comp);
+ }
+ cc[1] = lohi;
+ cc[0] = lolo;
+}
+
+
+static void
+fxt1_quantize_ALPHA0 (GLuint *cc,
+ GLubyte input[N_TEXELS][MAX_COMP],
+ GLubyte reord[N_TEXELS][MAX_COMP], GLint n)
+{
+ const GLint n_vect = 3; /* 3 base vectors to find */
+ const GLint n_comp = 4; /* 4 components: R, G, B, A */
+ GLfloat vec[MAX_VECT][MAX_COMP];
+ GLint i, j, k;
+ Fx64 hi; /* high quadword */
+ GLuint lohi, lolo; /* low quadword: hi dword, lo dword */
+
+ /* the last vector indicates zero */
+ for (i = 0; i < n_comp; i++) {
+ vec[n_vect][i] = 0;
+ }
+
+ /* the first n texels in reord are guaranteed to be non-zero */
+ if (fxt1_choose(vec, n_vect, reord, n_comp, n) != 0) {
+ fxt1_lloyd(vec, n_vect, reord, n_comp, n);
+ }
+
+ FX64_MOV32(hi, 6); /* alpha = "011" + lerp = 0 */
+ for (j = n_vect - 1; j >= 0; j--) {
+ /* add in alphas */
+ FX64_SHL(hi, 5);
+ FX64_OR32(hi, (GLuint)(vec[j][ACOMP] / 8.0F));
+ }
+ for (j = n_vect - 1; j >= 0; j--) {
+ for (i = 0; i < n_comp - 1; i++) {
+ /* add in colors */
+ FX64_SHL(hi, 5);
+ FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F));
+ }
+ }
+ ((Fx64 *)cc)[1] = hi;
+
+ lohi = lolo = 0;
+ /* right microtile */
+ for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) {
+ lohi <<= 2;
+ lohi |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp);
+ }
+ /* left microtile */
+ for (; k >= 0; k--) {
+ lolo <<= 2;
+ lolo |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp);
+ }
+ cc[1] = lohi;
+ cc[0] = lolo;
+}
+
+
+static void
+fxt1_quantize_ALPHA1 (GLuint *cc,
+ GLubyte input[N_TEXELS][MAX_COMP])
+{
+ const GLint n_vect = 3; /* highest vector number in each microtile */
+ const GLint n_comp = 4; /* 4 components: R, G, B, A */
+ GLfloat vec[1 + 1 + 1][MAX_COMP]; /* 1.5 extrema for each sub-block */
+ GLfloat b, iv[MAX_COMP]; /* interpolation vector */
+ GLint i, j, k;
+ Fx64 hi; /* high quadword */
+ GLuint lohi, lolo; /* low quadword: hi dword, lo dword */
+
+ GLint minSum;
+ GLint maxSum;
+ GLint minColL = 0, maxColL = 0;
+ GLint minColR = 0, maxColR = 0;
+ GLint sumL = 0, sumR = 0;
+ GLint nn_comp;
+ /* Our solution here is to find the darkest and brightest colors in
+ * the 4x4 tile and use those as the two representative colors.
+ * There are probably better algorithms to use (histogram-based).
+ */
+ nn_comp = n_comp;
+ while ((minColL == maxColL) && nn_comp) {
+ minSum = 2000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (k = 0; k < N_TEXELS / 2; k++) {
+ GLint sum = 0;
+ for (i = 0; i < nn_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColL = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColL = k;
+ }
+ sumL += sum;
+ }
+
+ nn_comp--;
+ }
+
+ nn_comp = n_comp;
+ while ((minColR == maxColR) && nn_comp) {
+ minSum = 2000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (k = N_TEXELS / 2; k < N_TEXELS; k++) {
+ GLint sum = 0;
+ for (i = 0; i < nn_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColR = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColR = k;
+ }
+ sumR += sum;
+ }
+
+ nn_comp--;
+ }
+
+ /* choose the common vector (yuck!) */
+ {
+ GLint j1, j2;
+ GLint v1 = 0, v2 = 0;
+ GLfloat err = 1e9; /* big enough */
+ GLfloat tv[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
+ for (i = 0; i < n_comp; i++) {
+ tv[0][i] = input[minColL][i];
+ tv[1][i] = input[maxColL][i];
+ tv[2][i] = input[minColR][i];
+ tv[3][i] = input[maxColR][i];
+ }
+ for (j1 = 0; j1 < 2; j1++) {
+ for (j2 = 2; j2 < 4; j2++) {
+ GLfloat e = 0.0F;
+ for (i = 0; i < n_comp; i++) {
+ e += (tv[j1][i] - tv[j2][i]) * (tv[j1][i] - tv[j2][i]);
+ }
+ if (e < err) {
+ err = e;
+ v1 = j1;
+ v2 = j2;
+ }
+ }
+ }
+ for (i = 0; i < n_comp; i++) {
+ vec[0][i] = tv[1 - v1][i];
+ vec[1][i] = (tv[v1][i] * sumL + tv[v2][i] * sumR) / (sumL + sumR);
+ vec[2][i] = tv[5 - v2][i];
+ }
+ }
+
+ /* left microtile */
+ cc[0] = 0;
+ if (minColL != maxColL) {
+ /* compute interpolation vector */
+ MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]);
+
+ /* add in texels */
+ lolo = 0;
+ for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
+ GLint texel;
+ /* interpolate color */
+ CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
+ /* add in texel */
+ lolo <<= 2;
+ lolo |= texel;
+ }
+
+ cc[0] = lolo;
+ }
+
+ /* right microtile */
+ cc[1] = 0;
+ if (minColR != maxColR) {
+ /* compute interpolation vector */
+ MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[1]);
+
+ /* add in texels */
+ lohi = 0;
+ for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
+ GLint texel;
+ /* interpolate color */
+ CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
+ /* add in texel */
+ lohi <<= 2;
+ lohi |= texel;
+ }
+
+ cc[1] = lohi;
+ }
+
+ FX64_MOV32(hi, 7); /* alpha = "011" + lerp = 1 */
+ for (j = n_vect - 1; j >= 0; j--) {
+ /* add in alphas */
+ FX64_SHL(hi, 5);
+ FX64_OR32(hi, (GLuint)(vec[j][ACOMP] / 8.0F));
+ }
+ for (j = n_vect - 1; j >= 0; j--) {
+ for (i = 0; i < n_comp - 1; i++) {
+ /* add in colors */
+ FX64_SHL(hi, 5);
+ FX64_OR32(hi, (GLuint)(vec[j][i] / 8.0F));
+ }
+ }
+ ((Fx64 *)cc)[1] = hi;
+}
+
+
+static void
+fxt1_quantize_HI (GLuint *cc,
+ GLubyte input[N_TEXELS][MAX_COMP],
+ GLubyte reord[N_TEXELS][MAX_COMP], GLint n)
+{
+ const GLint n_vect = 6; /* highest vector number */
+ const GLint n_comp = 3; /* 3 components: R, G, B */
+ GLfloat b = 0.0F; /* phoudoin: silent compiler! */
+ GLfloat iv[MAX_COMP]; /* interpolation vector */
+ GLint i, k;
+ GLuint hihi; /* high quadword: hi dword */
+
+ GLint minSum = 2000; /* big enough */
+ GLint maxSum = -1; /* small enough */
+ GLint minCol = 0; /* phoudoin: silent compiler! */
+ GLint maxCol = 0; /* phoudoin: silent compiler! */
+
+ /* Our solution here is to find the darkest and brightest colors in
+ * the 8x4 tile and use those as the two representative colors.
+ * There are probably better algorithms to use (histogram-based).
+ */
+ for (k = 0; k < n; k++) {
+ GLint sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += reord[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minCol = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxCol = k;
+ }
+ }
+
+ hihi = 0; /* cc-hi = "00" */
+ for (i = 0; i < n_comp; i++) {
+ /* add in colors */
+ hihi <<= 5;
+ hihi |= reord[maxCol][i] >> 3;
+ }
+ for (i = 0; i < n_comp; i++) {
+ /* add in colors */
+ hihi <<= 5;
+ hihi |= reord[minCol][i] >> 3;
+ }
+ cc[3] = hihi;
+ cc[0] = cc[1] = cc[2] = 0;
+
+ /* compute interpolation vector */
+ if (minCol != maxCol) {
+ MAKEIVEC(n_vect, n_comp, iv, b, reord[minCol], reord[maxCol]);
+ }
+
+ /* add in texels */
+ for (k = N_TEXELS - 1; k >= 0; k--) {
+ GLint t = k * 3;
+ GLuint *kk = (GLuint *)((char *)cc + t / 8);
+ GLint texel = n_vect + 1; /* transparent black */
+
+ if (!ISTBLACK(input[k])) {
+ if (minCol != maxCol) {
+ /* interpolate color */
+ CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
+ /* add in texel */
+ kk[0] |= texel << (t & 7);
+ }
+ } else {
+ /* add in texel */
+ kk[0] |= texel << (t & 7);
+ }
+ }
+}
+
+
+static void
+fxt1_quantize_MIXED1 (GLuint *cc,
+ GLubyte input[N_TEXELS][MAX_COMP])
+{
+ const GLint n_vect = 2; /* highest vector number in each microtile */
+ const GLint n_comp = 3; /* 3 components: R, G, B */
+ GLubyte vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
+ GLfloat b, iv[MAX_COMP]; /* interpolation vector */
+ GLint i, j, k;
+ Fx64 hi; /* high quadword */
+ GLuint lohi, lolo; /* low quadword: hi dword, lo dword */
+
+ GLint minSum;
+ GLint maxSum;
+ GLint minColL = 0, maxColL = -1;
+ GLint minColR = 0, maxColR = -1;
+
+ /* Our solution here is to find the darkest and brightest colors in
+ * the 4x4 tile and use those as the two representative colors.
+ * There are probably better algorithms to use (histogram-based).
+ */
+ minSum = 2000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (k = 0; k < N_TEXELS / 2; k++) {
+ if (!ISTBLACK(input[k])) {
+ GLint sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColL = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColL = k;
+ }
+ }
+ }
+ minSum = 2000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (; k < N_TEXELS; k++) {
+ if (!ISTBLACK(input[k])) {
+ GLint sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColR = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColR = k;
+ }
+ }
+ }
+
+ /* left microtile */
+ if (maxColL == -1) {
+ /* all transparent black */
+ cc[0] = ~0u;
+ for (i = 0; i < n_comp; i++) {
+ vec[0][i] = 0;
+ vec[1][i] = 0;
+ }
+ } else {
+ cc[0] = 0;
+ for (i = 0; i < n_comp; i++) {
+ vec[0][i] = input[minColL][i];
+ vec[1][i] = input[maxColL][i];
+ }
+ if (minColL != maxColL) {
+ /* compute interpolation vector */
+ MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]);
+
+ /* add in texels */
+ lolo = 0;
+ for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
+ GLint texel = n_vect + 1; /* transparent black */
+ if (!ISTBLACK(input[k])) {
+ /* interpolate color */
+ CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
+ }
+ /* add in texel */
+ lolo <<= 2;
+ lolo |= texel;
+ }
+ cc[0] = lolo;
+ }
+ }
+
+ /* right microtile */
+ if (maxColR == -1) {
+ /* all transparent black */
+ cc[1] = ~0u;
+ for (i = 0; i < n_comp; i++) {
+ vec[2][i] = 0;
+ vec[3][i] = 0;
+ }
+ } else {
+ cc[1] = 0;
+ for (i = 0; i < n_comp; i++) {
+ vec[2][i] = input[minColR][i];
+ vec[3][i] = input[maxColR][i];
+ }
+ if (minColR != maxColR) {
+ /* compute interpolation vector */
+ MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]);
+
+ /* add in texels */
+ lohi = 0;
+ for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
+ GLint texel = n_vect + 1; /* transparent black */
+ if (!ISTBLACK(input[k])) {
+ /* interpolate color */
+ CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
+ }
+ /* add in texel */
+ lohi <<= 2;
+ lohi |= texel;
+ }
+ cc[1] = lohi;
+ }
+ }
+
+ FX64_MOV32(hi, 9 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */
+ for (j = 2 * 2 - 1; j >= 0; j--) {
+ for (i = 0; i < n_comp; i++) {
+ /* add in colors */
+ FX64_SHL(hi, 5);
+ FX64_OR32(hi, vec[j][i] >> 3);
+ }
+ }
+ ((Fx64 *)cc)[1] = hi;
+}
+
+
+static void
+fxt1_quantize_MIXED0 (GLuint *cc,
+ GLubyte input[N_TEXELS][MAX_COMP])
+{
+ const GLint n_vect = 3; /* highest vector number in each microtile */
+ const GLint n_comp = 3; /* 3 components: R, G, B */
+ GLubyte vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
+ GLfloat b, iv[MAX_COMP]; /* interpolation vector */
+ GLint i, j, k;
+ Fx64 hi; /* high quadword */
+ GLuint lohi, lolo; /* low quadword: hi dword, lo dword */
+
+ GLint minColL = 0, maxColL = 0;
+ GLint minColR = 0, maxColR = 0;
+#if 0
+ GLint minSum;
+ GLint maxSum;
+
+ /* Our solution here is to find the darkest and brightest colors in
+ * the 4x4 tile and use those as the two representative colors.
+ * There are probably better algorithms to use (histogram-based).
+ */
+ minSum = 2000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (k = 0; k < N_TEXELS / 2; k++) {
+ GLint sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColL = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColL = k;
+ }
+ }
+ minSum = 2000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (; k < N_TEXELS; k++) {
+ GLint sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColR = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColR = k;
+ }
+ }
+#else
+ GLint minVal;
+ GLint maxVal;
+ GLint maxVarL = fxt1_variance(NULL, input, n_comp, N_TEXELS / 2);
+ GLint maxVarR = fxt1_variance(NULL, &input[N_TEXELS / 2], n_comp, N_TEXELS / 2);
+
+ /* Scan the channel with max variance for lo & hi
+ * and use those as the two representative colors.
+ */
+ minVal = 2000; /* big enough */
+ maxVal = -1; /* small enough */
+ for (k = 0; k < N_TEXELS / 2; k++) {
+ GLint t = input[k][maxVarL];
+ if (minVal > t) {
+ minVal = t;
+ minColL = k;
+ }
+ if (maxVal < t) {
+ maxVal = t;
+ maxColL = k;
+ }
+ }
+ minVal = 2000; /* big enough */
+ maxVal = -1; /* small enough */
+ for (; k < N_TEXELS; k++) {
+ GLint t = input[k][maxVarR];
+ if (minVal > t) {
+ minVal = t;
+ minColR = k;
+ }
+ if (maxVal < t) {
+ maxVal = t;
+ maxColR = k;
+ }
+ }
+#endif
+
+ /* left microtile */
+ cc[0] = 0;
+ for (i = 0; i < n_comp; i++) {
+ vec[0][i] = input[minColL][i];
+ vec[1][i] = input[maxColL][i];
+ }
+ if (minColL != maxColL) {
+ /* compute interpolation vector */
+ MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]);
+
+ /* add in texels */
+ lolo = 0;
+ for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
+ GLint texel;
+ /* interpolate color */
+ CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
+ /* add in texel */
+ lolo <<= 2;
+ lolo |= texel;
+ }
+
+ /* funky encoding for LSB of green */
+ if ((GLint)((lolo >> 1) & 1) != (((vec[1][GCOMP] ^ vec[0][GCOMP]) >> 2) & 1)) {
+ for (i = 0; i < n_comp; i++) {
+ vec[1][i] = input[minColL][i];
+ vec[0][i] = input[maxColL][i];
+ }
+ lolo = ~lolo;
+ }
+
+ cc[0] = lolo;
+ }
+
+ /* right microtile */
+ cc[1] = 0;
+ for (i = 0; i < n_comp; i++) {
+ vec[2][i] = input[minColR][i];
+ vec[3][i] = input[maxColR][i];
+ }
+ if (minColR != maxColR) {
+ /* compute interpolation vector */
+ MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]);
+
+ /* add in texels */
+ lohi = 0;
+ for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
+ GLint texel;
+ /* interpolate color */
+ CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
+ /* add in texel */
+ lohi <<= 2;
+ lohi |= texel;
+ }
+
+ /* funky encoding for LSB of green */
+ if ((GLint)((lohi >> 1) & 1) != (((vec[3][GCOMP] ^ vec[2][GCOMP]) >> 2) & 1)) {
+ for (i = 0; i < n_comp; i++) {
+ vec[3][i] = input[minColR][i];
+ vec[2][i] = input[maxColR][i];
+ }
+ lohi = ~lohi;
+ }
+
+ cc[1] = lohi;
+ }
+
+ FX64_MOV32(hi, 8 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */
+ for (j = 2 * 2 - 1; j >= 0; j--) {
+ for (i = 0; i < n_comp; i++) {
+ /* add in colors */
+ FX64_SHL(hi, 5);
+ FX64_OR32(hi, vec[j][i] >> 3);
+ }
+ }
+ ((Fx64 *)cc)[1] = hi;
+}
+
+
+static void
+fxt1_quantize (GLuint *cc, const GLubyte *lines[], GLint comps)
+{
+ GLint trualpha;
+ GLubyte reord[N_TEXELS][MAX_COMP];
+
+ GLubyte input[N_TEXELS][MAX_COMP];
+ GLint i, k, l;
+
+ if (comps == 3) {
+ /* make the whole block opaque */
+ memset(input, -1, sizeof(input));
+ }
+
+ /* 8 texels each line */
+ for (l = 0; l < 4; l++) {
+ for (k = 0; k < 4; k++) {
+ for (i = 0; i < comps; i++) {
+ input[k + l * 4][i] = *lines[l]++;
+ }
+ }
+ for (; k < 8; k++) {
+ for (i = 0; i < comps; i++) {
+ input[k + l * 4 + 12][i] = *lines[l]++;
+ }
+ }
+ }
+
+ /* block layout:
+ * 00, 01, 02, 03, 08, 09, 0a, 0b
+ * 10, 11, 12, 13, 18, 19, 1a, 1b
+ * 04, 05, 06, 07, 0c, 0d, 0e, 0f
+ * 14, 15, 16, 17, 1c, 1d, 1e, 1f
+ */
+
+ /* [dBorca]
+ * stupidity flows forth from this
+ */
+ l = N_TEXELS;
+ trualpha = 0;
+ if (comps == 4) {
+ /* skip all transparent black texels */
+ l = 0;
+ for (k = 0; k < N_TEXELS; k++) {
+ /* test all components against 0 */
+ if (!ISTBLACK(input[k])) {
+ /* texel is not transparent black */
+ COPY_4UBV(reord[l], input[k]);
+ if (reord[l][ACOMP] < (255 - ALPHA_TS)) {
+ /* non-opaque texel */
+ trualpha = !0;
+ }
+ l++;
+ }
+ }
+ }
+
+#if 0
+ if (trualpha) {
+ fxt1_quantize_ALPHA0(cc, input, reord, l);
+ } else if (l == 0) {
+ cc[0] = cc[1] = cc[2] = -1;
+ cc[3] = 0;
+ } else if (l < N_TEXELS) {
+ fxt1_quantize_HI(cc, input, reord, l);
+ } else {
+ fxt1_quantize_CHROMA(cc, input);
+ }
+ (void)fxt1_quantize_ALPHA1;
+ (void)fxt1_quantize_MIXED1;
+ (void)fxt1_quantize_MIXED0;
+#else
+ if (trualpha) {
+ fxt1_quantize_ALPHA1(cc, input);
+ } else if (l == 0) {
+ cc[0] = cc[1] = cc[2] = ~0u;
+ cc[3] = 0;
+ } else if (l < N_TEXELS) {
+ fxt1_quantize_MIXED1(cc, input);
+ } else {
+ fxt1_quantize_MIXED0(cc, input);
+ }
+ (void)fxt1_quantize_ALPHA0;
+ (void)fxt1_quantize_HI;
+ (void)fxt1_quantize_CHROMA;
+#endif
+}
+
+
+static void
+fxt1_encode (GLuint width, GLuint height, GLint comps,
+ const void *source, GLint srcRowStride,
+ void *dest, GLint destRowStride)
+{
+ GLuint x, y;
+ const GLubyte *data;
+ GLuint *encoded = (GLuint *)dest;
+ void *newSource = NULL;
+
+ assert(comps == 3 || comps == 4);
+
+ /* Replicate image if width is not M8 or height is not M4 */
+ if ((width & 7) | (height & 3)) {
+ GLint newWidth = (width + 7) & ~7;
+ GLint newHeight = (height + 3) & ~3;
+ newSource = malloc(comps * newWidth * newHeight * sizeof(GLchan));
+ if (!newSource) {
+ GET_CURRENT_CONTEXT(ctx);
+ _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture compression");
+ goto cleanUp;
+ }
+ _mesa_upscale_teximage2d(width, height, newWidth, newHeight,
+ comps, (const GLchan *) source,
+ srcRowStride, (GLchan *) newSource);
+ source = newSource;
+ width = newWidth;
+ height = newHeight;
+ srcRowStride = comps * newWidth;
+ }
+
+ /* convert from 16/32-bit channels to GLubyte if needed */
+ if (CHAN_TYPE != GL_UNSIGNED_BYTE) {
+ const GLuint n = width * height * comps;
+ const GLchan *src = (const GLchan *) source;
+ GLubyte *dest = (GLubyte *) malloc(n * sizeof(GLubyte));
+ GLuint i;
+ if (!dest) {
+ GET_CURRENT_CONTEXT(ctx);
+ _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture compression");
+ goto cleanUp;
+ }
+ for (i = 0; i < n; i++) {
+ dest[i] = CHAN_TO_UBYTE(src[i]);
+ }
+ if (newSource != NULL) {
+ free(newSource);
+ }
+ newSource = dest; /* we'll free this buffer before returning */
+ source = dest; /* the new, GLubyte incoming image */
+ }
+
+ data = (const GLubyte *) source;
+ destRowStride = (destRowStride - width * 2) / 4;
+ for (y = 0; y < height; y += 4) {
+ GLuint offs = 0 + (y + 0) * srcRowStride;
+ for (x = 0; x < width; x += 8) {
+ const GLubyte *lines[4];
+ lines[0] = &data[offs];
+ lines[1] = lines[0] + srcRowStride;
+ lines[2] = lines[1] + srcRowStride;
+ lines[3] = lines[2] + srcRowStride;
+ offs += 8 * comps;
+ fxt1_quantize(encoded, lines, comps);
+ /* 128 bits per 8x4 block */
+ encoded += 4;
+ }
+ encoded += destRowStride;
+ }
+
+ cleanUp:
+ if (newSource != NULL) {
+ free(newSource);
+ }
+}
+
+
+/***************************************************************************\
+ * FXT1 decoder
+ *
+ * The decoder is based on GL_3DFX_texture_compression_FXT1
+ * specification and serves as a concept for the encoder.
+\***************************************************************************/
+
+
+/* lookup table for scaling 5 bit colors up to 8 bits */
+static const GLubyte _rgb_scale_5[] = {
+ 0, 8, 16, 25, 33, 41, 49, 58,
+ 66, 74, 82, 90, 99, 107, 115, 123,
+ 132, 140, 148, 156, 165, 173, 181, 189,
+ 197, 206, 214, 222, 230, 239, 247, 255
+};
+
+/* lookup table for scaling 6 bit colors up to 8 bits */
+static const GLubyte _rgb_scale_6[] = {
+ 0, 4, 8, 12, 16, 20, 24, 28,
+ 32, 36, 40, 45, 49, 53, 57, 61,
+ 65, 69, 73, 77, 81, 85, 89, 93,
+ 97, 101, 105, 109, 113, 117, 121, 125,
+ 130, 134, 138, 142, 146, 150, 154, 158,
+ 162, 166, 170, 174, 178, 182, 186, 190,
+ 194, 198, 202, 206, 210, 215, 219, 223,
+ 227, 231, 235, 239, 243, 247, 251, 255
+};
+
+
+#define CC_SEL(cc, which) (((GLuint *)(cc))[(which) / 32] >> ((which) & 31))
+#define UP5(c) _rgb_scale_5[(c) & 31]
+#define UP6(c, b) _rgb_scale_6[(((c) & 31) << 1) | ((b) & 1)]
+#define LERP(n, t, c0, c1) (((n) - (t)) * (c0) + (t) * (c1) + (n) / 2) / (n)
+
+
+static void
+fxt1_decode_1HI (const GLubyte *code, GLint t, GLchan *rgba)
+{
+ const GLuint *cc;
+
+ t *= 3;
+ cc = (const GLuint *)(code + t / 8);
+ t = (cc[0] >> (t & 7)) & 7;
+
+ if (t == 7) {
+ rgba[RCOMP] = rgba[GCOMP] = rgba[BCOMP] = rgba[ACOMP] = 0;
+ } else {
+ GLubyte r, g, b;
+ cc = (const GLuint *)(code + 12);
+ if (t == 0) {
+ b = UP5(CC_SEL(cc, 0));
+ g = UP5(CC_SEL(cc, 5));
+ r = UP5(CC_SEL(cc, 10));
+ } else if (t == 6) {
+ b = UP5(CC_SEL(cc, 15));
+ g = UP5(CC_SEL(cc, 20));
+ r = UP5(CC_SEL(cc, 25));
+ } else {
+ b = LERP(6, t, UP5(CC_SEL(cc, 0)), UP5(CC_SEL(cc, 15)));
+ g = LERP(6, t, UP5(CC_SEL(cc, 5)), UP5(CC_SEL(cc, 20)));
+ r = LERP(6, t, UP5(CC_SEL(cc, 10)), UP5(CC_SEL(cc, 25)));
+ }
+ rgba[RCOMP] = UBYTE_TO_CHAN(r);
+ rgba[GCOMP] = UBYTE_TO_CHAN(g);
+ rgba[BCOMP] = UBYTE_TO_CHAN(b);
+ rgba[ACOMP] = CHAN_MAX;
+ }
+}
+
+
+static void
+fxt1_decode_1CHROMA (const GLubyte *code, GLint t, GLchan *rgba)
+{
+ const GLuint *cc;
+ GLuint kk;
+
+ cc = (const GLuint *)code;
+ if (t & 16) {
+ cc++;
+ t &= 15;
+ }
+ t = (cc[0] >> (t * 2)) & 3;
+
+ t *= 15;
+ cc = (const GLuint *)(code + 8 + t / 8);
+ kk = cc[0] >> (t & 7);
+ rgba[BCOMP] = UBYTE_TO_CHAN( UP5(kk) );
+ rgba[GCOMP] = UBYTE_TO_CHAN( UP5(kk >> 5) );
+ rgba[RCOMP] = UBYTE_TO_CHAN( UP5(kk >> 10) );
+ rgba[ACOMP] = CHAN_MAX;
+}
+
+
+static void
+fxt1_decode_1MIXED (const GLubyte *code, GLint t, GLchan *rgba)
+{
+ const GLuint *cc;
+ GLuint col[2][3];
+ GLint glsb, selb;
+
+ cc = (const GLuint *)code;
+ if (t & 16) {
+ t &= 15;
+ t = (cc[1] >> (t * 2)) & 3;
+ /* col 2 */
+ col[0][BCOMP] = (*(const GLuint *)(code + 11)) >> 6;
+ col[0][GCOMP] = CC_SEL(cc, 99);
+ col[0][RCOMP] = CC_SEL(cc, 104);
+ /* col 3 */
+ col[1][BCOMP] = CC_SEL(cc, 109);
+ col[1][GCOMP] = CC_SEL(cc, 114);
+ col[1][RCOMP] = CC_SEL(cc, 119);
+ glsb = CC_SEL(cc, 126);
+ selb = CC_SEL(cc, 33);
+ } else {
+ t = (cc[0] >> (t * 2)) & 3;
+ /* col 0 */
+ col[0][BCOMP] = CC_SEL(cc, 64);
+ col[0][GCOMP] = CC_SEL(cc, 69);
+ col[0][RCOMP] = CC_SEL(cc, 74);
+ /* col 1 */
+ col[1][BCOMP] = CC_SEL(cc, 79);
+ col[1][GCOMP] = CC_SEL(cc, 84);
+ col[1][RCOMP] = CC_SEL(cc, 89);
+ glsb = CC_SEL(cc, 125);
+ selb = CC_SEL(cc, 1);
+ }
+
+ if (CC_SEL(cc, 124) & 1) {
+ /* alpha[0] == 1 */
+
+ if (t == 3) {
+ /* zero */
+ rgba[RCOMP] = rgba[BCOMP] = rgba[GCOMP] = rgba[ACOMP] = 0;
+ } else {
+ GLubyte r, g, b;
+ if (t == 0) {
+ b = UP5(col[0][BCOMP]);
+ g = UP5(col[0][GCOMP]);
+ r = UP5(col[0][RCOMP]);
+ } else if (t == 2) {
+ b = UP5(col[1][BCOMP]);
+ g = UP6(col[1][GCOMP], glsb);
+ r = UP5(col[1][RCOMP]);
+ } else {
+ b = (UP5(col[0][BCOMP]) + UP5(col[1][BCOMP])) / 2;
+ g = (UP5(col[0][GCOMP]) + UP6(col[1][GCOMP], glsb)) / 2;
+ r = (UP5(col[0][RCOMP]) + UP5(col[1][RCOMP])) / 2;
+ }
+ rgba[RCOMP] = UBYTE_TO_CHAN(r);
+ rgba[GCOMP] = UBYTE_TO_CHAN(g);
+ rgba[BCOMP] = UBYTE_TO_CHAN(b);
+ rgba[ACOMP] = CHAN_MAX;
+ }
+ } else {
+ /* alpha[0] == 0 */
+ GLubyte r, g, b;
+ if (t == 0) {
+ b = UP5(col[0][BCOMP]);
+ g = UP6(col[0][GCOMP], glsb ^ selb);
+ r = UP5(col[0][RCOMP]);
+ } else if (t == 3) {
+ b = UP5(col[1][BCOMP]);
+ g = UP6(col[1][GCOMP], glsb);
+ r = UP5(col[1][RCOMP]);
+ } else {
+ b = LERP(3, t, UP5(col[0][BCOMP]), UP5(col[1][BCOMP]));
+ g = LERP(3, t, UP6(col[0][GCOMP], glsb ^ selb),
+ UP6(col[1][GCOMP], glsb));
+ r = LERP(3, t, UP5(col[0][RCOMP]), UP5(col[1][RCOMP]));
+ }
+ rgba[RCOMP] = UBYTE_TO_CHAN(r);
+ rgba[GCOMP] = UBYTE_TO_CHAN(g);
+ rgba[BCOMP] = UBYTE_TO_CHAN(b);
+ rgba[ACOMP] = CHAN_MAX;
+ }
+}
+
+
+static void
+fxt1_decode_1ALPHA (const GLubyte *code, GLint t, GLchan *rgba)
+{
+ const GLuint *cc;
+ GLubyte r, g, b, a;
+
+ cc = (const GLuint *)code;
+ if (CC_SEL(cc, 124) & 1) {
+ /* lerp == 1 */
+ GLuint col0[4];
+
+ if (t & 16) {
+ t &= 15;
+ t = (cc[1] >> (t * 2)) & 3;
+ /* col 2 */
+ col0[BCOMP] = (*(const GLuint *)(code + 11)) >> 6;
+ col0[GCOMP] = CC_SEL(cc, 99);
+ col0[RCOMP] = CC_SEL(cc, 104);
+ col0[ACOMP] = CC_SEL(cc, 119);
+ } else {
+ t = (cc[0] >> (t * 2)) & 3;
+ /* col 0 */
+ col0[BCOMP] = CC_SEL(cc, 64);
+ col0[GCOMP] = CC_SEL(cc, 69);
+ col0[RCOMP] = CC_SEL(cc, 74);
+ col0[ACOMP] = CC_SEL(cc, 109);
+ }
+
+ if (t == 0) {
+ b = UP5(col0[BCOMP]);
+ g = UP5(col0[GCOMP]);
+ r = UP5(col0[RCOMP]);
+ a = UP5(col0[ACOMP]);
+ } else if (t == 3) {
+ b = UP5(CC_SEL(cc, 79));
+ g = UP5(CC_SEL(cc, 84));
+ r = UP5(CC_SEL(cc, 89));
+ a = UP5(CC_SEL(cc, 114));
+ } else {
+ b = LERP(3, t, UP5(col0[BCOMP]), UP5(CC_SEL(cc, 79)));
+ g = LERP(3, t, UP5(col0[GCOMP]), UP5(CC_SEL(cc, 84)));
+ r = LERP(3, t, UP5(col0[RCOMP]), UP5(CC_SEL(cc, 89)));
+ a = LERP(3, t, UP5(col0[ACOMP]), UP5(CC_SEL(cc, 114)));
+ }
+ } else {
+ /* lerp == 0 */
+
+ if (t & 16) {
+ cc++;
+ t &= 15;
+ }
+ t = (cc[0] >> (t * 2)) & 3;
+
+ if (t == 3) {
+ /* zero */
+ r = g = b = a = 0;
+ } else {
+ GLuint kk;
+ cc = (const GLuint *)code;
+ a = UP5(cc[3] >> (t * 5 + 13));
+ t *= 15;
+ cc = (const GLuint *)(code + 8 + t / 8);
+ kk = cc[0] >> (t & 7);
+ b = UP5(kk);
+ g = UP5(kk >> 5);
+ r = UP5(kk >> 10);
+ }
+ }
+ rgba[RCOMP] = UBYTE_TO_CHAN(r);
+ rgba[GCOMP] = UBYTE_TO_CHAN(g);
+ rgba[BCOMP] = UBYTE_TO_CHAN(b);
+ rgba[ACOMP] = UBYTE_TO_CHAN(a);
+}
+
+
+void
+fxt1_decode_1 (const void *texture, GLint stride, /* in pixels */
+ GLint i, GLint j, GLchan *rgba)
+{
+ static void (*decode_1[]) (const GLubyte *, GLint, GLchan *) = {
+ fxt1_decode_1HI, /* cc-high = "00?" */
+ fxt1_decode_1HI, /* cc-high = "00?" */
+ fxt1_decode_1CHROMA, /* cc-chroma = "010" */
+ fxt1_decode_1ALPHA, /* alpha = "011" */
+ fxt1_decode_1MIXED, /* mixed = "1??" */
+ fxt1_decode_1MIXED, /* mixed = "1??" */
+ fxt1_decode_1MIXED, /* mixed = "1??" */
+ fxt1_decode_1MIXED /* mixed = "1??" */
+ };
+
+ const GLubyte *code = (const GLubyte *)texture +
+ ((j / 4) * (stride / 8) + (i / 8)) * 16;
+ GLint mode = CC_SEL(code, 125);
+ GLint t = i & 7;
+
+ if (t & 4) {
+ t += 12;
+ }
+ t += (j & 3) * 4;
+
+ decode_1[mode](code, t, rgba);
+}
+
+
+#endif /* FEATURE_texture_fxt1 */
|