aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/mesa/shader/slang/slang_emit.c
diff options
context:
space:
mode:
Diffstat (limited to 'mesalib/src/mesa/shader/slang/slang_emit.c')
-rw-r--r--mesalib/src/mesa/shader/slang/slang_emit.c2518
1 files changed, 2518 insertions, 0 deletions
diff --git a/mesalib/src/mesa/shader/slang/slang_emit.c b/mesalib/src/mesa/shader/slang/slang_emit.c
new file mode 100644
index 000000000..3f455e064
--- /dev/null
+++ b/mesalib/src/mesa/shader/slang/slang_emit.c
@@ -0,0 +1,2518 @@
+/*
+ * Mesa 3-D graphics library
+ *
+ * Copyright (C) 2005-2008 Brian Paul All Rights Reserved.
+ * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file slang_emit.c
+ * Emit program instructions (PI code) from IR trees.
+ * \author Brian Paul
+ */
+
+/***
+ *** NOTES
+ ***
+ *** To emit GPU instructions, we basically just do an in-order traversal
+ *** of the IR tree.
+ ***/
+
+
+#include "main/imports.h"
+#include "main/context.h"
+#include "main/macros.h"
+#include "shader/program.h"
+#include "shader/prog_instruction.h"
+#include "shader/prog_parameter.h"
+#include "shader/prog_print.h"
+#include "slang_builtin.h"
+#include "slang_emit.h"
+#include "slang_mem.h"
+
+
+#define PEEPHOLE_OPTIMIZATIONS 1
+#define ANNOTATE 0
+
+
+typedef struct
+{
+ slang_info_log *log;
+ slang_var_table *vt;
+ struct gl_program *prog;
+ struct gl_program **Subroutines;
+ GLuint NumSubroutines;
+
+ GLuint MaxInstructions; /**< size of prog->Instructions[] buffer */
+
+ GLboolean UnresolvedFunctions;
+
+ /* code-gen options */
+ GLboolean EmitHighLevelInstructions;
+ GLboolean EmitCondCodes;
+ GLboolean EmitComments;
+ GLboolean EmitBeginEndSub; /* XXX TEMPORARY */
+} slang_emit_info;
+
+
+
+static struct gl_program *
+new_subroutine(slang_emit_info *emitInfo, GLuint *id)
+{
+ GET_CURRENT_CONTEXT(ctx);
+ const GLuint n = emitInfo->NumSubroutines;
+
+ emitInfo->Subroutines = (struct gl_program **)
+ _mesa_realloc(emitInfo->Subroutines,
+ n * sizeof(struct gl_program),
+ (n + 1) * sizeof(struct gl_program));
+ emitInfo->Subroutines[n] = ctx->Driver.NewProgram(ctx, emitInfo->prog->Target, 0);
+ emitInfo->Subroutines[n]->Parameters = emitInfo->prog->Parameters;
+ emitInfo->NumSubroutines++;
+ *id = n;
+ return emitInfo->Subroutines[n];
+}
+
+
+/**
+ * Convert a writemask to a swizzle. Used for testing cond codes because
+ * we only want to test the cond code component(s) that was set by the
+ * previous instruction.
+ */
+static GLuint
+writemask_to_swizzle(GLuint writemask)
+{
+ if (writemask == WRITEMASK_X)
+ return SWIZZLE_XXXX;
+ if (writemask == WRITEMASK_Y)
+ return SWIZZLE_YYYY;
+ if (writemask == WRITEMASK_Z)
+ return SWIZZLE_ZZZZ;
+ if (writemask == WRITEMASK_W)
+ return SWIZZLE_WWWW;
+ return SWIZZLE_XYZW; /* shouldn't be hit */
+}
+
+
+/**
+ * Convert a swizzle mask to a writemask.
+ * Note that the slang_ir_storage->Swizzle field can represent either a
+ * swizzle mask or a writemask, depending on how it's used. For example,
+ * when we parse "direction.yz" alone, we don't know whether .yz is a
+ * writemask or a swizzle. In this case, we encode ".yz" in store->Swizzle
+ * as a swizzle mask (.yz?? actually). Later, if direction.yz is used as
+ * an R-value, we use store->Swizzle as-is. Otherwise, if direction.yz is
+ * used as an L-value, we convert it to a writemask.
+ */
+static GLuint
+swizzle_to_writemask(GLuint swizzle)
+{
+ GLuint i, writemask = 0x0;
+ for (i = 0; i < 4; i++) {
+ GLuint swz = GET_SWZ(swizzle, i);
+ if (swz <= SWIZZLE_W) {
+ writemask |= (1 << swz);
+ }
+ }
+ return writemask;
+}
+
+
+/**
+ * Swizzle a swizzle (function composition).
+ * That is, return swz2(swz1), or said another way: swz1.szw2
+ * Example: swizzle_swizzle(".zwxx", ".xxyw") yields ".zzwx"
+ */
+GLuint
+_slang_swizzle_swizzle(GLuint swz1, GLuint swz2)
+{
+ GLuint i, swz, s[4];
+ for (i = 0; i < 4; i++) {
+ GLuint c = GET_SWZ(swz2, i);
+ if (c <= SWIZZLE_W)
+ s[i] = GET_SWZ(swz1, c);
+ else
+ s[i] = c;
+ }
+ swz = MAKE_SWIZZLE4(s[0], s[1], s[2], s[3]);
+ return swz;
+}
+
+
+/**
+ * Return the default swizzle mask for accessing a variable of the
+ * given size (in floats). If size = 1, comp is used to identify
+ * which component [0..3] of the register holds the variable.
+ */
+GLuint
+_slang_var_swizzle(GLint size, GLint comp)
+{
+ switch (size) {
+ case 1:
+ return MAKE_SWIZZLE4(comp, SWIZZLE_NIL, SWIZZLE_NIL, SWIZZLE_NIL);
+ case 2:
+ return MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_NIL, SWIZZLE_NIL);
+ case 3:
+ return MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_NIL);
+ default:
+ return SWIZZLE_XYZW;
+ }
+}
+
+
+
+/**
+ * Allocate storage for the given node (if it hasn't already been allocated).
+ *
+ * Typically this is temporary storage for an intermediate result (such as
+ * for a multiply or add, etc).
+ *
+ * If n->Store does not exist it will be created and will be of the size
+ * specified by defaultSize.
+ */
+static GLboolean
+alloc_node_storage(slang_emit_info *emitInfo, slang_ir_node *n,
+ GLint defaultSize)
+{
+ assert(!n->Var);
+ if (!n->Store) {
+ assert(defaultSize > 0);
+ n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, defaultSize);
+ }
+
+ /* now allocate actual register(s). I.e. set n->Store->Index >= 0 */
+ if (n->Store->Index < 0) {
+ if (!_slang_alloc_temp(emitInfo->vt, n->Store)) {
+ slang_info_log_error(emitInfo->log,
+ "Ran out of registers, too many temporaries");
+ _slang_free(n->Store);
+ n->Store = NULL;
+ return GL_FALSE;
+ }
+ }
+ return GL_TRUE;
+}
+
+
+/**
+ * Free temporary storage, if n->Store is, in fact, temp storage.
+ * Otherwise, no-op.
+ */
+static void
+free_node_storage(slang_var_table *vt, slang_ir_node *n)
+{
+ if (n->Store->File == PROGRAM_TEMPORARY &&
+ n->Store->Index >= 0 &&
+ n->Opcode != IR_SWIZZLE) {
+ if (_slang_is_temp(vt, n->Store)) {
+ _slang_free_temp(vt, n->Store);
+ n->Store->Index = -1;
+ n->Store = NULL; /* XXX this may not be needed */
+ }
+ }
+}
+
+
+/**
+ * Helper function to allocate a short-term temporary.
+ * Free it with _slang_free_temp().
+ */
+static GLboolean
+alloc_local_temp(slang_emit_info *emitInfo, slang_ir_storage *temp, GLint size)
+{
+ assert(size >= 1);
+ assert(size <= 4);
+ _mesa_bzero(temp, sizeof(*temp));
+ temp->Size = size;
+ temp->File = PROGRAM_TEMPORARY;
+ temp->Index = -1;
+ return _slang_alloc_temp(emitInfo->vt, temp);
+}
+
+
+/**
+ * Remove any SWIZZLE_NIL terms from given swizzle mask.
+ * For a swizzle like .z??? generate .zzzz (replicate single component).
+ * Else, for .wx?? generate .wxzw (insert default component for the position).
+ */
+static GLuint
+fix_swizzle(GLuint swizzle)
+{
+ GLuint c0 = GET_SWZ(swizzle, 0),
+ c1 = GET_SWZ(swizzle, 1),
+ c2 = GET_SWZ(swizzle, 2),
+ c3 = GET_SWZ(swizzle, 3);
+ if (c1 == SWIZZLE_NIL && c2 == SWIZZLE_NIL && c3 == SWIZZLE_NIL) {
+ /* smear first component across all positions */
+ c1 = c2 = c3 = c0;
+ }
+ else {
+ /* insert default swizzle components */
+ if (c0 == SWIZZLE_NIL)
+ c0 = SWIZZLE_X;
+ if (c1 == SWIZZLE_NIL)
+ c1 = SWIZZLE_Y;
+ if (c2 == SWIZZLE_NIL)
+ c2 = SWIZZLE_Z;
+ if (c3 == SWIZZLE_NIL)
+ c3 = SWIZZLE_W;
+ }
+ return MAKE_SWIZZLE4(c0, c1, c2, c3);
+}
+
+
+
+/**
+ * Convert IR storage to an instruction dst register.
+ */
+static void
+storage_to_dst_reg(struct prog_dst_register *dst, const slang_ir_storage *st)
+{
+ const GLboolean relAddr = st->RelAddr;
+ const GLint size = st->Size;
+ GLint index = st->Index;
+ GLuint swizzle = st->Swizzle;
+
+ assert(index >= 0);
+ /* if this is storage relative to some parent storage, walk up the tree */
+ while (st->Parent) {
+ st = st->Parent;
+ assert(st->Index >= 0);
+ index += st->Index;
+ swizzle = _slang_swizzle_swizzle(st->Swizzle, swizzle);
+ }
+
+ assert(st->File != PROGRAM_UNDEFINED);
+ dst->File = st->File;
+
+ assert(index >= 0);
+ dst->Index = index;
+
+ assert(size >= 1);
+ assert(size <= 4);
+
+ if (swizzle != SWIZZLE_XYZW) {
+ dst->WriteMask = swizzle_to_writemask(swizzle);
+ }
+ else {
+ switch (size) {
+ case 1:
+ dst->WriteMask = WRITEMASK_X << GET_SWZ(st->Swizzle, 0);
+ break;
+ case 2:
+ dst->WriteMask = WRITEMASK_XY;
+ break;
+ case 3:
+ dst->WriteMask = WRITEMASK_XYZ;
+ break;
+ case 4:
+ dst->WriteMask = WRITEMASK_XYZW;
+ break;
+ default:
+ ; /* error would have been caught above */
+ }
+ }
+
+ dst->RelAddr = relAddr;
+}
+
+
+/**
+ * Convert IR storage to an instruction src register.
+ */
+static void
+storage_to_src_reg(struct prog_src_register *src, const slang_ir_storage *st)
+{
+ const GLboolean relAddr = st->RelAddr;
+ GLint index = st->Index;
+ GLuint swizzle = st->Swizzle;
+
+ /* if this is storage relative to some parent storage, walk up the tree */
+ assert(index >= 0);
+ while (st->Parent) {
+ st = st->Parent;
+ if (st->Index < 0) {
+ /* an error should have been reported already */
+ return;
+ }
+ assert(st->Index >= 0);
+ index += st->Index;
+ swizzle = _slang_swizzle_swizzle(fix_swizzle(st->Swizzle), swizzle);
+ }
+
+ assert(st->File >= 0);
+#if 1 /* XXX temporary */
+ if (st->File == PROGRAM_UNDEFINED) {
+ slang_ir_storage *st0 = (slang_ir_storage *) st;
+ st0->File = PROGRAM_TEMPORARY;
+ }
+#endif
+ assert(st->File < PROGRAM_UNDEFINED);
+ src->File = st->File;
+
+ assert(index >= 0);
+ src->Index = index;
+
+ swizzle = fix_swizzle(swizzle);
+ assert(GET_SWZ(swizzle, 0) <= SWIZZLE_W);
+ assert(GET_SWZ(swizzle, 1) <= SWIZZLE_W);
+ assert(GET_SWZ(swizzle, 2) <= SWIZZLE_W);
+ assert(GET_SWZ(swizzle, 3) <= SWIZZLE_W);
+ src->Swizzle = swizzle;
+
+ src->RelAddr = relAddr;
+}
+
+
+/*
+ * Setup storage pointing to a scalar constant/literal.
+ */
+static void
+constant_to_storage(slang_emit_info *emitInfo,
+ GLfloat val,
+ slang_ir_storage *store)
+{
+ GLuint swizzle;
+ GLint reg;
+ GLfloat value[4];
+
+ value[0] = val;
+ reg = _mesa_add_unnamed_constant(emitInfo->prog->Parameters,
+ value, 1, &swizzle);
+
+ memset(store, 0, sizeof(*store));
+ store->File = PROGRAM_CONSTANT;
+ store->Index = reg;
+ store->Swizzle = swizzle;
+}
+
+
+/**
+ * Add new instruction at end of given program.
+ * \param prog the program to append instruction onto
+ * \param opcode opcode for the new instruction
+ * \return pointer to the new instruction
+ */
+static struct prog_instruction *
+new_instruction(slang_emit_info *emitInfo, gl_inst_opcode opcode)
+{
+ struct gl_program *prog = emitInfo->prog;
+ struct prog_instruction *inst;
+
+#if 0
+ /* print prev inst */
+ if (prog->NumInstructions > 0) {
+ _mesa_print_instruction(prog->Instructions + prog->NumInstructions - 1);
+ }
+#endif
+ assert(prog->NumInstructions <= emitInfo->MaxInstructions);
+
+ if (prog->NumInstructions == emitInfo->MaxInstructions) {
+ /* grow the instruction buffer */
+ emitInfo->MaxInstructions += 20;
+ prog->Instructions =
+ _mesa_realloc_instructions(prog->Instructions,
+ prog->NumInstructions,
+ emitInfo->MaxInstructions);
+ }
+
+ inst = prog->Instructions + prog->NumInstructions;
+ prog->NumInstructions++;
+ _mesa_init_instructions(inst, 1);
+ inst->Opcode = opcode;
+ inst->BranchTarget = -1; /* invalid */
+ /*
+ printf("New inst %d: %p %s\n", prog->NumInstructions-1,(void*)inst,
+ _mesa_opcode_string(inst->Opcode));
+ */
+ return inst;
+}
+
+
+static struct prog_instruction *
+emit_arl_load(slang_emit_info *emitInfo,
+ gl_register_file file, GLint index, GLuint swizzle)
+{
+ struct prog_instruction *inst = new_instruction(emitInfo, OPCODE_ARL);
+ inst->SrcReg[0].File = file;
+ inst->SrcReg[0].Index = index;
+ inst->SrcReg[0].Swizzle = fix_swizzle(swizzle);
+ inst->DstReg.File = PROGRAM_ADDRESS;
+ inst->DstReg.Index = 0;
+ inst->DstReg.WriteMask = WRITEMASK_X;
+ return inst;
+}
+
+
+/**
+ * Emit a new instruction with given opcode, operands.
+ * At this point the instruction may have multiple indirect register
+ * loads/stores. We convert those into ARL loads and address-relative
+ * operands. See comments inside.
+ * At some point in the future we could directly emit indirectly addressed
+ * registers in Mesa GPU instructions.
+ */
+static struct prog_instruction *
+emit_instruction(slang_emit_info *emitInfo,
+ gl_inst_opcode opcode,
+ const slang_ir_storage *dst,
+ const slang_ir_storage *src0,
+ const slang_ir_storage *src1,
+ const slang_ir_storage *src2)
+{
+ struct prog_instruction *inst;
+ GLuint numIndirect = 0;
+ const slang_ir_storage *src[3];
+ slang_ir_storage newSrc[3], newDst;
+ GLuint i;
+ GLboolean isTemp[3];
+
+ isTemp[0] = isTemp[1] = isTemp[2] = GL_FALSE;
+
+ src[0] = src0;
+ src[1] = src1;
+ src[2] = src2;
+
+ /* count up how many operands are indirect loads */
+ for (i = 0; i < 3; i++) {
+ if (src[i] && src[i]->IsIndirect)
+ numIndirect++;
+ }
+ if (dst && dst->IsIndirect)
+ numIndirect++;
+
+ /* Take special steps for indirect register loads.
+ * If we had multiple address registers this would be simpler.
+ * For example, this GLSL code:
+ * x[i] = y[j] + z[k];
+ * would translate into something like:
+ * ARL ADDR.x, i;
+ * ARL ADDR.y, j;
+ * ARL ADDR.z, k;
+ * ADD TEMP[ADDR.x+5], TEMP[ADDR.y+9], TEMP[ADDR.z+4];
+ * But since we currently only have one address register we have to do this:
+ * ARL ADDR.x, i;
+ * MOV t1, TEMP[ADDR.x+9];
+ * ARL ADDR.x, j;
+ * MOV t2, TEMP[ADDR.x+4];
+ * ARL ADDR.x, k;
+ * ADD TEMP[ADDR.x+5], t1, t2;
+ * The code here figures this out...
+ */
+ if (numIndirect > 0) {
+ for (i = 0; i < 3; i++) {
+ if (src[i] && src[i]->IsIndirect) {
+ /* load the ARL register with the indirect register */
+ emit_arl_load(emitInfo,
+ src[i]->IndirectFile,
+ src[i]->IndirectIndex,
+ src[i]->IndirectSwizzle);
+
+ if (numIndirect > 1) {
+ /* Need to load src[i] into a temporary register */
+ slang_ir_storage srcRelAddr;
+ alloc_local_temp(emitInfo, &newSrc[i], src[i]->Size);
+ isTemp[i] = GL_TRUE;
+
+ /* set RelAddr flag on src register */
+ srcRelAddr = *src[i];
+ srcRelAddr.RelAddr = GL_TRUE;
+ srcRelAddr.IsIndirect = GL_FALSE; /* not really needed */
+
+ /* MOV newSrc, srcRelAddr; */
+ inst = emit_instruction(emitInfo,
+ OPCODE_MOV,
+ &newSrc[i],
+ &srcRelAddr,
+ NULL,
+ NULL);
+
+ src[i] = &newSrc[i];
+ }
+ else {
+ /* just rewrite the src[i] storage to be ARL-relative */
+ newSrc[i] = *src[i];
+ newSrc[i].RelAddr = GL_TRUE;
+ newSrc[i].IsIndirect = GL_FALSE; /* not really needed */
+ src[i] = &newSrc[i];
+ }
+ }
+ }
+ }
+
+ /* Take special steps for indirect dest register write */
+ if (dst && dst->IsIndirect) {
+ /* load the ARL register with the indirect register */
+ emit_arl_load(emitInfo,
+ dst->IndirectFile,
+ dst->IndirectIndex,
+ dst->IndirectSwizzle);
+ newDst = *dst;
+ newDst.RelAddr = GL_TRUE;
+ newDst.IsIndirect = GL_FALSE;
+ dst = &newDst;
+ }
+
+ /* OK, emit the instruction and its dst, src regs */
+ inst = new_instruction(emitInfo, opcode);
+ if (!inst)
+ return NULL;
+
+ if (dst)
+ storage_to_dst_reg(&inst->DstReg, dst);
+
+ for (i = 0; i < 3; i++) {
+ if (src[i])
+ storage_to_src_reg(&inst->SrcReg[i], src[i]);
+ }
+
+ /* Free any temp registers that we allocated above */
+ for (i = 0; i < 3; i++) {
+ if (isTemp[i])
+ _slang_free_temp(emitInfo->vt, &newSrc[i]);
+ }
+
+ return inst;
+}
+
+
+
+/**
+ * Put a comment on the given instruction.
+ */
+static void
+inst_comment(struct prog_instruction *inst, const char *comment)
+{
+ if (inst)
+ inst->Comment = _mesa_strdup(comment);
+}
+
+
+
+/**
+ * Return pointer to last instruction in program.
+ */
+static struct prog_instruction *
+prev_instruction(slang_emit_info *emitInfo)
+{
+ struct gl_program *prog = emitInfo->prog;
+ if (prog->NumInstructions == 0)
+ return NULL;
+ else
+ return prog->Instructions + prog->NumInstructions - 1;
+}
+
+
+static struct prog_instruction *
+emit(slang_emit_info *emitInfo, slang_ir_node *n);
+
+
+/**
+ * Return an annotation string for given node's storage.
+ */
+static char *
+storage_annotation(const slang_ir_node *n, const struct gl_program *prog)
+{
+#if ANNOTATE
+ const slang_ir_storage *st = n->Store;
+ static char s[100] = "";
+
+ if (!st)
+ return _mesa_strdup("");
+
+ switch (st->File) {
+ case PROGRAM_CONSTANT:
+ if (st->Index >= 0) {
+ const GLfloat *val = prog->Parameters->ParameterValues[st->Index];
+ if (st->Swizzle == SWIZZLE_NOOP)
+ sprintf(s, "{%g, %g, %g, %g}", val[0], val[1], val[2], val[3]);
+ else {
+ sprintf(s, "%g", val[GET_SWZ(st->Swizzle, 0)]);
+ }
+ }
+ break;
+ case PROGRAM_TEMPORARY:
+ if (n->Var)
+ sprintf(s, "%s", (char *) n->Var->a_name);
+ else
+ sprintf(s, "t[%d]", st->Index);
+ break;
+ case PROGRAM_STATE_VAR:
+ case PROGRAM_UNIFORM:
+ sprintf(s, "%s", prog->Parameters->Parameters[st->Index].Name);
+ break;
+ case PROGRAM_VARYING:
+ sprintf(s, "%s", prog->Varying->Parameters[st->Index].Name);
+ break;
+ case PROGRAM_INPUT:
+ sprintf(s, "input[%d]", st->Index);
+ break;
+ case PROGRAM_OUTPUT:
+ sprintf(s, "output[%d]", st->Index);
+ break;
+ default:
+ s[0] = 0;
+ }
+ return _mesa_strdup(s);
+#else
+ return NULL;
+#endif
+}
+
+
+/**
+ * Return an annotation string for an instruction.
+ */
+static char *
+instruction_annotation(gl_inst_opcode opcode, char *dstAnnot,
+ char *srcAnnot0, char *srcAnnot1, char *srcAnnot2)
+{
+#if ANNOTATE
+ const char *operator;
+ char *s;
+ int len = 50;
+
+ if (dstAnnot)
+ len += strlen(dstAnnot);
+ else
+ dstAnnot = _mesa_strdup("");
+
+ if (srcAnnot0)
+ len += strlen(srcAnnot0);
+ else
+ srcAnnot0 = _mesa_strdup("");
+
+ if (srcAnnot1)
+ len += strlen(srcAnnot1);
+ else
+ srcAnnot1 = _mesa_strdup("");
+
+ if (srcAnnot2)
+ len += strlen(srcAnnot2);
+ else
+ srcAnnot2 = _mesa_strdup("");
+
+ switch (opcode) {
+ case OPCODE_ADD:
+ operator = "+";
+ break;
+ case OPCODE_SUB:
+ operator = "-";
+ break;
+ case OPCODE_MUL:
+ operator = "*";
+ break;
+ case OPCODE_DP2:
+ operator = "DP2";
+ break;
+ case OPCODE_DP3:
+ operator = "DP3";
+ break;
+ case OPCODE_DP4:
+ operator = "DP4";
+ break;
+ case OPCODE_XPD:
+ operator = "XPD";
+ break;
+ case OPCODE_RSQ:
+ operator = "RSQ";
+ break;
+ case OPCODE_SGT:
+ operator = ">";
+ break;
+ default:
+ operator = ",";
+ }
+
+ s = (char *) malloc(len);
+ sprintf(s, "%s = %s %s %s %s", dstAnnot,
+ srcAnnot0, operator, srcAnnot1, srcAnnot2);
+ assert(_mesa_strlen(s) < len);
+
+ free(dstAnnot);
+ free(srcAnnot0);
+ free(srcAnnot1);
+ free(srcAnnot2);
+
+ return s;
+#else
+ return NULL;
+#endif
+}
+
+
+/**
+ * Emit an instruction that's just a comment.
+ */
+static struct prog_instruction *
+emit_comment(slang_emit_info *emitInfo, const char *comment)
+{
+ struct prog_instruction *inst = new_instruction(emitInfo, OPCODE_NOP);
+ inst_comment(inst, comment);
+ return inst;
+}
+
+
+/**
+ * Generate code for a simple arithmetic instruction.
+ * Either 1, 2 or 3 operands.
+ */
+static struct prog_instruction *
+emit_arith(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ const slang_ir_info *info = _slang_ir_info(n->Opcode);
+ struct prog_instruction *inst;
+ GLuint i;
+
+ assert(info);
+ assert(info->InstOpcode != OPCODE_NOP);
+
+#if PEEPHOLE_OPTIMIZATIONS
+ /* Look for MAD opportunity */
+ if (info->NumParams == 2 &&
+ n->Opcode == IR_ADD && n->Children[0]->Opcode == IR_MUL) {
+ /* found pattern IR_ADD(IR_MUL(A, B), C) */
+ emit(emitInfo, n->Children[0]->Children[0]); /* A */
+ emit(emitInfo, n->Children[0]->Children[1]); /* B */
+ emit(emitInfo, n->Children[1]); /* C */
+ alloc_node_storage(emitInfo, n, -1); /* dest */
+
+ inst = emit_instruction(emitInfo,
+ OPCODE_MAD,
+ n->Store,
+ n->Children[0]->Children[0]->Store,
+ n->Children[0]->Children[1]->Store,
+ n->Children[1]->Store);
+
+ free_node_storage(emitInfo->vt, n->Children[0]->Children[0]);
+ free_node_storage(emitInfo->vt, n->Children[0]->Children[1]);
+ free_node_storage(emitInfo->vt, n->Children[1]);
+ return inst;
+ }
+
+ if (info->NumParams == 2 &&
+ n->Opcode == IR_ADD && n->Children[1]->Opcode == IR_MUL) {
+ /* found pattern IR_ADD(A, IR_MUL(B, C)) */
+ emit(emitInfo, n->Children[0]); /* A */
+ emit(emitInfo, n->Children[1]->Children[0]); /* B */
+ emit(emitInfo, n->Children[1]->Children[1]); /* C */
+ alloc_node_storage(emitInfo, n, -1); /* dest */
+
+ inst = emit_instruction(emitInfo,
+ OPCODE_MAD,
+ n->Store,
+ n->Children[1]->Children[0]->Store,
+ n->Children[1]->Children[1]->Store,
+ n->Children[0]->Store);
+
+ free_node_storage(emitInfo->vt, n->Children[1]->Children[0]);
+ free_node_storage(emitInfo->vt, n->Children[1]->Children[1]);
+ free_node_storage(emitInfo->vt, n->Children[0]);
+ return inst;
+ }
+#endif
+
+ /* gen code for children, may involve temp allocation */
+ for (i = 0; i < info->NumParams; i++) {
+ emit(emitInfo, n->Children[i]);
+ if (!n->Children[i] || !n->Children[i]->Store) {
+ /* error recovery */
+ return NULL;
+ }
+ }
+
+ /* result storage */
+ alloc_node_storage(emitInfo, n, -1);
+
+ inst = emit_instruction(emitInfo,
+ info->InstOpcode,
+ n->Store, /* dest */
+ (info->NumParams > 0 ? n->Children[0]->Store : NULL),
+ (info->NumParams > 1 ? n->Children[1]->Store : NULL),
+ (info->NumParams > 2 ? n->Children[2]->Store : NULL)
+ );
+
+ /* free temps */
+ for (i = 0; i < info->NumParams; i++)
+ free_node_storage(emitInfo->vt, n->Children[i]);
+
+ return inst;
+}
+
+
+/**
+ * Emit code for == and != operators. These could normally be handled
+ * by emit_arith() except we need to be able to handle structure comparisons.
+ */
+static struct prog_instruction *
+emit_compare(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct prog_instruction *inst = NULL;
+ GLint size;
+
+ assert(n->Opcode == IR_EQUAL || n->Opcode == IR_NOTEQUAL);
+
+ /* gen code for children */
+ emit(emitInfo, n->Children[0]);
+ emit(emitInfo, n->Children[1]);
+
+ if (n->Children[0]->Store->Size != n->Children[1]->Store->Size) {
+ /* XXX this error should have been caught in slang_codegen.c */
+ slang_info_log_error(emitInfo->log, "invalid operands to == or !=");
+ n->Store = NULL;
+ return NULL;
+ }
+
+ /* final result is 1 bool */
+ if (!alloc_node_storage(emitInfo, n, 1))
+ return NULL;
+
+ size = n->Children[0]->Store->Size;
+
+ if (size == 1) {
+ gl_inst_opcode opcode = n->Opcode == IR_EQUAL ? OPCODE_SEQ : OPCODE_SNE;
+ inst = emit_instruction(emitInfo,
+ opcode,
+ n->Store, /* dest */
+ n->Children[0]->Store,
+ n->Children[1]->Store,
+ NULL);
+ }
+ else if (size <= 4) {
+ /* compare two vectors.
+ * Unfortunately, there's no instruction to compare vectors and
+ * return a scalar result. Do it with some compare and dot product
+ * instructions...
+ */
+ GLuint swizzle;
+ gl_inst_opcode dotOp;
+ slang_ir_storage tempStore;
+
+ if (!alloc_local_temp(emitInfo, &tempStore, 4)) {
+ n->Store = NULL;
+ return NULL;
+ /* out of temps */
+ }
+
+ if (size == 4) {
+ dotOp = OPCODE_DP4;
+ swizzle = SWIZZLE_XYZW;
+ }
+ else if (size == 3) {
+ dotOp = OPCODE_DP3;
+ swizzle = SWIZZLE_XYZW;
+ }
+ else {
+ assert(size == 2);
+ dotOp = OPCODE_DP3; /* XXX use OPCODE_DP2 eventually */
+ swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y);
+ }
+
+ /* Compute inequality (temp = (A != B)) */
+ inst = emit_instruction(emitInfo,
+ OPCODE_SNE,
+ &tempStore,
+ n->Children[0]->Store,
+ n->Children[1]->Store,
+ NULL);
+ inst_comment(inst, "Compare values");
+
+ /* Compute val = DOT(temp, temp) (reduction) */
+ inst = emit_instruction(emitInfo,
+ dotOp,
+ n->Store,
+ &tempStore,
+ &tempStore,
+ NULL);
+ inst->SrcReg[0].Swizzle = inst->SrcReg[1].Swizzle = swizzle; /*override*/
+ inst_comment(inst, "Reduce vec to bool");
+
+ _slang_free_temp(emitInfo->vt, &tempStore); /* free temp */
+
+ if (n->Opcode == IR_EQUAL) {
+ /* compute val = !val.x with SEQ val, val, 0; */
+ slang_ir_storage zero;
+ constant_to_storage(emitInfo, 0.0, &zero);
+ inst = emit_instruction(emitInfo,
+ OPCODE_SEQ,
+ n->Store, /* dest */
+ n->Store,
+ &zero,
+ NULL);
+ inst_comment(inst, "Invert true/false");
+ }
+ }
+ else {
+ /* size > 4, struct or array compare.
+ * XXX this won't work reliably for structs with padding!!
+ */
+ GLint i, num = (n->Children[0]->Store->Size + 3) / 4;
+ slang_ir_storage accTemp, sneTemp;
+
+ if (!alloc_local_temp(emitInfo, &accTemp, 4))
+ return NULL;
+
+ if (!alloc_local_temp(emitInfo, &sneTemp, 4))
+ return NULL;
+
+ for (i = 0; i < num; i++) {
+ slang_ir_storage srcStore0 = *n->Children[0]->Store;
+ slang_ir_storage srcStore1 = *n->Children[1]->Store;
+ srcStore0.Index += i;
+ srcStore1.Index += i;
+
+ if (i == 0) {
+ /* SNE accTemp, left[i], right[i] */
+ inst = emit_instruction(emitInfo, OPCODE_SNE,
+ &accTemp, /* dest */
+ &srcStore0,
+ &srcStore1,
+ NULL);
+ inst_comment(inst, "Begin struct/array comparison");
+ }
+ else {
+ /* SNE sneTemp, left[i], right[i] */
+ inst = emit_instruction(emitInfo, OPCODE_SNE,
+ &sneTemp, /* dest */
+ &srcStore0,
+ &srcStore1,
+ NULL);
+ /* ADD accTemp, accTemp, sneTemp; # like logical-OR */
+ inst = emit_instruction(emitInfo, OPCODE_ADD,
+ &accTemp, /* dest */
+ &accTemp,
+ &sneTemp,
+ NULL);
+ }
+ }
+
+ /* compute accTemp.x || accTemp.y || accTemp.z || accTemp.w with DOT4 */
+ inst = emit_instruction(emitInfo, OPCODE_DP4,
+ n->Store,
+ &accTemp,
+ &accTemp,
+ NULL);
+ inst_comment(inst, "End struct/array comparison");
+
+ if (n->Opcode == IR_EQUAL) {
+ /* compute tmp.x = !tmp.x via tmp.x = (tmp.x == 0) */
+ slang_ir_storage zero;
+ constant_to_storage(emitInfo, 0.0, &zero);
+ inst = emit_instruction(emitInfo, OPCODE_SEQ,
+ n->Store, /* dest */
+ n->Store,
+ &zero,
+ NULL);
+ inst_comment(inst, "Invert true/false");
+ }
+
+ _slang_free_temp(emitInfo->vt, &accTemp);
+ _slang_free_temp(emitInfo->vt, &sneTemp);
+ }
+
+ /* free temps */
+ free_node_storage(emitInfo->vt, n->Children[0]);
+ free_node_storage(emitInfo->vt, n->Children[1]);
+
+ return inst;
+}
+
+
+
+/**
+ * Generate code for an IR_CLAMP instruction.
+ */
+static struct prog_instruction *
+emit_clamp(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct prog_instruction *inst;
+ slang_ir_node tmpNode;
+
+ assert(n->Opcode == IR_CLAMP);
+ /* ch[0] = value
+ * ch[1] = min limit
+ * ch[2] = max limit
+ */
+
+ inst = emit(emitInfo, n->Children[0]);
+
+ /* If lower limit == 0.0 and upper limit == 1.0,
+ * set prev instruction's SaturateMode field to SATURATE_ZERO_ONE.
+ * Else,
+ * emit OPCODE_MIN, OPCODE_MAX sequence.
+ */
+#if 0
+ /* XXX this isn't quite finished yet */
+ if (n->Children[1]->Opcode == IR_FLOAT &&
+ n->Children[1]->Value[0] == 0.0 &&
+ n->Children[1]->Value[1] == 0.0 &&
+ n->Children[1]->Value[2] == 0.0 &&
+ n->Children[1]->Value[3] == 0.0 &&
+ n->Children[2]->Opcode == IR_FLOAT &&
+ n->Children[2]->Value[0] == 1.0 &&
+ n->Children[2]->Value[1] == 1.0 &&
+ n->Children[2]->Value[2] == 1.0 &&
+ n->Children[2]->Value[3] == 1.0) {
+ if (!inst) {
+ inst = prev_instruction(prog);
+ }
+ if (inst && inst->Opcode != OPCODE_NOP) {
+ /* and prev instruction's DstReg matches n->Children[0]->Store */
+ inst->SaturateMode = SATURATE_ZERO_ONE;
+ n->Store = n->Children[0]->Store;
+ return inst;
+ }
+ }
+#endif
+
+ if (!alloc_node_storage(emitInfo, n, n->Children[0]->Store->Size))
+ return NULL;
+
+ emit(emitInfo, n->Children[1]);
+ emit(emitInfo, n->Children[2]);
+
+ /* Some GPUs don't allow reading from output registers. So if the
+ * dest for this clamp() is an output reg, we can't use that reg for
+ * the intermediate result. Use a temp register instead.
+ */
+ _mesa_bzero(&tmpNode, sizeof(tmpNode));
+ alloc_node_storage(emitInfo, &tmpNode, n->Store->Size);
+
+ /* tmp = max(ch[0], ch[1]) */
+ inst = emit_instruction(emitInfo, OPCODE_MAX,
+ tmpNode.Store, /* dest */
+ n->Children[0]->Store,
+ n->Children[1]->Store,
+ NULL);
+
+ /* n->dest = min(tmp, ch[2]) */
+ inst = emit_instruction(emitInfo, OPCODE_MIN,
+ n->Store, /* dest */
+ tmpNode.Store,
+ n->Children[2]->Store,
+ NULL);
+
+ free_node_storage(emitInfo->vt, &tmpNode);
+
+ return inst;
+}
+
+
+static struct prog_instruction *
+emit_negation(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ /* Implement as MOV dst, -src; */
+ /* XXX we could look at the previous instruction and in some circumstances
+ * modify it to accomplish the negation.
+ */
+ struct prog_instruction *inst;
+
+ emit(emitInfo, n->Children[0]);
+
+ if (!alloc_node_storage(emitInfo, n, n->Children[0]->Store->Size))
+ return NULL;
+
+ inst = emit_instruction(emitInfo,
+ OPCODE_MOV,
+ n->Store, /* dest */
+ n->Children[0]->Store,
+ NULL,
+ NULL);
+ inst->SrcReg[0].Negate = NEGATE_XYZW;
+ return inst;
+}
+
+
+static struct prog_instruction *
+emit_label(slang_emit_info *emitInfo, const slang_ir_node *n)
+{
+ assert(n->Label);
+#if 0
+ /* XXX this fails in loop tail code - investigate someday */
+ assert(_slang_label_get_location(n->Label) < 0);
+ _slang_label_set_location(n->Label, emitInfo->prog->NumInstructions,
+ emitInfo->prog);
+#else
+ if (_slang_label_get_location(n->Label) < 0)
+ _slang_label_set_location(n->Label, emitInfo->prog->NumInstructions,
+ emitInfo->prog);
+#endif
+ return NULL;
+}
+
+
+/**
+ * Emit code for a function call.
+ * Note that for each time a function is called, we emit the function's
+ * body code again because the set of available registers may be different.
+ */
+static struct prog_instruction *
+emit_fcall(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct gl_program *progSave;
+ struct prog_instruction *inst;
+ GLuint subroutineId;
+ GLuint maxInstSave;
+
+ assert(n->Opcode == IR_CALL);
+ assert(n->Label);
+
+ /* save/push cur program */
+ maxInstSave = emitInfo->MaxInstructions;
+ progSave = emitInfo->prog;
+
+ emitInfo->prog = new_subroutine(emitInfo, &subroutineId);
+ emitInfo->MaxInstructions = emitInfo->prog->NumInstructions;
+
+ _slang_label_set_location(n->Label, emitInfo->prog->NumInstructions,
+ emitInfo->prog);
+
+ if (emitInfo->EmitBeginEndSub) {
+ /* BGNSUB isn't a real instruction.
+ * We require a label (i.e. "foobar:") though, if we're going to
+ * print the program in the NV format. The BNGSUB instruction is
+ * really just a NOP to attach the label to.
+ */
+ inst = new_instruction(emitInfo, OPCODE_BGNSUB);
+ inst_comment(inst, n->Label->Name);
+ }
+
+ /* body of function: */
+ emit(emitInfo, n->Children[0]);
+ n->Store = n->Children[0]->Store;
+
+ /* add RET instruction now, if needed */
+ inst = prev_instruction(emitInfo);
+ if (inst && inst->Opcode != OPCODE_RET) {
+ inst = new_instruction(emitInfo, OPCODE_RET);
+ }
+
+ if (emitInfo->EmitBeginEndSub) {
+ inst = new_instruction(emitInfo, OPCODE_ENDSUB);
+ inst_comment(inst, n->Label->Name);
+ }
+
+ /* pop/restore cur program */
+ emitInfo->prog = progSave;
+ emitInfo->MaxInstructions = maxInstSave;
+
+ /* emit the function call */
+ inst = new_instruction(emitInfo, OPCODE_CAL);
+ /* The branch target is just the subroutine number (changed later) */
+ inst->BranchTarget = subroutineId;
+ inst_comment(inst, n->Label->Name);
+ assert(inst->BranchTarget >= 0);
+
+ return inst;
+}
+
+
+/**
+ * Emit code for a 'return' statement.
+ */
+static struct prog_instruction *
+emit_return(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct prog_instruction *inst;
+ assert(n);
+ assert(n->Opcode == IR_RETURN);
+ assert(n->Label);
+ inst = new_instruction(emitInfo, OPCODE_RET);
+ inst->DstReg.CondMask = COND_TR; /* always return */
+ return inst;
+}
+
+
+static struct prog_instruction *
+emit_kill(slang_emit_info *emitInfo)
+{
+ struct gl_fragment_program *fp;
+ struct prog_instruction *inst;
+ /* NV-KILL - discard fragment depending on condition code.
+ * Note that ARB-KILL depends on sign of vector operand.
+ */
+ inst = new_instruction(emitInfo, OPCODE_KIL_NV);
+ inst->DstReg.CondMask = COND_TR; /* always kill */
+
+ assert(emitInfo->prog->Target == GL_FRAGMENT_PROGRAM_ARB);
+ fp = (struct gl_fragment_program *) emitInfo->prog;
+ fp->UsesKill = GL_TRUE;
+
+ return inst;
+}
+
+
+static struct prog_instruction *
+emit_tex(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct prog_instruction *inst;
+ gl_inst_opcode opcode;
+ GLboolean shadow = GL_FALSE;
+
+ switch (n->Opcode) {
+ case IR_TEX:
+ opcode = OPCODE_TEX;
+ break;
+ case IR_TEX_SH:
+ opcode = OPCODE_TEX;
+ shadow = GL_TRUE;
+ break;
+ case IR_TEXB:
+ opcode = OPCODE_TXB;
+ break;
+ case IR_TEXB_SH:
+ opcode = OPCODE_TXB;
+ shadow = GL_TRUE;
+ break;
+ case IR_TEXP:
+ opcode = OPCODE_TXP;
+ break;
+ case IR_TEXP_SH:
+ opcode = OPCODE_TXP;
+ shadow = GL_TRUE;
+ break;
+ default:
+ _mesa_problem(NULL, "Bad IR TEX code");
+ return NULL;
+ }
+
+ if (n->Children[0]->Opcode == IR_ELEMENT) {
+ /* array is the sampler (a uniform which'll indicate the texture unit) */
+ assert(n->Children[0]->Children[0]->Store);
+ assert(n->Children[0]->Children[0]->Store->File == PROGRAM_SAMPLER);
+
+ emit(emitInfo, n->Children[0]);
+
+ n->Children[0]->Var = n->Children[0]->Children[0]->Var;
+ } else {
+ /* this is the sampler (a uniform which'll indicate the texture unit) */
+ assert(n->Children[0]->Store);
+ assert(n->Children[0]->Store->File == PROGRAM_SAMPLER);
+ }
+
+ /* emit code for the texcoord operand */
+ (void) emit(emitInfo, n->Children[1]);
+
+ /* alloc storage for result of texture fetch */
+ if (!alloc_node_storage(emitInfo, n, 4))
+ return NULL;
+
+ /* emit TEX instruction; Child[1] is the texcoord */
+ inst = emit_instruction(emitInfo,
+ opcode,
+ n->Store,
+ n->Children[1]->Store,
+ NULL,
+ NULL);
+
+ inst->TexShadow = shadow;
+
+ /* Store->Index is the uniform/sampler index */
+ assert(n->Children[0]->Store->Index >= 0);
+ inst->TexSrcUnit = n->Children[0]->Store->Index;
+ inst->TexSrcTarget = n->Children[0]->Store->TexTarget;
+
+ /* mark the sampler as being used */
+ _mesa_use_uniform(emitInfo->prog->Parameters,
+ (char *) n->Children[0]->Var->a_name);
+
+ return inst;
+}
+
+
+/**
+ * Assignment/copy
+ */
+static struct prog_instruction *
+emit_copy(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct prog_instruction *inst;
+
+ assert(n->Opcode == IR_COPY);
+
+ /* lhs */
+ emit(emitInfo, n->Children[0]);
+ if (!n->Children[0]->Store || n->Children[0]->Store->Index < 0) {
+ /* an error should have been already recorded */
+ return NULL;
+ }
+
+ /* rhs */
+ assert(n->Children[1]);
+ inst = emit(emitInfo, n->Children[1]);
+
+ if (!n->Children[1]->Store || n->Children[1]->Store->Index < 0) {
+ if (!emitInfo->log->text && !emitInfo->UnresolvedFunctions) {
+ /* XXX this error should have been caught in slang_codegen.c */
+ slang_info_log_error(emitInfo->log, "invalid assignment");
+ }
+ return NULL;
+ }
+
+ assert(n->Children[1]->Store->Index >= 0);
+
+ /*assert(n->Children[0]->Store->Size == n->Children[1]->Store->Size);*/
+
+ n->Store = n->Children[0]->Store;
+
+ if (n->Store->File == PROGRAM_SAMPLER) {
+ /* no code generated for sampler assignments,
+ * just copy the sampler index/target at compile time.
+ */
+ n->Store->Index = n->Children[1]->Store->Index;
+ n->Store->TexTarget = n->Children[1]->Store->TexTarget;
+ return NULL;
+ }
+
+#if PEEPHOLE_OPTIMIZATIONS
+ if (inst &&
+ (n->Children[1]->Opcode != IR_SWIZZLE) &&
+ _slang_is_temp(emitInfo->vt, n->Children[1]->Store) &&
+ (inst->DstReg.File == n->Children[1]->Store->File) &&
+ (inst->DstReg.Index == n->Children[1]->Store->Index) &&
+ !n->Children[0]->Store->IsIndirect &&
+ n->Children[0]->Store->Size <= 4) {
+ /* Peephole optimization:
+ * The Right-Hand-Side has its results in a temporary place.
+ * Modify the RHS (and the prev instruction) to store its results
+ * in the destination specified by n->Children[0].
+ * Then, this MOVE is a no-op.
+ * Ex:
+ * MUL tmp, x, y;
+ * MOV a, tmp;
+ * becomes:
+ * MUL a, x, y;
+ */
+
+ /* fixup the previous instruction (which stored the RHS result) */
+ assert(n->Children[0]->Store->Index >= 0);
+ storage_to_dst_reg(&inst->DstReg, n->Children[0]->Store);
+ return inst;
+ }
+ else
+#endif
+ {
+ if (n->Children[0]->Store->Size > 4) {
+ /* move matrix/struct etc (block of registers) */
+ slang_ir_storage dstStore = *n->Children[0]->Store;
+ slang_ir_storage srcStore = *n->Children[1]->Store;
+ GLint size = srcStore.Size;
+ ASSERT(n->Children[1]->Store->Swizzle == SWIZZLE_NOOP);
+ dstStore.Size = 4;
+ srcStore.Size = 4;
+ while (size >= 4) {
+ inst = emit_instruction(emitInfo, OPCODE_MOV,
+ &dstStore,
+ &srcStore,
+ NULL,
+ NULL);
+ inst_comment(inst, "IR_COPY block");
+ srcStore.Index++;
+ dstStore.Index++;
+ size -= 4;
+ }
+ }
+ else {
+ /* single register move */
+ char *srcAnnot, *dstAnnot;
+ assert(n->Children[0]->Store->Index >= 0);
+ inst = emit_instruction(emitInfo, OPCODE_MOV,
+ n->Children[0]->Store, /* dest */
+ n->Children[1]->Store,
+ NULL,
+ NULL);
+ dstAnnot = storage_annotation(n->Children[0], emitInfo->prog);
+ srcAnnot = storage_annotation(n->Children[1], emitInfo->prog);
+ inst->Comment = instruction_annotation(inst->Opcode, dstAnnot,
+ srcAnnot, NULL, NULL);
+ }
+ free_node_storage(emitInfo->vt, n->Children[1]);
+ return inst;
+ }
+}
+
+
+/**
+ * An IR_COND node wraps a boolean expression which is used by an
+ * IF or WHILE test. This is where we'll set condition codes, if needed.
+ */
+static struct prog_instruction *
+emit_cond(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct prog_instruction *inst;
+
+ assert(n->Opcode == IR_COND);
+
+ if (!n->Children[0])
+ return NULL;
+
+ /* emit code for the expression */
+ inst = emit(emitInfo, n->Children[0]);
+
+ if (!n->Children[0]->Store) {
+ /* error recovery */
+ return NULL;
+ }
+
+ assert(n->Children[0]->Store);
+ /*assert(n->Children[0]->Store->Size == 1);*/
+
+ if (emitInfo->EmitCondCodes) {
+ if (inst &&
+ n->Children[0]->Store &&
+ inst->DstReg.File == n->Children[0]->Store->File &&
+ inst->DstReg.Index == n->Children[0]->Store->Index) {
+ /* The previous instruction wrote to the register who's value
+ * we're testing. Just fix that instruction so that the
+ * condition codes are computed.
+ */
+ inst->CondUpdate = GL_TRUE;
+ n->Store = n->Children[0]->Store;
+ return inst;
+ }
+ else {
+ /* This'll happen for things like "if (i) ..." where no code
+ * is normally generated for the expression "i".
+ * Generate a move instruction just to set condition codes.
+ */
+ if (!alloc_node_storage(emitInfo, n, 1))
+ return NULL;
+ inst = emit_instruction(emitInfo, OPCODE_MOV,
+ n->Store, /* dest */
+ n->Children[0]->Store,
+ NULL,
+ NULL);
+ inst->CondUpdate = GL_TRUE;
+ inst_comment(inst, "COND expr");
+ _slang_free_temp(emitInfo->vt, n->Store);
+ return inst;
+ }
+ }
+ else {
+ /* No-op: the boolean result of the expression is in a regular reg */
+ n->Store = n->Children[0]->Store;
+ return inst;
+ }
+}
+
+
+/**
+ * Logical-NOT
+ */
+static struct prog_instruction *
+emit_not(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ static const struct {
+ gl_inst_opcode op, opNot;
+ } operators[] = {
+ { OPCODE_SLT, OPCODE_SGE },
+ { OPCODE_SLE, OPCODE_SGT },
+ { OPCODE_SGT, OPCODE_SLE },
+ { OPCODE_SGE, OPCODE_SLT },
+ { OPCODE_SEQ, OPCODE_SNE },
+ { OPCODE_SNE, OPCODE_SEQ },
+ { 0, 0 }
+ };
+ struct prog_instruction *inst;
+ slang_ir_storage zero;
+ GLuint i;
+
+ /* child expr */
+ inst = emit(emitInfo, n->Children[0]);
+
+#if PEEPHOLE_OPTIMIZATIONS
+ if (inst) {
+ /* if the prev instruction was a comparison instruction, invert it */
+ for (i = 0; operators[i].op; i++) {
+ if (inst->Opcode == operators[i].op) {
+ inst->Opcode = operators[i].opNot;
+ n->Store = n->Children[0]->Store;
+ return inst;
+ }
+ }
+ }
+#endif
+
+ /* else, invert using SEQ (v = v == 0) */
+ if (!alloc_node_storage(emitInfo, n, n->Children[0]->Store->Size))
+ return NULL;
+
+ constant_to_storage(emitInfo, 0.0, &zero);
+ inst = emit_instruction(emitInfo,
+ OPCODE_SEQ,
+ n->Store,
+ n->Children[0]->Store,
+ &zero,
+ NULL);
+ inst_comment(inst, "NOT");
+
+ free_node_storage(emitInfo->vt, n->Children[0]);
+
+ return inst;
+}
+
+
+static struct prog_instruction *
+emit_if(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct gl_program *prog = emitInfo->prog;
+ GLuint ifInstLoc, elseInstLoc = 0;
+ GLuint condWritemask = 0;
+
+ /* emit condition expression code */
+ {
+ struct prog_instruction *inst;
+ inst = emit(emitInfo, n->Children[0]);
+ if (emitInfo->EmitCondCodes) {
+ if (!inst) {
+ /* error recovery */
+ return NULL;
+ }
+ condWritemask = inst->DstReg.WriteMask;
+ }
+ }
+
+ if (!n->Children[0]->Store)
+ return NULL;
+
+#if 0
+ assert(n->Children[0]->Store->Size == 1); /* a bool! */
+#endif
+
+ ifInstLoc = prog->NumInstructions;
+ if (emitInfo->EmitHighLevelInstructions) {
+ if (emitInfo->EmitCondCodes) {
+ /* IF condcode THEN ... */
+ struct prog_instruction *ifInst;
+ ifInst = new_instruction(emitInfo, OPCODE_IF);
+ ifInst->DstReg.CondMask = COND_NE; /* if cond is non-zero */
+ /* only test the cond code (1 of 4) that was updated by the
+ * previous instruction.
+ */
+ ifInst->DstReg.CondSwizzle = writemask_to_swizzle(condWritemask);
+ }
+ else {
+ /* IF src[0] THEN ... */
+ emit_instruction(emitInfo, OPCODE_IF,
+ NULL, /* dst */
+ n->Children[0]->Store, /* op0 */
+ NULL,
+ NULL);
+ }
+ }
+ else {
+ /* conditional jump to else, or endif */
+ struct prog_instruction *ifInst = new_instruction(emitInfo, OPCODE_BRA);
+ ifInst->DstReg.CondMask = COND_EQ; /* BRA if cond is zero */
+ inst_comment(ifInst, "if zero");
+ ifInst->DstReg.CondSwizzle = writemask_to_swizzle(condWritemask);
+ }
+
+ /* if body */
+ emit(emitInfo, n->Children[1]);
+
+ if (n->Children[2]) {
+ /* have else body */
+ elseInstLoc = prog->NumInstructions;
+ if (emitInfo->EmitHighLevelInstructions) {
+ (void) new_instruction(emitInfo, OPCODE_ELSE);
+ }
+ else {
+ /* jump to endif instruction */
+ struct prog_instruction *inst;
+ inst = new_instruction(emitInfo, OPCODE_BRA);
+ inst_comment(inst, "else");
+ inst->DstReg.CondMask = COND_TR; /* always branch */
+ }
+ prog->Instructions[ifInstLoc].BranchTarget = prog->NumInstructions;
+ emit(emitInfo, n->Children[2]);
+ }
+ else {
+ /* no else body */
+ prog->Instructions[ifInstLoc].BranchTarget = prog->NumInstructions;
+ }
+
+ if (emitInfo->EmitHighLevelInstructions) {
+ (void) new_instruction(emitInfo, OPCODE_ENDIF);
+ }
+
+ if (n->Children[2]) {
+ prog->Instructions[elseInstLoc].BranchTarget = prog->NumInstructions;
+ }
+ return NULL;
+}
+
+
+static struct prog_instruction *
+emit_loop(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct gl_program *prog = emitInfo->prog;
+ struct prog_instruction *endInst;
+ GLuint beginInstLoc, tailInstLoc, endInstLoc;
+ slang_ir_node *ir;
+
+ /* emit OPCODE_BGNLOOP */
+ beginInstLoc = prog->NumInstructions;
+ if (emitInfo->EmitHighLevelInstructions) {
+ (void) new_instruction(emitInfo, OPCODE_BGNLOOP);
+ }
+
+ /* body */
+ emit(emitInfo, n->Children[0]);
+
+ /* tail */
+ tailInstLoc = prog->NumInstructions;
+ if (n->Children[1]) {
+ if (emitInfo->EmitComments)
+ emit_comment(emitInfo, "Loop tail code:");
+ emit(emitInfo, n->Children[1]);
+ }
+
+ endInstLoc = prog->NumInstructions;
+ if (emitInfo->EmitHighLevelInstructions) {
+ /* emit OPCODE_ENDLOOP */
+ endInst = new_instruction(emitInfo, OPCODE_ENDLOOP);
+ }
+ else {
+ /* emit unconditional BRA-nch */
+ endInst = new_instruction(emitInfo, OPCODE_BRA);
+ endInst->DstReg.CondMask = COND_TR; /* always true */
+ }
+ /* ENDLOOP's BranchTarget points to the BGNLOOP inst */
+ endInst->BranchTarget = beginInstLoc;
+
+ if (emitInfo->EmitHighLevelInstructions) {
+ /* BGNLOOP's BranchTarget points to the ENDLOOP inst */
+ prog->Instructions[beginInstLoc].BranchTarget = prog->NumInstructions -1;
+ }
+
+ /* Done emitting loop code. Now walk over the loop's linked list of
+ * BREAK and CONT nodes, filling in their BranchTarget fields (which
+ * will point to the ENDLOOP+1 or BGNLOOP instructions, respectively).
+ */
+ for (ir = n->List; ir; ir = ir->List) {
+ struct prog_instruction *inst = prog->Instructions + ir->InstLocation;
+ assert(inst->BranchTarget < 0);
+ if (ir->Opcode == IR_BREAK ||
+ ir->Opcode == IR_BREAK_IF_TRUE) {
+ assert(inst->Opcode == OPCODE_BRK ||
+ inst->Opcode == OPCODE_BRA);
+ /* go to instruction after end of loop */
+ inst->BranchTarget = endInstLoc + 1;
+ }
+ else {
+ assert(ir->Opcode == IR_CONT ||
+ ir->Opcode == IR_CONT_IF_TRUE);
+ assert(inst->Opcode == OPCODE_CONT ||
+ inst->Opcode == OPCODE_BRA);
+ /* go to instruction at tail of loop */
+ inst->BranchTarget = endInstLoc;
+ }
+ }
+ return NULL;
+}
+
+
+/**
+ * Unconditional "continue" or "break" statement.
+ * Either OPCODE_CONT, OPCODE_BRK or OPCODE_BRA will be emitted.
+ */
+static struct prog_instruction *
+emit_cont_break(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ gl_inst_opcode opcode;
+ struct prog_instruction *inst;
+
+ if (n->Opcode == IR_CONT) {
+ /* we need to execute the loop's tail code before doing CONT */
+ assert(n->Parent);
+ assert(n->Parent->Opcode == IR_LOOP);
+ if (n->Parent->Children[1]) {
+ /* emit tail code */
+ if (emitInfo->EmitComments) {
+ emit_comment(emitInfo, "continue - tail code:");
+ }
+ emit(emitInfo, n->Parent->Children[1]);
+ }
+ }
+
+ /* opcode selection */
+ if (emitInfo->EmitHighLevelInstructions) {
+ opcode = (n->Opcode == IR_CONT) ? OPCODE_CONT : OPCODE_BRK;
+ }
+ else {
+ opcode = OPCODE_BRA;
+ }
+ n->InstLocation = emitInfo->prog->NumInstructions;
+ inst = new_instruction(emitInfo, opcode);
+ inst->DstReg.CondMask = COND_TR; /* always true */
+ return inst;
+}
+
+
+/**
+ * Conditional "continue" or "break" statement.
+ * Either OPCODE_CONT, OPCODE_BRK or OPCODE_BRA will be emitted.
+ */
+static struct prog_instruction *
+emit_cont_break_if_true(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct prog_instruction *inst;
+
+ assert(n->Opcode == IR_CONT_IF_TRUE ||
+ n->Opcode == IR_BREAK_IF_TRUE);
+
+ /* evaluate condition expr, setting cond codes */
+ inst = emit(emitInfo, n->Children[0]);
+ if (emitInfo->EmitCondCodes) {
+ assert(inst);
+ inst->CondUpdate = GL_TRUE;
+ }
+
+ n->InstLocation = emitInfo->prog->NumInstructions;
+
+ /* opcode selection */
+ if (emitInfo->EmitHighLevelInstructions) {
+ const gl_inst_opcode opcode
+ = (n->Opcode == IR_CONT_IF_TRUE) ? OPCODE_CONT : OPCODE_BRK;
+ if (emitInfo->EmitCondCodes) {
+ /* Get the writemask from the previous instruction which set
+ * the condcodes. Use that writemask as the CondSwizzle.
+ */
+ const GLuint condWritemask = inst->DstReg.WriteMask;
+ inst = new_instruction(emitInfo, opcode);
+ inst->DstReg.CondMask = COND_NE;
+ inst->DstReg.CondSwizzle = writemask_to_swizzle(condWritemask);
+ return inst;
+ }
+ else {
+ /* IF reg
+ * BRK/CONT;
+ * ENDIF
+ */
+ GLint ifInstLoc;
+ ifInstLoc = emitInfo->prog->NumInstructions;
+ inst = emit_instruction(emitInfo, OPCODE_IF,
+ NULL, /* dest */
+ n->Children[0]->Store,
+ NULL,
+ NULL);
+ n->InstLocation = emitInfo->prog->NumInstructions;
+
+ inst = new_instruction(emitInfo, opcode);
+ inst = new_instruction(emitInfo, OPCODE_ENDIF);
+
+ emitInfo->prog->Instructions[ifInstLoc].BranchTarget
+ = emitInfo->prog->NumInstructions;
+ return inst;
+ }
+ }
+ else {
+ const GLuint condWritemask = inst->DstReg.WriteMask;
+ assert(emitInfo->EmitCondCodes);
+ inst = new_instruction(emitInfo, OPCODE_BRA);
+ inst->DstReg.CondMask = COND_NE;
+ inst->DstReg.CondSwizzle = writemask_to_swizzle(condWritemask);
+ return inst;
+ }
+}
+
+
+/**
+ * Return the size of a swizzle mask given that some swizzle components
+ * may be NIL/undefined. For example:
+ * swizzle_size(".zzxx") = 4
+ * swizzle_size(".xy??") = 2
+ * swizzle_size(".w???") = 1
+ */
+static GLuint
+swizzle_size(GLuint swizzle)
+{
+ GLuint i;
+ for (i = 0; i < 4; i++) {
+ if (GET_SWZ(swizzle, i) == SWIZZLE_NIL)
+ return i;
+ }
+ return 4;
+}
+
+
+static struct prog_instruction *
+emit_swizzle(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct prog_instruction *inst;
+
+ inst = emit(emitInfo, n->Children[0]);
+
+ if (!n->Store->Parent) {
+ /* this covers a case such as "(b ? p : q).x" */
+ n->Store->Parent = n->Children[0]->Store;
+ assert(n->Store->Parent);
+ }
+
+ {
+ const GLuint swizzle = n->Store->Swizzle;
+ /* new storage is parent storage with updated Swizzle + Size fields */
+ _slang_copy_ir_storage(n->Store, n->Store->Parent);
+ /* Apply this node's swizzle to parent's storage */
+ n->Store->Swizzle = _slang_swizzle_swizzle(n->Store->Swizzle, swizzle);
+ /* Update size */
+ n->Store->Size = swizzle_size(n->Store->Swizzle);
+ }
+
+ assert(!n->Store->Parent);
+ assert(n->Store->Index >= 0);
+
+ return inst;
+}
+
+
+/**
+ * Dereference array element: element == array[index]
+ * This basically involves emitting code for computing the array index
+ * and updating the node/element's storage info.
+ */
+static struct prog_instruction *
+emit_array_element(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ slang_ir_storage *arrayStore, *indexStore;
+ const int elemSize = n->Store->Size; /* number of floats */
+ const GLint elemSizeVec = (elemSize + 3) / 4; /* number of vec4 */
+ struct prog_instruction *inst;
+
+ assert(n->Opcode == IR_ELEMENT);
+ assert(elemSize > 0);
+
+ /* special case for built-in state variables, like light state */
+ {
+ slang_ir_storage *root = n->Store;
+ assert(!root->Parent);
+ while (root->Parent)
+ root = root->Parent;
+
+ if (root->File == PROGRAM_STATE_VAR) {
+ GLboolean direct;
+ GLint index =
+ _slang_alloc_statevar(n, emitInfo->prog->Parameters, &direct);
+ if (index < 0) {
+ /* error */
+ return NULL;
+ }
+ if (direct) {
+ n->Store->Index = index;
+ return NULL; /* all done */
+ }
+ }
+ }
+
+ /* do codegen for array itself */
+ emit(emitInfo, n->Children[0]);
+ arrayStore = n->Children[0]->Store;
+
+ /* The initial array element storage is the array's storage,
+ * then modified below.
+ */
+ _slang_copy_ir_storage(n->Store, arrayStore);
+
+
+ if (n->Children[1]->Opcode == IR_FLOAT) {
+ /* Constant array index */
+ const GLint element = (GLint) n->Children[1]->Value[0];
+
+ /* this element's storage is the array's storage, plus constant offset */
+ n->Store->Index += elemSizeVec * element;
+ }
+ else {
+ /* Variable array index */
+
+ /* do codegen for array index expression */
+ emit(emitInfo, n->Children[1]);
+ indexStore = n->Children[1]->Store;
+
+ if (indexStore->IsIndirect) {
+ /* need to put the array index into a temporary since we can't
+ * directly support a[b[i]] constructs.
+ */
+
+
+ /*indexStore = tempstore();*/
+ }
+
+
+ if (elemSize > 4) {
+ /* need to multiply array index by array element size */
+ struct prog_instruction *inst;
+ slang_ir_storage *indexTemp;
+ slang_ir_storage elemSizeStore;
+
+ /* allocate 1 float indexTemp */
+ indexTemp = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, 1);
+ _slang_alloc_temp(emitInfo->vt, indexTemp);
+
+ /* allocate a constant containing the element size */
+ constant_to_storage(emitInfo, (float) elemSizeVec, &elemSizeStore);
+
+ /* multiply array index by element size */
+ inst = emit_instruction(emitInfo,
+ OPCODE_MUL,
+ indexTemp, /* dest */
+ indexStore, /* the index */
+ &elemSizeStore,
+ NULL);
+
+ indexStore = indexTemp;
+ }
+
+ if (arrayStore->IsIndirect) {
+ /* ex: in a[i][j], a[i] (the arrayStore) is indirect */
+ /* Need to add indexStore to arrayStore->Indirect store */
+ slang_ir_storage indirectArray;
+ slang_ir_storage *indexTemp;
+
+ _slang_init_ir_storage(&indirectArray,
+ arrayStore->IndirectFile,
+ arrayStore->IndirectIndex,
+ 1,
+ arrayStore->IndirectSwizzle);
+
+ /* allocate 1 float indexTemp */
+ indexTemp = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, 1);
+ _slang_alloc_temp(emitInfo->vt, indexTemp);
+
+ inst = emit_instruction(emitInfo,
+ OPCODE_ADD,
+ indexTemp, /* dest */
+ indexStore, /* the index */
+ &indirectArray, /* indirect array base */
+ NULL);
+
+ indexStore = indexTemp;
+ }
+
+ /* update the array element storage info */
+ n->Store->IsIndirect = GL_TRUE;
+ n->Store->IndirectFile = indexStore->File;
+ n->Store->IndirectIndex = indexStore->Index;
+ n->Store->IndirectSwizzle = indexStore->Swizzle;
+ }
+
+ n->Store->Size = elemSize;
+ n->Store->Swizzle = _slang_var_swizzle(elemSize, 0);
+
+ return NULL; /* no instruction */
+}
+
+
+/**
+ * Resolve storage for accessing a structure field.
+ */
+static struct prog_instruction *
+emit_struct_field(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ slang_ir_storage *root = n->Store;
+ GLint fieldOffset, fieldSize;
+
+ assert(n->Opcode == IR_FIELD);
+
+ assert(!root->Parent);
+ while (root->Parent)
+ root = root->Parent;
+
+ /* If this is the field of a state var, allocate constant/uniform
+ * storage for it now if we haven't already.
+ * Note that we allocate storage (uniform/constant slots) for state
+ * variables here rather than at declaration time so we only allocate
+ * space for the ones that we actually use!
+ */
+ if (root->File == PROGRAM_STATE_VAR) {
+ GLboolean direct;
+ GLint index = _slang_alloc_statevar(n, emitInfo->prog->Parameters, &direct);
+ if (index < 0) {
+ slang_info_log_error(emitInfo->log, "Error parsing state variable");
+ return NULL;
+ }
+ if (direct) {
+ root->Index = index;
+ return NULL; /* all done */
+ }
+ }
+
+ /* do codegen for struct */
+ emit(emitInfo, n->Children[0]);
+ assert(n->Children[0]->Store->Index >= 0);
+
+
+ fieldOffset = n->Store->Index;
+ fieldSize = n->Store->Size;
+
+ _slang_copy_ir_storage(n->Store, n->Children[0]->Store);
+
+ n->Store->Index = n->Children[0]->Store->Index + fieldOffset / 4;
+ n->Store->Size = fieldSize;
+
+ switch (fieldSize) {
+ case 1:
+ {
+ GLint swz = fieldOffset % 4;
+ n->Store->Swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
+ }
+ break;
+ case 2:
+ n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
+ SWIZZLE_NIL, SWIZZLE_NIL);
+ break;
+ case 3:
+ n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
+ SWIZZLE_Z, SWIZZLE_NIL);
+ break;
+ default:
+ n->Store->Swizzle = SWIZZLE_XYZW;
+ }
+
+ assert(n->Store->Index >= 0);
+
+ return NULL; /* no instruction */
+}
+
+
+/**
+ * Emit code for a variable declaration.
+ * This usually doesn't result in any code generation, but just
+ * memory allocation.
+ */
+static struct prog_instruction *
+emit_var_decl(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ assert(n->Store);
+ assert(n->Store->File != PROGRAM_UNDEFINED);
+ assert(n->Store->Size > 0);
+ /*assert(n->Store->Index < 0);*/
+
+ if (!n->Var || n->Var->isTemp) {
+ /* a nameless/temporary variable, will be freed after first use */
+ /*NEW*/
+ if (n->Store->Index < 0 && !_slang_alloc_temp(emitInfo->vt, n->Store)) {
+ slang_info_log_error(emitInfo->log,
+ "Ran out of registers, too many temporaries");
+ return NULL;
+ }
+ }
+ else {
+ /* a regular variable */
+ _slang_add_variable(emitInfo->vt, n->Var);
+ if (!_slang_alloc_var(emitInfo->vt, n->Store)) {
+ slang_info_log_error(emitInfo->log,
+ "Ran out of registers, too many variables");
+ return NULL;
+ }
+ /*
+ printf("IR_VAR_DECL %s %d store %p\n",
+ (char*) n->Var->a_name, n->Store->Index, (void*) n->Store);
+ */
+ assert(n->Var->store == n->Store);
+ }
+ if (emitInfo->EmitComments) {
+ /* emit NOP with comment describing the variable's storage location */
+ char s[1000];
+ sprintf(s, "TEMP[%d]%s = variable %s (size %d)",
+ n->Store->Index,
+ _mesa_swizzle_string(n->Store->Swizzle, 0, GL_FALSE),
+ (n->Var ? (char *) n->Var->a_name : "anonymous"),
+ n->Store->Size);
+ emit_comment(emitInfo, s);
+ }
+ return NULL;
+}
+
+
+/**
+ * Emit code for a reference to a variable.
+ * Actually, no code is generated but we may do some memory allocation.
+ * In particular, state vars (uniforms) are allocated on an as-needed basis.
+ */
+static struct prog_instruction *
+emit_var_ref(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ assert(n->Store);
+ assert(n->Store->File != PROGRAM_UNDEFINED);
+
+ if (n->Store->File == PROGRAM_STATE_VAR && n->Store->Index < 0) {
+ GLboolean direct;
+ GLint index = _slang_alloc_statevar(n, emitInfo->prog->Parameters, &direct);
+ if (index < 0) {
+ /* error */
+ char s[100];
+ /* XXX isn't this really an out of memory/resources error? */
+ _mesa_snprintf(s, sizeof(s), "Undefined variable '%s'",
+ (char *) n->Var->a_name);
+ slang_info_log_error(emitInfo->log, s);
+ return NULL;
+ }
+
+ n->Store->Index = index;
+ }
+ else if (n->Store->File == PROGRAM_UNIFORM ||
+ n->Store->File == PROGRAM_SAMPLER) {
+ /* mark var as used */
+ _mesa_use_uniform(emitInfo->prog->Parameters, (char *) n->Var->a_name);
+ }
+ else if (n->Store->File == PROGRAM_INPUT) {
+ assert(n->Store->Index >= 0);
+ emitInfo->prog->InputsRead |= (1 << n->Store->Index);
+ }
+
+ if (n->Store->Index < 0) {
+ /* probably ran out of registers */
+ return NULL;
+ }
+ assert(n->Store->Size > 0);
+
+ return NULL;
+}
+
+
+static struct prog_instruction *
+emit(slang_emit_info *emitInfo, slang_ir_node *n)
+{
+ struct prog_instruction *inst;
+ if (!n)
+ return NULL;
+
+ if (emitInfo->log->error_flag) {
+ return NULL;
+ }
+
+ if (n->Comment) {
+ inst = new_instruction(emitInfo, OPCODE_NOP);
+ inst->Comment = _mesa_strdup(n->Comment);
+ inst = NULL;
+ }
+
+ switch (n->Opcode) {
+ case IR_SEQ:
+ /* sequence of two sub-trees */
+ assert(n->Children[0]);
+ assert(n->Children[1]);
+ emit(emitInfo, n->Children[0]);
+ if (emitInfo->log->error_flag)
+ return NULL;
+ inst = emit(emitInfo, n->Children[1]);
+#if 0
+ assert(!n->Store);
+#endif
+ n->Store = n->Children[1]->Store;
+ return inst;
+
+ case IR_SCOPE:
+ /* new variable scope */
+ _slang_push_var_table(emitInfo->vt);
+ inst = emit(emitInfo, n->Children[0]);
+ _slang_pop_var_table(emitInfo->vt);
+ return inst;
+
+ case IR_VAR_DECL:
+ /* Variable declaration - allocate a register for it */
+ inst = emit_var_decl(emitInfo, n);
+ return inst;
+
+ case IR_VAR:
+ /* Reference to a variable
+ * Storage should have already been resolved/allocated.
+ */
+ return emit_var_ref(emitInfo, n);
+
+ case IR_ELEMENT:
+ return emit_array_element(emitInfo, n);
+ case IR_FIELD:
+ return emit_struct_field(emitInfo, n);
+ case IR_SWIZZLE:
+ return emit_swizzle(emitInfo, n);
+
+ /* Simple arithmetic */
+ /* unary */
+ case IR_MOVE:
+ case IR_RSQ:
+ case IR_RCP:
+ case IR_FLOOR:
+ case IR_FRAC:
+ case IR_F_TO_I:
+ case IR_I_TO_F:
+ case IR_ABS:
+ case IR_SIN:
+ case IR_COS:
+ case IR_DDX:
+ case IR_DDY:
+ case IR_EXP:
+ case IR_EXP2:
+ case IR_LOG2:
+ case IR_NOISE1:
+ case IR_NOISE2:
+ case IR_NOISE3:
+ case IR_NOISE4:
+ case IR_NRM4:
+ case IR_NRM3:
+ /* binary */
+ case IR_ADD:
+ case IR_SUB:
+ case IR_MUL:
+ case IR_DOT4:
+ case IR_DOT3:
+ case IR_DOT2:
+ case IR_CROSS:
+ case IR_MIN:
+ case IR_MAX:
+ case IR_SEQUAL:
+ case IR_SNEQUAL:
+ case IR_SGE:
+ case IR_SGT:
+ case IR_SLE:
+ case IR_SLT:
+ case IR_POW:
+ /* trinary operators */
+ case IR_LRP:
+ return emit_arith(emitInfo, n);
+
+ case IR_EQUAL:
+ case IR_NOTEQUAL:
+ return emit_compare(emitInfo, n);
+
+ case IR_CLAMP:
+ return emit_clamp(emitInfo, n);
+ case IR_TEX:
+ case IR_TEXB:
+ case IR_TEXP:
+ case IR_TEX_SH:
+ case IR_TEXB_SH:
+ case IR_TEXP_SH:
+ return emit_tex(emitInfo, n);
+ case IR_NEG:
+ return emit_negation(emitInfo, n);
+ case IR_FLOAT:
+ /* find storage location for this float constant */
+ n->Store->Index = _mesa_add_unnamed_constant(emitInfo->prog->Parameters,
+ n->Value,
+ n->Store->Size,
+ &n->Store->Swizzle);
+ if (n->Store->Index < 0) {
+ slang_info_log_error(emitInfo->log, "Ran out of space for constants");
+ return NULL;
+ }
+ return NULL;
+
+ case IR_COPY:
+ return emit_copy(emitInfo, n);
+
+ case IR_COND:
+ return emit_cond(emitInfo, n);
+
+ case IR_NOT:
+ return emit_not(emitInfo, n);
+
+ case IR_LABEL:
+ return emit_label(emitInfo, n);
+
+ case IR_KILL:
+ return emit_kill(emitInfo);
+
+ case IR_CALL:
+ /* new variable scope for subroutines/function calls */
+ _slang_push_var_table(emitInfo->vt);
+ inst = emit_fcall(emitInfo, n);
+ _slang_pop_var_table(emitInfo->vt);
+ return inst;
+
+ case IR_IF:
+ return emit_if(emitInfo, n);
+
+ case IR_LOOP:
+ return emit_loop(emitInfo, n);
+ case IR_BREAK_IF_TRUE:
+ case IR_CONT_IF_TRUE:
+ return emit_cont_break_if_true(emitInfo, n);
+ case IR_BREAK:
+ /* fall-through */
+ case IR_CONT:
+ return emit_cont_break(emitInfo, n);
+
+ case IR_BEGIN_SUB:
+ return new_instruction(emitInfo, OPCODE_BGNSUB);
+ case IR_END_SUB:
+ return new_instruction(emitInfo, OPCODE_ENDSUB);
+ case IR_RETURN:
+ return emit_return(emitInfo, n);
+
+ case IR_NOP:
+ return NULL;
+
+ default:
+ _mesa_problem(NULL, "Unexpected IR opcode in emit()\n");
+ }
+ return NULL;
+}
+
+
+/**
+ * After code generation, any subroutines will be in separate program
+ * objects. This function appends all the subroutines onto the main
+ * program and resolves the linking of all the branch/call instructions.
+ * XXX this logic should really be part of the linking process...
+ */
+static void
+_slang_resolve_subroutines(slang_emit_info *emitInfo)
+{
+ GET_CURRENT_CONTEXT(ctx);
+ struct gl_program *mainP = emitInfo->prog;
+ GLuint *subroutineLoc, i, total;
+
+ subroutineLoc
+ = (GLuint *) _mesa_malloc(emitInfo->NumSubroutines * sizeof(GLuint));
+
+ /* total number of instructions */
+ total = mainP->NumInstructions;
+ for (i = 0; i < emitInfo->NumSubroutines; i++) {
+ subroutineLoc[i] = total;
+ total += emitInfo->Subroutines[i]->NumInstructions;
+ }
+
+ /* adjust BranchTargets within the functions */
+ for (i = 0; i < emitInfo->NumSubroutines; i++) {
+ struct gl_program *sub = emitInfo->Subroutines[i];
+ GLuint j;
+ for (j = 0; j < sub->NumInstructions; j++) {
+ struct prog_instruction *inst = sub->Instructions + j;
+ if (inst->Opcode != OPCODE_CAL && inst->BranchTarget >= 0) {
+ inst->BranchTarget += subroutineLoc[i];
+ }
+ }
+ }
+
+ /* append subroutines' instructions after main's instructions */
+ mainP->Instructions = _mesa_realloc_instructions(mainP->Instructions,
+ mainP->NumInstructions,
+ total);
+ mainP->NumInstructions = total;
+ for (i = 0; i < emitInfo->NumSubroutines; i++) {
+ struct gl_program *sub = emitInfo->Subroutines[i];
+ _mesa_copy_instructions(mainP->Instructions + subroutineLoc[i],
+ sub->Instructions,
+ sub->NumInstructions);
+ /* delete subroutine code */
+ sub->Parameters = NULL; /* prevent double-free */
+ _mesa_reference_program(ctx, &emitInfo->Subroutines[i], NULL);
+ }
+
+ /* free subroutine list */
+ if (emitInfo->Subroutines) {
+ _mesa_free(emitInfo->Subroutines);
+ emitInfo->Subroutines = NULL;
+ }
+ emitInfo->NumSubroutines = 0;
+
+ /* Examine CAL instructions.
+ * At this point, the BranchTarget field of the CAL instruction is
+ * the number/id of the subroutine to call (an index into the
+ * emitInfo->Subroutines list).
+ * Translate that into an actual instruction location now.
+ */
+ for (i = 0; i < mainP->NumInstructions; i++) {
+ struct prog_instruction *inst = mainP->Instructions + i;
+ if (inst->Opcode == OPCODE_CAL) {
+ const GLuint f = inst->BranchTarget;
+ inst->BranchTarget = subroutineLoc[f];
+ }
+ }
+
+ _mesa_free(subroutineLoc);
+}
+
+
+
+/**
+ * Convert the IR tree into GPU instructions.
+ * \param n root of IR tree
+ * \param vt variable table
+ * \param prog program to put GPU instructions into
+ * \param pragmas controls codegen options
+ * \param withEnd if true, emit END opcode at end
+ * \param log log for emitting errors/warnings/info
+ */
+GLboolean
+_slang_emit_code(slang_ir_node *n, slang_var_table *vt,
+ struct gl_program *prog,
+ const struct gl_sl_pragmas *pragmas,
+ GLboolean withEnd,
+ slang_info_log *log)
+{
+ GET_CURRENT_CONTEXT(ctx);
+ GLboolean success;
+ slang_emit_info emitInfo;
+ GLuint maxUniforms;
+
+ emitInfo.log = log;
+ emitInfo.vt = vt;
+ emitInfo.prog = prog;
+ emitInfo.Subroutines = NULL;
+ emitInfo.NumSubroutines = 0;
+ emitInfo.MaxInstructions = prog->NumInstructions;
+
+ emitInfo.EmitHighLevelInstructions = ctx->Shader.EmitHighLevelInstructions;
+ emitInfo.EmitCondCodes = ctx->Shader.EmitCondCodes;
+ emitInfo.EmitComments = ctx->Shader.EmitComments || pragmas->Debug;
+ emitInfo.EmitBeginEndSub = GL_TRUE;
+
+ if (!emitInfo.EmitCondCodes) {
+ emitInfo.EmitHighLevelInstructions = GL_TRUE;
+ }
+
+ /* Check uniform/constant limits */
+ if (prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
+ maxUniforms = ctx->Const.FragmentProgram.MaxUniformComponents / 4;
+ }
+ else {
+ assert(prog->Target == GL_VERTEX_PROGRAM_ARB);
+ maxUniforms = ctx->Const.VertexProgram.MaxUniformComponents / 4;
+ }
+ if (prog->Parameters->NumParameters > maxUniforms) {
+ slang_info_log_error(log, "Constant/uniform register limit exceeded "
+ "(max=%u vec4)", maxUniforms);
+
+ return GL_FALSE;
+ }
+
+ (void) emit(&emitInfo, n);
+
+ /* finish up by adding the END opcode to program */
+ if (withEnd) {
+ struct prog_instruction *inst;
+ inst = new_instruction(&emitInfo, OPCODE_END);
+ }
+
+ _slang_resolve_subroutines(&emitInfo);
+
+ success = GL_TRUE;
+
+#if 0
+ printf("*********** End emit code (%u inst):\n", prog->NumInstructions);
+ _mesa_print_program(prog);
+ _mesa_print_program_parameters(ctx,prog);
+#endif
+
+ return success;
+}