diff options
Diffstat (limited to 'mesalib/src/mesa/swrast')
-rw-r--r-- | mesalib/src/mesa/swrast/s_span.c | 3025 | ||||
-rw-r--r-- | mesalib/src/mesa/swrast/s_texcombine.c | 1490 | ||||
-rw-r--r-- | mesalib/src/mesa/swrast/s_texfilter.c | 7025 |
3 files changed, 5977 insertions, 5563 deletions
diff --git a/mesalib/src/mesa/swrast/s_span.c b/mesalib/src/mesa/swrast/s_span.c index f0524e061..7f88b6dd4 100644 --- a/mesalib/src/mesa/swrast/s_span.c +++ b/mesalib/src/mesa/swrast/s_span.c @@ -1,1509 +1,1516 @@ -/* - * Mesa 3-D graphics library - * Version: 7.5 - * - * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. - * Copyright (C) 2009 VMware, Inc. All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included - * in all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS - * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN - * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - */ - - -/** - * \file swrast/s_span.c - * \brief Span processing functions used by all rasterization functions. - * This is where all the per-fragment tests are performed - * \author Brian Paul - */ - -#include "main/glheader.h" -#include "main/colormac.h" -#include "main/macros.h" -#include "main/imports.h" -#include "main/image.h" - -#include "s_atifragshader.h" -#include "s_alpha.h" -#include "s_blend.h" -#include "s_context.h" -#include "s_depth.h" -#include "s_fog.h" -#include "s_logic.h" -#include "s_masking.h" -#include "s_fragprog.h" -#include "s_span.h" -#include "s_stencil.h" -#include "s_texcombine.h" - - -/** - * Set default fragment attributes for the span using the - * current raster values. Used prior to glDraw/CopyPixels - * and glBitmap. - */ -void -_swrast_span_default_attribs(struct gl_context *ctx, SWspan *span) -{ - GLchan r, g, b, a; - /* Z*/ - { - const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF; - if (ctx->DrawBuffer->Visual.depthBits <= 16) - span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F); - else { - GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax; - tmpf = MIN2(tmpf, depthMax); - span->z = (GLint)tmpf; - } - span->zStep = 0; - span->interpMask |= SPAN_Z; - } - - /* W (for perspective correction) */ - span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0; - span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0; - span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0; - - /* primary color, or color index */ - UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]); - UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]); - UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]); - UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]); -#if CHAN_TYPE == GL_FLOAT - span->red = r; - span->green = g; - span->blue = b; - span->alpha = a; -#else - span->red = IntToFixed(r); - span->green = IntToFixed(g); - span->blue = IntToFixed(b); - span->alpha = IntToFixed(a); -#endif - span->redStep = 0; - span->greenStep = 0; - span->blueStep = 0; - span->alphaStep = 0; - span->interpMask |= SPAN_RGBA; - - COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor); - ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0); - ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0); - - /* Secondary color */ - if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled) - { - COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor); - ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0); - ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0); - } - - /* fog */ - { - const SWcontext *swrast = SWRAST_CONTEXT(ctx); - GLfloat fogVal; /* a coord or a blend factor */ - if (swrast->_PreferPixelFog) { - /* fog blend factors will be computed from fog coordinates per pixel */ - fogVal = ctx->Current.RasterDistance; - } - else { - /* fog blend factor should be computed from fogcoord now */ - fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance); - } - span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal; - span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0; - span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0; - } - - /* texcoords */ - { - GLuint i; - for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) { - const GLuint attr = FRAG_ATTRIB_TEX0 + i; - const GLfloat *tc = ctx->Current.RasterTexCoords[i]; - if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) { - COPY_4V(span->attrStart[attr], tc); - } - else if (tc[3] > 0.0F) { - /* use (s/q, t/q, r/q, 1) */ - span->attrStart[attr][0] = tc[0] / tc[3]; - span->attrStart[attr][1] = tc[1] / tc[3]; - span->attrStart[attr][2] = tc[2] / tc[3]; - span->attrStart[attr][3] = 1.0; - } - else { - ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F); - } - ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F); - ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F); - } - } -} - - -/** - * Interpolate the active attributes (and'd with attrMask) to - * fill in span->array->attribs[]. - * Perspective correction will be done. The point/line/triangle function - * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]! - */ -static INLINE void -interpolate_active_attribs(struct gl_context *ctx, SWspan *span, GLbitfield attrMask) -{ - const SWcontext *swrast = SWRAST_CONTEXT(ctx); - - /* - * Don't overwrite existing array values, such as colors that may have - * been produced by glDraw/CopyPixels. - */ - attrMask &= ~span->arrayAttribs; - - ATTRIB_LOOP_BEGIN - if (attrMask & (1 << attr)) { - const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3]; - GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3]; - const GLfloat dv0dx = span->attrStepX[attr][0]; - const GLfloat dv1dx = span->attrStepX[attr][1]; - const GLfloat dv2dx = span->attrStepX[attr][2]; - const GLfloat dv3dx = span->attrStepX[attr][3]; - GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx; - GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx; - GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx; - GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx; - GLuint k; - for (k = 0; k < span->end; k++) { - const GLfloat invW = 1.0f / w; - span->array->attribs[attr][k][0] = v0 * invW; - span->array->attribs[attr][k][1] = v1 * invW; - span->array->attribs[attr][k][2] = v2 * invW; - span->array->attribs[attr][k][3] = v3 * invW; - v0 += dv0dx; - v1 += dv1dx; - v2 += dv2dx; - v3 += dv3dx; - w += dwdx; - } - ASSERT((span->arrayAttribs & (1 << attr)) == 0); - span->arrayAttribs |= (1 << attr); - } - ATTRIB_LOOP_END -} - - -/** - * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16) - * color array. - */ -static INLINE void -interpolate_int_colors(struct gl_context *ctx, SWspan *span) -{ - const GLuint n = span->end; - GLuint i; - -#if CHAN_BITS != 32 - ASSERT(!(span->arrayMask & SPAN_RGBA)); -#endif - - switch (span->array->ChanType) { -#if CHAN_BITS != 32 - case GL_UNSIGNED_BYTE: - { - GLubyte (*rgba)[4] = span->array->rgba8; - if (span->interpMask & SPAN_FLAT) { - GLubyte color[4]; - color[RCOMP] = FixedToInt(span->red); - color[GCOMP] = FixedToInt(span->green); - color[BCOMP] = FixedToInt(span->blue); - color[ACOMP] = FixedToInt(span->alpha); - for (i = 0; i < n; i++) { - COPY_4UBV(rgba[i], color); - } - } - else { - GLfixed r = span->red; - GLfixed g = span->green; - GLfixed b = span->blue; - GLfixed a = span->alpha; - GLint dr = span->redStep; - GLint dg = span->greenStep; - GLint db = span->blueStep; - GLint da = span->alphaStep; - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = FixedToChan(r); - rgba[i][GCOMP] = FixedToChan(g); - rgba[i][BCOMP] = FixedToChan(b); - rgba[i][ACOMP] = FixedToChan(a); - r += dr; - g += dg; - b += db; - a += da; - } - } - } - break; - case GL_UNSIGNED_SHORT: - { - GLushort (*rgba)[4] = span->array->rgba16; - if (span->interpMask & SPAN_FLAT) { - GLushort color[4]; - color[RCOMP] = FixedToInt(span->red); - color[GCOMP] = FixedToInt(span->green); - color[BCOMP] = FixedToInt(span->blue); - color[ACOMP] = FixedToInt(span->alpha); - for (i = 0; i < n; i++) { - COPY_4V(rgba[i], color); - } - } - else { - GLushort (*rgba)[4] = span->array->rgba16; - GLfixed r, g, b, a; - GLint dr, dg, db, da; - r = span->red; - g = span->green; - b = span->blue; - a = span->alpha; - dr = span->redStep; - dg = span->greenStep; - db = span->blueStep; - da = span->alphaStep; - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = FixedToChan(r); - rgba[i][GCOMP] = FixedToChan(g); - rgba[i][BCOMP] = FixedToChan(b); - rgba[i][ACOMP] = FixedToChan(a); - r += dr; - g += dg; - b += db; - a += da; - } - } - } - break; -#endif - case GL_FLOAT: - interpolate_active_attribs(ctx, span, FRAG_BIT_COL0); - break; - default: - _mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors", - span->array->ChanType); - } - span->arrayMask |= SPAN_RGBA; -} - - -/** - * Populate the FRAG_ATTRIB_COL0 array. - */ -static INLINE void -interpolate_float_colors(SWspan *span) -{ - GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; - const GLuint n = span->end; - GLuint i; - - assert(!(span->arrayAttribs & FRAG_BIT_COL0)); - - if (span->arrayMask & SPAN_RGBA) { - /* convert array of int colors */ - for (i = 0; i < n; i++) { - col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]); - col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]); - col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]); - col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]); - } - } - else { - /* interpolate red/green/blue/alpha to get float colors */ - ASSERT(span->interpMask & SPAN_RGBA); - if (span->interpMask & SPAN_FLAT) { - GLfloat r = FixedToFloat(span->red); - GLfloat g = FixedToFloat(span->green); - GLfloat b = FixedToFloat(span->blue); - GLfloat a = FixedToFloat(span->alpha); - for (i = 0; i < n; i++) { - ASSIGN_4V(col0[i], r, g, b, a); - } - } - else { - GLfloat r = FixedToFloat(span->red); - GLfloat g = FixedToFloat(span->green); - GLfloat b = FixedToFloat(span->blue); - GLfloat a = FixedToFloat(span->alpha); - GLfloat dr = FixedToFloat(span->redStep); - GLfloat dg = FixedToFloat(span->greenStep); - GLfloat db = FixedToFloat(span->blueStep); - GLfloat da = FixedToFloat(span->alphaStep); - for (i = 0; i < n; i++) { - col0[i][0] = r; - col0[i][1] = g; - col0[i][2] = b; - col0[i][3] = a; - r += dr; - g += dg; - b += db; - a += da; - } - } - } - - span->arrayAttribs |= FRAG_BIT_COL0; - span->array->ChanType = GL_FLOAT; -} - - - -/** - * Fill in the span.zArray array from the span->z, zStep values. - */ -void -_swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span ) -{ - const GLuint n = span->end; - GLuint i; - - ASSERT(!(span->arrayMask & SPAN_Z)); - - if (ctx->DrawBuffer->Visual.depthBits <= 16) { - GLfixed zval = span->z; - GLuint *z = span->array->z; - for (i = 0; i < n; i++) { - z[i] = FixedToInt(zval); - zval += span->zStep; - } - } - else { - /* Deep Z buffer, no fixed->int shift */ - GLuint zval = span->z; - GLuint *z = span->array->z; - for (i = 0; i < n; i++) { - z[i] = zval; - zval += span->zStep; - } - } - span->interpMask &= ~SPAN_Z; - span->arrayMask |= SPAN_Z; -} - - -/** - * Compute mipmap LOD from partial derivatives. - * This the ideal solution, as given in the OpenGL spec. - */ -GLfloat -_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy, - GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH, - GLfloat s, GLfloat t, GLfloat q, GLfloat invQ) -{ - GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ); - GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ); - GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ); - GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ); - GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx); - GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy); - GLfloat rho = MAX2(x, y); - GLfloat lambda = LOG2(rho); - return lambda; -} - - -/** - * Compute mipmap LOD from partial derivatives. - * This is a faster approximation than above function. - */ -#if 0 -GLfloat -_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy, - GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH, - GLfloat s, GLfloat t, GLfloat q, GLfloat invQ) -{ - GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ; - GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ; - GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ; - GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ; - GLfloat maxU, maxV, rho, lambda; - dsdx2 = FABSF(dsdx2); - dsdy2 = FABSF(dsdy2); - dtdx2 = FABSF(dtdx2); - dtdy2 = FABSF(dtdy2); - maxU = MAX2(dsdx2, dsdy2) * texW; - maxV = MAX2(dtdx2, dtdy2) * texH; - rho = MAX2(maxU, maxV); - lambda = LOG2(rho); - return lambda; -} -#endif - - -/** - * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the - * using the attrStart/Step values. - * - * This function only used during fixed-function fragment processing. - * - * Note: in the places where we divide by Q (or mult by invQ) we're - * really doing two things: perspective correction and texcoord - * projection. Remember, for texcoord (s,t,r,q) we need to index - * texels with (s/q, t/q, r/q). - */ -static void -interpolate_texcoords(struct gl_context *ctx, SWspan *span) -{ - const GLuint maxUnit - = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1; - GLuint u; - - /* XXX CoordUnits vs. ImageUnits */ - for (u = 0; u < maxUnit; u++) { - if (ctx->Texture._EnabledCoordUnits & (1 << u)) { - const GLuint attr = FRAG_ATTRIB_TEX0 + u; - const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current; - GLfloat texW, texH; - GLboolean needLambda; - GLfloat (*texcoord)[4] = span->array->attribs[attr]; - GLfloat *lambda = span->array->lambda[u]; - const GLfloat dsdx = span->attrStepX[attr][0]; - const GLfloat dsdy = span->attrStepY[attr][0]; - const GLfloat dtdx = span->attrStepX[attr][1]; - const GLfloat dtdy = span->attrStepY[attr][1]; - const GLfloat drdx = span->attrStepX[attr][2]; - const GLfloat dqdx = span->attrStepX[attr][3]; - const GLfloat dqdy = span->attrStepY[attr][3]; - GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx; - GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx; - GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx; - GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx; - - if (obj) { - const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel]; - needLambda = (obj->Sampler.MinFilter != obj->Sampler.MagFilter) - || ctx->FragmentProgram._Current; - texW = img->WidthScale; - texH = img->HeightScale; - } - else { - /* using a fragment program */ - texW = 1.0; - texH = 1.0; - needLambda = GL_FALSE; - } - - if (needLambda) { - GLuint i; - if (ctx->FragmentProgram._Current - || ctx->ATIFragmentShader._Enabled) { - /* do perspective correction but don't divide s, t, r by q */ - const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3]; - GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx; - for (i = 0; i < span->end; i++) { - const GLfloat invW = 1.0F / w; - texcoord[i][0] = s * invW; - texcoord[i][1] = t * invW; - texcoord[i][2] = r * invW; - texcoord[i][3] = q * invW; - lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy, - dqdx, dqdy, texW, texH, - s, t, q, invW); - s += dsdx; - t += dtdx; - r += drdx; - q += dqdx; - w += dwdx; - } - } - else { - for (i = 0; i < span->end; i++) { - const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); - texcoord[i][0] = s * invQ; - texcoord[i][1] = t * invQ; - texcoord[i][2] = r * invQ; - texcoord[i][3] = q; - lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy, - dqdx, dqdy, texW, texH, - s, t, q, invQ); - s += dsdx; - t += dtdx; - r += drdx; - q += dqdx; - } - } - span->arrayMask |= SPAN_LAMBDA; - } - else { - GLuint i; - if (ctx->FragmentProgram._Current || - ctx->ATIFragmentShader._Enabled) { - /* do perspective correction but don't divide s, t, r by q */ - const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3]; - GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx; - for (i = 0; i < span->end; i++) { - const GLfloat invW = 1.0F / w; - texcoord[i][0] = s * invW; - texcoord[i][1] = t * invW; - texcoord[i][2] = r * invW; - texcoord[i][3] = q * invW; - lambda[i] = 0.0; - s += dsdx; - t += dtdx; - r += drdx; - q += dqdx; - w += dwdx; - } - } - else if (dqdx == 0.0F) { - /* Ortho projection or polygon's parallel to window X axis */ - const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); - for (i = 0; i < span->end; i++) { - texcoord[i][0] = s * invQ; - texcoord[i][1] = t * invQ; - texcoord[i][2] = r * invQ; - texcoord[i][3] = q; - lambda[i] = 0.0; - s += dsdx; - t += dtdx; - r += drdx; - } - } - else { - for (i = 0; i < span->end; i++) { - const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); - texcoord[i][0] = s * invQ; - texcoord[i][1] = t * invQ; - texcoord[i][2] = r * invQ; - texcoord[i][3] = q; - lambda[i] = 0.0; - s += dsdx; - t += dtdx; - r += drdx; - q += dqdx; - } - } - } /* lambda */ - } /* if */ - } /* for */ -} - - -/** - * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array. - */ -static INLINE void -interpolate_wpos(struct gl_context *ctx, SWspan *span) -{ - GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS]; - GLuint i; - const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF; - GLfloat w, dw; - - if (span->arrayMask & SPAN_XY) { - for (i = 0; i < span->end; i++) { - wpos[i][0] = (GLfloat) span->array->x[i]; - wpos[i][1] = (GLfloat) span->array->y[i]; - } - } - else { - for (i = 0; i < span->end; i++) { - wpos[i][0] = (GLfloat) span->x + i; - wpos[i][1] = (GLfloat) span->y; - } - } - - dw = span->attrStepX[FRAG_ATTRIB_WPOS][3]; - w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw; - for (i = 0; i < span->end; i++) { - wpos[i][2] = (GLfloat) span->array->z[i] * zScale; - wpos[i][3] = w; - w += dw; - } -} - - -/** - * Apply the current polygon stipple pattern to a span of pixels. - */ -static INLINE void -stipple_polygon_span(struct gl_context *ctx, SWspan *span) -{ - GLubyte *mask = span->array->mask; - - ASSERT(ctx->Polygon.StippleFlag); - - if (span->arrayMask & SPAN_XY) { - /* arrays of x/y pixel coords */ - GLuint i; - for (i = 0; i < span->end; i++) { - const GLint col = span->array->x[i] % 32; - const GLint row = span->array->y[i] % 32; - const GLuint stipple = ctx->PolygonStipple[row]; - if (((1 << col) & stipple) == 0) { - mask[i] = 0; - } - } - } - else { - /* horizontal span of pixels */ - const GLuint highBit = 1 << 31; - const GLuint stipple = ctx->PolygonStipple[span->y % 32]; - GLuint i, m = highBit >> (GLuint) (span->x % 32); - for (i = 0; i < span->end; i++) { - if ((m & stipple) == 0) { - mask[i] = 0; - } - m = m >> 1; - if (m == 0) { - m = highBit; - } - } - } - span->writeAll = GL_FALSE; -} - - -/** - * Clip a pixel span to the current buffer/window boundaries: - * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish - * window clipping and scissoring. - * Return: GL_TRUE some pixels still visible - * GL_FALSE nothing visible - */ -static INLINE GLuint -clip_span( struct gl_context *ctx, SWspan *span ) -{ - const GLint xmin = ctx->DrawBuffer->_Xmin; - const GLint xmax = ctx->DrawBuffer->_Xmax; - const GLint ymin = ctx->DrawBuffer->_Ymin; - const GLint ymax = ctx->DrawBuffer->_Ymax; - - span->leftClip = 0; - - if (span->arrayMask & SPAN_XY) { - /* arrays of x/y pixel coords */ - const GLint *x = span->array->x; - const GLint *y = span->array->y; - const GLint n = span->end; - GLubyte *mask = span->array->mask; - GLint i; - if (span->arrayMask & SPAN_MASK) { - /* note: using & intead of && to reduce branches */ - for (i = 0; i < n; i++) { - mask[i] &= (x[i] >= xmin) & (x[i] < xmax) - & (y[i] >= ymin) & (y[i] < ymax); - } - } - else { - /* note: using & intead of && to reduce branches */ - for (i = 0; i < n; i++) { - mask[i] = (x[i] >= xmin) & (x[i] < xmax) - & (y[i] >= ymin) & (y[i] < ymax); - } - } - return GL_TRUE; /* some pixels visible */ - } - else { - /* horizontal span of pixels */ - const GLint x = span->x; - const GLint y = span->y; - GLint n = span->end; - - /* Trivial rejection tests */ - if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) { - span->end = 0; - return GL_FALSE; /* all pixels clipped */ - } - - /* Clip to right */ - if (x + n > xmax) { - ASSERT(x < xmax); - n = span->end = xmax - x; - } - - /* Clip to the left */ - if (x < xmin) { - const GLint leftClip = xmin - x; - GLuint i; - - ASSERT(leftClip > 0); - ASSERT(x + n > xmin); - - /* Clip 'leftClip' pixels from the left side. - * The span->leftClip field will be applied when we interpolate - * fragment attributes. - * For arrays of values, shift them left. - */ - for (i = 0; i < FRAG_ATTRIB_MAX; i++) { - if (span->interpMask & (1 << i)) { - GLuint j; - for (j = 0; j < 4; j++) { - span->attrStart[i][j] += leftClip * span->attrStepX[i][j]; - } - } - } - - span->red += leftClip * span->redStep; - span->green += leftClip * span->greenStep; - span->blue += leftClip * span->blueStep; - span->alpha += leftClip * span->alphaStep; - span->index += leftClip * span->indexStep; - span->z += leftClip * span->zStep; - span->intTex[0] += leftClip * span->intTexStep[0]; - span->intTex[1] += leftClip * span->intTexStep[1]; - -#define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \ - memcpy(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0])) - - for (i = 0; i < FRAG_ATTRIB_MAX; i++) { - if (span->arrayAttribs & (1 << i)) { - /* shift array elements left by 'leftClip' */ - SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip); - } - } - - SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip); - SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip); - SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip); - SHIFT_ARRAY(span->array->x, leftClip, n - leftClip); - SHIFT_ARRAY(span->array->y, leftClip, n - leftClip); - SHIFT_ARRAY(span->array->z, leftClip, n - leftClip); - SHIFT_ARRAY(span->array->index, leftClip, n - leftClip); - for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) { - SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip); - } - SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip); - -#undef SHIFT_ARRAY - - span->leftClip = leftClip; - span->x = xmin; - span->end -= leftClip; - span->writeAll = GL_FALSE; - } - - ASSERT(span->x >= xmin); - ASSERT(span->x + span->end <= xmax); - ASSERT(span->y >= ymin); - ASSERT(span->y < ymax); - - return GL_TRUE; /* some pixels visible */ - } -} - - -/** - * Add specular colors to primary colors. - * Only called during fixed-function operation. - * Result is float color array (FRAG_ATTRIB_COL0). - */ -static INLINE void -add_specular(struct gl_context *ctx, SWspan *span) -{ - const SWcontext *swrast = SWRAST_CONTEXT(ctx); - const GLubyte *mask = span->array->mask; - GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; - GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1]; - GLuint i; - - ASSERT(!ctx->FragmentProgram._Current); - ASSERT(span->arrayMask & SPAN_RGBA); - ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1); - (void) swrast; /* silence warning */ - - if (span->array->ChanType == GL_FLOAT) { - if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { - interpolate_active_attribs(ctx, span, FRAG_BIT_COL0); - } - } - else { - /* need float colors */ - if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { - interpolate_float_colors(span); - } - } - - if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) { - /* XXX could avoid this and interpolate COL1 in the loop below */ - interpolate_active_attribs(ctx, span, FRAG_BIT_COL1); - } - - ASSERT(span->arrayAttribs & FRAG_BIT_COL0); - ASSERT(span->arrayAttribs & FRAG_BIT_COL1); - - for (i = 0; i < span->end; i++) { - if (mask[i]) { - col0[i][0] += col1[i][0]; - col0[i][1] += col1[i][1]; - col0[i][2] += col1[i][2]; - } - } - - span->array->ChanType = GL_FLOAT; -} - - -/** - * Apply antialiasing coverage value to alpha values. - */ -static INLINE void -apply_aa_coverage(SWspan *span) -{ - const GLfloat *coverage = span->array->coverage; - GLuint i; - if (span->array->ChanType == GL_UNSIGNED_BYTE) { - GLubyte (*rgba)[4] = span->array->rgba8; - for (i = 0; i < span->end; i++) { - const GLfloat a = rgba[i][ACOMP] * coverage[i]; - rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0); - ASSERT(coverage[i] >= 0.0); - ASSERT(coverage[i] <= 1.0); - } - } - else if (span->array->ChanType == GL_UNSIGNED_SHORT) { - GLushort (*rgba)[4] = span->array->rgba16; - for (i = 0; i < span->end; i++) { - const GLfloat a = rgba[i][ACOMP] * coverage[i]; - rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0); - } - } - else { - GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; - for (i = 0; i < span->end; i++) { - rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i]; - /* clamp later */ - } - } -} - - -/** - * Clamp span's float colors to [0,1] - */ -static INLINE void -clamp_colors(SWspan *span) -{ - GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0]; - GLuint i; - ASSERT(span->array->ChanType == GL_FLOAT); - for (i = 0; i < span->end; i++) { - rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F); - rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F); - rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F); - rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F); - } -} - - -/** - * Convert the span's color arrays to the given type. - * The only way 'output' can be greater than zero is when we have a fragment - * program that writes to gl_FragData[1] or higher. - * \param output which fragment program color output is being processed - */ -static INLINE void -convert_color_type(SWspan *span, GLenum newType, GLuint output) -{ - GLvoid *src, *dst; - - if (output > 0 || span->array->ChanType == GL_FLOAT) { - src = span->array->attribs[FRAG_ATTRIB_COL0 + output]; - span->array->ChanType = GL_FLOAT; - } - else if (span->array->ChanType == GL_UNSIGNED_BYTE) { - src = span->array->rgba8; - } - else { - ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT); - src = span->array->rgba16; - } - - if (newType == GL_UNSIGNED_BYTE) { - dst = span->array->rgba8; - } - else if (newType == GL_UNSIGNED_SHORT) { - dst = span->array->rgba16; - } - else { - dst = span->array->attribs[FRAG_ATTRIB_COL0]; - } - - _mesa_convert_colors(span->array->ChanType, src, - newType, dst, - span->end, span->array->mask); - - span->array->ChanType = newType; - span->array->rgba = dst; -} - - - -/** - * Apply fragment shader, fragment program or normal texturing to span. - */ -static INLINE void -shade_texture_span(struct gl_context *ctx, SWspan *span) -{ - GLbitfield inputsRead; - - /* Determine which fragment attributes are actually needed */ - if (ctx->FragmentProgram._Current) { - inputsRead = ctx->FragmentProgram._Current->Base.InputsRead; - } - else { - /* XXX we could be a bit smarter about this */ - inputsRead = ~0; - } - - if (ctx->FragmentProgram._Current || - ctx->ATIFragmentShader._Enabled) { - /* programmable shading */ - if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) { - convert_color_type(span, GL_FLOAT, 0); - } - else { - span->array->rgba = (void *) span->array->attribs[FRAG_ATTRIB_COL0]; - } - - if (span->primitive != GL_POINT || - (span->interpMask & SPAN_RGBA) || - ctx->Point.PointSprite) { - /* for single-pixel points, we populated the arrays already */ - interpolate_active_attribs(ctx, span, ~0); - } - span->array->ChanType = GL_FLOAT; - - if (!(span->arrayMask & SPAN_Z)) - _swrast_span_interpolate_z (ctx, span); - -#if 0 - if (inputsRead & FRAG_BIT_WPOS) -#else - /* XXX always interpolate wpos so that DDX/DDY work */ -#endif - interpolate_wpos(ctx, span); - - /* Run fragment program/shader now */ - if (ctx->FragmentProgram._Current) { - _swrast_exec_fragment_program(ctx, span); - } - else { - ASSERT(ctx->ATIFragmentShader._Enabled); - _swrast_exec_fragment_shader(ctx, span); - } - } - else if (ctx->Texture._EnabledCoordUnits) { - /* conventional texturing */ - -#if CHAN_BITS == 32 - if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { - interpolate_int_colors(ctx, span); - } -#else - if (!(span->arrayMask & SPAN_RGBA)) - interpolate_int_colors(ctx, span); -#endif - if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0) - interpolate_texcoords(ctx, span); - - _swrast_texture_span(ctx, span); - } -} - - - -/** - * Apply all the per-fragment operations to a span. - * This now includes texturing (_swrast_write_texture_span() is history). - * This function may modify any of the array values in the span. - * span->interpMask and span->arrayMask may be changed but will be restored - * to their original values before returning. - */ -void -_swrast_write_rgba_span( struct gl_context *ctx, SWspan *span) -{ - const SWcontext *swrast = SWRAST_CONTEXT(ctx); - const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask; - const GLbitfield origInterpMask = span->interpMask; - const GLbitfield origArrayMask = span->arrayMask; - const GLbitfield origArrayAttribs = span->arrayAttribs; - const GLenum origChanType = span->array->ChanType; - void * const origRgba = span->array->rgba; - const GLboolean shader = (ctx->FragmentProgram._Current - || ctx->ATIFragmentShader._Enabled); - const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits; - struct gl_framebuffer *fb = ctx->DrawBuffer; - - /* - printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__, - span->interpMask, span->arrayMask); - */ - - ASSERT(span->primitive == GL_POINT || - span->primitive == GL_LINE || - span->primitive == GL_POLYGON || - span->primitive == GL_BITMAP); - - /* Fragment write masks */ - if (span->arrayMask & SPAN_MASK) { - /* mask was initialized by caller, probably glBitmap */ - span->writeAll = GL_FALSE; - } - else { - memset(span->array->mask, 1, span->end); - span->writeAll = GL_TRUE; - } - - /* Clip to window/scissor box */ - if (!clip_span(ctx, span)) { - return; - } - - ASSERT(span->end <= MAX_WIDTH); - - /* Depth bounds test */ - if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) { - if (!_swrast_depth_bounds_test(ctx, span)) { - return; - } - } - -#ifdef DEBUG - /* Make sure all fragments are within window bounds */ - if (span->arrayMask & SPAN_XY) { - /* array of pixel locations */ - GLuint i; - for (i = 0; i < span->end; i++) { - if (span->array->mask[i]) { - assert(span->array->x[i] >= fb->_Xmin); - assert(span->array->x[i] < fb->_Xmax); - assert(span->array->y[i] >= fb->_Ymin); - assert(span->array->y[i] < fb->_Ymax); - } - } - } -#endif - - /* Polygon Stippling */ - if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) { - stipple_polygon_span(ctx, span); - } - - /* This is the normal place to compute the fragment color/Z - * from texturing or shading. - */ - if (shaderOrTexture && !swrast->_DeferredTexture) { - shade_texture_span(ctx, span); - } - - /* Do the alpha test */ - if (ctx->Color.AlphaEnabled) { - if (!_swrast_alpha_test(ctx, span)) { - /* all fragments failed test */ - goto end; - } - } - - /* Stencil and Z testing */ - if (ctx->Stencil._Enabled || ctx->Depth.Test) { - if (!(span->arrayMask & SPAN_Z)) - _swrast_span_interpolate_z(ctx, span); - - if (ctx->Transform.DepthClamp) - _swrast_depth_clamp_span(ctx, span); - - if (ctx->Stencil._Enabled) { - /* Combined Z/stencil tests */ - if (!_swrast_stencil_and_ztest_span(ctx, span)) { - /* all fragments failed test */ - goto end; - } - } - else if (fb->Visual.depthBits > 0) { - /* Just regular depth testing */ - ASSERT(ctx->Depth.Test); - ASSERT(span->arrayMask & SPAN_Z); - if (!_swrast_depth_test_span(ctx, span)) { - /* all fragments failed test */ - goto end; - } - } - } - - if (ctx->Query.CurrentOcclusionObject) { - /* update count of 'passed' fragments */ - struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; - GLuint i; - for (i = 0; i < span->end; i++) - q->Result += span->array->mask[i]; - } - - /* We had to wait until now to check for glColorMask(0,0,0,0) because of - * the occlusion test. - */ - if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) { - /* no colors to write */ - goto end; - } - - /* If we were able to defer fragment color computation to now, there's - * a good chance that many fragments will have already been killed by - * Z/stencil testing. - */ - if (shaderOrTexture && swrast->_DeferredTexture) { - shade_texture_span(ctx, span); - } - -#if CHAN_BITS == 32 - if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) { - interpolate_active_attribs(ctx, span, FRAG_BIT_COL0); - } -#else - if ((span->arrayMask & SPAN_RGBA) == 0) { - interpolate_int_colors(ctx, span); - } -#endif - - ASSERT(span->arrayMask & SPAN_RGBA); - - if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) { - /* Add primary and specular (diffuse + specular) colors */ - if (!shader) { - if (ctx->Fog.ColorSumEnabled || - (ctx->Light.Enabled && - ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) { - add_specular(ctx, span); - } - } - } - - /* Fog */ - if (swrast->_FogEnabled) { - _swrast_fog_rgba_span(ctx, span); - } - - /* Antialias coverage application */ - if (span->arrayMask & SPAN_COVERAGE) { - apply_aa_coverage(span); - } - - /* Clamp color/alpha values over the range [0.0, 1.0] before storage */ - if (ctx->Color.ClampFragmentColor == GL_TRUE && - span->array->ChanType == GL_FLOAT) { - clamp_colors(span); - } - - /* - * Write to renderbuffers. - * Depending on glDrawBuffer() state and the which color outputs are - * written by the fragment shader, we may either replicate one color to - * all renderbuffers or write a different color to each renderbuffer. - * multiFragOutputs=TRUE for the later case. - */ - { - const GLuint numBuffers = fb->_NumColorDrawBuffers; - const struct gl_fragment_program *fp = ctx->FragmentProgram._Current; - const GLboolean multiFragOutputs = - (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0)); - GLuint buf; - - for (buf = 0; buf < numBuffers; buf++) { - struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf]; - - /* color[fragOutput] will be written to buffer[buf] */ - - if (rb) { - GLchan rgbaSave[MAX_WIDTH][4]; - const GLuint fragOutput = multiFragOutputs ? buf : 0; - - /* set span->array->rgba to colors for render buffer's datatype */ - if (rb->DataType != span->array->ChanType || fragOutput > 0) { - convert_color_type(span, rb->DataType, fragOutput); - } - else { - if (rb->DataType == GL_UNSIGNED_BYTE) { - span->array->rgba = span->array->rgba8; - } - else if (rb->DataType == GL_UNSIGNED_SHORT) { - span->array->rgba = (void *) span->array->rgba16; - } - else { - span->array->rgba = (void *) - span->array->attribs[FRAG_ATTRIB_COL0]; - } - } - - if (!multiFragOutputs && numBuffers > 1) { - /* save colors for second, third renderbuffer writes */ - memcpy(rgbaSave, span->array->rgba, - 4 * span->end * sizeof(GLchan)); - } - - ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB || - rb->_BaseFormat == GL_ALPHA); - - if (ctx->Color._LogicOpEnabled) { - _swrast_logicop_rgba_span(ctx, rb, span); - } - else if ((ctx->Color.BlendEnabled >> buf) & 1) { - _swrast_blend_span(ctx, rb, span); - } - - if (colorMask[buf] != 0xffffffff) { - _swrast_mask_rgba_span(ctx, rb, span, buf); - } - - if (span->arrayMask & SPAN_XY) { - /* array of pixel coords */ - ASSERT(rb->PutValues); - rb->PutValues(ctx, rb, span->end, - span->array->x, span->array->y, - span->array->rgba, span->array->mask); - } - else { - /* horizontal run of pixels */ - ASSERT(rb->PutRow); - rb->PutRow(ctx, rb, span->end, span->x, span->y, - span->array->rgba, - span->writeAll ? NULL: span->array->mask); - } - - if (!multiFragOutputs && numBuffers > 1) { - /* restore original span values */ - memcpy(span->array->rgba, rgbaSave, - 4 * span->end * sizeof(GLchan)); - } - - } /* if rb */ - } /* for buf */ - } - -end: - /* restore these values before returning */ - span->interpMask = origInterpMask; - span->arrayMask = origArrayMask; - span->arrayAttribs = origArrayAttribs; - span->array->ChanType = origChanType; - span->array->rgba = origRgba; -} - - -/** - * Read RGBA pixels from a renderbuffer. Clipping will be done to prevent - * reading ouside the buffer's boundaries. - * \param dstType datatype for returned colors - * \param rgba the returned colors - */ -void -_swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb, - GLuint n, GLint x, GLint y, GLenum dstType, - GLvoid *rgba) -{ - const GLint bufWidth = (GLint) rb->Width; - const GLint bufHeight = (GLint) rb->Height; - - if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) { - /* completely above, below, or right */ - /* XXX maybe leave rgba values undefined? */ - memset(rgba, 0, 4 * n * sizeof(GLchan)); - } - else { - GLint skip, length; - if (x < 0) { - /* left edge clipping */ - skip = -x; - length = (GLint) n - skip; - if (length < 0) { - /* completely left of window */ - return; - } - if (length > bufWidth) { - length = bufWidth; - } - } - else if ((GLint) (x + n) > bufWidth) { - /* right edge clipping */ - skip = 0; - length = bufWidth - x; - if (length < 0) { - /* completely to right of window */ - return; - } - } - else { - /* no clipping */ - skip = 0; - length = (GLint) n; - } - - ASSERT(rb); - ASSERT(rb->GetRow); - ASSERT(rb->_BaseFormat == GL_RGBA || - rb->_BaseFormat == GL_RGB || - rb->_BaseFormat == GL_RG || - rb->_BaseFormat == GL_RED || - rb->_BaseFormat == GL_LUMINANCE || - rb->_BaseFormat == GL_INTENSITY || - rb->_BaseFormat == GL_LUMINANCE_ALPHA || - rb->_BaseFormat == GL_ALPHA); - - if (rb->DataType == dstType) { - rb->GetRow(ctx, rb, length, x + skip, y, - (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType)); - } - else { - GLuint temp[MAX_WIDTH * 4]; - rb->GetRow(ctx, rb, length, x + skip, y, temp); - _mesa_convert_colors(rb->DataType, temp, - dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType), - length, NULL); - } - } -} - - -/** - * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid - * reading values outside the buffer bounds. - * We can use this for reading any format/type of renderbuffer. - * \param valueSize is the size in bytes of each value (pixel) put into the - * values array. - */ -void -_swrast_get_values(struct gl_context *ctx, struct gl_renderbuffer *rb, - GLuint count, const GLint x[], const GLint y[], - void *values, GLuint valueSize) -{ - GLuint i, inCount = 0, inStart = 0; - - for (i = 0; i < count; i++) { - if (x[i] >= 0 && y[i] >= 0 && - x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) { - /* inside */ - if (inCount == 0) - inStart = i; - inCount++; - } - else { - if (inCount > 0) { - /* read [inStart, inStart + inCount) */ - rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart, - (GLubyte *) values + inStart * valueSize); - inCount = 0; - } - } - } - if (inCount > 0) { - /* read last values */ - rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart, - (GLubyte *) values + inStart * valueSize); - } -} - - -/** - * Wrapper for gl_renderbuffer::PutRow() which does clipping. - * \param valueSize size of each value (pixel) in bytes - */ -void -_swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb, - GLuint count, GLint x, GLint y, - const GLvoid *values, GLuint valueSize) -{ - GLint skip = 0; - - if (y < 0 || y >= (GLint) rb->Height) - return; /* above or below */ - - if (x + (GLint) count <= 0 || x >= (GLint) rb->Width) - return; /* entirely left or right */ - - if ((GLint) (x + count) > (GLint) rb->Width) { - /* right clip */ - GLint clip = x + count - rb->Width; - count -= clip; - } - - if (x < 0) { - /* left clip */ - skip = -x; - x = 0; - count -= skip; - } - - rb->PutRow(ctx, rb, count, x, y, - (const GLubyte *) values + skip * valueSize, NULL); -} - - -/** - * Wrapper for gl_renderbuffer::GetRow() which does clipping. - * \param valueSize size of each value (pixel) in bytes - */ -void -_swrast_get_row(struct gl_context *ctx, struct gl_renderbuffer *rb, - GLuint count, GLint x, GLint y, - GLvoid *values, GLuint valueSize) -{ - GLint skip = 0; - - if (y < 0 || y >= (GLint) rb->Height) - return; /* above or below */ - - if (x + (GLint) count <= 0 || x >= (GLint) rb->Width) - return; /* entirely left or right */ - - if (x + count > rb->Width) { - /* right clip */ - GLint clip = x + count - rb->Width; - count -= clip; - } - - if (x < 0) { - /* left clip */ - skip = -x; - x = 0; - count -= skip; - } - - rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize); -} - - -/** - * Get RGBA pixels from the given renderbuffer. - * Used by blending, logicop and masking functions. - * \return pointer to the colors we read. - */ -void * -_swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb, - SWspan *span) -{ - const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType); - void *rbPixels; - - /* Point rbPixels to a temporary space */ - rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1]; - - /* Get destination values from renderbuffer */ - if (span->arrayMask & SPAN_XY) { - _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y, - rbPixels, pixelSize); - } - else { - _swrast_get_row(ctx, rb, span->end, span->x, span->y, - rbPixels, pixelSize); - } - - return rbPixels; -} +/*
+ * Mesa 3-D graphics library
+ * Version: 7.5
+ *
+ * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
+ * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+/**
+ * \file swrast/s_span.c
+ * \brief Span processing functions used by all rasterization functions.
+ * This is where all the per-fragment tests are performed
+ * \author Brian Paul
+ */
+
+#include "main/glheader.h"
+#include "main/colormac.h"
+#include "main/macros.h"
+#include "main/imports.h"
+#include "main/image.h"
+
+#include "s_atifragshader.h"
+#include "s_alpha.h"
+#include "s_blend.h"
+#include "s_context.h"
+#include "s_depth.h"
+#include "s_fog.h"
+#include "s_logic.h"
+#include "s_masking.h"
+#include "s_fragprog.h"
+#include "s_span.h"
+#include "s_stencil.h"
+#include "s_texcombine.h"
+
+
+/**
+ * Set default fragment attributes for the span using the
+ * current raster values. Used prior to glDraw/CopyPixels
+ * and glBitmap.
+ */
+void
+_swrast_span_default_attribs(struct gl_context *ctx, SWspan *span)
+{
+ GLchan r, g, b, a;
+ /* Z*/
+ {
+ const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
+ if (ctx->DrawBuffer->Visual.depthBits <= 16)
+ span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
+ else {
+ GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
+ tmpf = MIN2(tmpf, depthMax);
+ span->z = (GLint)tmpf;
+ }
+ span->zStep = 0;
+ span->interpMask |= SPAN_Z;
+ }
+
+ /* W (for perspective correction) */
+ span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
+ span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
+ span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
+
+ /* primary color, or color index */
+ UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
+ UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
+ UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
+ UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
+#if CHAN_TYPE == GL_FLOAT
+ span->red = r;
+ span->green = g;
+ span->blue = b;
+ span->alpha = a;
+#else
+ span->red = IntToFixed(r);
+ span->green = IntToFixed(g);
+ span->blue = IntToFixed(b);
+ span->alpha = IntToFixed(a);
+#endif
+ span->redStep = 0;
+ span->greenStep = 0;
+ span->blueStep = 0;
+ span->alphaStep = 0;
+ span->interpMask |= SPAN_RGBA;
+
+ COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
+ ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
+ ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
+
+ /* Secondary color */
+ if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
+ {
+ COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
+ ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
+ ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
+ }
+
+ /* fog */
+ {
+ const SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ GLfloat fogVal; /* a coord or a blend factor */
+ if (swrast->_PreferPixelFog) {
+ /* fog blend factors will be computed from fog coordinates per pixel */
+ fogVal = ctx->Current.RasterDistance;
+ }
+ else {
+ /* fog blend factor should be computed from fogcoord now */
+ fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
+ }
+ span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
+ span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
+ span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
+ }
+
+ /* texcoords */
+ {
+ GLuint i;
+ for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
+ const GLuint attr = FRAG_ATTRIB_TEX0 + i;
+ const GLfloat *tc = ctx->Current.RasterTexCoords[i];
+ if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
+ COPY_4V(span->attrStart[attr], tc);
+ }
+ else if (tc[3] > 0.0F) {
+ /* use (s/q, t/q, r/q, 1) */
+ span->attrStart[attr][0] = tc[0] / tc[3];
+ span->attrStart[attr][1] = tc[1] / tc[3];
+ span->attrStart[attr][2] = tc[2] / tc[3];
+ span->attrStart[attr][3] = 1.0;
+ }
+ else {
+ ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
+ }
+ ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
+ ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
+ }
+ }
+}
+
+
+/**
+ * Interpolate the active attributes (and'd with attrMask) to
+ * fill in span->array->attribs[].
+ * Perspective correction will be done. The point/line/triangle function
+ * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
+ */
+static INLINE void
+interpolate_active_attribs(struct gl_context *ctx, SWspan *span, GLbitfield attrMask)
+{
+ const SWcontext *swrast = SWRAST_CONTEXT(ctx);
+
+ /*
+ * Don't overwrite existing array values, such as colors that may have
+ * been produced by glDraw/CopyPixels.
+ */
+ attrMask &= ~span->arrayAttribs;
+
+ ATTRIB_LOOP_BEGIN
+ if (attrMask & (1 << attr)) {
+ const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
+ GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
+ const GLfloat dv0dx = span->attrStepX[attr][0];
+ const GLfloat dv1dx = span->attrStepX[attr][1];
+ const GLfloat dv2dx = span->attrStepX[attr][2];
+ const GLfloat dv3dx = span->attrStepX[attr][3];
+ GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
+ GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
+ GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
+ GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
+ GLuint k;
+ for (k = 0; k < span->end; k++) {
+ const GLfloat invW = 1.0f / w;
+ span->array->attribs[attr][k][0] = v0 * invW;
+ span->array->attribs[attr][k][1] = v1 * invW;
+ span->array->attribs[attr][k][2] = v2 * invW;
+ span->array->attribs[attr][k][3] = v3 * invW;
+ v0 += dv0dx;
+ v1 += dv1dx;
+ v2 += dv2dx;
+ v3 += dv3dx;
+ w += dwdx;
+ }
+ ASSERT((span->arrayAttribs & (1 << attr)) == 0);
+ span->arrayAttribs |= (1 << attr);
+ }
+ ATTRIB_LOOP_END
+}
+
+
+/**
+ * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
+ * color array.
+ */
+static INLINE void
+interpolate_int_colors(struct gl_context *ctx, SWspan *span)
+{
+ const GLuint n = span->end;
+ GLuint i;
+
+#if CHAN_BITS != 32
+ ASSERT(!(span->arrayMask & SPAN_RGBA));
+#endif
+
+ switch (span->array->ChanType) {
+#if CHAN_BITS != 32
+ case GL_UNSIGNED_BYTE:
+ {
+ GLubyte (*rgba)[4] = span->array->rgba8;
+ if (span->interpMask & SPAN_FLAT) {
+ GLubyte color[4];
+ color[RCOMP] = FixedToInt(span->red);
+ color[GCOMP] = FixedToInt(span->green);
+ color[BCOMP] = FixedToInt(span->blue);
+ color[ACOMP] = FixedToInt(span->alpha);
+ for (i = 0; i < n; i++) {
+ COPY_4UBV(rgba[i], color);
+ }
+ }
+ else {
+ GLfixed r = span->red;
+ GLfixed g = span->green;
+ GLfixed b = span->blue;
+ GLfixed a = span->alpha;
+ GLint dr = span->redStep;
+ GLint dg = span->greenStep;
+ GLint db = span->blueStep;
+ GLint da = span->alphaStep;
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = FixedToChan(r);
+ rgba[i][GCOMP] = FixedToChan(g);
+ rgba[i][BCOMP] = FixedToChan(b);
+ rgba[i][ACOMP] = FixedToChan(a);
+ r += dr;
+ g += dg;
+ b += db;
+ a += da;
+ }
+ }
+ }
+ break;
+ case GL_UNSIGNED_SHORT:
+ {
+ GLushort (*rgba)[4] = span->array->rgba16;
+ if (span->interpMask & SPAN_FLAT) {
+ GLushort color[4];
+ color[RCOMP] = FixedToInt(span->red);
+ color[GCOMP] = FixedToInt(span->green);
+ color[BCOMP] = FixedToInt(span->blue);
+ color[ACOMP] = FixedToInt(span->alpha);
+ for (i = 0; i < n; i++) {
+ COPY_4V(rgba[i], color);
+ }
+ }
+ else {
+ GLushort (*rgba)[4] = span->array->rgba16;
+ GLfixed r, g, b, a;
+ GLint dr, dg, db, da;
+ r = span->red;
+ g = span->green;
+ b = span->blue;
+ a = span->alpha;
+ dr = span->redStep;
+ dg = span->greenStep;
+ db = span->blueStep;
+ da = span->alphaStep;
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = FixedToChan(r);
+ rgba[i][GCOMP] = FixedToChan(g);
+ rgba[i][BCOMP] = FixedToChan(b);
+ rgba[i][ACOMP] = FixedToChan(a);
+ r += dr;
+ g += dg;
+ b += db;
+ a += da;
+ }
+ }
+ }
+ break;
+#endif
+ case GL_FLOAT:
+ interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
+ break;
+ default:
+ _mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors",
+ span->array->ChanType);
+ }
+ span->arrayMask |= SPAN_RGBA;
+}
+
+
+/**
+ * Populate the FRAG_ATTRIB_COL0 array.
+ */
+static INLINE void
+interpolate_float_colors(SWspan *span)
+{
+ GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
+ const GLuint n = span->end;
+ GLuint i;
+
+ assert(!(span->arrayAttribs & FRAG_BIT_COL0));
+
+ if (span->arrayMask & SPAN_RGBA) {
+ /* convert array of int colors */
+ for (i = 0; i < n; i++) {
+ col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
+ col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
+ col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
+ col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
+ }
+ }
+ else {
+ /* interpolate red/green/blue/alpha to get float colors */
+ ASSERT(span->interpMask & SPAN_RGBA);
+ if (span->interpMask & SPAN_FLAT) {
+ GLfloat r = FixedToFloat(span->red);
+ GLfloat g = FixedToFloat(span->green);
+ GLfloat b = FixedToFloat(span->blue);
+ GLfloat a = FixedToFloat(span->alpha);
+ for (i = 0; i < n; i++) {
+ ASSIGN_4V(col0[i], r, g, b, a);
+ }
+ }
+ else {
+ GLfloat r = FixedToFloat(span->red);
+ GLfloat g = FixedToFloat(span->green);
+ GLfloat b = FixedToFloat(span->blue);
+ GLfloat a = FixedToFloat(span->alpha);
+ GLfloat dr = FixedToFloat(span->redStep);
+ GLfloat dg = FixedToFloat(span->greenStep);
+ GLfloat db = FixedToFloat(span->blueStep);
+ GLfloat da = FixedToFloat(span->alphaStep);
+ for (i = 0; i < n; i++) {
+ col0[i][0] = r;
+ col0[i][1] = g;
+ col0[i][2] = b;
+ col0[i][3] = a;
+ r += dr;
+ g += dg;
+ b += db;
+ a += da;
+ }
+ }
+ }
+
+ span->arrayAttribs |= FRAG_BIT_COL0;
+ span->array->ChanType = GL_FLOAT;
+}
+
+
+
+/**
+ * Fill in the span.zArray array from the span->z, zStep values.
+ */
+void
+_swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span )
+{
+ const GLuint n = span->end;
+ GLuint i;
+
+ ASSERT(!(span->arrayMask & SPAN_Z));
+
+ if (ctx->DrawBuffer->Visual.depthBits <= 16) {
+ GLfixed zval = span->z;
+ GLuint *z = span->array->z;
+ for (i = 0; i < n; i++) {
+ z[i] = FixedToInt(zval);
+ zval += span->zStep;
+ }
+ }
+ else {
+ /* Deep Z buffer, no fixed->int shift */
+ GLuint zval = span->z;
+ GLuint *z = span->array->z;
+ for (i = 0; i < n; i++) {
+ z[i] = zval;
+ zval += span->zStep;
+ }
+ }
+ span->interpMask &= ~SPAN_Z;
+ span->arrayMask |= SPAN_Z;
+}
+
+
+/**
+ * Compute mipmap LOD from partial derivatives.
+ * This the ideal solution, as given in the OpenGL spec.
+ */
+GLfloat
+_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
+ GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
+ GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
+{
+ GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
+ GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
+ GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
+ GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
+ GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
+ GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
+ GLfloat rho = MAX2(x, y);
+ GLfloat lambda = LOG2(rho);
+ return lambda;
+}
+
+
+/**
+ * Compute mipmap LOD from partial derivatives.
+ * This is a faster approximation than above function.
+ */
+#if 0
+GLfloat
+_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
+ GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
+ GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
+{
+ GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
+ GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
+ GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
+ GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
+ GLfloat maxU, maxV, rho, lambda;
+ dsdx2 = FABSF(dsdx2);
+ dsdy2 = FABSF(dsdy2);
+ dtdx2 = FABSF(dtdx2);
+ dtdy2 = FABSF(dtdy2);
+ maxU = MAX2(dsdx2, dsdy2) * texW;
+ maxV = MAX2(dtdx2, dtdy2) * texH;
+ rho = MAX2(maxU, maxV);
+ lambda = LOG2(rho);
+ return lambda;
+}
+#endif
+
+
+/**
+ * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
+ * using the attrStart/Step values.
+ *
+ * This function only used during fixed-function fragment processing.
+ *
+ * Note: in the places where we divide by Q (or mult by invQ) we're
+ * really doing two things: perspective correction and texcoord
+ * projection. Remember, for texcoord (s,t,r,q) we need to index
+ * texels with (s/q, t/q, r/q).
+ */
+static void
+interpolate_texcoords(struct gl_context *ctx, SWspan *span)
+{
+ const GLuint maxUnit
+ = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
+ GLuint u;
+
+ /* XXX CoordUnits vs. ImageUnits */
+ for (u = 0; u < maxUnit; u++) {
+ if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
+ const GLuint attr = FRAG_ATTRIB_TEX0 + u;
+ const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
+ GLfloat texW, texH;
+ GLboolean needLambda;
+ GLfloat (*texcoord)[4] = span->array->attribs[attr];
+ GLfloat *lambda = span->array->lambda[u];
+ const GLfloat dsdx = span->attrStepX[attr][0];
+ const GLfloat dsdy = span->attrStepY[attr][0];
+ const GLfloat dtdx = span->attrStepX[attr][1];
+ const GLfloat dtdy = span->attrStepY[attr][1];
+ const GLfloat drdx = span->attrStepX[attr][2];
+ const GLfloat dqdx = span->attrStepX[attr][3];
+ const GLfloat dqdy = span->attrStepY[attr][3];
+ GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
+ GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
+ GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
+ GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
+
+ if (obj) {
+ const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
+ needLambda = (obj->Sampler.MinFilter != obj->Sampler.MagFilter)
+ || ctx->FragmentProgram._Current;
+ /* LOD is calculated directly in the ansiotropic filter, we can
+ * skip the normal lambda function as the result is ignored.
+ */
+ if (obj->Sampler.MaxAnisotropy > 1.0 &&
+ obj->Sampler.MinFilter == GL_LINEAR_MIPMAP_LINEAR) {
+ needLambda = GL_FALSE;
+ }
+ texW = img->WidthScale;
+ texH = img->HeightScale;
+ }
+ else {
+ /* using a fragment program */
+ texW = 1.0;
+ texH = 1.0;
+ needLambda = GL_FALSE;
+ }
+
+ if (needLambda) {
+ GLuint i;
+ if (ctx->FragmentProgram._Current
+ || ctx->ATIFragmentShader._Enabled) {
+ /* do perspective correction but don't divide s, t, r by q */
+ const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
+ GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invW = 1.0F / w;
+ texcoord[i][0] = s * invW;
+ texcoord[i][1] = t * invW;
+ texcoord[i][2] = r * invW;
+ texcoord[i][3] = q * invW;
+ lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
+ dqdx, dqdy, texW, texH,
+ s, t, q, invW);
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ w += dwdx;
+ }
+ }
+ else {
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
+ dqdx, dqdy, texW, texH,
+ s, t, q, invQ);
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ }
+ }
+ span->arrayMask |= SPAN_LAMBDA;
+ }
+ else {
+ GLuint i;
+ if (ctx->FragmentProgram._Current ||
+ ctx->ATIFragmentShader._Enabled) {
+ /* do perspective correction but don't divide s, t, r by q */
+ const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
+ GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invW = 1.0F / w;
+ texcoord[i][0] = s * invW;
+ texcoord[i][1] = t * invW;
+ texcoord[i][2] = r * invW;
+ texcoord[i][3] = q * invW;
+ lambda[i] = 0.0;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ w += dwdx;
+ }
+ }
+ else if (dqdx == 0.0F) {
+ /* Ortho projection or polygon's parallel to window X axis */
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ for (i = 0; i < span->end; i++) {
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ lambda[i] = 0.0;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ }
+ }
+ else {
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ lambda[i] = 0.0;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ }
+ }
+ } /* lambda */
+ } /* if */
+ } /* for */
+}
+
+
+/**
+ * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
+ */
+static INLINE void
+interpolate_wpos(struct gl_context *ctx, SWspan *span)
+{
+ GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
+ GLuint i;
+ const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
+ GLfloat w, dw;
+
+ if (span->arrayMask & SPAN_XY) {
+ for (i = 0; i < span->end; i++) {
+ wpos[i][0] = (GLfloat) span->array->x[i];
+ wpos[i][1] = (GLfloat) span->array->y[i];
+ }
+ }
+ else {
+ for (i = 0; i < span->end; i++) {
+ wpos[i][0] = (GLfloat) span->x + i;
+ wpos[i][1] = (GLfloat) span->y;
+ }
+ }
+
+ dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
+ w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw;
+ for (i = 0; i < span->end; i++) {
+ wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
+ wpos[i][3] = w;
+ w += dw;
+ }
+}
+
+
+/**
+ * Apply the current polygon stipple pattern to a span of pixels.
+ */
+static INLINE void
+stipple_polygon_span(struct gl_context *ctx, SWspan *span)
+{
+ GLubyte *mask = span->array->mask;
+
+ ASSERT(ctx->Polygon.StippleFlag);
+
+ if (span->arrayMask & SPAN_XY) {
+ /* arrays of x/y pixel coords */
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ const GLint col = span->array->x[i] % 32;
+ const GLint row = span->array->y[i] % 32;
+ const GLuint stipple = ctx->PolygonStipple[row];
+ if (((1 << col) & stipple) == 0) {
+ mask[i] = 0;
+ }
+ }
+ }
+ else {
+ /* horizontal span of pixels */
+ const GLuint highBit = 1 << 31;
+ const GLuint stipple = ctx->PolygonStipple[span->y % 32];
+ GLuint i, m = highBit >> (GLuint) (span->x % 32);
+ for (i = 0; i < span->end; i++) {
+ if ((m & stipple) == 0) {
+ mask[i] = 0;
+ }
+ m = m >> 1;
+ if (m == 0) {
+ m = highBit;
+ }
+ }
+ }
+ span->writeAll = GL_FALSE;
+}
+
+
+/**
+ * Clip a pixel span to the current buffer/window boundaries:
+ * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish
+ * window clipping and scissoring.
+ * Return: GL_TRUE some pixels still visible
+ * GL_FALSE nothing visible
+ */
+static INLINE GLuint
+clip_span( struct gl_context *ctx, SWspan *span )
+{
+ const GLint xmin = ctx->DrawBuffer->_Xmin;
+ const GLint xmax = ctx->DrawBuffer->_Xmax;
+ const GLint ymin = ctx->DrawBuffer->_Ymin;
+ const GLint ymax = ctx->DrawBuffer->_Ymax;
+
+ span->leftClip = 0;
+
+ if (span->arrayMask & SPAN_XY) {
+ /* arrays of x/y pixel coords */
+ const GLint *x = span->array->x;
+ const GLint *y = span->array->y;
+ const GLint n = span->end;
+ GLubyte *mask = span->array->mask;
+ GLint i;
+ if (span->arrayMask & SPAN_MASK) {
+ /* note: using & intead of && to reduce branches */
+ for (i = 0; i < n; i++) {
+ mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
+ & (y[i] >= ymin) & (y[i] < ymax);
+ }
+ }
+ else {
+ /* note: using & intead of && to reduce branches */
+ for (i = 0; i < n; i++) {
+ mask[i] = (x[i] >= xmin) & (x[i] < xmax)
+ & (y[i] >= ymin) & (y[i] < ymax);
+ }
+ }
+ return GL_TRUE; /* some pixels visible */
+ }
+ else {
+ /* horizontal span of pixels */
+ const GLint x = span->x;
+ const GLint y = span->y;
+ GLint n = span->end;
+
+ /* Trivial rejection tests */
+ if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
+ span->end = 0;
+ return GL_FALSE; /* all pixels clipped */
+ }
+
+ /* Clip to right */
+ if (x + n > xmax) {
+ ASSERT(x < xmax);
+ n = span->end = xmax - x;
+ }
+
+ /* Clip to the left */
+ if (x < xmin) {
+ const GLint leftClip = xmin - x;
+ GLuint i;
+
+ ASSERT(leftClip > 0);
+ ASSERT(x + n > xmin);
+
+ /* Clip 'leftClip' pixels from the left side.
+ * The span->leftClip field will be applied when we interpolate
+ * fragment attributes.
+ * For arrays of values, shift them left.
+ */
+ for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
+ if (span->interpMask & (1 << i)) {
+ GLuint j;
+ for (j = 0; j < 4; j++) {
+ span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
+ }
+ }
+ }
+
+ span->red += leftClip * span->redStep;
+ span->green += leftClip * span->greenStep;
+ span->blue += leftClip * span->blueStep;
+ span->alpha += leftClip * span->alphaStep;
+ span->index += leftClip * span->indexStep;
+ span->z += leftClip * span->zStep;
+ span->intTex[0] += leftClip * span->intTexStep[0];
+ span->intTex[1] += leftClip * span->intTexStep[1];
+
+#define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
+ memcpy(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
+
+ for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
+ if (span->arrayAttribs & (1 << i)) {
+ /* shift array elements left by 'leftClip' */
+ SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
+ }
+ }
+
+ SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
+ for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
+ SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
+ }
+ SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
+
+#undef SHIFT_ARRAY
+
+ span->leftClip = leftClip;
+ span->x = xmin;
+ span->end -= leftClip;
+ span->writeAll = GL_FALSE;
+ }
+
+ ASSERT(span->x >= xmin);
+ ASSERT(span->x + span->end <= xmax);
+ ASSERT(span->y >= ymin);
+ ASSERT(span->y < ymax);
+
+ return GL_TRUE; /* some pixels visible */
+ }
+}
+
+
+/**
+ * Add specular colors to primary colors.
+ * Only called during fixed-function operation.
+ * Result is float color array (FRAG_ATTRIB_COL0).
+ */
+static INLINE void
+add_specular(struct gl_context *ctx, SWspan *span)
+{
+ const SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ const GLubyte *mask = span->array->mask;
+ GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
+ GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
+ GLuint i;
+
+ ASSERT(!ctx->FragmentProgram._Current);
+ ASSERT(span->arrayMask & SPAN_RGBA);
+ ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
+ (void) swrast; /* silence warning */
+
+ if (span->array->ChanType == GL_FLOAT) {
+ if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
+ interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
+ }
+ }
+ else {
+ /* need float colors */
+ if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
+ interpolate_float_colors(span);
+ }
+ }
+
+ if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
+ /* XXX could avoid this and interpolate COL1 in the loop below */
+ interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
+ }
+
+ ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
+ ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
+
+ for (i = 0; i < span->end; i++) {
+ if (mask[i]) {
+ col0[i][0] += col1[i][0];
+ col0[i][1] += col1[i][1];
+ col0[i][2] += col1[i][2];
+ }
+ }
+
+ span->array->ChanType = GL_FLOAT;
+}
+
+
+/**
+ * Apply antialiasing coverage value to alpha values.
+ */
+static INLINE void
+apply_aa_coverage(SWspan *span)
+{
+ const GLfloat *coverage = span->array->coverage;
+ GLuint i;
+ if (span->array->ChanType == GL_UNSIGNED_BYTE) {
+ GLubyte (*rgba)[4] = span->array->rgba8;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat a = rgba[i][ACOMP] * coverage[i];
+ rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
+ ASSERT(coverage[i] >= 0.0);
+ ASSERT(coverage[i] <= 1.0);
+ }
+ }
+ else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
+ GLushort (*rgba)[4] = span->array->rgba16;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat a = rgba[i][ACOMP] * coverage[i];
+ rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
+ }
+ }
+ else {
+ GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
+ for (i = 0; i < span->end; i++) {
+ rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
+ /* clamp later */
+ }
+ }
+}
+
+
+/**
+ * Clamp span's float colors to [0,1]
+ */
+static INLINE void
+clamp_colors(SWspan *span)
+{
+ GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
+ GLuint i;
+ ASSERT(span->array->ChanType == GL_FLOAT);
+ for (i = 0; i < span->end; i++) {
+ rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
+ rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
+ rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
+ rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
+ }
+}
+
+
+/**
+ * Convert the span's color arrays to the given type.
+ * The only way 'output' can be greater than zero is when we have a fragment
+ * program that writes to gl_FragData[1] or higher.
+ * \param output which fragment program color output is being processed
+ */
+static INLINE void
+convert_color_type(SWspan *span, GLenum newType, GLuint output)
+{
+ GLvoid *src, *dst;
+
+ if (output > 0 || span->array->ChanType == GL_FLOAT) {
+ src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
+ span->array->ChanType = GL_FLOAT;
+ }
+ else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
+ src = span->array->rgba8;
+ }
+ else {
+ ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
+ src = span->array->rgba16;
+ }
+
+ if (newType == GL_UNSIGNED_BYTE) {
+ dst = span->array->rgba8;
+ }
+ else if (newType == GL_UNSIGNED_SHORT) {
+ dst = span->array->rgba16;
+ }
+ else {
+ dst = span->array->attribs[FRAG_ATTRIB_COL0];
+ }
+
+ _mesa_convert_colors(span->array->ChanType, src,
+ newType, dst,
+ span->end, span->array->mask);
+
+ span->array->ChanType = newType;
+ span->array->rgba = dst;
+}
+
+
+
+/**
+ * Apply fragment shader, fragment program or normal texturing to span.
+ */
+static INLINE void
+shade_texture_span(struct gl_context *ctx, SWspan *span)
+{
+ GLbitfield inputsRead;
+
+ /* Determine which fragment attributes are actually needed */
+ if (ctx->FragmentProgram._Current) {
+ inputsRead = ctx->FragmentProgram._Current->Base.InputsRead;
+ }
+ else {
+ /* XXX we could be a bit smarter about this */
+ inputsRead = ~0;
+ }
+
+ if (ctx->FragmentProgram._Current ||
+ ctx->ATIFragmentShader._Enabled) {
+ /* programmable shading */
+ if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
+ convert_color_type(span, GL_FLOAT, 0);
+ }
+ else {
+ span->array->rgba = (void *) span->array->attribs[FRAG_ATTRIB_COL0];
+ }
+
+ if (span->primitive != GL_POINT ||
+ (span->interpMask & SPAN_RGBA) ||
+ ctx->Point.PointSprite) {
+ /* for single-pixel points, we populated the arrays already */
+ interpolate_active_attribs(ctx, span, ~0);
+ }
+ span->array->ChanType = GL_FLOAT;
+
+ if (!(span->arrayMask & SPAN_Z))
+ _swrast_span_interpolate_z (ctx, span);
+
+#if 0
+ if (inputsRead & FRAG_BIT_WPOS)
+#else
+ /* XXX always interpolate wpos so that DDX/DDY work */
+#endif
+ interpolate_wpos(ctx, span);
+
+ /* Run fragment program/shader now */
+ if (ctx->FragmentProgram._Current) {
+ _swrast_exec_fragment_program(ctx, span);
+ }
+ else {
+ ASSERT(ctx->ATIFragmentShader._Enabled);
+ _swrast_exec_fragment_shader(ctx, span);
+ }
+ }
+ else if (ctx->Texture._EnabledCoordUnits) {
+ /* conventional texturing */
+
+#if CHAN_BITS == 32
+ if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
+ interpolate_int_colors(ctx, span);
+ }
+#else
+ if (!(span->arrayMask & SPAN_RGBA))
+ interpolate_int_colors(ctx, span);
+#endif
+ if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
+ interpolate_texcoords(ctx, span);
+
+ _swrast_texture_span(ctx, span);
+ }
+}
+
+
+
+/**
+ * Apply all the per-fragment operations to a span.
+ * This now includes texturing (_swrast_write_texture_span() is history).
+ * This function may modify any of the array values in the span.
+ * span->interpMask and span->arrayMask may be changed but will be restored
+ * to their original values before returning.
+ */
+void
+_swrast_write_rgba_span( struct gl_context *ctx, SWspan *span)
+{
+ const SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
+ const GLbitfield origInterpMask = span->interpMask;
+ const GLbitfield origArrayMask = span->arrayMask;
+ const GLbitfield origArrayAttribs = span->arrayAttribs;
+ const GLenum origChanType = span->array->ChanType;
+ void * const origRgba = span->array->rgba;
+ const GLboolean shader = (ctx->FragmentProgram._Current
+ || ctx->ATIFragmentShader._Enabled);
+ const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
+ struct gl_framebuffer *fb = ctx->DrawBuffer;
+
+ /*
+ printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__,
+ span->interpMask, span->arrayMask);
+ */
+
+ ASSERT(span->primitive == GL_POINT ||
+ span->primitive == GL_LINE ||
+ span->primitive == GL_POLYGON ||
+ span->primitive == GL_BITMAP);
+
+ /* Fragment write masks */
+ if (span->arrayMask & SPAN_MASK) {
+ /* mask was initialized by caller, probably glBitmap */
+ span->writeAll = GL_FALSE;
+ }
+ else {
+ memset(span->array->mask, 1, span->end);
+ span->writeAll = GL_TRUE;
+ }
+
+ /* Clip to window/scissor box */
+ if (!clip_span(ctx, span)) {
+ return;
+ }
+
+ ASSERT(span->end <= MAX_WIDTH);
+
+ /* Depth bounds test */
+ if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
+ if (!_swrast_depth_bounds_test(ctx, span)) {
+ return;
+ }
+ }
+
+#ifdef DEBUG
+ /* Make sure all fragments are within window bounds */
+ if (span->arrayMask & SPAN_XY) {
+ /* array of pixel locations */
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ if (span->array->mask[i]) {
+ assert(span->array->x[i] >= fb->_Xmin);
+ assert(span->array->x[i] < fb->_Xmax);
+ assert(span->array->y[i] >= fb->_Ymin);
+ assert(span->array->y[i] < fb->_Ymax);
+ }
+ }
+ }
+#endif
+
+ /* Polygon Stippling */
+ if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
+ stipple_polygon_span(ctx, span);
+ }
+
+ /* This is the normal place to compute the fragment color/Z
+ * from texturing or shading.
+ */
+ if (shaderOrTexture && !swrast->_DeferredTexture) {
+ shade_texture_span(ctx, span);
+ }
+
+ /* Do the alpha test */
+ if (ctx->Color.AlphaEnabled) {
+ if (!_swrast_alpha_test(ctx, span)) {
+ /* all fragments failed test */
+ goto end;
+ }
+ }
+
+ /* Stencil and Z testing */
+ if (ctx->Stencil._Enabled || ctx->Depth.Test) {
+ if (!(span->arrayMask & SPAN_Z))
+ _swrast_span_interpolate_z(ctx, span);
+
+ if (ctx->Transform.DepthClamp)
+ _swrast_depth_clamp_span(ctx, span);
+
+ if (ctx->Stencil._Enabled) {
+ /* Combined Z/stencil tests */
+ if (!_swrast_stencil_and_ztest_span(ctx, span)) {
+ /* all fragments failed test */
+ goto end;
+ }
+ }
+ else if (fb->Visual.depthBits > 0) {
+ /* Just regular depth testing */
+ ASSERT(ctx->Depth.Test);
+ ASSERT(span->arrayMask & SPAN_Z);
+ if (!_swrast_depth_test_span(ctx, span)) {
+ /* all fragments failed test */
+ goto end;
+ }
+ }
+ }
+
+ if (ctx->Query.CurrentOcclusionObject) {
+ /* update count of 'passed' fragments */
+ struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
+ GLuint i;
+ for (i = 0; i < span->end; i++)
+ q->Result += span->array->mask[i];
+ }
+
+ /* We had to wait until now to check for glColorMask(0,0,0,0) because of
+ * the occlusion test.
+ */
+ if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
+ /* no colors to write */
+ goto end;
+ }
+
+ /* If we were able to defer fragment color computation to now, there's
+ * a good chance that many fragments will have already been killed by
+ * Z/stencil testing.
+ */
+ if (shaderOrTexture && swrast->_DeferredTexture) {
+ shade_texture_span(ctx, span);
+ }
+
+#if CHAN_BITS == 32
+ if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
+ interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
+ }
+#else
+ if ((span->arrayMask & SPAN_RGBA) == 0) {
+ interpolate_int_colors(ctx, span);
+ }
+#endif
+
+ ASSERT(span->arrayMask & SPAN_RGBA);
+
+ if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
+ /* Add primary and specular (diffuse + specular) colors */
+ if (!shader) {
+ if (ctx->Fog.ColorSumEnabled ||
+ (ctx->Light.Enabled &&
+ ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
+ add_specular(ctx, span);
+ }
+ }
+ }
+
+ /* Fog */
+ if (swrast->_FogEnabled) {
+ _swrast_fog_rgba_span(ctx, span);
+ }
+
+ /* Antialias coverage application */
+ if (span->arrayMask & SPAN_COVERAGE) {
+ apply_aa_coverage(span);
+ }
+
+ /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
+ if (ctx->Color.ClampFragmentColor == GL_TRUE &&
+ span->array->ChanType == GL_FLOAT) {
+ clamp_colors(span);
+ }
+
+ /*
+ * Write to renderbuffers.
+ * Depending on glDrawBuffer() state and the which color outputs are
+ * written by the fragment shader, we may either replicate one color to
+ * all renderbuffers or write a different color to each renderbuffer.
+ * multiFragOutputs=TRUE for the later case.
+ */
+ {
+ const GLuint numBuffers = fb->_NumColorDrawBuffers;
+ const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
+ const GLboolean multiFragOutputs =
+ (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0));
+ GLuint buf;
+
+ for (buf = 0; buf < numBuffers; buf++) {
+ struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
+
+ /* color[fragOutput] will be written to buffer[buf] */
+
+ if (rb) {
+ GLchan rgbaSave[MAX_WIDTH][4];
+ const GLuint fragOutput = multiFragOutputs ? buf : 0;
+
+ /* set span->array->rgba to colors for render buffer's datatype */
+ if (rb->DataType != span->array->ChanType || fragOutput > 0) {
+ convert_color_type(span, rb->DataType, fragOutput);
+ }
+ else {
+ if (rb->DataType == GL_UNSIGNED_BYTE) {
+ span->array->rgba = span->array->rgba8;
+ }
+ else if (rb->DataType == GL_UNSIGNED_SHORT) {
+ span->array->rgba = (void *) span->array->rgba16;
+ }
+ else {
+ span->array->rgba = (void *)
+ span->array->attribs[FRAG_ATTRIB_COL0];
+ }
+ }
+
+ if (!multiFragOutputs && numBuffers > 1) {
+ /* save colors for second, third renderbuffer writes */
+ memcpy(rgbaSave, span->array->rgba,
+ 4 * span->end * sizeof(GLchan));
+ }
+
+ ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB ||
+ rb->_BaseFormat == GL_ALPHA);
+
+ if (ctx->Color._LogicOpEnabled) {
+ _swrast_logicop_rgba_span(ctx, rb, span);
+ }
+ else if ((ctx->Color.BlendEnabled >> buf) & 1) {
+ _swrast_blend_span(ctx, rb, span);
+ }
+
+ if (colorMask[buf] != 0xffffffff) {
+ _swrast_mask_rgba_span(ctx, rb, span, buf);
+ }
+
+ if (span->arrayMask & SPAN_XY) {
+ /* array of pixel coords */
+ ASSERT(rb->PutValues);
+ rb->PutValues(ctx, rb, span->end,
+ span->array->x, span->array->y,
+ span->array->rgba, span->array->mask);
+ }
+ else {
+ /* horizontal run of pixels */
+ ASSERT(rb->PutRow);
+ rb->PutRow(ctx, rb, span->end, span->x, span->y,
+ span->array->rgba,
+ span->writeAll ? NULL: span->array->mask);
+ }
+
+ if (!multiFragOutputs && numBuffers > 1) {
+ /* restore original span values */
+ memcpy(span->array->rgba, rgbaSave,
+ 4 * span->end * sizeof(GLchan));
+ }
+
+ } /* if rb */
+ } /* for buf */
+ }
+
+end:
+ /* restore these values before returning */
+ span->interpMask = origInterpMask;
+ span->arrayMask = origArrayMask;
+ span->arrayAttribs = origArrayAttribs;
+ span->array->ChanType = origChanType;
+ span->array->rgba = origRgba;
+}
+
+
+/**
+ * Read RGBA pixels from a renderbuffer. Clipping will be done to prevent
+ * reading ouside the buffer's boundaries.
+ * \param dstType datatype for returned colors
+ * \param rgba the returned colors
+ */
+void
+_swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb,
+ GLuint n, GLint x, GLint y, GLenum dstType,
+ GLvoid *rgba)
+{
+ const GLint bufWidth = (GLint) rb->Width;
+ const GLint bufHeight = (GLint) rb->Height;
+
+ if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
+ /* completely above, below, or right */
+ /* XXX maybe leave rgba values undefined? */
+ memset(rgba, 0, 4 * n * sizeof(GLchan));
+ }
+ else {
+ GLint skip, length;
+ if (x < 0) {
+ /* left edge clipping */
+ skip = -x;
+ length = (GLint) n - skip;
+ if (length < 0) {
+ /* completely left of window */
+ return;
+ }
+ if (length > bufWidth) {
+ length = bufWidth;
+ }
+ }
+ else if ((GLint) (x + n) > bufWidth) {
+ /* right edge clipping */
+ skip = 0;
+ length = bufWidth - x;
+ if (length < 0) {
+ /* completely to right of window */
+ return;
+ }
+ }
+ else {
+ /* no clipping */
+ skip = 0;
+ length = (GLint) n;
+ }
+
+ ASSERT(rb);
+ ASSERT(rb->GetRow);
+ ASSERT(rb->_BaseFormat == GL_RGBA ||
+ rb->_BaseFormat == GL_RGB ||
+ rb->_BaseFormat == GL_RG ||
+ rb->_BaseFormat == GL_RED ||
+ rb->_BaseFormat == GL_LUMINANCE ||
+ rb->_BaseFormat == GL_INTENSITY ||
+ rb->_BaseFormat == GL_LUMINANCE_ALPHA ||
+ rb->_BaseFormat == GL_ALPHA);
+
+ if (rb->DataType == dstType) {
+ rb->GetRow(ctx, rb, length, x + skip, y,
+ (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
+ }
+ else {
+ GLuint temp[MAX_WIDTH * 4];
+ rb->GetRow(ctx, rb, length, x + skip, y, temp);
+ _mesa_convert_colors(rb->DataType, temp,
+ dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
+ length, NULL);
+ }
+ }
+}
+
+
+/**
+ * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
+ * reading values outside the buffer bounds.
+ * We can use this for reading any format/type of renderbuffer.
+ * \param valueSize is the size in bytes of each value (pixel) put into the
+ * values array.
+ */
+void
+_swrast_get_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
+ GLuint count, const GLint x[], const GLint y[],
+ void *values, GLuint valueSize)
+{
+ GLuint i, inCount = 0, inStart = 0;
+
+ for (i = 0; i < count; i++) {
+ if (x[i] >= 0 && y[i] >= 0 &&
+ x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
+ /* inside */
+ if (inCount == 0)
+ inStart = i;
+ inCount++;
+ }
+ else {
+ if (inCount > 0) {
+ /* read [inStart, inStart + inCount) */
+ rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
+ (GLubyte *) values + inStart * valueSize);
+ inCount = 0;
+ }
+ }
+ }
+ if (inCount > 0) {
+ /* read last values */
+ rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
+ (GLubyte *) values + inStart * valueSize);
+ }
+}
+
+
+/**
+ * Wrapper for gl_renderbuffer::PutRow() which does clipping.
+ * \param valueSize size of each value (pixel) in bytes
+ */
+void
+_swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
+ GLuint count, GLint x, GLint y,
+ const GLvoid *values, GLuint valueSize)
+{
+ GLint skip = 0;
+
+ if (y < 0 || y >= (GLint) rb->Height)
+ return; /* above or below */
+
+ if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
+ return; /* entirely left or right */
+
+ if ((GLint) (x + count) > (GLint) rb->Width) {
+ /* right clip */
+ GLint clip = x + count - rb->Width;
+ count -= clip;
+ }
+
+ if (x < 0) {
+ /* left clip */
+ skip = -x;
+ x = 0;
+ count -= skip;
+ }
+
+ rb->PutRow(ctx, rb, count, x, y,
+ (const GLubyte *) values + skip * valueSize, NULL);
+}
+
+
+/**
+ * Wrapper for gl_renderbuffer::GetRow() which does clipping.
+ * \param valueSize size of each value (pixel) in bytes
+ */
+void
+_swrast_get_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
+ GLuint count, GLint x, GLint y,
+ GLvoid *values, GLuint valueSize)
+{
+ GLint skip = 0;
+
+ if (y < 0 || y >= (GLint) rb->Height)
+ return; /* above or below */
+
+ if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
+ return; /* entirely left or right */
+
+ if (x + count > rb->Width) {
+ /* right clip */
+ GLint clip = x + count - rb->Width;
+ count -= clip;
+ }
+
+ if (x < 0) {
+ /* left clip */
+ skip = -x;
+ x = 0;
+ count -= skip;
+ }
+
+ rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
+}
+
+
+/**
+ * Get RGBA pixels from the given renderbuffer.
+ * Used by blending, logicop and masking functions.
+ * \return pointer to the colors we read.
+ */
+void *
+_swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb,
+ SWspan *span)
+{
+ const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
+ void *rbPixels;
+
+ /* Point rbPixels to a temporary space */
+ rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
+
+ /* Get destination values from renderbuffer */
+ if (span->arrayMask & SPAN_XY) {
+ _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
+ rbPixels, pixelSize);
+ }
+ else {
+ _swrast_get_row(ctx, rb, span->end, span->x, span->y,
+ rbPixels, pixelSize);
+ }
+
+ return rbPixels;
+}
diff --git a/mesalib/src/mesa/swrast/s_texcombine.c b/mesalib/src/mesa/swrast/s_texcombine.c index 7f49b6ffa..53ef2f890 100644 --- a/mesalib/src/mesa/swrast/s_texcombine.c +++ b/mesalib/src/mesa/swrast/s_texcombine.c @@ -1,739 +1,751 @@ -/* - * Mesa 3-D graphics library - * Version: 7.5 - * - * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. - * Copyright (C) 2009 VMware, Inc. All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included - * in all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS - * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN - * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - */ - - -#include "main/glheader.h" -#include "main/context.h" -#include "main/colormac.h" -#include "main/imports.h" -#include "main/pixeltransfer.h" -#include "program/prog_instruction.h" - -#include "s_context.h" -#include "s_texcombine.h" - - -/** - * Pointer to array of float[4] - * This type makes the code below more concise and avoids a lot of casting. - */ -typedef float (*float4_array)[4]; - - -/** - * Return array of texels for given unit. - */ -static INLINE float4_array -get_texel_array(SWcontext *swrast, GLuint unit) -{ - return (float4_array) (swrast->TexelBuffer + unit * MAX_WIDTH * 4); -} - - - -/** - * Do texture application for: - * GL_EXT_texture_env_combine - * GL_ARB_texture_env_combine - * GL_EXT_texture_env_dot3 - * GL_ARB_texture_env_dot3 - * GL_ATI_texture_env_combine3 - * GL_NV_texture_env_combine4 - * conventional GL texture env modes - * - * \param ctx rendering context - * \param unit the texture combiner unit - * \param n number of fragments to process (span width) - * \param primary_rgba incoming fragment color array - * \param texelBuffer pointer to texel colors for all texture units - * - * \param rgba incoming/result fragment colors - */ -static void -texture_combine( struct gl_context *ctx, GLuint unit, GLuint n, - const float4_array primary_rgba, - const GLfloat *texelBuffer, - GLchan (*rgbaChan)[4] ) -{ - SWcontext *swrast = SWRAST_CONTEXT(ctx); - const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]); - const struct gl_tex_env_combine_state *combine = textureUnit->_CurrentCombine; - float4_array argRGB[MAX_COMBINER_TERMS]; - float4_array argA[MAX_COMBINER_TERMS]; - const GLfloat scaleRGB = (GLfloat) (1 << combine->ScaleShiftRGB); - const GLfloat scaleA = (GLfloat) (1 << combine->ScaleShiftA); - const GLuint numArgsRGB = combine->_NumArgsRGB; - const GLuint numArgsA = combine->_NumArgsA; - float4_array ccolor[4], rgba; - GLuint i, term; - - /* alloc temp pixel buffers */ - rgba = (float4_array) malloc(4 * n * sizeof(GLfloat)); - if (!rgba) { - _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_combine"); - return; - } - - for (i = 0; i < numArgsRGB || i < numArgsA; i++) { - ccolor[i] = (float4_array) malloc(4 * n * sizeof(GLfloat)); - if (!ccolor[i]) { - while (i) { - free(ccolor[i]); - i--; - } - _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_combine"); - return; - } - } - - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = CHAN_TO_FLOAT(rgbaChan[i][RCOMP]); - rgba[i][GCOMP] = CHAN_TO_FLOAT(rgbaChan[i][GCOMP]); - rgba[i][BCOMP] = CHAN_TO_FLOAT(rgbaChan[i][BCOMP]); - rgba[i][ACOMP] = CHAN_TO_FLOAT(rgbaChan[i][ACOMP]); - } - - /* - printf("modeRGB 0x%x modeA 0x%x srcRGB1 0x%x srcA1 0x%x srcRGB2 0x%x srcA2 0x%x\n", - combine->ModeRGB, - combine->ModeA, - combine->SourceRGB[0], - combine->SourceA[0], - combine->SourceRGB[1], - combine->SourceA[1]); - */ - - /* - * Do operand setup for up to 4 operands. Loop over the terms. - */ - for (term = 0; term < numArgsRGB; term++) { - const GLenum srcRGB = combine->SourceRGB[term]; - const GLenum operandRGB = combine->OperandRGB[term]; - - switch (srcRGB) { - case GL_TEXTURE: - argRGB[term] = get_texel_array(swrast, unit); - break; - case GL_PRIMARY_COLOR: - argRGB[term] = primary_rgba; - break; - case GL_PREVIOUS: - argRGB[term] = rgba; - break; - case GL_CONSTANT: - { - float4_array c = ccolor[term]; - GLfloat red = textureUnit->EnvColor[0]; - GLfloat green = textureUnit->EnvColor[1]; - GLfloat blue = textureUnit->EnvColor[2]; - GLfloat alpha = textureUnit->EnvColor[3]; - for (i = 0; i < n; i++) { - ASSIGN_4V(c[i], red, green, blue, alpha); - } - argRGB[term] = ccolor[term]; - } - break; - /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources. - */ - case GL_ZERO: - { - float4_array c = ccolor[term]; - for (i = 0; i < n; i++) { - ASSIGN_4V(c[i], 0.0F, 0.0F, 0.0F, 0.0F); - } - argRGB[term] = ccolor[term]; - } - break; - case GL_ONE: - { - float4_array c = ccolor[term]; - for (i = 0; i < n; i++) { - ASSIGN_4V(c[i], 1.0F, 1.0F, 1.0F, 1.0F); - } - argRGB[term] = ccolor[term]; - } - break; - default: - /* ARB_texture_env_crossbar source */ - { - const GLuint srcUnit = srcRGB - GL_TEXTURE0; - ASSERT(srcUnit < ctx->Const.MaxTextureUnits); - if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) - goto end; - argRGB[term] = get_texel_array(swrast, srcUnit); - } - } - - if (operandRGB != GL_SRC_COLOR) { - float4_array src = argRGB[term]; - float4_array dst = ccolor[term]; - - /* point to new arg[term] storage */ - argRGB[term] = ccolor[term]; - - switch (operandRGB) { - case GL_ONE_MINUS_SRC_COLOR: - for (i = 0; i < n; i++) { - dst[i][RCOMP] = 1.0F - src[i][RCOMP]; - dst[i][GCOMP] = 1.0F - src[i][GCOMP]; - dst[i][BCOMP] = 1.0F - src[i][BCOMP]; - } - break; - case GL_SRC_ALPHA: - for (i = 0; i < n; i++) { - dst[i][RCOMP] = - dst[i][GCOMP] = - dst[i][BCOMP] = src[i][ACOMP]; - } - break; - case GL_ONE_MINUS_SRC_ALPHA: - for (i = 0; i < n; i++) { - dst[i][RCOMP] = - dst[i][GCOMP] = - dst[i][BCOMP] = 1.0F - src[i][ACOMP]; - } - break; - default: - _mesa_problem(ctx, "Bad operandRGB"); - } - } - } - - /* - * Set up the argA[term] pointers - */ - for (term = 0; term < numArgsA; term++) { - const GLenum srcA = combine->SourceA[term]; - const GLenum operandA = combine->OperandA[term]; - - switch (srcA) { - case GL_TEXTURE: - argA[term] = get_texel_array(swrast, unit); - break; - case GL_PRIMARY_COLOR: - argA[term] = primary_rgba; - break; - case GL_PREVIOUS: - argA[term] = rgba; - break; - case GL_CONSTANT: - { - float4_array c = ccolor[term]; - GLfloat alpha = textureUnit->EnvColor[3]; - for (i = 0; i < n; i++) - c[i][ACOMP] = alpha; - argA[term] = ccolor[term]; - } - break; - /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources. - */ - case GL_ZERO: - { - float4_array c = ccolor[term]; - for (i = 0; i < n; i++) - c[i][ACOMP] = 0.0F; - argA[term] = ccolor[term]; - } - break; - case GL_ONE: - { - float4_array c = ccolor[term]; - for (i = 0; i < n; i++) - c[i][ACOMP] = 1.0F; - argA[term] = ccolor[term]; - } - break; - default: - /* ARB_texture_env_crossbar source */ - { - const GLuint srcUnit = srcA - GL_TEXTURE0; - ASSERT(srcUnit < ctx->Const.MaxTextureUnits); - if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) - goto end; - argA[term] = get_texel_array(swrast, srcUnit); - } - } - - if (operandA == GL_ONE_MINUS_SRC_ALPHA) { - float4_array src = argA[term]; - float4_array dst = ccolor[term]; - argA[term] = ccolor[term]; - for (i = 0; i < n; i++) { - dst[i][ACOMP] = 1.0F - src[i][ACOMP]; - } - } - } - - /* RGB channel combine */ - { - float4_array arg0 = argRGB[0]; - float4_array arg1 = argRGB[1]; - float4_array arg2 = argRGB[2]; - float4_array arg3 = argRGB[3]; - - switch (combine->ModeRGB) { - case GL_REPLACE: - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = arg0[i][RCOMP] * scaleRGB; - rgba[i][GCOMP] = arg0[i][GCOMP] * scaleRGB; - rgba[i][BCOMP] = arg0[i][BCOMP] * scaleRGB; - } - break; - case GL_MODULATE: - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * scaleRGB; - rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * scaleRGB; - rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * scaleRGB; - } - break; - case GL_ADD: - if (textureUnit->EnvMode == GL_COMBINE4_NV) { - /* (a * b) + (c * d) */ - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] + - arg2[i][RCOMP] * arg3[i][RCOMP]) * scaleRGB; - rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] + - arg2[i][GCOMP] * arg3[i][GCOMP]) * scaleRGB; - rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] + - arg2[i][BCOMP] * arg3[i][BCOMP]) * scaleRGB; - } - } - else { - /* 2-term addition */ - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * scaleRGB; - rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * scaleRGB; - rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * scaleRGB; - } - } - break; - case GL_ADD_SIGNED: - if (textureUnit->EnvMode == GL_COMBINE4_NV) { - /* (a * b) + (c * d) - 0.5 */ - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] + - arg2[i][RCOMP] * arg3[i][RCOMP] - 0.5F) * scaleRGB; - rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] + - arg2[i][GCOMP] * arg3[i][GCOMP] - 0.5F) * scaleRGB; - rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] + - arg2[i][BCOMP] * arg3[i][BCOMP] - 0.5F) * scaleRGB; - } - } - else { - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5F) * scaleRGB; - rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5F) * scaleRGB; - rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5F) * scaleRGB; - } - } - break; - case GL_INTERPOLATE: - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] + - arg1[i][RCOMP] * (1.0F - arg2[i][RCOMP])) * scaleRGB; - rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] + - arg1[i][GCOMP] * (1.0F - arg2[i][GCOMP])) * scaleRGB; - rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] + - arg1[i][BCOMP] * (1.0F - arg2[i][BCOMP])) * scaleRGB; - } - break; - case GL_SUBTRACT: - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * scaleRGB; - rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * scaleRGB; - rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * scaleRGB; - } - break; - case GL_DOT3_RGB_EXT: - case GL_DOT3_RGBA_EXT: - /* Do not scale the result by 1 2 or 4 */ - for (i = 0; i < n; i++) { - GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) + - (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) + - (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F)) - * 4.0F; - dot = CLAMP(dot, 0.0F, 1.0F); - rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot; - } - break; - case GL_DOT3_RGB: - case GL_DOT3_RGBA: - /* DO scale the result by 1 2 or 4 */ - for (i = 0; i < n; i++) { - GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) + - (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) + - (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F)) - * 4.0F * scaleRGB; - dot = CLAMP(dot, 0.0F, 1.0F); - rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot; - } - break; - case GL_MODULATE_ADD_ATI: - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + - arg1[i][RCOMP]) * scaleRGB; - rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + - arg1[i][GCOMP]) * scaleRGB; - rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + - arg1[i][BCOMP]) * scaleRGB; - } - break; - case GL_MODULATE_SIGNED_ADD_ATI: - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + - arg1[i][RCOMP] - 0.5F) * scaleRGB; - rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + - arg1[i][GCOMP] - 0.5F) * scaleRGB; - rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + - arg1[i][BCOMP] - 0.5F) * scaleRGB; - } - break; - case GL_MODULATE_SUBTRACT_ATI: - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) - - arg1[i][RCOMP]) * scaleRGB; - rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) - - arg1[i][GCOMP]) * scaleRGB; - rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) - - arg1[i][BCOMP]) * scaleRGB; - } - break; - case GL_BUMP_ENVMAP_ATI: - /* this produces a fixed rgba color, and the coord calc is done elsewhere */ - for (i = 0; i < n; i++) { - /* rgba result is 0,0,0,1 */ - rgba[i][RCOMP] = 0.0; - rgba[i][GCOMP] = 0.0; - rgba[i][BCOMP] = 0.0; - rgba[i][ACOMP] = 1.0; - } - goto end; /* no alpha processing */ - default: - _mesa_problem(ctx, "invalid combine mode"); - } - } - - /* Alpha channel combine */ - { - float4_array arg0 = argA[0]; - float4_array arg1 = argA[1]; - float4_array arg2 = argA[2]; - float4_array arg3 = argA[3]; - - switch (combine->ModeA) { - case GL_REPLACE: - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = arg0[i][ACOMP] * scaleA; - } - break; - case GL_MODULATE: - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * scaleA; - } - break; - case GL_ADD: - if (textureUnit->EnvMode == GL_COMBINE4_NV) { - /* (a * b) + (c * d) */ - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] + - arg2[i][ACOMP] * arg3[i][ACOMP]) * scaleA; - } - } - else { - /* two-term add */ - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * scaleA; - } - } - break; - case GL_ADD_SIGNED: - if (textureUnit->EnvMode == GL_COMBINE4_NV) { - /* (a * b) + (c * d) - 0.5 */ - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] + - arg2[i][ACOMP] * arg3[i][ACOMP] - - 0.5F) * scaleA; - } - } - else { - /* a + b - 0.5 */ - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * scaleA; - } - } - break; - case GL_INTERPOLATE: - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = (arg0[i][ACOMP] * arg2[i][ACOMP] + - arg1[i][ACOMP] * (1.0F - arg2[i][ACOMP])) - * scaleA; - } - break; - case GL_SUBTRACT: - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * scaleA; - } - break; - case GL_MODULATE_ADD_ATI: - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) - + arg1[i][ACOMP]) * scaleA; - } - break; - case GL_MODULATE_SIGNED_ADD_ATI: - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + - arg1[i][ACOMP] - 0.5F) * scaleA; - } - break; - case GL_MODULATE_SUBTRACT_ATI: - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) - - arg1[i][ACOMP]) * scaleA; - } - break; - default: - _mesa_problem(ctx, "invalid combine mode"); - } - } - - /* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining. - * This is kind of a kludge. It would have been better if the spec - * were written such that the GL_COMBINE_ALPHA value could be set to - * GL_DOT3. - */ - if (combine->ModeRGB == GL_DOT3_RGBA_EXT || - combine->ModeRGB == GL_DOT3_RGBA) { - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = rgba[i][RCOMP]; - } - } - - for (i = 0; i < n; i++) { - UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][RCOMP], rgba[i][RCOMP]); - UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][GCOMP], rgba[i][GCOMP]); - UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][BCOMP], rgba[i][BCOMP]); - UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][ACOMP], rgba[i][ACOMP]); - } - -end: - for (i = 0; i < numArgsRGB || i < numArgsA; i++) { - free(ccolor[i]); - } - free(rgba); -} - - -/** - * Apply X/Y/Z/W/0/1 swizzle to an array of colors/texels. - * See GL_EXT_texture_swizzle. - */ -static void -swizzle_texels(GLuint swizzle, GLuint count, float4_array texels) -{ - const GLuint swzR = GET_SWZ(swizzle, 0); - const GLuint swzG = GET_SWZ(swizzle, 1); - const GLuint swzB = GET_SWZ(swizzle, 2); - const GLuint swzA = GET_SWZ(swizzle, 3); - GLfloat vector[6]; - GLuint i; - - vector[SWIZZLE_ZERO] = 0; - vector[SWIZZLE_ONE] = 1.0F; - - for (i = 0; i < count; i++) { - vector[SWIZZLE_X] = texels[i][0]; - vector[SWIZZLE_Y] = texels[i][1]; - vector[SWIZZLE_Z] = texels[i][2]; - vector[SWIZZLE_W] = texels[i][3]; - texels[i][RCOMP] = vector[swzR]; - texels[i][GCOMP] = vector[swzG]; - texels[i][BCOMP] = vector[swzB]; - texels[i][ACOMP] = vector[swzA]; - } -} - - -/** - * Apply texture mapping to a span of fragments. - */ -void -_swrast_texture_span( struct gl_context *ctx, SWspan *span ) -{ - SWcontext *swrast = SWRAST_CONTEXT(ctx); - float4_array primary_rgba; - GLuint unit; - - primary_rgba = (float4_array) malloc(span->end * 4 * sizeof(GLfloat)); - - if (!primary_rgba) { - _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_span"); - return; - } - - ASSERT(span->end <= MAX_WIDTH); - - /* - * Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR) - */ - if (swrast->_TextureCombinePrimary) { - GLuint i; - for (i = 0; i < span->end; i++) { - primary_rgba[i][RCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][RCOMP]); - primary_rgba[i][GCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][GCOMP]); - primary_rgba[i][BCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][BCOMP]); - primary_rgba[i][ACOMP] = CHAN_TO_FLOAT(span->array->rgba[i][ACOMP]); - } - } - - /* First must sample all bump maps */ - for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { - const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; - - if (texUnit->_ReallyEnabled && - texUnit->_CurrentCombine->ModeRGB == GL_BUMP_ENVMAP_ATI) { - const GLfloat (*texcoords)[4] = (const GLfloat (*)[4]) - span->array->attribs[FRAG_ATTRIB_TEX0 + unit]; - float4_array targetcoords = - span->array->attribs[FRAG_ATTRIB_TEX0 + - ctx->Texture.Unit[unit].BumpTarget - GL_TEXTURE0]; - - const struct gl_texture_object *curObj = texUnit->_Current; - GLfloat *lambda = span->array->lambda[unit]; - float4_array texels = get_texel_array(swrast, unit); - GLuint i; - GLfloat rotMatrix00 = ctx->Texture.Unit[unit].RotMatrix[0]; - GLfloat rotMatrix01 = ctx->Texture.Unit[unit].RotMatrix[1]; - GLfloat rotMatrix10 = ctx->Texture.Unit[unit].RotMatrix[2]; - GLfloat rotMatrix11 = ctx->Texture.Unit[unit].RotMatrix[3]; - - /* adjust texture lod (lambda) */ - if (span->arrayMask & SPAN_LAMBDA) { - if (texUnit->LodBias + curObj->Sampler.LodBias != 0.0F) { - /* apply LOD bias, but don't clamp yet */ - const GLfloat bias = CLAMP(texUnit->LodBias + curObj->Sampler.LodBias, - -ctx->Const.MaxTextureLodBias, - ctx->Const.MaxTextureLodBias); - GLuint i; - for (i = 0; i < span->end; i++) { - lambda[i] += bias; - } - } - - if (curObj->Sampler.MinLod != -1000.0 || - curObj->Sampler.MaxLod != 1000.0) { - /* apply LOD clamping to lambda */ - const GLfloat min = curObj->Sampler.MinLod; - const GLfloat max = curObj->Sampler.MaxLod; - GLuint i; - for (i = 0; i < span->end; i++) { - GLfloat l = lambda[i]; - lambda[i] = CLAMP(l, min, max); - } - } - } - - /* Sample the texture (span->end = number of fragments) */ - swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end, - texcoords, lambda, texels ); - - /* manipulate the span values of the bump target - not sure this can work correctly even ignoring - the problem that channel is unsigned */ - for (i = 0; i < span->end; i++) { - targetcoords[i][0] += (texels[i][0] * rotMatrix00 + texels[i][1] * - rotMatrix01) / targetcoords[i][3]; - targetcoords[i][1] += (texels[i][0] * rotMatrix10 + texels[i][1] * - rotMatrix11) / targetcoords[i][3]; - } - } - } - - /* - * Must do all texture sampling before combining in order to - * accomodate GL_ARB_texture_env_crossbar. - */ - for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { - const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; - if (texUnit->_ReallyEnabled && - texUnit->_CurrentCombine->ModeRGB != GL_BUMP_ENVMAP_ATI) { - const GLfloat (*texcoords)[4] = (const GLfloat (*)[4]) - span->array->attribs[FRAG_ATTRIB_TEX0 + unit]; - const struct gl_texture_object *curObj = texUnit->_Current; - GLfloat *lambda = span->array->lambda[unit]; - float4_array texels = get_texel_array(swrast, unit); - - /* adjust texture lod (lambda) */ - if (span->arrayMask & SPAN_LAMBDA) { - if (texUnit->LodBias + curObj->Sampler.LodBias != 0.0F) { - /* apply LOD bias, but don't clamp yet */ - const GLfloat bias = CLAMP(texUnit->LodBias + curObj->Sampler.LodBias, - -ctx->Const.MaxTextureLodBias, - ctx->Const.MaxTextureLodBias); - GLuint i; - for (i = 0; i < span->end; i++) { - lambda[i] += bias; - } - } - - if (curObj->Sampler.MinLod != -1000.0 || - curObj->Sampler.MaxLod != 1000.0) { - /* apply LOD clamping to lambda */ - const GLfloat min = curObj->Sampler.MinLod; - const GLfloat max = curObj->Sampler.MaxLod; - GLuint i; - for (i = 0; i < span->end; i++) { - GLfloat l = lambda[i]; - lambda[i] = CLAMP(l, min, max); - } - } - } - - /* Sample the texture (span->end = number of fragments) */ - swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end, - texcoords, lambda, texels ); - - /* GL_EXT_texture_swizzle */ - if (curObj->_Swizzle != SWIZZLE_NOOP) { - swizzle_texels(curObj->_Swizzle, span->end, texels); - } - } - } - - /* - * OK, now apply the texture (aka texture combine/blend). - * We modify the span->color.rgba values. - */ - for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { - if (ctx->Texture.Unit[unit]._ReallyEnabled) { - texture_combine( ctx, unit, span->end, - primary_rgba, - swrast->TexelBuffer, - span->array->rgba ); - } - } - - free(primary_rgba); -} +/*
+ * Mesa 3-D graphics library
+ * Version: 7.5
+ *
+ * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
+ * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+#include "main/glheader.h"
+#include "main/context.h"
+#include "main/colormac.h"
+#include "main/imports.h"
+#include "main/pixeltransfer.h"
+#include "program/prog_instruction.h"
+
+#include "s_context.h"
+#include "s_texcombine.h"
+
+
+/**
+ * Pointer to array of float[4]
+ * This type makes the code below more concise and avoids a lot of casting.
+ */
+typedef float (*float4_array)[4];
+
+
+/**
+ * Return array of texels for given unit.
+ */
+static INLINE float4_array
+get_texel_array(SWcontext *swrast, GLuint unit)
+{
+ return (float4_array) (swrast->TexelBuffer + unit * MAX_WIDTH * 4);
+}
+
+
+
+/**
+ * Do texture application for:
+ * GL_EXT_texture_env_combine
+ * GL_ARB_texture_env_combine
+ * GL_EXT_texture_env_dot3
+ * GL_ARB_texture_env_dot3
+ * GL_ATI_texture_env_combine3
+ * GL_NV_texture_env_combine4
+ * conventional GL texture env modes
+ *
+ * \param ctx rendering context
+ * \param unit the texture combiner unit
+ * \param n number of fragments to process (span width)
+ * \param primary_rgba incoming fragment color array
+ * \param texelBuffer pointer to texel colors for all texture units
+ *
+ * \param rgba incoming/result fragment colors
+ */
+static void
+texture_combine( struct gl_context *ctx, GLuint unit, GLuint n,
+ const float4_array primary_rgba,
+ const GLfloat *texelBuffer,
+ GLchan (*rgbaChan)[4] )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]);
+ const struct gl_tex_env_combine_state *combine = textureUnit->_CurrentCombine;
+ float4_array argRGB[MAX_COMBINER_TERMS];
+ float4_array argA[MAX_COMBINER_TERMS];
+ const GLfloat scaleRGB = (GLfloat) (1 << combine->ScaleShiftRGB);
+ const GLfloat scaleA = (GLfloat) (1 << combine->ScaleShiftA);
+ const GLuint numArgsRGB = combine->_NumArgsRGB;
+ const GLuint numArgsA = combine->_NumArgsA;
+ float4_array ccolor[4], rgba;
+ GLuint i, term;
+
+ /* alloc temp pixel buffers */
+ rgba = (float4_array) malloc(4 * n * sizeof(GLfloat));
+ if (!rgba) {
+ _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_combine");
+ return;
+ }
+
+ for (i = 0; i < numArgsRGB || i < numArgsA; i++) {
+ ccolor[i] = (float4_array) malloc(4 * n * sizeof(GLfloat));
+ if (!ccolor[i]) {
+ while (i) {
+ free(ccolor[i]);
+ i--;
+ }
+ _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_combine");
+ return;
+ }
+ }
+
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = CHAN_TO_FLOAT(rgbaChan[i][RCOMP]);
+ rgba[i][GCOMP] = CHAN_TO_FLOAT(rgbaChan[i][GCOMP]);
+ rgba[i][BCOMP] = CHAN_TO_FLOAT(rgbaChan[i][BCOMP]);
+ rgba[i][ACOMP] = CHAN_TO_FLOAT(rgbaChan[i][ACOMP]);
+ }
+
+ /*
+ printf("modeRGB 0x%x modeA 0x%x srcRGB1 0x%x srcA1 0x%x srcRGB2 0x%x srcA2 0x%x\n",
+ combine->ModeRGB,
+ combine->ModeA,
+ combine->SourceRGB[0],
+ combine->SourceA[0],
+ combine->SourceRGB[1],
+ combine->SourceA[1]);
+ */
+
+ /*
+ * Do operand setup for up to 4 operands. Loop over the terms.
+ */
+ for (term = 0; term < numArgsRGB; term++) {
+ const GLenum srcRGB = combine->SourceRGB[term];
+ const GLenum operandRGB = combine->OperandRGB[term];
+
+ switch (srcRGB) {
+ case GL_TEXTURE:
+ argRGB[term] = get_texel_array(swrast, unit);
+ break;
+ case GL_PRIMARY_COLOR:
+ argRGB[term] = primary_rgba;
+ break;
+ case GL_PREVIOUS:
+ argRGB[term] = rgba;
+ break;
+ case GL_CONSTANT:
+ {
+ float4_array c = ccolor[term];
+ GLfloat red = textureUnit->EnvColor[0];
+ GLfloat green = textureUnit->EnvColor[1];
+ GLfloat blue = textureUnit->EnvColor[2];
+ GLfloat alpha = textureUnit->EnvColor[3];
+ for (i = 0; i < n; i++) {
+ ASSIGN_4V(c[i], red, green, blue, alpha);
+ }
+ argRGB[term] = ccolor[term];
+ }
+ break;
+ /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources.
+ */
+ case GL_ZERO:
+ {
+ float4_array c = ccolor[term];
+ for (i = 0; i < n; i++) {
+ ASSIGN_4V(c[i], 0.0F, 0.0F, 0.0F, 0.0F);
+ }
+ argRGB[term] = ccolor[term];
+ }
+ break;
+ case GL_ONE:
+ {
+ float4_array c = ccolor[term];
+ for (i = 0; i < n; i++) {
+ ASSIGN_4V(c[i], 1.0F, 1.0F, 1.0F, 1.0F);
+ }
+ argRGB[term] = ccolor[term];
+ }
+ break;
+ default:
+ /* ARB_texture_env_crossbar source */
+ {
+ const GLuint srcUnit = srcRGB - GL_TEXTURE0;
+ ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
+ if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
+ goto end;
+ argRGB[term] = get_texel_array(swrast, srcUnit);
+ }
+ }
+
+ if (operandRGB != GL_SRC_COLOR) {
+ float4_array src = argRGB[term];
+ float4_array dst = ccolor[term];
+
+ /* point to new arg[term] storage */
+ argRGB[term] = ccolor[term];
+
+ switch (operandRGB) {
+ case GL_ONE_MINUS_SRC_COLOR:
+ for (i = 0; i < n; i++) {
+ dst[i][RCOMP] = 1.0F - src[i][RCOMP];
+ dst[i][GCOMP] = 1.0F - src[i][GCOMP];
+ dst[i][BCOMP] = 1.0F - src[i][BCOMP];
+ }
+ break;
+ case GL_SRC_ALPHA:
+ for (i = 0; i < n; i++) {
+ dst[i][RCOMP] =
+ dst[i][GCOMP] =
+ dst[i][BCOMP] = src[i][ACOMP];
+ }
+ break;
+ case GL_ONE_MINUS_SRC_ALPHA:
+ for (i = 0; i < n; i++) {
+ dst[i][RCOMP] =
+ dst[i][GCOMP] =
+ dst[i][BCOMP] = 1.0F - src[i][ACOMP];
+ }
+ break;
+ default:
+ _mesa_problem(ctx, "Bad operandRGB");
+ }
+ }
+ }
+
+ /*
+ * Set up the argA[term] pointers
+ */
+ for (term = 0; term < numArgsA; term++) {
+ const GLenum srcA = combine->SourceA[term];
+ const GLenum operandA = combine->OperandA[term];
+
+ switch (srcA) {
+ case GL_TEXTURE:
+ argA[term] = get_texel_array(swrast, unit);
+ break;
+ case GL_PRIMARY_COLOR:
+ argA[term] = primary_rgba;
+ break;
+ case GL_PREVIOUS:
+ argA[term] = rgba;
+ break;
+ case GL_CONSTANT:
+ {
+ float4_array c = ccolor[term];
+ GLfloat alpha = textureUnit->EnvColor[3];
+ for (i = 0; i < n; i++)
+ c[i][ACOMP] = alpha;
+ argA[term] = ccolor[term];
+ }
+ break;
+ /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources.
+ */
+ case GL_ZERO:
+ {
+ float4_array c = ccolor[term];
+ for (i = 0; i < n; i++)
+ c[i][ACOMP] = 0.0F;
+ argA[term] = ccolor[term];
+ }
+ break;
+ case GL_ONE:
+ {
+ float4_array c = ccolor[term];
+ for (i = 0; i < n; i++)
+ c[i][ACOMP] = 1.0F;
+ argA[term] = ccolor[term];
+ }
+ break;
+ default:
+ /* ARB_texture_env_crossbar source */
+ {
+ const GLuint srcUnit = srcA - GL_TEXTURE0;
+ ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
+ if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
+ goto end;
+ argA[term] = get_texel_array(swrast, srcUnit);
+ }
+ }
+
+ if (operandA == GL_ONE_MINUS_SRC_ALPHA) {
+ float4_array src = argA[term];
+ float4_array dst = ccolor[term];
+ argA[term] = ccolor[term];
+ for (i = 0; i < n; i++) {
+ dst[i][ACOMP] = 1.0F - src[i][ACOMP];
+ }
+ }
+ }
+
+ /* RGB channel combine */
+ {
+ float4_array arg0 = argRGB[0];
+ float4_array arg1 = argRGB[1];
+ float4_array arg2 = argRGB[2];
+ float4_array arg3 = argRGB[3];
+
+ switch (combine->ModeRGB) {
+ case GL_REPLACE:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = arg0[i][RCOMP] * scaleRGB;
+ rgba[i][GCOMP] = arg0[i][GCOMP] * scaleRGB;
+ rgba[i][BCOMP] = arg0[i][BCOMP] * scaleRGB;
+ }
+ break;
+ case GL_MODULATE:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * scaleRGB;
+ rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * scaleRGB;
+ rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * scaleRGB;
+ }
+ break;
+ case GL_ADD:
+ if (textureUnit->EnvMode == GL_COMBINE4_NV) {
+ /* (a * b) + (c * d) */
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] +
+ arg2[i][RCOMP] * arg3[i][RCOMP]) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] +
+ arg2[i][GCOMP] * arg3[i][GCOMP]) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] +
+ arg2[i][BCOMP] * arg3[i][BCOMP]) * scaleRGB;
+ }
+ }
+ else {
+ /* 2-term addition */
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * scaleRGB;
+ }
+ }
+ break;
+ case GL_ADD_SIGNED:
+ if (textureUnit->EnvMode == GL_COMBINE4_NV) {
+ /* (a * b) + (c * d) - 0.5 */
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] +
+ arg2[i][RCOMP] * arg3[i][RCOMP] - 0.5F) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] +
+ arg2[i][GCOMP] * arg3[i][GCOMP] - 0.5F) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] +
+ arg2[i][BCOMP] * arg3[i][BCOMP] - 0.5F) * scaleRGB;
+ }
+ }
+ else {
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5F) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5F) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5F) * scaleRGB;
+ }
+ }
+ break;
+ case GL_INTERPOLATE:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] +
+ arg1[i][RCOMP] * (1.0F - arg2[i][RCOMP])) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] +
+ arg1[i][GCOMP] * (1.0F - arg2[i][GCOMP])) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] +
+ arg1[i][BCOMP] * (1.0F - arg2[i][BCOMP])) * scaleRGB;
+ }
+ break;
+ case GL_SUBTRACT:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * scaleRGB;
+ }
+ break;
+ case GL_DOT3_RGB_EXT:
+ case GL_DOT3_RGBA_EXT:
+ /* Do not scale the result by 1 2 or 4 */
+ for (i = 0; i < n; i++) {
+ GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) +
+ (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) +
+ (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F))
+ * 4.0F;
+ dot = CLAMP(dot, 0.0F, 1.0F);
+ rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot;
+ }
+ break;
+ case GL_DOT3_RGB:
+ case GL_DOT3_RGBA:
+ /* DO scale the result by 1 2 or 4 */
+ for (i = 0; i < n; i++) {
+ GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) +
+ (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) +
+ (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F))
+ * 4.0F * scaleRGB;
+ dot = CLAMP(dot, 0.0F, 1.0F);
+ rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot;
+ }
+ break;
+ case GL_MODULATE_ADD_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) +
+ arg1[i][RCOMP]) * scaleRGB;
+ rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) +
+ arg1[i][GCOMP]) * scaleRGB;
+ rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) +
+ arg1[i][BCOMP]) * scaleRGB;
+ }
+ break;
+ case GL_MODULATE_SIGNED_ADD_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) +
+ arg1[i][RCOMP] - 0.5F) * scaleRGB;
+ rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) +
+ arg1[i][GCOMP] - 0.5F) * scaleRGB;
+ rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) +
+ arg1[i][BCOMP] - 0.5F) * scaleRGB;
+ }
+ break;
+ case GL_MODULATE_SUBTRACT_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) -
+ arg1[i][RCOMP]) * scaleRGB;
+ rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) -
+ arg1[i][GCOMP]) * scaleRGB;
+ rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) -
+ arg1[i][BCOMP]) * scaleRGB;
+ }
+ break;
+ case GL_BUMP_ENVMAP_ATI:
+ /* this produces a fixed rgba color, and the coord calc is done elsewhere */
+ for (i = 0; i < n; i++) {
+ /* rgba result is 0,0,0,1 */
+ rgba[i][RCOMP] = 0.0;
+ rgba[i][GCOMP] = 0.0;
+ rgba[i][BCOMP] = 0.0;
+ rgba[i][ACOMP] = 1.0;
+ }
+ goto end; /* no alpha processing */
+ default:
+ _mesa_problem(ctx, "invalid combine mode");
+ }
+ }
+
+ /* Alpha channel combine */
+ {
+ float4_array arg0 = argA[0];
+ float4_array arg1 = argA[1];
+ float4_array arg2 = argA[2];
+ float4_array arg3 = argA[3];
+
+ switch (combine->ModeA) {
+ case GL_REPLACE:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = arg0[i][ACOMP] * scaleA;
+ }
+ break;
+ case GL_MODULATE:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * scaleA;
+ }
+ break;
+ case GL_ADD:
+ if (textureUnit->EnvMode == GL_COMBINE4_NV) {
+ /* (a * b) + (c * d) */
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] +
+ arg2[i][ACOMP] * arg3[i][ACOMP]) * scaleA;
+ }
+ }
+ else {
+ /* two-term add */
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * scaleA;
+ }
+ }
+ break;
+ case GL_ADD_SIGNED:
+ if (textureUnit->EnvMode == GL_COMBINE4_NV) {
+ /* (a * b) + (c * d) - 0.5 */
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] +
+ arg2[i][ACOMP] * arg3[i][ACOMP] -
+ 0.5F) * scaleA;
+ }
+ }
+ else {
+ /* a + b - 0.5 */
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * scaleA;
+ }
+ }
+ break;
+ case GL_INTERPOLATE:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] * arg2[i][ACOMP] +
+ arg1[i][ACOMP] * (1.0F - arg2[i][ACOMP]))
+ * scaleA;
+ }
+ break;
+ case GL_SUBTRACT:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * scaleA;
+ }
+ break;
+ case GL_MODULATE_ADD_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP])
+ + arg1[i][ACOMP]) * scaleA;
+ }
+ break;
+ case GL_MODULATE_SIGNED_ADD_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) +
+ arg1[i][ACOMP] - 0.5F) * scaleA;
+ }
+ break;
+ case GL_MODULATE_SUBTRACT_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP])
+ - arg1[i][ACOMP]) * scaleA;
+ }
+ break;
+ default:
+ _mesa_problem(ctx, "invalid combine mode");
+ }
+ }
+
+ /* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining.
+ * This is kind of a kludge. It would have been better if the spec
+ * were written such that the GL_COMBINE_ALPHA value could be set to
+ * GL_DOT3.
+ */
+ if (combine->ModeRGB == GL_DOT3_RGBA_EXT ||
+ combine->ModeRGB == GL_DOT3_RGBA) {
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = rgba[i][RCOMP];
+ }
+ }
+
+ for (i = 0; i < n; i++) {
+ UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][RCOMP], rgba[i][RCOMP]);
+ UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][GCOMP], rgba[i][GCOMP]);
+ UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][BCOMP], rgba[i][BCOMP]);
+ UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][ACOMP], rgba[i][ACOMP]);
+ }
+
+end:
+ for (i = 0; i < numArgsRGB || i < numArgsA; i++) {
+ free(ccolor[i]);
+ }
+ free(rgba);
+}
+
+
+/**
+ * Apply X/Y/Z/W/0/1 swizzle to an array of colors/texels.
+ * See GL_EXT_texture_swizzle.
+ */
+static void
+swizzle_texels(GLuint swizzle, GLuint count, float4_array texels)
+{
+ const GLuint swzR = GET_SWZ(swizzle, 0);
+ const GLuint swzG = GET_SWZ(swizzle, 1);
+ const GLuint swzB = GET_SWZ(swizzle, 2);
+ const GLuint swzA = GET_SWZ(swizzle, 3);
+ GLfloat vector[6];
+ GLuint i;
+
+ vector[SWIZZLE_ZERO] = 0;
+ vector[SWIZZLE_ONE] = 1.0F;
+
+ for (i = 0; i < count; i++) {
+ vector[SWIZZLE_X] = texels[i][0];
+ vector[SWIZZLE_Y] = texels[i][1];
+ vector[SWIZZLE_Z] = texels[i][2];
+ vector[SWIZZLE_W] = texels[i][3];
+ texels[i][RCOMP] = vector[swzR];
+ texels[i][GCOMP] = vector[swzG];
+ texels[i][BCOMP] = vector[swzB];
+ texels[i][ACOMP] = vector[swzA];
+ }
+}
+
+
+/**
+ * Apply texture mapping to a span of fragments.
+ */
+void
+_swrast_texture_span( struct gl_context *ctx, SWspan *span )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ float4_array primary_rgba;
+ GLuint unit;
+
+ primary_rgba = (float4_array) malloc(span->end * 4 * sizeof(GLfloat));
+
+ if (!primary_rgba) {
+ _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_span");
+ return;
+ }
+
+ ASSERT(span->end <= MAX_WIDTH);
+
+ /*
+ * Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR)
+ */
+ if (swrast->_TextureCombinePrimary) {
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ primary_rgba[i][RCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][RCOMP]);
+ primary_rgba[i][GCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][GCOMP]);
+ primary_rgba[i][BCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][BCOMP]);
+ primary_rgba[i][ACOMP] = CHAN_TO_FLOAT(span->array->rgba[i][ACOMP]);
+ }
+ }
+
+ /* First must sample all bump maps */
+ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
+ const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
+
+ if (texUnit->_ReallyEnabled &&
+ texUnit->_CurrentCombine->ModeRGB == GL_BUMP_ENVMAP_ATI) {
+ const GLfloat (*texcoords)[4] = (const GLfloat (*)[4])
+ span->array->attribs[FRAG_ATTRIB_TEX0 + unit];
+ float4_array targetcoords =
+ span->array->attribs[FRAG_ATTRIB_TEX0 +
+ ctx->Texture.Unit[unit].BumpTarget - GL_TEXTURE0];
+
+ const struct gl_texture_object *curObj = texUnit->_Current;
+ GLfloat *lambda = span->array->lambda[unit];
+ float4_array texels = get_texel_array(swrast, unit);
+ GLuint i;
+ GLfloat rotMatrix00 = ctx->Texture.Unit[unit].RotMatrix[0];
+ GLfloat rotMatrix01 = ctx->Texture.Unit[unit].RotMatrix[1];
+ GLfloat rotMatrix10 = ctx->Texture.Unit[unit].RotMatrix[2];
+ GLfloat rotMatrix11 = ctx->Texture.Unit[unit].RotMatrix[3];
+
+ /* adjust texture lod (lambda) */
+ if (span->arrayMask & SPAN_LAMBDA) {
+ if (texUnit->LodBias + curObj->Sampler.LodBias != 0.0F) {
+ /* apply LOD bias, but don't clamp yet */
+ const GLfloat bias = CLAMP(texUnit->LodBias + curObj->Sampler.LodBias,
+ -ctx->Const.MaxTextureLodBias,
+ ctx->Const.MaxTextureLodBias);
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ lambda[i] += bias;
+ }
+ }
+
+ if (curObj->Sampler.MinLod != -1000.0 ||
+ curObj->Sampler.MaxLod != 1000.0) {
+ /* apply LOD clamping to lambda */
+ const GLfloat min = curObj->Sampler.MinLod;
+ const GLfloat max = curObj->Sampler.MaxLod;
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ GLfloat l = lambda[i];
+ lambda[i] = CLAMP(l, min, max);
+ }
+ }
+ }
+
+ /* Sample the texture (span->end = number of fragments) */
+ swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end,
+ texcoords, lambda, texels );
+
+ /* manipulate the span values of the bump target
+ not sure this can work correctly even ignoring
+ the problem that channel is unsigned */
+ for (i = 0; i < span->end; i++) {
+ targetcoords[i][0] += (texels[i][0] * rotMatrix00 + texels[i][1] *
+ rotMatrix01) / targetcoords[i][3];
+ targetcoords[i][1] += (texels[i][0] * rotMatrix10 + texels[i][1] *
+ rotMatrix11) / targetcoords[i][3];
+ }
+ }
+ }
+
+ /*
+ * Must do all texture sampling before combining in order to
+ * accomodate GL_ARB_texture_env_crossbar.
+ */
+ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
+ const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
+ if (texUnit->_ReallyEnabled &&
+ texUnit->_CurrentCombine->ModeRGB != GL_BUMP_ENVMAP_ATI) {
+ const GLfloat (*texcoords)[4] = (const GLfloat (*)[4])
+ span->array->attribs[FRAG_ATTRIB_TEX0 + unit];
+ const struct gl_texture_object *curObj = texUnit->_Current;
+ GLfloat *lambda = span->array->lambda[unit];
+ float4_array texels = get_texel_array(swrast, unit);
+
+ /* adjust texture lod (lambda) */
+ if (span->arrayMask & SPAN_LAMBDA) {
+ if (texUnit->LodBias + curObj->Sampler.LodBias != 0.0F) {
+ /* apply LOD bias, but don't clamp yet */
+ const GLfloat bias = CLAMP(texUnit->LodBias + curObj->Sampler.LodBias,
+ -ctx->Const.MaxTextureLodBias,
+ ctx->Const.MaxTextureLodBias);
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ lambda[i] += bias;
+ }
+ }
+
+ if (curObj->Sampler.MinLod != -1000.0 ||
+ curObj->Sampler.MaxLod != 1000.0) {
+ /* apply LOD clamping to lambda */
+ const GLfloat min = curObj->Sampler.MinLod;
+ const GLfloat max = curObj->Sampler.MaxLod;
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ GLfloat l = lambda[i];
+ lambda[i] = CLAMP(l, min, max);
+ }
+ }
+ }
+ else if (curObj->Sampler.MaxAnisotropy > 1.0 &&
+ curObj->Sampler.MinFilter == GL_LINEAR_MIPMAP_LINEAR) {
+ /* sample_lambda_2d_aniso is beeing used as texture_sample_func,
+ * it requires the current SWspan *span as an additional parameter.
+ * In order to keep the same function signature, the unused lambda
+ * parameter will be modified to actually contain the SWspan pointer.
+ * This is a Hack. To make it right, the texture_sample_func
+ * signature and all implementing functions need to be modified.
+ */
+ /* "hide" SWspan struct; cast to (GLfloat *) to suppress warning */
+ lambda = (GLfloat *)span;
+ }
+
+ /* Sample the texture (span->end = number of fragments) */
+ swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end,
+ texcoords, lambda, texels );
+
+ /* GL_EXT_texture_swizzle */
+ if (curObj->_Swizzle != SWIZZLE_NOOP) {
+ swizzle_texels(curObj->_Swizzle, span->end, texels);
+ }
+ }
+ }
+
+ /*
+ * OK, now apply the texture (aka texture combine/blend).
+ * We modify the span->color.rgba values.
+ */
+ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
+ if (ctx->Texture.Unit[unit]._ReallyEnabled) {
+ texture_combine( ctx, unit, span->end,
+ primary_rgba,
+ swrast->TexelBuffer,
+ span->array->rgba );
+ }
+ }
+
+ free(primary_rgba);
+}
diff --git a/mesalib/src/mesa/swrast/s_texfilter.c b/mesalib/src/mesa/swrast/s_texfilter.c index 106f8b75f..237e5d28a 100644 --- a/mesalib/src/mesa/swrast/s_texfilter.c +++ b/mesalib/src/mesa/swrast/s_texfilter.c @@ -1,3315 +1,3710 @@ -/* - * Mesa 3-D graphics library - * Version: 7.3 - * - * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included - * in all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS - * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN - * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - */ - - -#include "main/glheader.h" -#include "main/context.h" -#include "main/colormac.h" -#include "main/imports.h" - -#include "s_context.h" -#include "s_texfilter.h" - - -/* - * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes - * see 1-pixel bands of improperly weighted linear-filtered textures. - * The tests/texwrap.c demo is a good test. - * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0. - * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x). - */ -#define FRAC(f) ((f) - IFLOOR(f)) - - - -/** - * Linear interpolation macro - */ -#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) ) - - -/** - * Do 2D/biliner interpolation of float values. - * v00, v10, v01 and v11 are typically four texture samples in a square/box. - * a and b are the horizontal and vertical interpolants. - * It's important that this function is inlined when compiled with - * optimization! If we find that's not true on some systems, convert - * to a macro. - */ -static INLINE GLfloat -lerp_2d(GLfloat a, GLfloat b, - GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11) -{ - const GLfloat temp0 = LERP(a, v00, v10); - const GLfloat temp1 = LERP(a, v01, v11); - return LERP(b, temp0, temp1); -} - - -/** - * Do 3D/trilinear interpolation of float values. - * \sa lerp_2d - */ -static INLINE GLfloat -lerp_3d(GLfloat a, GLfloat b, GLfloat c, - GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110, - GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111) -{ - const GLfloat temp00 = LERP(a, v000, v100); - const GLfloat temp10 = LERP(a, v010, v110); - const GLfloat temp01 = LERP(a, v001, v101); - const GLfloat temp11 = LERP(a, v011, v111); - const GLfloat temp0 = LERP(b, temp00, temp10); - const GLfloat temp1 = LERP(b, temp01, temp11); - return LERP(c, temp0, temp1); -} - - -/** - * Do linear interpolation of colors. - */ -static INLINE void -lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4]) -{ - result[0] = LERP(t, a[0], b[0]); - result[1] = LERP(t, a[1], b[1]); - result[2] = LERP(t, a[2], b[2]); - result[3] = LERP(t, a[3], b[3]); -} - - -/** - * Do bilinear interpolation of colors. - */ -static INLINE void -lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b, - const GLfloat t00[4], const GLfloat t10[4], - const GLfloat t01[4], const GLfloat t11[4]) -{ - result[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]); - result[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]); - result[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]); - result[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]); -} - - -/** - * Do trilinear interpolation of colors. - */ -static INLINE void -lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c, - const GLfloat t000[4], const GLfloat t100[4], - const GLfloat t010[4], const GLfloat t110[4], - const GLfloat t001[4], const GLfloat t101[4], - const GLfloat t011[4], const GLfloat t111[4]) -{ - GLuint k; - /* compiler should unroll these short loops */ - for (k = 0; k < 4; k++) { - result[k] = lerp_3d(a, b, c, t000[k], t100[k], t010[k], t110[k], - t001[k], t101[k], t011[k], t111[k]); - } -} - - -/** - * Used for GL_REPEAT wrap mode. Using A % B doesn't produce the - * right results for A<0. Casting to A to be unsigned only works if B - * is a power of two. Adding a bias to A (which is a multiple of B) - * avoids the problems with A < 0 (for reasonable A) without using a - * conditional. - */ -#define REMAINDER(A, B) (((A) + (B) * 1024) % (B)) - - -/** - * Used to compute texel locations for linear sampling. - * Input: - * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER - * s = texcoord in [0,1] - * size = width (or height or depth) of texture - * Output: - * i0, i1 = returns two nearest texel indexes - * weight = returns blend factor between texels - */ -static INLINE void -linear_texel_locations(GLenum wrapMode, - const struct gl_texture_image *img, - GLint size, GLfloat s, - GLint *i0, GLint *i1, GLfloat *weight) -{ - GLfloat u; - switch (wrapMode) { - case GL_REPEAT: - u = s * size - 0.5F; - if (img->_IsPowerOfTwo) { - *i0 = IFLOOR(u) & (size - 1); - *i1 = (*i0 + 1) & (size - 1); - } - else { - *i0 = REMAINDER(IFLOOR(u), size); - *i1 = REMAINDER(*i0 + 1, size); - } - break; - case GL_CLAMP_TO_EDGE: - if (s <= 0.0F) - u = 0.0F; - else if (s >= 1.0F) - u = (GLfloat) size; - else - u = s * size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - if (*i0 < 0) - *i0 = 0; - if (*i1 >= (GLint) size) - *i1 = size - 1; - break; - case GL_CLAMP_TO_BORDER: - { - const GLfloat min = -1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - if (s <= min) - u = min * size; - else if (s >= max) - u = max * size; - else - u = s * size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - } - break; - case GL_MIRRORED_REPEAT: - { - const GLint flr = IFLOOR(s); - if (flr & 1) - u = 1.0F - (s - (GLfloat) flr); - else - u = s - (GLfloat) flr; - u = (u * size) - 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - if (*i0 < 0) - *i0 = 0; - if (*i1 >= (GLint) size) - *i1 = size - 1; - } - break; - case GL_MIRROR_CLAMP_EXT: - u = FABSF(s); - if (u >= 1.0F) - u = (GLfloat) size; - else - u *= size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - break; - case GL_MIRROR_CLAMP_TO_EDGE_EXT: - u = FABSF(s); - if (u >= 1.0F) - u = (GLfloat) size; - else - u *= size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - if (*i0 < 0) - *i0 = 0; - if (*i1 >= (GLint) size) - *i1 = size - 1; - break; - case GL_MIRROR_CLAMP_TO_BORDER_EXT: - { - const GLfloat min = -1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - u = FABSF(s); - if (u <= min) - u = min * size; - else if (u >= max) - u = max * size; - else - u *= size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - } - break; - case GL_CLAMP: - if (s <= 0.0F) - u = 0.0F; - else if (s >= 1.0F) - u = (GLfloat) size; - else - u = s * size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - break; - default: - _mesa_problem(NULL, "Bad wrap mode"); - u = 0.0F; - } - *weight = FRAC(u); -} - - -/** - * Used to compute texel location for nearest sampling. - */ -static INLINE GLint -nearest_texel_location(GLenum wrapMode, - const struct gl_texture_image *img, - GLint size, GLfloat s) -{ - GLint i; - - switch (wrapMode) { - case GL_REPEAT: - /* s limited to [0,1) */ - /* i limited to [0,size-1] */ - i = IFLOOR(s * size); - if (img->_IsPowerOfTwo) - i &= (size - 1); - else - i = REMAINDER(i, size); - return i; - case GL_CLAMP_TO_EDGE: - { - /* s limited to [min,max] */ - /* i limited to [0, size-1] */ - const GLfloat min = 1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - if (s < min) - i = 0; - else if (s > max) - i = size - 1; - else - i = IFLOOR(s * size); - } - return i; - case GL_CLAMP_TO_BORDER: - { - /* s limited to [min,max] */ - /* i limited to [-1, size] */ - const GLfloat min = -1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - if (s <= min) - i = -1; - else if (s >= max) - i = size; - else - i = IFLOOR(s * size); - } - return i; - case GL_MIRRORED_REPEAT: - { - const GLfloat min = 1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - const GLint flr = IFLOOR(s); - GLfloat u; - if (flr & 1) - u = 1.0F - (s - (GLfloat) flr); - else - u = s - (GLfloat) flr; - if (u < min) - i = 0; - else if (u > max) - i = size - 1; - else - i = IFLOOR(u * size); - } - return i; - case GL_MIRROR_CLAMP_EXT: - { - /* s limited to [0,1] */ - /* i limited to [0,size-1] */ - const GLfloat u = FABSF(s); - if (u <= 0.0F) - i = 0; - else if (u >= 1.0F) - i = size - 1; - else - i = IFLOOR(u * size); - } - return i; - case GL_MIRROR_CLAMP_TO_EDGE_EXT: - { - /* s limited to [min,max] */ - /* i limited to [0, size-1] */ - const GLfloat min = 1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - const GLfloat u = FABSF(s); - if (u < min) - i = 0; - else if (u > max) - i = size - 1; - else - i = IFLOOR(u * size); - } - return i; - case GL_MIRROR_CLAMP_TO_BORDER_EXT: - { - /* s limited to [min,max] */ - /* i limited to [0, size-1] */ - const GLfloat min = -1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - const GLfloat u = FABSF(s); - if (u < min) - i = -1; - else if (u > max) - i = size; - else - i = IFLOOR(u * size); - } - return i; - case GL_CLAMP: - /* s limited to [0,1] */ - /* i limited to [0,size-1] */ - if (s <= 0.0F) - i = 0; - else if (s >= 1.0F) - i = size - 1; - else - i = IFLOOR(s * size); - return i; - default: - _mesa_problem(NULL, "Bad wrap mode"); - return 0; - } -} - - -/* Power of two image sizes only */ -static INLINE void -linear_repeat_texel_location(GLuint size, GLfloat s, - GLint *i0, GLint *i1, GLfloat *weight) -{ - GLfloat u = s * size - 0.5F; - *i0 = IFLOOR(u) & (size - 1); - *i1 = (*i0 + 1) & (size - 1); - *weight = FRAC(u); -} - - -/** - * Do clamp/wrap for a texture rectangle coord, GL_NEAREST filter mode. - */ -static INLINE GLint -clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max) -{ - switch (wrapMode) { - case GL_CLAMP: - return IFLOOR( CLAMP(coord, 0.0F, max - 1) ); - case GL_CLAMP_TO_EDGE: - return IFLOOR( CLAMP(coord, 0.5F, max - 0.5F) ); - case GL_CLAMP_TO_BORDER: - return IFLOOR( CLAMP(coord, -0.5F, max + 0.5F) ); - default: - _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_nearest"); - return 0; - } -} - - -/** - * As above, but GL_LINEAR filtering. - */ -static INLINE void -clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max, - GLint *i0out, GLint *i1out, GLfloat *weight) -{ - GLfloat fcol; - GLint i0, i1; - switch (wrapMode) { - case GL_CLAMP: - /* Not exactly what the spec says, but it matches NVIDIA output */ - fcol = CLAMP(coord - 0.5F, 0.0F, max - 1); - i0 = IFLOOR(fcol); - i1 = i0 + 1; - break; - case GL_CLAMP_TO_EDGE: - fcol = CLAMP(coord, 0.5F, max - 0.5F); - fcol -= 0.5F; - i0 = IFLOOR(fcol); - i1 = i0 + 1; - if (i1 > max - 1) - i1 = max - 1; - break; - case GL_CLAMP_TO_BORDER: - fcol = CLAMP(coord, -0.5F, max + 0.5F); - fcol -= 0.5F; - i0 = IFLOOR(fcol); - i1 = i0 + 1; - break; - default: - _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_linear"); - i0 = i1 = 0; - fcol = 0.0F; - } - *i0out = i0; - *i1out = i1; - *weight = FRAC(fcol); -} - - -/** - * Compute slice/image to use for 1D or 2D array texture. - */ -static INLINE GLint -tex_array_slice(GLfloat coord, GLsizei size) -{ - GLint slice = IFLOOR(coord + 0.5f); - slice = CLAMP(slice, 0, size - 1); - return slice; -} - - -/** - * Compute nearest integer texcoords for given texobj and coordinate. - * NOTE: only used for depth texture sampling. - */ -static INLINE void -nearest_texcoord(const struct gl_texture_object *texObj, - GLuint level, - const GLfloat texcoord[4], - GLint *i, GLint *j, GLint *k) -{ - const struct gl_texture_image *img = texObj->Image[0][level]; - const GLint width = img->Width; - const GLint height = img->Height; - const GLint depth = img->Depth; - - switch (texObj->Target) { - case GL_TEXTURE_RECTANGLE_ARB: - *i = clamp_rect_coord_nearest(texObj->Sampler.WrapS, texcoord[0], width); - *j = clamp_rect_coord_nearest(texObj->Sampler.WrapT, texcoord[1], height); - *k = 0; - break; - case GL_TEXTURE_1D: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); - *j = 0; - *k = 0; - break; - case GL_TEXTURE_2D: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); - *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]); - *k = 0; - break; - case GL_TEXTURE_1D_ARRAY_EXT: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); - *j = tex_array_slice(texcoord[1], height); - *k = 0; - break; - case GL_TEXTURE_2D_ARRAY_EXT: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); - *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]); - *k = tex_array_slice(texcoord[2], depth); - break; - default: - *i = *j = *k = 0; - } -} - - -/** - * Compute linear integer texcoords for given texobj and coordinate. - * NOTE: only used for depth texture sampling. - */ -static INLINE void -linear_texcoord(const struct gl_texture_object *texObj, - GLuint level, - const GLfloat texcoord[4], - GLint *i0, GLint *i1, GLint *j0, GLint *j1, GLint *slice, - GLfloat *wi, GLfloat *wj) -{ - const struct gl_texture_image *img = texObj->Image[0][level]; - const GLint width = img->Width; - const GLint height = img->Height; - const GLint depth = img->Depth; - - switch (texObj->Target) { - case GL_TEXTURE_RECTANGLE_ARB: - clamp_rect_coord_linear(texObj->Sampler.WrapS, texcoord[0], - width, i0, i1, wi); - clamp_rect_coord_linear(texObj->Sampler.WrapT, texcoord[1], - height, j0, j1, wj); - *slice = 0; - break; - - case GL_TEXTURE_1D: - case GL_TEXTURE_2D: - linear_texel_locations(texObj->Sampler.WrapS, img, width, - texcoord[0], i0, i1, wi); - linear_texel_locations(texObj->Sampler.WrapT, img, height, - texcoord[1], j0, j1, wj); - *slice = 0; - break; - - case GL_TEXTURE_1D_ARRAY_EXT: - linear_texel_locations(texObj->Sampler.WrapS, img, width, - texcoord[0], i0, i1, wi); - *j0 = tex_array_slice(texcoord[1], height); - *j1 = *j0; - *slice = 0; - break; - - case GL_TEXTURE_2D_ARRAY_EXT: - linear_texel_locations(texObj->Sampler.WrapS, img, width, - texcoord[0], i0, i1, wi); - linear_texel_locations(texObj->Sampler.WrapT, img, height, - texcoord[1], j0, j1, wj); - *slice = tex_array_slice(texcoord[2], depth); - break; - - default: - *slice = 0; - } -} - - - -/** - * For linear interpolation between mipmap levels N and N+1, this function - * computes N. - */ -static INLINE GLint -linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) -{ - if (lambda < 0.0F) - return tObj->BaseLevel; - else if (lambda > tObj->_MaxLambda) - return (GLint) (tObj->BaseLevel + tObj->_MaxLambda); - else - return (GLint) (tObj->BaseLevel + lambda); -} - - -/** - * Compute the nearest mipmap level to take texels from. - */ -static INLINE GLint -nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) -{ - GLfloat l; - GLint level; - if (lambda <= 0.5F) - l = 0.0F; - else if (lambda > tObj->_MaxLambda + 0.4999F) - l = tObj->_MaxLambda + 0.4999F; - else - l = lambda; - level = (GLint) (tObj->BaseLevel + l + 0.5F); - if (level > tObj->_MaxLevel) - level = tObj->_MaxLevel; - return level; -} - - - -/* - * Bitflags for texture border color sampling. - */ -#define I0BIT 1 -#define I1BIT 2 -#define J0BIT 4 -#define J1BIT 8 -#define K0BIT 16 -#define K1BIT 32 - - - -/** - * The lambda[] array values are always monotonic. Either the whole span - * will be minified, magnified, or split between the two. This function - * determines the subranges in [0, n-1] that are to be minified or magnified. - */ -static INLINE void -compute_min_mag_ranges(const struct gl_texture_object *tObj, - GLuint n, const GLfloat lambda[], - GLuint *minStart, GLuint *minEnd, - GLuint *magStart, GLuint *magEnd) -{ - GLfloat minMagThresh; - - /* we shouldn't be here if minfilter == magfilter */ - ASSERT(tObj->Sampler.MinFilter != tObj->Sampler.MagFilter); - - /* This bit comes from the OpenGL spec: */ - if (tObj->Sampler.MagFilter == GL_LINEAR - && (tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_NEAREST || - tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_LINEAR)) { - minMagThresh = 0.5F; - } - else { - minMagThresh = 0.0F; - } - -#if 0 - /* DEBUG CODE: Verify that lambda[] is monotonic. - * We can't really use this because the inaccuracy in the LOG2 function - * causes this test to fail, yet the resulting texturing is correct. - */ - if (n > 1) { - GLuint i; - printf("lambda delta = %g\n", lambda[0] - lambda[n-1]); - if (lambda[0] >= lambda[n-1]) { /* decreasing */ - for (i = 0; i < n - 1; i++) { - ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10)); - } - } - else { /* increasing */ - for (i = 0; i < n - 1; i++) { - ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10)); - } - } - } -#endif /* DEBUG */ - - if (lambda[0] <= minMagThresh && (n <= 1 || lambda[n-1] <= minMagThresh)) { - /* magnification for whole span */ - *magStart = 0; - *magEnd = n; - *minStart = *minEnd = 0; - } - else if (lambda[0] > minMagThresh && (n <=1 || lambda[n-1] > minMagThresh)) { - /* minification for whole span */ - *minStart = 0; - *minEnd = n; - *magStart = *magEnd = 0; - } - else { - /* a mix of minification and magnification */ - GLuint i; - if (lambda[0] > minMagThresh) { - /* start with minification */ - for (i = 1; i < n; i++) { - if (lambda[i] <= minMagThresh) - break; - } - *minStart = 0; - *minEnd = i; - *magStart = i; - *magEnd = n; - } - else { - /* start with magnification */ - for (i = 1; i < n; i++) { - if (lambda[i] > minMagThresh) - break; - } - *magStart = 0; - *magEnd = i; - *minStart = i; - *minEnd = n; - } - } - -#if 0 - /* Verify the min/mag Start/End values - * We don't use this either (see above) - */ - { - GLint i; - for (i = 0; i < n; i++) { - if (lambda[i] > minMagThresh) { - /* minification */ - ASSERT(i >= *minStart); - ASSERT(i < *minEnd); - } - else { - /* magnification */ - ASSERT(i >= *magStart); - ASSERT(i < *magEnd); - } - } - } -#endif -} - - -/** - * When we sample the border color, it must be interpreted according to - * the base texture format. Ex: if the texture base format it GL_ALPHA, - * we return (0,0,0,BorderAlpha). - */ -static INLINE void -get_border_color(const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - GLfloat rgba[4]) -{ - switch (img->_BaseFormat) { - case GL_RGB: - rgba[0] = tObj->Sampler.BorderColor.f[0]; - rgba[1] = tObj->Sampler.BorderColor.f[1]; - rgba[2] = tObj->Sampler.BorderColor.f[2]; - rgba[3] = 1.0F; - break; - case GL_ALPHA: - rgba[0] = rgba[1] = rgba[2] = 0.0; - rgba[3] = tObj->Sampler.BorderColor.f[3]; - break; - case GL_LUMINANCE: - rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0]; - rgba[3] = 1.0; - break; - case GL_LUMINANCE_ALPHA: - rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0]; - rgba[3] = tObj->Sampler.BorderColor.f[3]; - break; - case GL_INTENSITY: - rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->Sampler.BorderColor.f[0]; - break; - default: - COPY_4V(rgba, tObj->Sampler.BorderColor.f); - } -} - - -/**********************************************************************/ -/* 1-D Texture Sampling Functions */ -/**********************************************************************/ - -/** - * Return the texture sample for coordinate (s) using GL_NEAREST filter. - */ -static INLINE void -sample_1d_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], GLfloat rgba[4]) -{ - const GLint width = img->Width2; /* without border, power of two */ - GLint i; - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - /* skip over the border, if any */ - i += img->Border; - if (i < 0 || i >= (GLint) img->Width) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); - } - else { - img->FetchTexelf(img, i, 0, 0, rgba); - } -} - - -/** - * Return the texture sample for coordinate (s) using GL_LINEAR filter. - */ -static INLINE void -sample_1d_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], GLfloat rgba[4]) -{ - const GLint width = img->Width2; - GLint i0, i1; - GLbitfield useBorderColor = 0x0; - GLfloat a; - GLfloat t0[4], t1[4]; /* texels */ - - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - } - else { - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - } - - /* fetch texel colors */ - if (useBorderColor & I0BIT) { - get_border_color(tObj, img, t0); - } - else { - img->FetchTexelf(img, i0, 0, 0, t0); - } - if (useBorderColor & I1BIT) { - get_border_color(tObj, img, t1); - } - else { - img->FetchTexelf(img, i1, 0, 0, t1); - } - - lerp_rgba(rgba, a, t0, t1); -} - - -static void -sample_1d_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_1d_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_1d_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; - const GLfloat f = FRAC(lambda[i]); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_1d_linear_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; - const GLfloat f = FRAC(lambda[i]); - sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample 1D texture, nearest filtering for both min/magnification */ -static void -sample_nearest_1d( struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4] ) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 1D texture, linear filtering for both min/magnification */ -static void -sample_linear_1d( struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4] ) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 1D texture, using lambda to choose between min/magnification */ -static void -sample_lambda_1d( struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4] ) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - GLuint i; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - const GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - for (i = minStart; i < minEnd; i++) - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = minStart; i < minEnd; i++) - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_1d_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - for (i = magStart; i < magEnd; i++) - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = magStart; i < magEnd; i++) - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_1d_texture"); - return; - } - } -} - - -/**********************************************************************/ -/* 2-D Texture Sampling Functions */ -/**********************************************************************/ - - -/** - * Return the texture sample for coordinate (s,t) using GL_NEAREST filter. - */ -static INLINE void -sample_2d_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[]) -{ - const GLint width = img->Width2; /* without border, power of two */ - const GLint height = img->Height2; /* without border, power of two */ - GLint i, j; - (void) ctx; - - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); - - /* skip over the border, if any */ - i += img->Border; - j += img->Border; - - if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); - } - else { - img->FetchTexelf(img, i, j, 0, rgba); - } -} - - -/** - * Return the texture sample for coordinate (s,t) using GL_LINEAR filter. - * New sampling code contributed by Lynn Quam <quam@ai.sri.com>. - */ -static INLINE void -sample_2d_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[]) -{ - const GLint width = img->Width2; - const GLint height = img->Height2; - GLint i0, j0, i1, j1; - GLbitfield useBorderColor = 0x0; - GLfloat a, b; - GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ - - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); - - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - j0 += img->Border; - j1 += img->Border; - } - else { - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; - if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; - } - - /* fetch four texel colors */ - if (useBorderColor & (I0BIT | J0BIT)) { - get_border_color(tObj, img, t00); - } - else { - img->FetchTexelf(img, i0, j0, 0, t00); - } - if (useBorderColor & (I1BIT | J0BIT)) { - get_border_color(tObj, img, t10); - } - else { - img->FetchTexelf(img, i1, j0, 0, t10); - } - if (useBorderColor & (I0BIT | J1BIT)) { - get_border_color(tObj, img, t01); - } - else { - img->FetchTexelf(img, i0, j1, 0, t01); - } - if (useBorderColor & (I1BIT | J1BIT)) { - get_border_color(tObj, img, t11); - } - else { - img->FetchTexelf(img, i1, j1, 0, t11); - } - - lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); -} - - -/** - * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT. - * We don't have to worry about the texture border. - */ -static INLINE void -sample_2d_linear_repeat(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[]) -{ - const GLint width = img->Width2; - const GLint height = img->Height2; - GLint i0, j0, i1, j1; - GLfloat wi, wj; - GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ - - (void) ctx; - - ASSERT(tObj->Sampler.WrapS == GL_REPEAT); - ASSERT(tObj->Sampler.WrapT == GL_REPEAT); - ASSERT(img->Border == 0); - ASSERT(img->_BaseFormat != GL_COLOR_INDEX); - ASSERT(img->_IsPowerOfTwo); - - linear_repeat_texel_location(width, texcoord[0], &i0, &i1, &wi); - linear_repeat_texel_location(height, texcoord[1], &j0, &j1, &wj); - - img->FetchTexelf(img, i0, j0, 0, t00); - img->FetchTexelf(img, i1, j0, 0, t10); - img->FetchTexelf(img, i0, j1, 0, t01); - img->FetchTexelf(img, i1, j1, 0, t11); - - lerp_rgba_2d(rgba, wi, wj, t00, t10, t01, t11); -} - - -static void -sample_2d_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_2d_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_2d_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_2d_linear_mipmap_linear( struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4] ) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_2d_linear_mipmap_linear_repeat(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - ASSERT(tObj->Sampler.WrapS == GL_REPEAT); - ASSERT(tObj->Sampler.WrapT == GL_REPEAT); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ], - texcoord[i], t0); - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1], - texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample 2D texture, nearest filtering for both min/magnification */ -static void -sample_nearest_2d(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 2D texture, linear filtering for both min/magnification */ -static void -sample_linear_2d(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - if (tObj->Sampler.WrapS == GL_REPEAT && - tObj->Sampler.WrapT == GL_REPEAT && - image->_IsPowerOfTwo && - image->Border == 0) { - for (i = 0; i < n; i++) { - sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]); - } - } - else { - for (i = 0; i < n; i++) { - sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]); - } - } -} - - -/** - * Optimized 2-D texture sampling: - * S and T wrap mode == GL_REPEAT - * GL_NEAREST min/mag filter - * No border, - * RowStride == Width, - * Format = GL_RGB - */ -static void -opt_sample_rgb_2d(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; - const GLfloat width = (GLfloat) img->Width; - const GLfloat height = (GLfloat) img->Height; - const GLint colMask = img->Width - 1; - const GLint rowMask = img->Height - 1; - const GLint shift = img->WidthLog2; - GLuint k; - (void) ctx; - (void) lambda; - ASSERT(tObj->Sampler.WrapS==GL_REPEAT); - ASSERT(tObj->Sampler.WrapT==GL_REPEAT); - ASSERT(img->Border==0); - ASSERT(img->TexFormat == MESA_FORMAT_RGB888); - ASSERT(img->_IsPowerOfTwo); - - for (k=0; k<n; k++) { - GLint i = IFLOOR(texcoords[k][0] * width) & colMask; - GLint j = IFLOOR(texcoords[k][1] * height) & rowMask; - GLint pos = (j << shift) | i; - GLubyte *texel = ((GLubyte *) img->Data) + 3*pos; - rgba[k][RCOMP] = UBYTE_TO_FLOAT(texel[2]); - rgba[k][GCOMP] = UBYTE_TO_FLOAT(texel[1]); - rgba[k][BCOMP] = UBYTE_TO_FLOAT(texel[0]); - rgba[k][ACOMP] = 1.0F; - } -} - - -/** - * Optimized 2-D texture sampling: - * S and T wrap mode == GL_REPEAT - * GL_NEAREST min/mag filter - * No border - * RowStride == Width, - * Format = GL_RGBA - */ -static void -opt_sample_rgba_2d(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; - const GLfloat width = (GLfloat) img->Width; - const GLfloat height = (GLfloat) img->Height; - const GLint colMask = img->Width - 1; - const GLint rowMask = img->Height - 1; - const GLint shift = img->WidthLog2; - GLuint i; - (void) ctx; - (void) lambda; - ASSERT(tObj->Sampler.WrapS==GL_REPEAT); - ASSERT(tObj->Sampler.WrapT==GL_REPEAT); - ASSERT(img->Border==0); - ASSERT(img->TexFormat == MESA_FORMAT_RGBA8888); - ASSERT(img->_IsPowerOfTwo); - - for (i = 0; i < n; i++) { - const GLint col = IFLOOR(texcoords[i][0] * width) & colMask; - const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask; - const GLint pos = (row << shift) | col; - const GLuint texel = *((GLuint *) img->Data + pos); - rgba[i][RCOMP] = UBYTE_TO_FLOAT( (texel >> 24) ); - rgba[i][GCOMP] = UBYTE_TO_FLOAT( (texel >> 16) & 0xff ); - rgba[i][BCOMP] = UBYTE_TO_FLOAT( (texel >> 8) & 0xff ); - rgba[i][ACOMP] = UBYTE_TO_FLOAT( (texel ) & 0xff ); - } -} - - -/** Sample 2D texture, using lambda to choose between min/magnification */ -static void -sample_lambda_2d(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel]; - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - - const GLboolean repeatNoBorderPOT = (tObj->Sampler.WrapS == GL_REPEAT) - && (tObj->Sampler.WrapT == GL_REPEAT) - && (tImg->Border == 0 && (tImg->Width == tImg->RowStride)) - && (tImg->_BaseFormat != GL_COLOR_INDEX) - && tImg->_IsPowerOfTwo; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - const GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - if (repeatNoBorderPOT) { - switch (tImg->TexFormat) { - case MESA_FORMAT_RGB888: - opt_sample_rgb_2d(ctx, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - break; - case MESA_FORMAT_RGBA8888: - opt_sample_rgba_2d(ctx, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - break; - default: - sample_nearest_2d(ctx, tObj, m, texcoords + minStart, - NULL, rgba + minStart ); - } - } - else { - sample_nearest_2d(ctx, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - } - break; - case GL_LINEAR: - sample_linear_2d(ctx, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_2d_nearest_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - if (repeatNoBorderPOT) - sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m, - texcoords + minStart, lambda + minStart, rgba + minStart); - else - sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_2d_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - const GLuint m = magEnd - magStart; - - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - if (repeatNoBorderPOT) { - switch (tImg->TexFormat) { - case MESA_FORMAT_RGB888: - opt_sample_rgb_2d(ctx, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - break; - case MESA_FORMAT_RGBA8888: - opt_sample_rgba_2d(ctx, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - break; - default: - sample_nearest_2d(ctx, tObj, m, texcoords + magStart, - NULL, rgba + magStart ); - } - } - else { - sample_nearest_2d(ctx, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - } - break; - case GL_LINEAR: - sample_linear_2d(ctx, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d"); - } - } -} - - - -/**********************************************************************/ -/* 3-D Texture Sampling Functions */ -/**********************************************************************/ - -/** - * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. - */ -static INLINE void -sample_3d_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; /* without border, power of two */ - const GLint height = img->Height2; /* without border, power of two */ - const GLint depth = img->Depth2; /* without border, power of two */ - GLint i, j, k; - (void) ctx; - - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); - k = nearest_texel_location(tObj->Sampler.WrapR, img, depth, texcoord[2]); - - if (i < 0 || i >= (GLint) img->Width || - j < 0 || j >= (GLint) img->Height || - k < 0 || k >= (GLint) img->Depth) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); - } - else { - img->FetchTexelf(img, i, j, k, rgba); - } -} - - -/** - * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. - */ -static void -sample_3d_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; - const GLint height = img->Height2; - const GLint depth = img->Depth2; - GLint i0, j0, k0, i1, j1, k1; - GLbitfield useBorderColor = 0x0; - GLfloat a, b, c; - GLfloat t000[4], t010[4], t001[4], t011[4]; - GLfloat t100[4], t110[4], t101[4], t111[4]; - - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); - linear_texel_locations(tObj->Sampler.WrapR, img, depth, texcoord[2], &k0, &k1, &c); - - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - j0 += img->Border; - j1 += img->Border; - k0 += img->Border; - k1 += img->Border; - } - else { - /* check if sampling texture border color */ - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; - if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; - if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT; - if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT; - } - - /* Fetch texels */ - if (useBorderColor & (I0BIT | J0BIT | K0BIT)) { - get_border_color(tObj, img, t000); - } - else { - img->FetchTexelf(img, i0, j0, k0, t000); - } - if (useBorderColor & (I1BIT | J0BIT | K0BIT)) { - get_border_color(tObj, img, t100); - } - else { - img->FetchTexelf(img, i1, j0, k0, t100); - } - if (useBorderColor & (I0BIT | J1BIT | K0BIT)) { - get_border_color(tObj, img, t010); - } - else { - img->FetchTexelf(img, i0, j1, k0, t010); - } - if (useBorderColor & (I1BIT | J1BIT | K0BIT)) { - get_border_color(tObj, img, t110); - } - else { - img->FetchTexelf(img, i1, j1, k0, t110); - } - - if (useBorderColor & (I0BIT | J0BIT | K1BIT)) { - get_border_color(tObj, img, t001); - } - else { - img->FetchTexelf(img, i0, j0, k1, t001); - } - if (useBorderColor & (I1BIT | J0BIT | K1BIT)) { - get_border_color(tObj, img, t101); - } - else { - img->FetchTexelf(img, i1, j0, k1, t101); - } - if (useBorderColor & (I0BIT | J1BIT | K1BIT)) { - get_border_color(tObj, img, t011); - } - else { - img->FetchTexelf(img, i0, j1, k1, t011); - } - if (useBorderColor & (I1BIT | J1BIT | K1BIT)) { - get_border_color(tObj, img, t111); - } - else { - img->FetchTexelf(img, i1, j1, k1, t111); - } - - /* trilinear interpolation of samples */ - lerp_rgba_3d(rgba, a, b, c, t000, t100, t010, t110, t001, t101, t011, t111); -} - - -static void -sample_3d_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4] ) -{ - GLuint i; - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_3d_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_3d_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_3d_linear_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample 3D texture, nearest filtering for both min/magnification */ -static void -sample_nearest_3d(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 3D texture, linear filtering for both min/magnification */ -static void -sample_linear_3d(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 3D texture, using lambda to choose between min/magnification */ -static void -sample_lambda_3d(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - GLuint i; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - for (i = minStart; i < minEnd; i++) - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = minStart; i < minEnd; i++) - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_3d_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - for (i = magStart; i < magEnd; i++) - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = magStart; i < magEnd; i++) - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_3d_texture"); - return; - } - } -} - - -/**********************************************************************/ -/* Texture Cube Map Sampling Functions */ -/**********************************************************************/ - -/** - * Choose one of six sides of a texture cube map given the texture - * coord (rx,ry,rz). Return pointer to corresponding array of texture - * images. - */ -static const struct gl_texture_image ** -choose_cube_face(const struct gl_texture_object *texObj, - const GLfloat texcoord[4], GLfloat newCoord[4]) -{ - /* - major axis - direction target sc tc ma - ---------- ------------------------------- --- --- --- - +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx - -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx - +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry - -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry - +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz - -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz - */ - const GLfloat rx = texcoord[0]; - const GLfloat ry = texcoord[1]; - const GLfloat rz = texcoord[2]; - const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz); - GLuint face; - GLfloat sc, tc, ma; - - if (arx >= ary && arx >= arz) { - if (rx >= 0.0F) { - face = FACE_POS_X; - sc = -rz; - tc = -ry; - ma = arx; - } - else { - face = FACE_NEG_X; - sc = rz; - tc = -ry; - ma = arx; - } - } - else if (ary >= arx && ary >= arz) { - if (ry >= 0.0F) { - face = FACE_POS_Y; - sc = rx; - tc = rz; - ma = ary; - } - else { - face = FACE_NEG_Y; - sc = rx; - tc = -rz; - ma = ary; - } - } - else { - if (rz > 0.0F) { - face = FACE_POS_Z; - sc = rx; - tc = -ry; - ma = arz; - } - else { - face = FACE_NEG_Z; - sc = -rx; - tc = -ry; - ma = arz; - } - } - - { - const float ima = 1.0F / ma; - newCoord[0] = ( sc * ima + 1.0F ) * 0.5F; - newCoord[1] = ( tc * ima + 1.0F ) * 0.5F; - } - - return (const struct gl_texture_image **) texObj->Image[face]; -} - - -static void -sample_nearest_cube(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint i; - (void) lambda; - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - images = choose_cube_face(tObj, texcoords[i], newCoord); - sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel], - newCoord, rgba[i]); - } -} - - -static void -sample_linear_cube(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - (void) lambda; - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - images = choose_cube_face(tObj, texcoords[i], newCoord); - sample_2d_linear(ctx, tObj, images[tObj->BaseLevel], - newCoord, rgba[i]); - } -} - - -static void -sample_cube_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level; - images = choose_cube_face(tObj, texcoord[i], newCoord); - - /* XXX we actually need to recompute lambda here based on the newCoords. - * But we would need the texcoords of adjacent fragments to compute that - * properly, and we don't have those here. - * For now, do an approximation: subtracting 1 from the chosen mipmap - * level seems to work in some test cases. - * The same adjustment is done in the next few functions. - */ - level = nearest_mipmap_level(tObj, lambda[i]); - level = MAX2(level - 1, 0); - - sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]); - } -} - - -static void -sample_cube_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level = nearest_mipmap_level(tObj, lambda[i]); - level = MAX2(level - 1, 0); /* see comment above */ - images = choose_cube_face(tObj, texcoord[i], newCoord); - sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]); - } -} - - -static void -sample_cube_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level = linear_mipmap_level(tObj, lambda[i]); - level = MAX2(level - 1, 0); /* see comment above */ - images = choose_cube_face(tObj, texcoord[i], newCoord); - if (level >= tObj->_MaxLevel) { - sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel], - newCoord, rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0); - sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_cube_linear_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level = linear_mipmap_level(tObj, lambda[i]); - level = MAX2(level - 1, 0); /* see comment above */ - images = choose_cube_face(tObj, texcoord[i], newCoord); - if (level >= tObj->_MaxLevel) { - sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel], - newCoord, rgba[i]); - } - else { - GLfloat t0[4], t1[4]; - const GLfloat f = FRAC(lambda[i]); - sample_2d_linear(ctx, tObj, images[level ], newCoord, t0); - sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample cube texture, using lambda to choose between min/magnification */ -static void -sample_lambda_cube(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - const GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - sample_nearest_cube(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR: - sample_linear_cube(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_cube_nearest_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_cube_linear_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_cube_nearest_mipmap_linear(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_cube_linear_mipmap_linear(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_lambda_cube"); - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - const GLuint m = magEnd - magStart; - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - sample_nearest_cube(ctx, tObj, m, texcoords + magStart, - lambda + magStart, rgba + magStart); - break; - case GL_LINEAR: - sample_linear_cube(ctx, tObj, m, texcoords + magStart, - lambda + magStart, rgba + magStart); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube"); - } - } -} - - -/**********************************************************************/ -/* Texture Rectangle Sampling Functions */ -/**********************************************************************/ - - -static void -sample_nearest_rect(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - const struct gl_texture_image *img = tObj->Image[0][0]; - const GLint width = img->Width; - const GLint height = img->Height; - GLuint i; - - (void) ctx; - (void) lambda; - - ASSERT(tObj->Sampler.WrapS == GL_CLAMP || - tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER); - ASSERT(tObj->Sampler.WrapT == GL_CLAMP || - tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER); - ASSERT(img->_BaseFormat != GL_COLOR_INDEX); - - for (i = 0; i < n; i++) { - GLint row, col; - col = clamp_rect_coord_nearest(tObj->Sampler.WrapS, texcoords[i][0], width); - row = clamp_rect_coord_nearest(tObj->Sampler.WrapT, texcoords[i][1], height); - if (col < 0 || col >= width || row < 0 || row >= height) - get_border_color(tObj, img, rgba[i]); - else - img->FetchTexelf(img, col, row, 0, rgba[i]); - } -} - - -static void -sample_linear_rect(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - const struct gl_texture_image *img = tObj->Image[0][0]; - const GLint width = img->Width; - const GLint height = img->Height; - GLuint i; - - (void) ctx; - (void) lambda; - - ASSERT(tObj->Sampler.WrapS == GL_CLAMP || - tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER); - ASSERT(tObj->Sampler.WrapT == GL_CLAMP || - tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER); - ASSERT(img->_BaseFormat != GL_COLOR_INDEX); - - for (i = 0; i < n; i++) { - GLint i0, j0, i1, j1; - GLfloat t00[4], t01[4], t10[4], t11[4]; - GLfloat a, b; - GLbitfield useBorderColor = 0x0; - - clamp_rect_coord_linear(tObj->Sampler.WrapS, texcoords[i][0], width, - &i0, &i1, &a); - clamp_rect_coord_linear(tObj->Sampler.WrapT, texcoords[i][1], height, - &j0, &j1, &b); - - /* compute integer rows/columns */ - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; - if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; - - /* get four texel samples */ - if (useBorderColor & (I0BIT | J0BIT)) - get_border_color(tObj, img, t00); - else - img->FetchTexelf(img, i0, j0, 0, t00); - - if (useBorderColor & (I1BIT | J0BIT)) - get_border_color(tObj, img, t10); - else - img->FetchTexelf(img, i1, j0, 0, t10); - - if (useBorderColor & (I0BIT | J1BIT)) - get_border_color(tObj, img, t01); - else - img->FetchTexelf(img, i0, j1, 0, t01); - - if (useBorderColor & (I1BIT | J1BIT)) - get_border_color(tObj, img, t11); - else - img->FetchTexelf(img, i1, j1, 0, t11); - - lerp_rgba_2d(rgba[i], a, b, t00, t10, t01, t11); - } -} - - -/** Sample Rect texture, using lambda to choose between min/magnification */ -static void -sample_lambda_rect(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint minStart, minEnd, magStart, magEnd; - - /* We only need lambda to decide between minification and magnification. - * There is no mipmapping with rectangular textures. - */ - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - if (tObj->Sampler.MinFilter == GL_NEAREST) { - sample_nearest_rect(ctx, tObj, minEnd - minStart, - texcoords + minStart, NULL, rgba + minStart); - } - else { - sample_linear_rect(ctx, tObj, minEnd - minStart, - texcoords + minStart, NULL, rgba + minStart); - } - } - if (magStart < magEnd) { - if (tObj->Sampler.MagFilter == GL_NEAREST) { - sample_nearest_rect(ctx, tObj, magEnd - magStart, - texcoords + magStart, NULL, rgba + magStart); - } - else { - sample_linear_rect(ctx, tObj, magEnd - magStart, - texcoords + magStart, NULL, rgba + magStart); - } - } -} - - -/**********************************************************************/ -/* 2D Texture Array Sampling Functions */ -/**********************************************************************/ - -/** - * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. - */ -static void -sample_2d_array_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; /* without border, power of two */ - const GLint height = img->Height2; /* without border, power of two */ - const GLint depth = img->Depth; - GLint i, j; - GLint array; - (void) ctx; - - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); - array = tex_array_slice(texcoord[2], depth); - - if (i < 0 || i >= (GLint) img->Width || - j < 0 || j >= (GLint) img->Height || - array < 0 || array >= (GLint) img->Depth) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); - } - else { - img->FetchTexelf(img, i, j, array, rgba); - } -} - - -/** - * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. - */ -static void -sample_2d_array_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; - const GLint height = img->Height2; - const GLint depth = img->Depth; - GLint i0, j0, i1, j1; - GLint array; - GLbitfield useBorderColor = 0x0; - GLfloat a, b; - GLfloat t00[4], t01[4], t10[4], t11[4]; - - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); - array = tex_array_slice(texcoord[2], depth); - - if (array < 0 || array >= depth) { - COPY_4V(rgba, tObj->Sampler.BorderColor.f); - } - else { - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - j0 += img->Border; - j1 += img->Border; - } - else { - /* check if sampling texture border color */ - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; - if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; - } - - /* Fetch texels */ - if (useBorderColor & (I0BIT | J0BIT)) { - get_border_color(tObj, img, t00); - } - else { - img->FetchTexelf(img, i0, j0, array, t00); - } - if (useBorderColor & (I1BIT | J0BIT)) { - get_border_color(tObj, img, t10); - } - else { - img->FetchTexelf(img, i1, j0, array, t10); - } - if (useBorderColor & (I0BIT | J1BIT)) { - get_border_color(tObj, img, t01); - } - else { - img->FetchTexelf(img, i0, j1, array, t01); - } - if (useBorderColor & (I1BIT | J1BIT)) { - get_border_color(tObj, img, t11); - } - else { - img->FetchTexelf(img, i1, j1, array, t11); - } - - /* trilinear interpolation of samples */ - lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); - } -} - - -static void -sample_2d_array_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], - rgba[i]); - } -} - - -static void -sample_2d_array_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_array_linear(ctx, tObj, tObj->Image[0][level], - texcoord[i], rgba[i]); - } -} - - -static void -sample_2d_array_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level ], - texcoord[i], t0); - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level+1], - texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_2d_array_linear_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_array_linear(ctx, tObj, tObj->Image[0][level ], - texcoord[i], t0); - sample_2d_array_linear(ctx, tObj, tObj->Image[0][level+1], - texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample 2D Array texture, nearest filtering for both min/magnification */ -static void -sample_nearest_2d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_2d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - - -/** Sample 2D Array texture, linear filtering for both min/magnification */ -static void -sample_linear_2d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_2d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 2D Array texture, using lambda to choose between min/magnification */ -static void -sample_lambda_2d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - GLuint i; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - for (i = minStart; i < minEnd; i++) - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = minStart; i < minEnd; i++) - sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_2d_array_nearest_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_2d_array_linear_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_2d_array_nearest_mipmap_linear(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_2d_array_linear_mipmap_linear(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_2d_array_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - for (i = magStart; i < magEnd; i++) - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = magStart; i < magEnd; i++) - sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_2d_array_texture"); - return; - } - } -} - - - - -/**********************************************************************/ -/* 1D Texture Array Sampling Functions */ -/**********************************************************************/ - -/** - * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. - */ -static void -sample_1d_array_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; /* without border, power of two */ - const GLint height = img->Height; - GLint i; - GLint array; - (void) ctx; - - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - array = tex_array_slice(texcoord[1], height); - - if (i < 0 || i >= (GLint) img->Width || - array < 0 || array >= (GLint) img->Height) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); - } - else { - img->FetchTexelf(img, i, array, 0, rgba); - } -} - - -/** - * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. - */ -static void -sample_1d_array_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; - const GLint height = img->Height; - GLint i0, i1; - GLint array; - GLbitfield useBorderColor = 0x0; - GLfloat a; - GLfloat t0[4], t1[4]; - - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - array = tex_array_slice(texcoord[1], height); - - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - } - else { - /* check if sampling texture border color */ - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - } - - if (array < 0 || array >= height) useBorderColor |= K0BIT; - - /* Fetch texels */ - if (useBorderColor & (I0BIT | K0BIT)) { - get_border_color(tObj, img, t0); - } - else { - img->FetchTexelf(img, i0, array, 0, t0); - } - if (useBorderColor & (I1BIT | K0BIT)) { - get_border_color(tObj, img, t1); - } - else { - img->FetchTexelf(img, i1, array, 0, t1); - } - - /* bilinear interpolation of samples */ - lerp_rgba(rgba, a, t0, t1); -} - - -static void -sample_1d_array_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], - rgba[i]); - } -} - - -static void -sample_1d_array_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_array_linear(ctx, tObj, tObj->Image[0][level], - texcoord[i], rgba[i]); - } -} - - -static void -sample_1d_array_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_1d_array_linear_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_1d_array_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_array_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample 1D Array texture, nearest filtering for both min/magnification */ -static void -sample_nearest_1d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_1d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 1D Array texture, linear filtering for both min/magnification */ -static void -sample_linear_1d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_1d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 1D Array texture, using lambda to choose between min/magnification */ -static void -sample_lambda_1d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - GLuint i; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - for (i = minStart; i < minEnd; i++) - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = minStart; i < minEnd; i++) - sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_1d_array_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_1d_array_linear_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_1d_array_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_1d_array_linear_mipmap_linear(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_1d_array_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - for (i = magStart; i < magEnd; i++) - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = magStart; i < magEnd; i++) - sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_1d_array_texture"); - return; - } - } -} - - -/** - * Compare texcoord against depth sample. Return 1.0 or the ambient value. - */ -static INLINE GLfloat -shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample, - GLfloat ambient) -{ - switch (function) { - case GL_LEQUAL: - return (coord <= depthSample) ? 1.0F : ambient; - case GL_GEQUAL: - return (coord >= depthSample) ? 1.0F : ambient; - case GL_LESS: - return (coord < depthSample) ? 1.0F : ambient; - case GL_GREATER: - return (coord > depthSample) ? 1.0F : ambient; - case GL_EQUAL: - return (coord == depthSample) ? 1.0F : ambient; - case GL_NOTEQUAL: - return (coord != depthSample) ? 1.0F : ambient; - case GL_ALWAYS: - return 1.0F; - case GL_NEVER: - return ambient; - case GL_NONE: - return depthSample; - default: - _mesa_problem(NULL, "Bad compare func in shadow_compare"); - return ambient; - } -} - - -/** - * Compare texcoord against four depth samples. - */ -static INLINE GLfloat -shadow_compare4(GLenum function, GLfloat coord, - GLfloat depth00, GLfloat depth01, - GLfloat depth10, GLfloat depth11, - GLfloat ambient, GLfloat wi, GLfloat wj) -{ - const GLfloat d = (1.0F - (GLfloat) ambient) * 0.25F; - GLfloat luminance = 1.0F; - - switch (function) { - case GL_LEQUAL: - if (coord > depth00) luminance -= d; - if (coord > depth01) luminance -= d; - if (coord > depth10) luminance -= d; - if (coord > depth11) luminance -= d; - return luminance; - case GL_GEQUAL: - if (coord < depth00) luminance -= d; - if (coord < depth01) luminance -= d; - if (coord < depth10) luminance -= d; - if (coord < depth11) luminance -= d; - return luminance; - case GL_LESS: - if (coord >= depth00) luminance -= d; - if (coord >= depth01) luminance -= d; - if (coord >= depth10) luminance -= d; - if (coord >= depth11) luminance -= d; - return luminance; - case GL_GREATER: - if (coord <= depth00) luminance -= d; - if (coord <= depth01) luminance -= d; - if (coord <= depth10) luminance -= d; - if (coord <= depth11) luminance -= d; - return luminance; - case GL_EQUAL: - if (coord != depth00) luminance -= d; - if (coord != depth01) luminance -= d; - if (coord != depth10) luminance -= d; - if (coord != depth11) luminance -= d; - return luminance; - case GL_NOTEQUAL: - if (coord == depth00) luminance -= d; - if (coord == depth01) luminance -= d; - if (coord == depth10) luminance -= d; - if (coord == depth11) luminance -= d; - return luminance; - case GL_ALWAYS: - return 1.0F; - case GL_NEVER: - return ambient; - case GL_NONE: - /* ordinary bilinear filtering */ - return lerp_2d(wi, wj, depth00, depth10, depth01, depth11); - default: - _mesa_problem(NULL, "Bad compare func in sample_compare4"); - return ambient; - } -} - - -/** - * Choose the mipmap level to use when sampling from a depth texture. - */ -static int -choose_depth_texture_level(const struct gl_texture_object *tObj, GLfloat lambda) -{ - GLint level; - - if (tObj->Sampler.MinFilter == GL_NEAREST || tObj->Sampler.MinFilter == GL_LINEAR) { - /* no mipmapping - use base level */ - level = tObj->BaseLevel; - } - else { - /* choose mipmap level */ - lambda = CLAMP(lambda, tObj->Sampler.MinLod, tObj->Sampler.MaxLod); - level = (GLint) lambda; - level = CLAMP(level, tObj->BaseLevel, tObj->_MaxLevel); - } - - return level; -} - - -/** - * Sample a shadow/depth texture. This function is incomplete. It doesn't - * check for minification vs. magnification, etc. - */ -static void -sample_depth_texture( struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat texel[][4] ) -{ - const GLint level = choose_depth_texture_level(tObj, lambda[0]); - const struct gl_texture_image *img = tObj->Image[0][level]; - const GLint width = img->Width; - const GLint height = img->Height; - const GLint depth = img->Depth; - const GLuint compare_coord = (tObj->Target == GL_TEXTURE_2D_ARRAY_EXT) - ? 3 : 2; - GLfloat ambient; - GLenum function; - GLfloat result; - - ASSERT(img->_BaseFormat == GL_DEPTH_COMPONENT || - img->_BaseFormat == GL_DEPTH_STENCIL_EXT); - - ASSERT(tObj->Target == GL_TEXTURE_1D || - tObj->Target == GL_TEXTURE_2D || - tObj->Target == GL_TEXTURE_RECTANGLE_NV || - tObj->Target == GL_TEXTURE_1D_ARRAY_EXT || - tObj->Target == GL_TEXTURE_2D_ARRAY_EXT); - - ambient = tObj->Sampler.CompareFailValue; - - /* XXXX if tObj->Sampler.MinFilter != tObj->Sampler.MagFilter, we're ignoring lambda */ - - function = (tObj->Sampler.CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ? - tObj->Sampler.CompareFunc : GL_NONE; - - if (tObj->Sampler.MagFilter == GL_NEAREST) { - GLuint i; - for (i = 0; i < n; i++) { - GLfloat depthSample, depthRef; - GLint col, row, slice; - - nearest_texcoord(tObj, level, texcoords[i], &col, &row, &slice); - - if (col >= 0 && row >= 0 && col < width && row < height && - slice >= 0 && slice < depth) { - img->FetchTexelf(img, col, row, slice, &depthSample); - } - else { - depthSample = tObj->Sampler.BorderColor.f[0]; - } - - depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F); - - result = shadow_compare(function, depthRef, depthSample, ambient); - - switch (tObj->Sampler.DepthMode) { - case GL_LUMINANCE: - ASSIGN_4V(texel[i], result, result, result, 1.0F); - break; - case GL_INTENSITY: - ASSIGN_4V(texel[i], result, result, result, result); - break; - case GL_ALPHA: - ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); - break; - case GL_RED: - ASSIGN_4V(texel[i], result, 0.0F, 0.0F, 1.0F); - break; - default: - _mesa_problem(ctx, "Bad depth texture mode"); - } - } - } - else { - GLuint i; - ASSERT(tObj->Sampler.MagFilter == GL_LINEAR); - for (i = 0; i < n; i++) { - GLfloat depth00, depth01, depth10, depth11, depthRef; - GLint i0, i1, j0, j1; - GLint slice; - GLfloat wi, wj; - GLuint useBorderTexel; - - linear_texcoord(tObj, level, texcoords[i], &i0, &i1, &j0, &j1, &slice, - &wi, &wj); - - useBorderTexel = 0; - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) { - j0 += img->Border; - j1 += img->Border; - } - } - else { - if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT; - if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT; - if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT; - if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT; - } - - if (slice < 0 || slice >= (GLint) depth) { - depth00 = tObj->Sampler.BorderColor.f[0]; - depth01 = tObj->Sampler.BorderColor.f[0]; - depth10 = tObj->Sampler.BorderColor.f[0]; - depth11 = tObj->Sampler.BorderColor.f[0]; - } - else { - /* get four depth samples from the texture */ - if (useBorderTexel & (I0BIT | J0BIT)) { - depth00 = tObj->Sampler.BorderColor.f[0]; - } - else { - img->FetchTexelf(img, i0, j0, slice, &depth00); - } - if (useBorderTexel & (I1BIT | J0BIT)) { - depth10 = tObj->Sampler.BorderColor.f[0]; - } - else { - img->FetchTexelf(img, i1, j0, slice, &depth10); - } - - if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) { - if (useBorderTexel & (I0BIT | J1BIT)) { - depth01 = tObj->Sampler.BorderColor.f[0]; - } - else { - img->FetchTexelf(img, i0, j1, slice, &depth01); - } - if (useBorderTexel & (I1BIT | J1BIT)) { - depth11 = tObj->Sampler.BorderColor.f[0]; - } - else { - img->FetchTexelf(img, i1, j1, slice, &depth11); - } - } - else { - depth01 = depth00; - depth11 = depth10; - } - } - - depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F); - - result = shadow_compare4(function, depthRef, - depth00, depth01, depth10, depth11, - ambient, wi, wj); - - switch (tObj->Sampler.DepthMode) { - case GL_LUMINANCE: - ASSIGN_4V(texel[i], result, result, result, 1.0F); - break; - case GL_INTENSITY: - ASSIGN_4V(texel[i], result, result, result, result); - break; - case GL_ALPHA: - ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); - break; - default: - _mesa_problem(ctx, "Bad depth texture mode"); - } - - } /* for */ - } /* if filter */ -} - - -/** - * We use this function when a texture object is in an "incomplete" state. - * When a fragment program attempts to sample an incomplete texture we - * return black (see issue 23 in GL_ARB_fragment_program spec). - * Note: fragment programs don't observe the texture enable/disable flags. - */ -static void -null_sample_func( struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint i; - (void) ctx; - (void) tObj; - (void) texcoords; - (void) lambda; - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = 0; - rgba[i][GCOMP] = 0; - rgba[i][BCOMP] = 0; - rgba[i][ACOMP] = 1.0; - } -} - - -/** - * Choose the texture sampling function for the given texture object. - */ -texture_sample_func -_swrast_choose_texture_sample_func( struct gl_context *ctx, - const struct gl_texture_object *t ) -{ - if (!t || !t->_Complete) { - return &null_sample_func; - } - else { - const GLboolean needLambda = - (GLboolean) (t->Sampler.MinFilter != t->Sampler.MagFilter); - const GLenum format = t->Image[0][t->BaseLevel]->_BaseFormat; - - switch (t->Target) { - case GL_TEXTURE_1D: - if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { - return &sample_depth_texture; - } - else if (needLambda) { - return &sample_lambda_1d; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_1d; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_1d; - } - case GL_TEXTURE_2D: - if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { - return &sample_depth_texture; - } - else if (needLambda) { - return &sample_lambda_2d; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_2d; - } - else { - /* check for a few optimized cases */ - const struct gl_texture_image *img = t->Image[0][t->BaseLevel]; - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - if (t->Sampler.WrapS == GL_REPEAT && - t->Sampler.WrapT == GL_REPEAT && - img->_IsPowerOfTwo && - img->Border == 0 && - img->TexFormat == MESA_FORMAT_RGB888) { - return &opt_sample_rgb_2d; - } - else if (t->Sampler.WrapS == GL_REPEAT && - t->Sampler.WrapT == GL_REPEAT && - img->_IsPowerOfTwo && - img->Border == 0 && - img->TexFormat == MESA_FORMAT_RGBA8888) { - return &opt_sample_rgba_2d; - } - else { - return &sample_nearest_2d; - } - } - case GL_TEXTURE_3D: - if (needLambda) { - return &sample_lambda_3d; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_3d; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_3d; - } - case GL_TEXTURE_CUBE_MAP: - if (needLambda) { - return &sample_lambda_cube; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_cube; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_cube; - } - case GL_TEXTURE_RECTANGLE_NV: - if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { - return &sample_depth_texture; - } - else if (needLambda) { - return &sample_lambda_rect; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_rect; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_rect; - } - case GL_TEXTURE_1D_ARRAY_EXT: - if (needLambda) { - return &sample_lambda_1d_array; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_1d_array; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_1d_array; - } - case GL_TEXTURE_2D_ARRAY_EXT: - if (needLambda) { - return &sample_lambda_2d_array; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_2d_array; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_2d_array; - } - default: - _mesa_problem(ctx, - "invalid target in _swrast_choose_texture_sample_func"); - return &null_sample_func; - } - } -} +/*
+ * Mesa 3-D graphics library
+ * Version: 7.3
+ *
+ * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+#include "main/glheader.h"
+#include "main/context.h"
+#include "main/colormac.h"
+#include "main/imports.h"
+
+#include "s_context.h"
+#include "s_texfilter.h"
+
+
+/*
+ * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes
+ * see 1-pixel bands of improperly weighted linear-filtered textures.
+ * The tests/texwrap.c demo is a good test.
+ * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0.
+ * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x).
+ */
+#define FRAC(f) ((f) - IFLOOR(f))
+
+
+
+/**
+ * Linear interpolation macro
+ */
+#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) )
+
+
+/**
+ * Do 2D/biliner interpolation of float values.
+ * v00, v10, v01 and v11 are typically four texture samples in a square/box.
+ * a and b are the horizontal and vertical interpolants.
+ * It's important that this function is inlined when compiled with
+ * optimization! If we find that's not true on some systems, convert
+ * to a macro.
+ */
+static INLINE GLfloat
+lerp_2d(GLfloat a, GLfloat b,
+ GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11)
+{
+ const GLfloat temp0 = LERP(a, v00, v10);
+ const GLfloat temp1 = LERP(a, v01, v11);
+ return LERP(b, temp0, temp1);
+}
+
+
+/**
+ * Do 3D/trilinear interpolation of float values.
+ * \sa lerp_2d
+ */
+static INLINE GLfloat
+lerp_3d(GLfloat a, GLfloat b, GLfloat c,
+ GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110,
+ GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111)
+{
+ const GLfloat temp00 = LERP(a, v000, v100);
+ const GLfloat temp10 = LERP(a, v010, v110);
+ const GLfloat temp01 = LERP(a, v001, v101);
+ const GLfloat temp11 = LERP(a, v011, v111);
+ const GLfloat temp0 = LERP(b, temp00, temp10);
+ const GLfloat temp1 = LERP(b, temp01, temp11);
+ return LERP(c, temp0, temp1);
+}
+
+
+/**
+ * Do linear interpolation of colors.
+ */
+static INLINE void
+lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4])
+{
+ result[0] = LERP(t, a[0], b[0]);
+ result[1] = LERP(t, a[1], b[1]);
+ result[2] = LERP(t, a[2], b[2]);
+ result[3] = LERP(t, a[3], b[3]);
+}
+
+
+/**
+ * Do bilinear interpolation of colors.
+ */
+static INLINE void
+lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b,
+ const GLfloat t00[4], const GLfloat t10[4],
+ const GLfloat t01[4], const GLfloat t11[4])
+{
+ result[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]);
+ result[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]);
+ result[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]);
+ result[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]);
+}
+
+
+/**
+ * Do trilinear interpolation of colors.
+ */
+static INLINE void
+lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c,
+ const GLfloat t000[4], const GLfloat t100[4],
+ const GLfloat t010[4], const GLfloat t110[4],
+ const GLfloat t001[4], const GLfloat t101[4],
+ const GLfloat t011[4], const GLfloat t111[4])
+{
+ GLuint k;
+ /* compiler should unroll these short loops */
+ for (k = 0; k < 4; k++) {
+ result[k] = lerp_3d(a, b, c, t000[k], t100[k], t010[k], t110[k],
+ t001[k], t101[k], t011[k], t111[k]);
+ }
+}
+
+
+/**
+ * Used for GL_REPEAT wrap mode. Using A % B doesn't produce the
+ * right results for A<0. Casting to A to be unsigned only works if B
+ * is a power of two. Adding a bias to A (which is a multiple of B)
+ * avoids the problems with A < 0 (for reasonable A) without using a
+ * conditional.
+ */
+#define REMAINDER(A, B) (((A) + (B) * 1024) % (B))
+
+
+/**
+ * Used to compute texel locations for linear sampling.
+ * Input:
+ * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER
+ * s = texcoord in [0,1]
+ * size = width (or height or depth) of texture
+ * Output:
+ * i0, i1 = returns two nearest texel indexes
+ * weight = returns blend factor between texels
+ */
+static INLINE void
+linear_texel_locations(GLenum wrapMode,
+ const struct gl_texture_image *img,
+ GLint size, GLfloat s,
+ GLint *i0, GLint *i1, GLfloat *weight)
+{
+ GLfloat u;
+ switch (wrapMode) {
+ case GL_REPEAT:
+ u = s * size - 0.5F;
+ if (img->_IsPowerOfTwo) {
+ *i0 = IFLOOR(u) & (size - 1);
+ *i1 = (*i0 + 1) & (size - 1);
+ }
+ else {
+ *i0 = REMAINDER(IFLOOR(u), size);
+ *i1 = REMAINDER(*i0 + 1, size);
+ }
+ break;
+ case GL_CLAMP_TO_EDGE:
+ if (s <= 0.0F)
+ u = 0.0F;
+ else if (s >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (GLint) size)
+ *i1 = size - 1;
+ break;
+ case GL_CLAMP_TO_BORDER:
+ {
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ if (s <= min)
+ u = min * size;
+ else if (s >= max)
+ u = max * size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ }
+ break;
+ case GL_MIRRORED_REPEAT:
+ {
+ const GLint flr = IFLOOR(s);
+ if (flr & 1)
+ u = 1.0F - (s - (GLfloat) flr);
+ else
+ u = s - (GLfloat) flr;
+ u = (u * size) - 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (GLint) size)
+ *i1 = size - 1;
+ }
+ break;
+ case GL_MIRROR_CLAMP_EXT:
+ u = FABSF(s);
+ if (u >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ break;
+ case GL_MIRROR_CLAMP_TO_EDGE_EXT:
+ u = FABSF(s);
+ if (u >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (GLint) size)
+ *i1 = size - 1;
+ break;
+ case GL_MIRROR_CLAMP_TO_BORDER_EXT:
+ {
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ u = FABSF(s);
+ if (u <= min)
+ u = min * size;
+ else if (u >= max)
+ u = max * size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ }
+ break;
+ case GL_CLAMP:
+ if (s <= 0.0F)
+ u = 0.0F;
+ else if (s >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ break;
+ default:
+ _mesa_problem(NULL, "Bad wrap mode");
+ u = 0.0F;
+ }
+ *weight = FRAC(u);
+}
+
+
+/**
+ * Used to compute texel location for nearest sampling.
+ */
+static INLINE GLint
+nearest_texel_location(GLenum wrapMode,
+ const struct gl_texture_image *img,
+ GLint size, GLfloat s)
+{
+ GLint i;
+
+ switch (wrapMode) {
+ case GL_REPEAT:
+ /* s limited to [0,1) */
+ /* i limited to [0,size-1] */
+ i = IFLOOR(s * size);
+ if (img->_IsPowerOfTwo)
+ i &= (size - 1);
+ else
+ i = REMAINDER(i, size);
+ return i;
+ case GL_CLAMP_TO_EDGE:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const GLfloat min = 1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ if (s < min)
+ i = 0;
+ else if (s > max)
+ i = size - 1;
+ else
+ i = IFLOOR(s * size);
+ }
+ return i;
+ case GL_CLAMP_TO_BORDER:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [-1, size] */
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ if (s <= min)
+ i = -1;
+ else if (s >= max)
+ i = size;
+ else
+ i = IFLOOR(s * size);
+ }
+ return i;
+ case GL_MIRRORED_REPEAT:
+ {
+ const GLfloat min = 1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ const GLint flr = IFLOOR(s);
+ GLfloat u;
+ if (flr & 1)
+ u = 1.0F - (s - (GLfloat) flr);
+ else
+ u = s - (GLfloat) flr;
+ if (u < min)
+ i = 0;
+ else if (u > max)
+ i = size - 1;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_MIRROR_CLAMP_EXT:
+ {
+ /* s limited to [0,1] */
+ /* i limited to [0,size-1] */
+ const GLfloat u = FABSF(s);
+ if (u <= 0.0F)
+ i = 0;
+ else if (u >= 1.0F)
+ i = size - 1;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_MIRROR_CLAMP_TO_EDGE_EXT:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const GLfloat min = 1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ const GLfloat u = FABSF(s);
+ if (u < min)
+ i = 0;
+ else if (u > max)
+ i = size - 1;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_MIRROR_CLAMP_TO_BORDER_EXT:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ const GLfloat u = FABSF(s);
+ if (u < min)
+ i = -1;
+ else if (u > max)
+ i = size;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_CLAMP:
+ /* s limited to [0,1] */
+ /* i limited to [0,size-1] */
+ if (s <= 0.0F)
+ i = 0;
+ else if (s >= 1.0F)
+ i = size - 1;
+ else
+ i = IFLOOR(s * size);
+ return i;
+ default:
+ _mesa_problem(NULL, "Bad wrap mode");
+ return 0;
+ }
+}
+
+
+/* Power of two image sizes only */
+static INLINE void
+linear_repeat_texel_location(GLuint size, GLfloat s,
+ GLint *i0, GLint *i1, GLfloat *weight)
+{
+ GLfloat u = s * size - 0.5F;
+ *i0 = IFLOOR(u) & (size - 1);
+ *i1 = (*i0 + 1) & (size - 1);
+ *weight = FRAC(u);
+}
+
+
+/**
+ * Do clamp/wrap for a texture rectangle coord, GL_NEAREST filter mode.
+ */
+static INLINE GLint
+clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max)
+{
+ switch (wrapMode) {
+ case GL_CLAMP:
+ return IFLOOR( CLAMP(coord, 0.0F, max - 1) );
+ case GL_CLAMP_TO_EDGE:
+ return IFLOOR( CLAMP(coord, 0.5F, max - 0.5F) );
+ case GL_CLAMP_TO_BORDER:
+ return IFLOOR( CLAMP(coord, -0.5F, max + 0.5F) );
+ default:
+ _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_nearest");
+ return 0;
+ }
+}
+
+
+/**
+ * As above, but GL_LINEAR filtering.
+ */
+static INLINE void
+clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max,
+ GLint *i0out, GLint *i1out, GLfloat *weight)
+{
+ GLfloat fcol;
+ GLint i0, i1;
+ switch (wrapMode) {
+ case GL_CLAMP:
+ /* Not exactly what the spec says, but it matches NVIDIA output */
+ fcol = CLAMP(coord - 0.5F, 0.0F, max - 1);
+ i0 = IFLOOR(fcol);
+ i1 = i0 + 1;
+ break;
+ case GL_CLAMP_TO_EDGE:
+ fcol = CLAMP(coord, 0.5F, max - 0.5F);
+ fcol -= 0.5F;
+ i0 = IFLOOR(fcol);
+ i1 = i0 + 1;
+ if (i1 > max - 1)
+ i1 = max - 1;
+ break;
+ case GL_CLAMP_TO_BORDER:
+ fcol = CLAMP(coord, -0.5F, max + 0.5F);
+ fcol -= 0.5F;
+ i0 = IFLOOR(fcol);
+ i1 = i0 + 1;
+ break;
+ default:
+ _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_linear");
+ i0 = i1 = 0;
+ fcol = 0.0F;
+ }
+ *i0out = i0;
+ *i1out = i1;
+ *weight = FRAC(fcol);
+}
+
+
+/**
+ * Compute slice/image to use for 1D or 2D array texture.
+ */
+static INLINE GLint
+tex_array_slice(GLfloat coord, GLsizei size)
+{
+ GLint slice = IFLOOR(coord + 0.5f);
+ slice = CLAMP(slice, 0, size - 1);
+ return slice;
+}
+
+
+/**
+ * Compute nearest integer texcoords for given texobj and coordinate.
+ * NOTE: only used for depth texture sampling.
+ */
+static INLINE void
+nearest_texcoord(const struct gl_texture_object *texObj,
+ GLuint level,
+ const GLfloat texcoord[4],
+ GLint *i, GLint *j, GLint *k)
+{
+ const struct gl_texture_image *img = texObj->Image[0][level];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ const GLint depth = img->Depth;
+
+ switch (texObj->Target) {
+ case GL_TEXTURE_RECTANGLE_ARB:
+ *i = clamp_rect_coord_nearest(texObj->Sampler.WrapS, texcoord[0], width);
+ *j = clamp_rect_coord_nearest(texObj->Sampler.WrapT, texcoord[1], height);
+ *k = 0;
+ break;
+ case GL_TEXTURE_1D:
+ *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]);
+ *j = 0;
+ *k = 0;
+ break;
+ case GL_TEXTURE_2D:
+ *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]);
+ *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]);
+ *k = 0;
+ break;
+ case GL_TEXTURE_1D_ARRAY_EXT:
+ *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]);
+ *j = tex_array_slice(texcoord[1], height);
+ *k = 0;
+ break;
+ case GL_TEXTURE_2D_ARRAY_EXT:
+ *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]);
+ *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]);
+ *k = tex_array_slice(texcoord[2], depth);
+ break;
+ default:
+ *i = *j = *k = 0;
+ }
+}
+
+
+/**
+ * Compute linear integer texcoords for given texobj and coordinate.
+ * NOTE: only used for depth texture sampling.
+ */
+static INLINE void
+linear_texcoord(const struct gl_texture_object *texObj,
+ GLuint level,
+ const GLfloat texcoord[4],
+ GLint *i0, GLint *i1, GLint *j0, GLint *j1, GLint *slice,
+ GLfloat *wi, GLfloat *wj)
+{
+ const struct gl_texture_image *img = texObj->Image[0][level];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ const GLint depth = img->Depth;
+
+ switch (texObj->Target) {
+ case GL_TEXTURE_RECTANGLE_ARB:
+ clamp_rect_coord_linear(texObj->Sampler.WrapS, texcoord[0],
+ width, i0, i1, wi);
+ clamp_rect_coord_linear(texObj->Sampler.WrapT, texcoord[1],
+ height, j0, j1, wj);
+ *slice = 0;
+ break;
+
+ case GL_TEXTURE_1D:
+ case GL_TEXTURE_2D:
+ linear_texel_locations(texObj->Sampler.WrapS, img, width,
+ texcoord[0], i0, i1, wi);
+ linear_texel_locations(texObj->Sampler.WrapT, img, height,
+ texcoord[1], j0, j1, wj);
+ *slice = 0;
+ break;
+
+ case GL_TEXTURE_1D_ARRAY_EXT:
+ linear_texel_locations(texObj->Sampler.WrapS, img, width,
+ texcoord[0], i0, i1, wi);
+ *j0 = tex_array_slice(texcoord[1], height);
+ *j1 = *j0;
+ *slice = 0;
+ break;
+
+ case GL_TEXTURE_2D_ARRAY_EXT:
+ linear_texel_locations(texObj->Sampler.WrapS, img, width,
+ texcoord[0], i0, i1, wi);
+ linear_texel_locations(texObj->Sampler.WrapT, img, height,
+ texcoord[1], j0, j1, wj);
+ *slice = tex_array_slice(texcoord[2], depth);
+ break;
+
+ default:
+ *slice = 0;
+ }
+}
+
+
+
+/**
+ * For linear interpolation between mipmap levels N and N+1, this function
+ * computes N.
+ */
+static INLINE GLint
+linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda)
+{
+ if (lambda < 0.0F)
+ return tObj->BaseLevel;
+ else if (lambda > tObj->_MaxLambda)
+ return (GLint) (tObj->BaseLevel + tObj->_MaxLambda);
+ else
+ return (GLint) (tObj->BaseLevel + lambda);
+}
+
+
+/**
+ * Compute the nearest mipmap level to take texels from.
+ */
+static INLINE GLint
+nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda)
+{
+ GLfloat l;
+ GLint level;
+ if (lambda <= 0.5F)
+ l = 0.0F;
+ else if (lambda > tObj->_MaxLambda + 0.4999F)
+ l = tObj->_MaxLambda + 0.4999F;
+ else
+ l = lambda;
+ level = (GLint) (tObj->BaseLevel + l + 0.5F);
+ if (level > tObj->_MaxLevel)
+ level = tObj->_MaxLevel;
+ return level;
+}
+
+
+
+/*
+ * Bitflags for texture border color sampling.
+ */
+#define I0BIT 1
+#define I1BIT 2
+#define J0BIT 4
+#define J1BIT 8
+#define K0BIT 16
+#define K1BIT 32
+
+
+
+/**
+ * The lambda[] array values are always monotonic. Either the whole span
+ * will be minified, magnified, or split between the two. This function
+ * determines the subranges in [0, n-1] that are to be minified or magnified.
+ */
+static INLINE void
+compute_min_mag_ranges(const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat lambda[],
+ GLuint *minStart, GLuint *minEnd,
+ GLuint *magStart, GLuint *magEnd)
+{
+ GLfloat minMagThresh;
+
+ /* we shouldn't be here if minfilter == magfilter */
+ ASSERT(tObj->Sampler.MinFilter != tObj->Sampler.MagFilter);
+
+ /* This bit comes from the OpenGL spec: */
+ if (tObj->Sampler.MagFilter == GL_LINEAR
+ && (tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_NEAREST ||
+ tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_LINEAR)) {
+ minMagThresh = 0.5F;
+ }
+ else {
+ minMagThresh = 0.0F;
+ }
+
+#if 0
+ /* DEBUG CODE: Verify that lambda[] is monotonic.
+ * We can't really use this because the inaccuracy in the LOG2 function
+ * causes this test to fail, yet the resulting texturing is correct.
+ */
+ if (n > 1) {
+ GLuint i;
+ printf("lambda delta = %g\n", lambda[0] - lambda[n-1]);
+ if (lambda[0] >= lambda[n-1]) { /* decreasing */
+ for (i = 0; i < n - 1; i++) {
+ ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10));
+ }
+ }
+ else { /* increasing */
+ for (i = 0; i < n - 1; i++) {
+ ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10));
+ }
+ }
+ }
+#endif /* DEBUG */
+
+ if (lambda[0] <= minMagThresh && (n <= 1 || lambda[n-1] <= minMagThresh)) {
+ /* magnification for whole span */
+ *magStart = 0;
+ *magEnd = n;
+ *minStart = *minEnd = 0;
+ }
+ else if (lambda[0] > minMagThresh && (n <=1 || lambda[n-1] > minMagThresh)) {
+ /* minification for whole span */
+ *minStart = 0;
+ *minEnd = n;
+ *magStart = *magEnd = 0;
+ }
+ else {
+ /* a mix of minification and magnification */
+ GLuint i;
+ if (lambda[0] > minMagThresh) {
+ /* start with minification */
+ for (i = 1; i < n; i++) {
+ if (lambda[i] <= minMagThresh)
+ break;
+ }
+ *minStart = 0;
+ *minEnd = i;
+ *magStart = i;
+ *magEnd = n;
+ }
+ else {
+ /* start with magnification */
+ for (i = 1; i < n; i++) {
+ if (lambda[i] > minMagThresh)
+ break;
+ }
+ *magStart = 0;
+ *magEnd = i;
+ *minStart = i;
+ *minEnd = n;
+ }
+ }
+
+#if 0
+ /* Verify the min/mag Start/End values
+ * We don't use this either (see above)
+ */
+ {
+ GLint i;
+ for (i = 0; i < n; i++) {
+ if (lambda[i] > minMagThresh) {
+ /* minification */
+ ASSERT(i >= *minStart);
+ ASSERT(i < *minEnd);
+ }
+ else {
+ /* magnification */
+ ASSERT(i >= *magStart);
+ ASSERT(i < *magEnd);
+ }
+ }
+ }
+#endif
+}
+
+
+/**
+ * When we sample the border color, it must be interpreted according to
+ * the base texture format. Ex: if the texture base format it GL_ALPHA,
+ * we return (0,0,0,BorderAlpha).
+ */
+static INLINE void
+get_border_color(const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ GLfloat rgba[4])
+{
+ switch (img->_BaseFormat) {
+ case GL_RGB:
+ rgba[0] = tObj->Sampler.BorderColor.f[0];
+ rgba[1] = tObj->Sampler.BorderColor.f[1];
+ rgba[2] = tObj->Sampler.BorderColor.f[2];
+ rgba[3] = 1.0F;
+ break;
+ case GL_ALPHA:
+ rgba[0] = rgba[1] = rgba[2] = 0.0;
+ rgba[3] = tObj->Sampler.BorderColor.f[3];
+ break;
+ case GL_LUMINANCE:
+ rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0];
+ rgba[3] = 1.0;
+ break;
+ case GL_LUMINANCE_ALPHA:
+ rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0];
+ rgba[3] = tObj->Sampler.BorderColor.f[3];
+ break;
+ case GL_INTENSITY:
+ rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->Sampler.BorderColor.f[0];
+ break;
+ default:
+ COPY_4V(rgba, tObj->Sampler.BorderColor.f);
+ }
+}
+
+
+/**********************************************************************/
+/* 1-D Texture Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s) using GL_NEAREST filter.
+ */
+static INLINE void
+sample_1d_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4], GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ GLint i;
+ i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]);
+ /* skip over the border, if any */
+ i += img->Border;
+ if (i < 0 || i >= (GLint) img->Width) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, 0, 0, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s) using GL_LINEAR filter.
+ */
+static INLINE void
+sample_1d_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4], GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ GLint i0, i1;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a;
+ GLfloat t0[4], t1[4]; /* texels */
+
+ linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ }
+ else {
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ }
+
+ /* fetch texel colors */
+ if (useBorderColor & I0BIT) {
+ get_border_color(tObj, img, t0);
+ }
+ else {
+ img->FetchTexelf(img, i0, 0, 0, t0);
+ }
+ if (useBorderColor & I1BIT) {
+ get_border_color(tObj, img, t1);
+ }
+ else {
+ img->FetchTexelf(img, i1, 0, 0, t1);
+ }
+
+ lerp_rgba(rgba, a, t0, t1);
+}
+
+
+static void
+sample_1d_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4];
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_1d_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4];
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 1D texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_1d( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D texture, linear filtering for both min/magnification */
+static void
+sample_linear_1d( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_1d( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4] )
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ const GLuint m = minEnd - minStart;
+ switch (tObj->Sampler.MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_1d_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->Sampler.MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_1d_texture");
+ return;
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* 2-D Texture Sampling Functions */
+/**********************************************************************/
+
+
+/**
+ * Return the texture sample for coordinate (s,t) using GL_NEAREST filter.
+ */
+static INLINE void
+sample_2d_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height2; /* without border, power of two */
+ GLint i, j;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]);
+
+ /* skip over the border, if any */
+ i += img->Border;
+ j += img->Border;
+
+ if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, j, 0, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t) using GL_LINEAR filter.
+ * New sampling code contributed by Lynn Quam <quam@ai.sri.com>.
+ */
+static INLINE void
+sample_2d_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ GLint i0, j0, i1, j1;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a, b;
+ GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
+
+ linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ j0 += img->Border;
+ j1 += img->Border;
+ }
+ else {
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+ }
+
+ /* fetch four texel colors */
+ if (useBorderColor & (I0BIT | J0BIT)) {
+ get_border_color(tObj, img, t00);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, 0, t00);
+ }
+ if (useBorderColor & (I1BIT | J0BIT)) {
+ get_border_color(tObj, img, t10);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, 0, t10);
+ }
+ if (useBorderColor & (I0BIT | J1BIT)) {
+ get_border_color(tObj, img, t01);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, 0, t01);
+ }
+ if (useBorderColor & (I1BIT | J1BIT)) {
+ get_border_color(tObj, img, t11);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, 0, t11);
+ }
+
+ lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11);
+}
+
+
+/**
+ * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT.
+ * We don't have to worry about the texture border.
+ */
+static INLINE void
+sample_2d_linear_repeat(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ GLint i0, j0, i1, j1;
+ GLfloat wi, wj;
+ GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
+
+ (void) ctx;
+
+ ASSERT(tObj->Sampler.WrapS == GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapT == GL_REPEAT);
+ ASSERT(img->Border == 0);
+ ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
+ ASSERT(img->_IsPowerOfTwo);
+
+ linear_repeat_texel_location(width, texcoord[0], &i0, &i1, &wi);
+ linear_repeat_texel_location(height, texcoord[1], &j0, &j1, &wj);
+
+ img->FetchTexelf(img, i0, j0, 0, t00);
+ img->FetchTexelf(img, i1, j0, 0, t10);
+ img->FetchTexelf(img, i0, j1, 0, t01);
+ img->FetchTexelf(img, i1, j1, 0, t11);
+
+ lerp_rgba_2d(rgba, wi, wj, t00, t10, t01, t11);
+}
+
+
+static void
+sample_2d_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_2d_linear_mipmap_linear( struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4] )
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_2d_linear_mipmap_linear_repeat(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ ASSERT(tObj->Sampler.WrapS == GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapT == GL_REPEAT);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ],
+ texcoord[i], t0);
+ sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1],
+ texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 2D texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 2D texture, linear filtering for both min/magnification */
+static void
+sample_linear_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ if (tObj->Sampler.WrapS == GL_REPEAT &&
+ tObj->Sampler.WrapT == GL_REPEAT &&
+ image->_IsPowerOfTwo &&
+ image->Border == 0) {
+ for (i = 0; i < n; i++) {
+ sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+ }
+ else {
+ for (i = 0; i < n; i++) {
+ sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+ }
+}
+
+
+/**
+ * Optimized 2-D texture sampling:
+ * S and T wrap mode == GL_REPEAT
+ * GL_NEAREST min/mag filter
+ * No border,
+ * RowStride == Width,
+ * Format = GL_RGB
+ */
+static void
+opt_sample_rgb_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
+ const GLfloat width = (GLfloat) img->Width;
+ const GLfloat height = (GLfloat) img->Height;
+ const GLint colMask = img->Width - 1;
+ const GLint rowMask = img->Height - 1;
+ const GLint shift = img->WidthLog2;
+ GLuint k;
+ (void) ctx;
+ (void) lambda;
+ ASSERT(tObj->Sampler.WrapS==GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapT==GL_REPEAT);
+ ASSERT(img->Border==0);
+ ASSERT(img->TexFormat == MESA_FORMAT_RGB888);
+ ASSERT(img->_IsPowerOfTwo);
+
+ for (k=0; k<n; k++) {
+ GLint i = IFLOOR(texcoords[k][0] * width) & colMask;
+ GLint j = IFLOOR(texcoords[k][1] * height) & rowMask;
+ GLint pos = (j << shift) | i;
+ GLubyte *texel = ((GLubyte *) img->Data) + 3*pos;
+ rgba[k][RCOMP] = UBYTE_TO_FLOAT(texel[2]);
+ rgba[k][GCOMP] = UBYTE_TO_FLOAT(texel[1]);
+ rgba[k][BCOMP] = UBYTE_TO_FLOAT(texel[0]);
+ rgba[k][ACOMP] = 1.0F;
+ }
+}
+
+
+/**
+ * Optimized 2-D texture sampling:
+ * S and T wrap mode == GL_REPEAT
+ * GL_NEAREST min/mag filter
+ * No border
+ * RowStride == Width,
+ * Format = GL_RGBA
+ */
+static void
+opt_sample_rgba_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
+ const GLfloat width = (GLfloat) img->Width;
+ const GLfloat height = (GLfloat) img->Height;
+ const GLint colMask = img->Width - 1;
+ const GLint rowMask = img->Height - 1;
+ const GLint shift = img->WidthLog2;
+ GLuint i;
+ (void) ctx;
+ (void) lambda;
+ ASSERT(tObj->Sampler.WrapS==GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapT==GL_REPEAT);
+ ASSERT(img->Border==0);
+ ASSERT(img->TexFormat == MESA_FORMAT_RGBA8888);
+ ASSERT(img->_IsPowerOfTwo);
+
+ for (i = 0; i < n; i++) {
+ const GLint col = IFLOOR(texcoords[i][0] * width) & colMask;
+ const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask;
+ const GLint pos = (row << shift) | col;
+ const GLuint texel = *((GLuint *) img->Data + pos);
+ rgba[i][RCOMP] = UBYTE_TO_FLOAT( (texel >> 24) );
+ rgba[i][GCOMP] = UBYTE_TO_FLOAT( (texel >> 16) & 0xff );
+ rgba[i][BCOMP] = UBYTE_TO_FLOAT( (texel >> 8) & 0xff );
+ rgba[i][ACOMP] = UBYTE_TO_FLOAT( (texel ) & 0xff );
+ }
+}
+
+
+/** Sample 2D texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel];
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+
+ const GLboolean repeatNoBorderPOT = (tObj->Sampler.WrapS == GL_REPEAT)
+ && (tObj->Sampler.WrapT == GL_REPEAT)
+ && (tImg->Border == 0 && (tImg->Width == tImg->RowStride))
+ && (tImg->_BaseFormat != GL_COLOR_INDEX)
+ && tImg->_IsPowerOfTwo;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ const GLuint m = minEnd - minStart;
+ switch (tObj->Sampler.MinFilter) {
+ case GL_NEAREST:
+ if (repeatNoBorderPOT) {
+ switch (tImg->TexFormat) {
+ case MESA_FORMAT_RGB888:
+ opt_sample_rgb_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ break;
+ case MESA_FORMAT_RGBA8888:
+ opt_sample_rgba_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ break;
+ default:
+ sample_nearest_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart );
+ }
+ }
+ else {
+ sample_nearest_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ }
+ break;
+ case GL_LINEAR:
+ sample_linear_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_2d_nearest_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ if (repeatNoBorderPOT)
+ sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m,
+ texcoords + minStart, lambda + minStart, rgba + minStart);
+ else
+ sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_2d_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ const GLuint m = magEnd - magStart;
+
+ switch (tObj->Sampler.MagFilter) {
+ case GL_NEAREST:
+ if (repeatNoBorderPOT) {
+ switch (tImg->TexFormat) {
+ case MESA_FORMAT_RGB888:
+ opt_sample_rgb_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ break;
+ case MESA_FORMAT_RGBA8888:
+ opt_sample_rgba_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ break;
+ default:
+ sample_nearest_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart );
+ }
+ }
+ else {
+ sample_nearest_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ }
+ break;
+ case GL_LINEAR:
+ sample_linear_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d");
+ }
+ }
+}
+
+
+/* For anisotropic filtering */
+#define WEIGHT_LUT_SIZE 1024
+
+static GLfloat *weightLut = NULL;
+
+/**
+ * Creates the look-up table used to speed-up EWA sampling
+ */
+static void
+create_filter_table(void)
+{
+ GLuint i;
+ if (!weightLut) {
+ weightLut = (GLfloat *) malloc(WEIGHT_LUT_SIZE * sizeof(GLfloat));
+
+ for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
+ GLfloat alpha = 2;
+ GLfloat r2 = (GLfloat) i / (GLfloat) (WEIGHT_LUT_SIZE - 1);
+ GLfloat weight = (GLfloat) exp(-alpha * r2);
+ weightLut[i] = weight;
+ }
+ }
+}
+
+
+/**
+ * Elliptical weighted average (EWA) filter for producing high quality
+ * anisotropic filtered results.
+ * Based on the Higher Quality Elliptical Weighted Avarage Filter
+ * published by Paul S. Heckbert in his Master's Thesis
+ * "Fundamentals of Texture Mapping and Image Warping" (1989)
+ */
+static void
+sample_2d_ewa(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const GLfloat texcoord[4],
+ const GLfloat dudx, const GLfloat dvdx,
+ const GLfloat dudy, const GLfloat dvdy, const GLint lod,
+ GLfloat rgba[])
+{
+ GLint level = lod > 0 ? lod : 0;
+ GLfloat scaling = 1.0 / (1 << level);
+ const struct gl_texture_image *img = tObj->Image[0][level];
+ const struct gl_texture_image *mostDetailedImage =
+ tObj->Image[0][tObj->BaseLevel];
+ GLfloat tex_u=-0.5 + texcoord[0] * mostDetailedImage->WidthScale * scaling;
+ GLfloat tex_v=-0.5 + texcoord[1] * mostDetailedImage->HeightScale * scaling;
+
+ GLfloat ux = dudx * scaling;
+ GLfloat vx = dvdx * scaling;
+ GLfloat uy = dudy * scaling;
+ GLfloat vy = dvdy * scaling;
+
+ /* compute ellipse coefficients to bound the region:
+ * A*x*x + B*x*y + C*y*y = F.
+ */
+ GLfloat A = vx*vx+vy*vy+1;
+ GLfloat B = -2*(ux*vx+uy*vy);
+ GLfloat C = ux*ux+uy*uy+1;
+ GLfloat F = A*C-B*B/4.0;
+
+ /* check if it is an ellipse */
+ /* ASSERT(F > 0.0); */
+
+ /* Compute the ellipse's (u,v) bounding box in texture space */
+ GLfloat d = -B*B+4.0*C*A;
+ GLfloat box_u = 2.0 / d * sqrt(d*C*F); /* box_u -> half of bbox with */
+ GLfloat box_v = 2.0 / d * sqrt(A*d*F); /* box_v -> half of bbox height */
+
+ GLint u0 = floor(tex_u - box_u);
+ GLint u1 = ceil (tex_u + box_u);
+ GLint v0 = floor(tex_v - box_v);
+ GLint v1 = ceil (tex_v + box_v);
+
+ GLfloat num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
+ GLfloat newCoord[2];
+ GLfloat den = 0.0F;
+ GLfloat ddq;
+ GLfloat U = u0 - tex_u;
+ GLint v;
+
+ /* Scale ellipse formula to directly index the Filter Lookup Table.
+ * i.e. scale so that F = WEIGHT_LUT_SIZE-1
+ */
+ double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
+ A *= formScale;
+ B *= formScale;
+ C *= formScale;
+ /* F *= formScale; */ /* no need to scale F as we don't use it below here */
+
+ /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
+ * and incrementally update the value of Ax^2+Bxy*Cy^2; when this
+ * value, q, is less than F, we're inside the ellipse
+ */
+ ddq = 2 * A;
+ for (v = v0; v <= v1; ++v) {
+ GLfloat V = v - tex_v;
+ GLfloat dq = A * (2 * U + 1) + B * V;
+ GLfloat q = (C * V + B * U) * V + A * U * U;
+
+ GLint u;
+ for (u = u0; u <= u1; ++u) {
+ /* Note that the ellipse has been pre-scaled so F = WEIGHT_LUT_SIZE - 1 */
+ if (q < WEIGHT_LUT_SIZE) {
+ /* as a LUT is used, q must never be negative;
+ * should not happen, though
+ */
+ const GLint qClamped = q >= 0.0F ? q : 0;
+ GLfloat weight = weightLut[qClamped];
+
+ newCoord[0] = u / ((GLfloat) img->Width2);
+ newCoord[1] = v / ((GLfloat) img->Height2);
+
+ sample_2d_nearest(ctx, tObj, img, newCoord, rgba);
+ num[0] += weight * rgba[0];
+ num[1] += weight * rgba[1];
+ num[2] += weight * rgba[2];
+ num[3] += weight * rgba[3];
+
+ den += weight;
+ }
+ q += dq;
+ dq += ddq;
+ }
+ }
+
+ if (den <= 0.0F) {
+ /* Reaching this place would mean
+ * that no pixels intersected the ellipse.
+ * This should never happen because
+ * the filter we use always
+ * intersects at least one pixel.
+ */
+
+ /*rgba[0]=0;
+ rgba[1]=0;
+ rgba[2]=0;
+ rgba[3]=0;*/
+ /* not enough pixels in resampling, resort to direct interpolation */
+ sample_2d_linear(ctx, tObj, img, texcoord, rgba);
+ return;
+ }
+
+ rgba[0] = num[0] / den;
+ rgba[1] = num[1] / den;
+ rgba[2] = num[2] / den;
+ rgba[3] = num[3] / den;
+}
+
+
+/**
+ * Anisotropic filtering using footprint assembly as outlined in the
+ * EXT_texture_filter_anisotropic spec:
+ * http://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt
+ * Faster than EWA but has less quality (more aliasing effects)
+ */
+static void
+sample_2d_footprint(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const GLfloat texcoord[4],
+ const GLfloat dudx, const GLfloat dvdx,
+ const GLfloat dudy, const GLfloat dvdy, const GLint lod,
+ GLfloat rgba[])
+{
+ GLint level = lod > 0 ? lod : 0;
+ GLfloat scaling = 1.0F / (1 << level);
+ const struct gl_texture_image *img = tObj->Image[0][level];
+
+ GLfloat ux = dudx * scaling;
+ GLfloat vx = dvdx * scaling;
+ GLfloat uy = dudy * scaling;
+ GLfloat vy = dvdy * scaling;
+
+ GLfloat Px2 = ux * ux + vx * vx; /* squared length of dx */
+ GLfloat Py2 = uy * uy + vy * vy; /* squared length of dy */
+
+ GLint numSamples;
+ GLfloat ds;
+ GLfloat dt;
+
+ GLfloat num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
+ GLfloat newCoord[2];
+ GLint s;
+
+ /* Calculate the per anisotropic sample offsets in s,t space. */
+ if (Px2 > Py2) {
+ numSamples = ceil(SQRTF(Px2));
+ ds = ux / ((GLfloat) img->Width2);
+ dt = vx / ((GLfloat) img->Height2);
+ }
+ else {
+ numSamples = ceil(SQRTF(Py2));
+ ds = uy / ((GLfloat) img->Width2);
+ dt = vy / ((GLfloat) img->Height2);
+ }
+
+ for (s = 0; s<numSamples; s++) {
+ newCoord[0] = texcoord[0] + ds * ((GLfloat)(s+1) / (numSamples+1) -0.5);
+ newCoord[1] = texcoord[1] + dt * ((GLfloat)(s+1) / (numSamples+1) -0.5);
+
+ sample_2d_linear(ctx, tObj, img, newCoord, rgba);
+ num[0] += rgba[0];
+ num[1] += rgba[1];
+ num[2] += rgba[2];
+ num[3] += rgba[3];
+ }
+
+ rgba[0] = num[0] / numSamples;
+ rgba[1] = num[1] / numSamples;
+ rgba[2] = num[2] / numSamples;
+ rgba[3] = num[3] / numSamples;
+}
+
+
+/**
+ * Returns the index of the specified texture object in the
+ * gl_context texture unit array.
+ */
+static INLINE GLuint
+texture_unit_index(const struct gl_context *ctx,
+ const struct gl_texture_object *tObj)
+{
+ const GLuint maxUnit
+ = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
+ GLuint u;
+
+ /* XXX CoordUnits vs. ImageUnits */
+ for (u = 0; u < maxUnit; u++) {
+ if (ctx->Texture.Unit[u]._Current == tObj)
+ break; /* found */
+ }
+ if (u >= maxUnit)
+ u = 0; /* not found, use 1st one; should never happen */
+
+ return u;
+}
+
+
+/**
+ * Sample 2D texture using an anisotropic filter.
+ * NOTE: the const GLfloat lambda_iso[] parameter does *NOT* contain
+ * the lambda float array but a "hidden" SWspan struct which is required
+ * by this function but is not available in the texture_sample_func signature.
+ * See _swrast_texture_span( struct gl_context *ctx, SWspan *span ) on how
+ * this function is called.
+ */
+static void
+sample_lambda_2d_aniso(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoords[][4],
+ const GLfloat lambda_iso[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel];
+ const GLfloat maxEccentricity =
+ tObj->Sampler.MaxAnisotropy * tObj->Sampler.MaxAnisotropy;
+
+ /* re-calculate the lambda values so that they are usable with anisotropic
+ * filtering
+ */
+ SWspan *span = (SWspan *)lambda_iso; /* access the "hidden" SWspan struct */
+
+ /* based on interpolate_texcoords(struct gl_context *ctx, SWspan *span)
+ * in swrast/s_span.c
+ */
+
+ /* find the texture unit index by looking up the current texture object
+ * from the context list of available texture objects.
+ */
+ const GLuint u = texture_unit_index(ctx, tObj);
+ const GLuint attr = FRAG_ATTRIB_TEX0 + u;
+ GLfloat texW, texH;
+
+ const GLfloat dsdx = span->attrStepX[attr][0];
+ const GLfloat dsdy = span->attrStepY[attr][0];
+ const GLfloat dtdx = span->attrStepX[attr][1];
+ const GLfloat dtdy = span->attrStepY[attr][1];
+ const GLfloat dqdx = span->attrStepX[attr][3];
+ const GLfloat dqdy = span->attrStepY[attr][3];
+ GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
+ GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
+ GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
+
+ /* from swrast/s_texcombine.c _swrast_texture_span */
+ const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[u];
+ const GLboolean adjustLOD =
+ (texUnit->LodBias + tObj->Sampler.LodBias != 0.0F)
+ || (tObj->Sampler.MinLod != -1000.0 || tObj->Sampler.MaxLod != 1000.0);
+
+ GLuint i;
+
+ /* on first access create the lookup table containing the filter weights. */
+ if (!weightLut) {
+ create_filter_table();
+ }
+
+ texW = tImg->WidthScale;
+ texH = tImg->HeightScale;
+
+ for (i = 0; i < n; i++) {
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+
+ GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
+ GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
+ GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
+ GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
+
+ /* note: instead of working with Px and Py, we will use the
+ * squared length instead, to avoid sqrt.
+ */
+ GLfloat Px2 = dudx * dudx + dvdx * dvdx;
+ GLfloat Py2 = dudy * dudy + dvdy * dvdy;
+
+ GLfloat Pmax2;
+ GLfloat Pmin2;
+ GLfloat e;
+ GLfloat lod;
+
+ s += dsdx;
+ t += dtdx;
+ q += dqdx;
+
+ if (Px2 < Py2) {
+ Pmax2 = Py2;
+ Pmin2 = Px2;
+ }
+ else {
+ Pmax2 = Px2;
+ Pmin2 = Py2;
+ }
+
+ /* if the eccentricity of the ellipse is too big, scale up the shorter
+ * of the two vectors to limit the maximum amount of work per pixel
+ */
+ e = Pmax2 / Pmin2;
+ if (e > maxEccentricity) {
+ /* GLfloat s=e / maxEccentricity;
+ minor[0] *= s;
+ minor[1] *= s;
+ Pmin2 *= s; */
+ Pmin2 = Pmax2 / maxEccentricity;
+ }
+
+ /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
+ * this since 0.5*log(x) = log(sqrt(x))
+ */
+ lod = 0.5 * LOG2(Pmin2);
+
+ if (adjustLOD) {
+ /* from swrast/s_texcombine.c _swrast_texture_span */
+ if (texUnit->LodBias + tObj->Sampler.LodBias != 0.0F) {
+ /* apply LOD bias, but don't clamp yet */
+ const GLfloat bias =
+ CLAMP(texUnit->LodBias + tObj->Sampler.LodBias,
+ -ctx->Const.MaxTextureLodBias,
+ ctx->Const.MaxTextureLodBias);
+ lod += bias;
+
+ if (tObj->Sampler.MinLod != -1000.0 ||
+ tObj->Sampler.MaxLod != 1000.0) {
+ /* apply LOD clamping to lambda */
+ lod = CLAMP(lod, tObj->Sampler.MinLod, tObj->Sampler.MaxLod);
+ }
+ }
+ }
+
+ /* If the ellipse covers the whole image, we can
+ * simply return the average of the whole image.
+ */
+ if (lod >= tObj->_MaxLevel) {
+ sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoords[i], rgba[i]);
+ }
+ else {
+ /* don't bother interpolating between multiple LODs; it doesn't
+ * seem to be worth the extra running time.
+ */
+ sample_2d_ewa(ctx, tObj, texcoords[i],
+ dudx, dvdx, dudy, dvdy, floor(lod), rgba[i]);
+
+ /* unused: */
+ (void) sample_2d_footprint;
+ /*
+ sample_2d_footprint(ctx, tObj, texcoords[i],
+ dudx, dvdx, dudy, dvdy, floor(lod), rgba[i]);
+ */
+ }
+ }
+}
+
+
+
+/**********************************************************************/
+/* 3-D Texture Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
+ */
+static INLINE void
+sample_3d_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height2; /* without border, power of two */
+ const GLint depth = img->Depth2; /* without border, power of two */
+ GLint i, j, k;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]);
+ k = nearest_texel_location(tObj->Sampler.WrapR, img, depth, texcoord[2]);
+
+ if (i < 0 || i >= (GLint) img->Width ||
+ j < 0 || j >= (GLint) img->Height ||
+ k < 0 || k >= (GLint) img->Depth) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, j, k, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
+ */
+static void
+sample_3d_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ const GLint depth = img->Depth2;
+ GLint i0, j0, k0, i1, j1, k1;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a, b, c;
+ GLfloat t000[4], t010[4], t001[4], t011[4];
+ GLfloat t100[4], t110[4], t101[4], t111[4];
+
+ linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b);
+ linear_texel_locations(tObj->Sampler.WrapR, img, depth, texcoord[2], &k0, &k1, &c);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ j0 += img->Border;
+ j1 += img->Border;
+ k0 += img->Border;
+ k1 += img->Border;
+ }
+ else {
+ /* check if sampling texture border color */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+ if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT;
+ if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT;
+ }
+
+ /* Fetch texels */
+ if (useBorderColor & (I0BIT | J0BIT | K0BIT)) {
+ get_border_color(tObj, img, t000);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, k0, t000);
+ }
+ if (useBorderColor & (I1BIT | J0BIT | K0BIT)) {
+ get_border_color(tObj, img, t100);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, k0, t100);
+ }
+ if (useBorderColor & (I0BIT | J1BIT | K0BIT)) {
+ get_border_color(tObj, img, t010);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, k0, t010);
+ }
+ if (useBorderColor & (I1BIT | J1BIT | K0BIT)) {
+ get_border_color(tObj, img, t110);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, k0, t110);
+ }
+
+ if (useBorderColor & (I0BIT | J0BIT | K1BIT)) {
+ get_border_color(tObj, img, t001);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, k1, t001);
+ }
+ if (useBorderColor & (I1BIT | J0BIT | K1BIT)) {
+ get_border_color(tObj, img, t101);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, k1, t101);
+ }
+ if (useBorderColor & (I0BIT | J1BIT | K1BIT)) {
+ get_border_color(tObj, img, t011);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, k1, t011);
+ }
+ if (useBorderColor & (I1BIT | J1BIT | K1BIT)) {
+ get_border_color(tObj, img, t111);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, k1, t111);
+ }
+
+ /* trilinear interpolation of samples */
+ lerp_rgba_3d(rgba, a, b, c, t000, t100, t010, t110, t001, t101, t011, t111);
+}
+
+
+static void
+sample_3d_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4] )
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_3d_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_3d_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_3d_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 3D texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_3d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 3D texture, linear filtering for both min/magnification */
+static void
+sample_linear_3d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 3D texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_3d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ GLuint m = minEnd - minStart;
+ switch (tObj->Sampler.MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_3d_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->Sampler.MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_3d_texture");
+ return;
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* Texture Cube Map Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Choose one of six sides of a texture cube map given the texture
+ * coord (rx,ry,rz). Return pointer to corresponding array of texture
+ * images.
+ */
+static const struct gl_texture_image **
+choose_cube_face(const struct gl_texture_object *texObj,
+ const GLfloat texcoord[4], GLfloat newCoord[4])
+{
+ /*
+ major axis
+ direction target sc tc ma
+ ---------- ------------------------------- --- --- ---
+ +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
+ -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
+ +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
+ -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
+ +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
+ -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
+ */
+ const GLfloat rx = texcoord[0];
+ const GLfloat ry = texcoord[1];
+ const GLfloat rz = texcoord[2];
+ const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz);
+ GLuint face;
+ GLfloat sc, tc, ma;
+
+ if (arx >= ary && arx >= arz) {
+ if (rx >= 0.0F) {
+ face = FACE_POS_X;
+ sc = -rz;
+ tc = -ry;
+ ma = arx;
+ }
+ else {
+ face = FACE_NEG_X;
+ sc = rz;
+ tc = -ry;
+ ma = arx;
+ }
+ }
+ else if (ary >= arx && ary >= arz) {
+ if (ry >= 0.0F) {
+ face = FACE_POS_Y;
+ sc = rx;
+ tc = rz;
+ ma = ary;
+ }
+ else {
+ face = FACE_NEG_Y;
+ sc = rx;
+ tc = -rz;
+ ma = ary;
+ }
+ }
+ else {
+ if (rz > 0.0F) {
+ face = FACE_POS_Z;
+ sc = rx;
+ tc = -ry;
+ ma = arz;
+ }
+ else {
+ face = FACE_NEG_Z;
+ sc = -rx;
+ tc = -ry;
+ ma = arz;
+ }
+ }
+
+ {
+ const float ima = 1.0F / ma;
+ newCoord[0] = ( sc * ima + 1.0F ) * 0.5F;
+ newCoord[1] = ( tc * ima + 1.0F ) * 0.5F;
+ }
+
+ return (const struct gl_texture_image **) texObj->Image[face];
+}
+
+
+static void
+sample_nearest_cube(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ images = choose_cube_face(tObj, texcoords[i], newCoord);
+ sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel],
+ newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_linear_cube(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ images = choose_cube_face(tObj, texcoords[i], newCoord);
+ sample_2d_linear(ctx, tObj, images[tObj->BaseLevel],
+ newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_cube_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level;
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+
+ /* XXX we actually need to recompute lambda here based on the newCoords.
+ * But we would need the texcoords of adjacent fragments to compute that
+ * properly, and we don't have those here.
+ * For now, do an approximation: subtracting 1 from the chosen mipmap
+ * level seems to work in some test cases.
+ * The same adjustment is done in the next few functions.
+ */
+ level = nearest_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0);
+
+ sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_cube_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0); /* see comment above */
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+ sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_cube_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0); /* see comment above */
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel],
+ newCoord, rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0);
+ sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_cube_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0); /* see comment above */
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel],
+ newCoord, rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4];
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_linear(ctx, tObj, images[level ], newCoord, t0);
+ sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample cube texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_cube(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ const GLuint m = minEnd - minStart;
+ switch (tObj->Sampler.MinFilter) {
+ case GL_NEAREST:
+ sample_nearest_cube(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR:
+ sample_linear_cube(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_cube_nearest_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_cube_linear_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_cube_nearest_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_cube_linear_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_lambda_cube");
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ const GLuint m = magEnd - magStart;
+ switch (tObj->Sampler.MagFilter) {
+ case GL_NEAREST:
+ sample_nearest_cube(ctx, tObj, m, texcoords + magStart,
+ lambda + magStart, rgba + magStart);
+ break;
+ case GL_LINEAR:
+ sample_linear_cube(ctx, tObj, m, texcoords + magStart,
+ lambda + magStart, rgba + magStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube");
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* Texture Rectangle Sampling Functions */
+/**********************************************************************/
+
+
+static void
+sample_nearest_rect(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][0];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ GLuint i;
+
+ (void) ctx;
+ (void) lambda;
+
+ ASSERT(tObj->Sampler.WrapS == GL_CLAMP ||
+ tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE ||
+ tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER);
+ ASSERT(tObj->Sampler.WrapT == GL_CLAMP ||
+ tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE ||
+ tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER);
+ ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
+
+ for (i = 0; i < n; i++) {
+ GLint row, col;
+ col = clamp_rect_coord_nearest(tObj->Sampler.WrapS, texcoords[i][0], width);
+ row = clamp_rect_coord_nearest(tObj->Sampler.WrapT, texcoords[i][1], height);
+ if (col < 0 || col >= width || row < 0 || row >= height)
+ get_border_color(tObj, img, rgba[i]);
+ else
+ img->FetchTexelf(img, col, row, 0, rgba[i]);
+ }
+}
+
+
+static void
+sample_linear_rect(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][0];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ GLuint i;
+
+ (void) ctx;
+ (void) lambda;
+
+ ASSERT(tObj->Sampler.WrapS == GL_CLAMP ||
+ tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE ||
+ tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER);
+ ASSERT(tObj->Sampler.WrapT == GL_CLAMP ||
+ tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE ||
+ tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER);
+ ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
+
+ for (i = 0; i < n; i++) {
+ GLint i0, j0, i1, j1;
+ GLfloat t00[4], t01[4], t10[4], t11[4];
+ GLfloat a, b;
+ GLbitfield useBorderColor = 0x0;
+
+ clamp_rect_coord_linear(tObj->Sampler.WrapS, texcoords[i][0], width,
+ &i0, &i1, &a);
+ clamp_rect_coord_linear(tObj->Sampler.WrapT, texcoords[i][1], height,
+ &j0, &j1, &b);
+
+ /* compute integer rows/columns */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+
+ /* get four texel samples */
+ if (useBorderColor & (I0BIT | J0BIT))
+ get_border_color(tObj, img, t00);
+ else
+ img->FetchTexelf(img, i0, j0, 0, t00);
+
+ if (useBorderColor & (I1BIT | J0BIT))
+ get_border_color(tObj, img, t10);
+ else
+ img->FetchTexelf(img, i1, j0, 0, t10);
+
+ if (useBorderColor & (I0BIT | J1BIT))
+ get_border_color(tObj, img, t01);
+ else
+ img->FetchTexelf(img, i0, j1, 0, t01);
+
+ if (useBorderColor & (I1BIT | J1BIT))
+ get_border_color(tObj, img, t11);
+ else
+ img->FetchTexelf(img, i1, j1, 0, t11);
+
+ lerp_rgba_2d(rgba[i], a, b, t00, t10, t01, t11);
+ }
+}
+
+
+/** Sample Rect texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_rect(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd, magStart, magEnd;
+
+ /* We only need lambda to decide between minification and magnification.
+ * There is no mipmapping with rectangular textures.
+ */
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ if (tObj->Sampler.MinFilter == GL_NEAREST) {
+ sample_nearest_rect(ctx, tObj, minEnd - minStart,
+ texcoords + minStart, NULL, rgba + minStart);
+ }
+ else {
+ sample_linear_rect(ctx, tObj, minEnd - minStart,
+ texcoords + minStart, NULL, rgba + minStart);
+ }
+ }
+ if (magStart < magEnd) {
+ if (tObj->Sampler.MagFilter == GL_NEAREST) {
+ sample_nearest_rect(ctx, tObj, magEnd - magStart,
+ texcoords + magStart, NULL, rgba + magStart);
+ }
+ else {
+ sample_linear_rect(ctx, tObj, magEnd - magStart,
+ texcoords + magStart, NULL, rgba + magStart);
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* 2D Texture Array Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
+ */
+static void
+sample_2d_array_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height2; /* without border, power of two */
+ const GLint depth = img->Depth;
+ GLint i, j;
+ GLint array;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]);
+ array = tex_array_slice(texcoord[2], depth);
+
+ if (i < 0 || i >= (GLint) img->Width ||
+ j < 0 || j >= (GLint) img->Height ||
+ array < 0 || array >= (GLint) img->Depth) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, j, array, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
+ */
+static void
+sample_2d_array_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ const GLint depth = img->Depth;
+ GLint i0, j0, i1, j1;
+ GLint array;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a, b;
+ GLfloat t00[4], t01[4], t10[4], t11[4];
+
+ linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b);
+ array = tex_array_slice(texcoord[2], depth);
+
+ if (array < 0 || array >= depth) {
+ COPY_4V(rgba, tObj->Sampler.BorderColor.f);
+ }
+ else {
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ j0 += img->Border;
+ j1 += img->Border;
+ }
+ else {
+ /* check if sampling texture border color */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+ }
+
+ /* Fetch texels */
+ if (useBorderColor & (I0BIT | J0BIT)) {
+ get_border_color(tObj, img, t00);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, array, t00);
+ }
+ if (useBorderColor & (I1BIT | J0BIT)) {
+ get_border_color(tObj, img, t10);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, array, t10);
+ }
+ if (useBorderColor & (I0BIT | J1BIT)) {
+ get_border_color(tObj, img, t01);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, array, t01);
+ }
+ if (useBorderColor & (I1BIT | J1BIT)) {
+ get_border_color(tObj, img, t11);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, array, t11);
+ }
+
+ /* trilinear interpolation of samples */
+ lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11);
+ }
+}
+
+
+static void
+sample_2d_array_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i],
+ rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_array_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][level],
+ texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_array_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level ],
+ texcoord[i], t0);
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level+1],
+ texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_2d_array_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][level ],
+ texcoord[i], t0);
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][level+1],
+ texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 2D Array texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_2d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_2d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+
+/** Sample 2D Array texture, linear filtering for both min/magnification */
+static void
+sample_linear_2d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_2d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 2D Array texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_2d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ GLuint m = minEnd - minStart;
+ switch (tObj->Sampler.MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_2d_array_nearest_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_2d_array_linear_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_2d_array_nearest_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_2d_array_linear_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_2d_array_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->Sampler.MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_2d_array_texture");
+ return;
+ }
+ }
+}
+
+
+
+
+/**********************************************************************/
+/* 1D Texture Array Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
+ */
+static void
+sample_1d_array_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height;
+ GLint i;
+ GLint array;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]);
+ array = tex_array_slice(texcoord[1], height);
+
+ if (i < 0 || i >= (GLint) img->Width ||
+ array < 0 || array >= (GLint) img->Height) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, array, 0, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
+ */
+static void
+sample_1d_array_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height;
+ GLint i0, i1;
+ GLint array;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a;
+ GLfloat t0[4], t1[4];
+
+ linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ array = tex_array_slice(texcoord[1], height);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ }
+ else {
+ /* check if sampling texture border color */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ }
+
+ if (array < 0 || array >= height) useBorderColor |= K0BIT;
+
+ /* Fetch texels */
+ if (useBorderColor & (I0BIT | K0BIT)) {
+ get_border_color(tObj, img, t0);
+ }
+ else {
+ img->FetchTexelf(img, i0, array, 0, t0);
+ }
+ if (useBorderColor & (I1BIT | K0BIT)) {
+ get_border_color(tObj, img, t1);
+ }
+ else {
+ img->FetchTexelf(img, i1, array, 0, t1);
+ }
+
+ /* bilinear interpolation of samples */
+ lerp_rgba(rgba, a, t0, t1);
+}
+
+
+static void
+sample_1d_array_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i],
+ rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_array_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][level],
+ texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_array_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_1d_array_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 1D Array texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_1d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D Array texture, linear filtering for both min/magnification */
+static void
+sample_linear_1d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D Array texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_1d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ GLuint m = minEnd - minStart;
+ switch (tObj->Sampler.MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_1d_array_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_1d_array_linear_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_1d_array_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_1d_array_linear_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_1d_array_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->Sampler.MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_1d_array_texture");
+ return;
+ }
+ }
+}
+
+
+/**
+ * Compare texcoord against depth sample. Return 1.0 or the ambient value.
+ */
+static INLINE GLfloat
+shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample,
+ GLfloat ambient)
+{
+ switch (function) {
+ case GL_LEQUAL:
+ return (coord <= depthSample) ? 1.0F : ambient;
+ case GL_GEQUAL:
+ return (coord >= depthSample) ? 1.0F : ambient;
+ case GL_LESS:
+ return (coord < depthSample) ? 1.0F : ambient;
+ case GL_GREATER:
+ return (coord > depthSample) ? 1.0F : ambient;
+ case GL_EQUAL:
+ return (coord == depthSample) ? 1.0F : ambient;
+ case GL_NOTEQUAL:
+ return (coord != depthSample) ? 1.0F : ambient;
+ case GL_ALWAYS:
+ return 1.0F;
+ case GL_NEVER:
+ return ambient;
+ case GL_NONE:
+ return depthSample;
+ default:
+ _mesa_problem(NULL, "Bad compare func in shadow_compare");
+ return ambient;
+ }
+}
+
+
+/**
+ * Compare texcoord against four depth samples.
+ */
+static INLINE GLfloat
+shadow_compare4(GLenum function, GLfloat coord,
+ GLfloat depth00, GLfloat depth01,
+ GLfloat depth10, GLfloat depth11,
+ GLfloat ambient, GLfloat wi, GLfloat wj)
+{
+ const GLfloat d = (1.0F - (GLfloat) ambient) * 0.25F;
+ GLfloat luminance = 1.0F;
+
+ switch (function) {
+ case GL_LEQUAL:
+ if (coord > depth00) luminance -= d;
+ if (coord > depth01) luminance -= d;
+ if (coord > depth10) luminance -= d;
+ if (coord > depth11) luminance -= d;
+ return luminance;
+ case GL_GEQUAL:
+ if (coord < depth00) luminance -= d;
+ if (coord < depth01) luminance -= d;
+ if (coord < depth10) luminance -= d;
+ if (coord < depth11) luminance -= d;
+ return luminance;
+ case GL_LESS:
+ if (coord >= depth00) luminance -= d;
+ if (coord >= depth01) luminance -= d;
+ if (coord >= depth10) luminance -= d;
+ if (coord >= depth11) luminance -= d;
+ return luminance;
+ case GL_GREATER:
+ if (coord <= depth00) luminance -= d;
+ if (coord <= depth01) luminance -= d;
+ if (coord <= depth10) luminance -= d;
+ if (coord <= depth11) luminance -= d;
+ return luminance;
+ case GL_EQUAL:
+ if (coord != depth00) luminance -= d;
+ if (coord != depth01) luminance -= d;
+ if (coord != depth10) luminance -= d;
+ if (coord != depth11) luminance -= d;
+ return luminance;
+ case GL_NOTEQUAL:
+ if (coord == depth00) luminance -= d;
+ if (coord == depth01) luminance -= d;
+ if (coord == depth10) luminance -= d;
+ if (coord == depth11) luminance -= d;
+ return luminance;
+ case GL_ALWAYS:
+ return 1.0F;
+ case GL_NEVER:
+ return ambient;
+ case GL_NONE:
+ /* ordinary bilinear filtering */
+ return lerp_2d(wi, wj, depth00, depth10, depth01, depth11);
+ default:
+ _mesa_problem(NULL, "Bad compare func in sample_compare4");
+ return ambient;
+ }
+}
+
+
+/**
+ * Choose the mipmap level to use when sampling from a depth texture.
+ */
+static int
+choose_depth_texture_level(const struct gl_texture_object *tObj, GLfloat lambda)
+{
+ GLint level;
+
+ if (tObj->Sampler.MinFilter == GL_NEAREST || tObj->Sampler.MinFilter == GL_LINEAR) {
+ /* no mipmapping - use base level */
+ level = tObj->BaseLevel;
+ }
+ else {
+ /* choose mipmap level */
+ lambda = CLAMP(lambda, tObj->Sampler.MinLod, tObj->Sampler.MaxLod);
+ level = (GLint) lambda;
+ level = CLAMP(level, tObj->BaseLevel, tObj->_MaxLevel);
+ }
+
+ return level;
+}
+
+
+/**
+ * Sample a shadow/depth texture. This function is incomplete. It doesn't
+ * check for minification vs. magnification, etc.
+ */
+static void
+sample_depth_texture( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat texel[][4] )
+{
+ const GLint level = choose_depth_texture_level(tObj, lambda[0]);
+ const struct gl_texture_image *img = tObj->Image[0][level];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ const GLint depth = img->Depth;
+ const GLuint compare_coord = (tObj->Target == GL_TEXTURE_2D_ARRAY_EXT)
+ ? 3 : 2;
+ GLfloat ambient;
+ GLenum function;
+ GLfloat result;
+
+ ASSERT(img->_BaseFormat == GL_DEPTH_COMPONENT ||
+ img->_BaseFormat == GL_DEPTH_STENCIL_EXT);
+
+ ASSERT(tObj->Target == GL_TEXTURE_1D ||
+ tObj->Target == GL_TEXTURE_2D ||
+ tObj->Target == GL_TEXTURE_RECTANGLE_NV ||
+ tObj->Target == GL_TEXTURE_1D_ARRAY_EXT ||
+ tObj->Target == GL_TEXTURE_2D_ARRAY_EXT);
+
+ ambient = tObj->Sampler.CompareFailValue;
+
+ /* XXXX if tObj->Sampler.MinFilter != tObj->Sampler.MagFilter, we're ignoring lambda */
+
+ function = (tObj->Sampler.CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ?
+ tObj->Sampler.CompareFunc : GL_NONE;
+
+ if (tObj->Sampler.MagFilter == GL_NEAREST) {
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLfloat depthSample, depthRef;
+ GLint col, row, slice;
+
+ nearest_texcoord(tObj, level, texcoords[i], &col, &row, &slice);
+
+ if (col >= 0 && row >= 0 && col < width && row < height &&
+ slice >= 0 && slice < depth) {
+ img->FetchTexelf(img, col, row, slice, &depthSample);
+ }
+ else {
+ depthSample = tObj->Sampler.BorderColor.f[0];
+ }
+
+ depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F);
+
+ result = shadow_compare(function, depthRef, depthSample, ambient);
+
+ switch (tObj->Sampler.DepthMode) {
+ case GL_LUMINANCE:
+ ASSIGN_4V(texel[i], result, result, result, 1.0F);
+ break;
+ case GL_INTENSITY:
+ ASSIGN_4V(texel[i], result, result, result, result);
+ break;
+ case GL_ALPHA:
+ ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result);
+ break;
+ case GL_RED:
+ ASSIGN_4V(texel[i], result, 0.0F, 0.0F, 1.0F);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad depth texture mode");
+ }
+ }
+ }
+ else {
+ GLuint i;
+ ASSERT(tObj->Sampler.MagFilter == GL_LINEAR);
+ for (i = 0; i < n; i++) {
+ GLfloat depth00, depth01, depth10, depth11, depthRef;
+ GLint i0, i1, j0, j1;
+ GLint slice;
+ GLfloat wi, wj;
+ GLuint useBorderTexel;
+
+ linear_texcoord(tObj, level, texcoords[i], &i0, &i1, &j0, &j1, &slice,
+ &wi, &wj);
+
+ useBorderTexel = 0;
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) {
+ j0 += img->Border;
+ j1 += img->Border;
+ }
+ }
+ else {
+ if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT;
+ if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT;
+ if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT;
+ if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT;
+ }
+
+ if (slice < 0 || slice >= (GLint) depth) {
+ depth00 = tObj->Sampler.BorderColor.f[0];
+ depth01 = tObj->Sampler.BorderColor.f[0];
+ depth10 = tObj->Sampler.BorderColor.f[0];
+ depth11 = tObj->Sampler.BorderColor.f[0];
+ }
+ else {
+ /* get four depth samples from the texture */
+ if (useBorderTexel & (I0BIT | J0BIT)) {
+ depth00 = tObj->Sampler.BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, slice, &depth00);
+ }
+ if (useBorderTexel & (I1BIT | J0BIT)) {
+ depth10 = tObj->Sampler.BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, slice, &depth10);
+ }
+
+ if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) {
+ if (useBorderTexel & (I0BIT | J1BIT)) {
+ depth01 = tObj->Sampler.BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, slice, &depth01);
+ }
+ if (useBorderTexel & (I1BIT | J1BIT)) {
+ depth11 = tObj->Sampler.BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, slice, &depth11);
+ }
+ }
+ else {
+ depth01 = depth00;
+ depth11 = depth10;
+ }
+ }
+
+ depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F);
+
+ result = shadow_compare4(function, depthRef,
+ depth00, depth01, depth10, depth11,
+ ambient, wi, wj);
+
+ switch (tObj->Sampler.DepthMode) {
+ case GL_LUMINANCE:
+ ASSIGN_4V(texel[i], result, result, result, 1.0F);
+ break;
+ case GL_INTENSITY:
+ ASSIGN_4V(texel[i], result, result, result, result);
+ break;
+ case GL_ALPHA:
+ ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad depth texture mode");
+ }
+
+ } /* for */
+ } /* if filter */
+}
+
+
+/**
+ * We use this function when a texture object is in an "incomplete" state.
+ * When a fragment program attempts to sample an incomplete texture we
+ * return black (see issue 23 in GL_ARB_fragment_program spec).
+ * Note: fragment programs don't observe the texture enable/disable flags.
+ */
+static void
+null_sample_func( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ (void) ctx;
+ (void) tObj;
+ (void) texcoords;
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = 0;
+ rgba[i][GCOMP] = 0;
+ rgba[i][BCOMP] = 0;
+ rgba[i][ACOMP] = 1.0;
+ }
+}
+
+
+/**
+ * Choose the texture sampling function for the given texture object.
+ */
+texture_sample_func
+_swrast_choose_texture_sample_func( struct gl_context *ctx,
+ const struct gl_texture_object *t )
+{
+ if (!t || !t->_Complete) {
+ return &null_sample_func;
+ }
+ else {
+ const GLboolean needLambda =
+ (GLboolean) (t->Sampler.MinFilter != t->Sampler.MagFilter);
+ const GLenum format = t->Image[0][t->BaseLevel]->_BaseFormat;
+
+ switch (t->Target) {
+ case GL_TEXTURE_1D:
+ if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
+ return &sample_depth_texture;
+ }
+ else if (needLambda) {
+ return &sample_lambda_1d;
+ }
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
+ return &sample_linear_1d;
+ }
+ else {
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
+ return &sample_nearest_1d;
+ }
+ case GL_TEXTURE_2D:
+ if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
+ return &sample_depth_texture;
+ }
+ else if (needLambda) {
+ /* Anisotropic filtering extension. Activated only if mipmaps are used */
+ if (t->Sampler.MaxAnisotropy > 1.0 &&
+ t->Sampler.MinFilter == GL_LINEAR_MIPMAP_LINEAR) {
+ return &sample_lambda_2d_aniso;
+ }
+ return &sample_lambda_2d;
+ }
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
+ return &sample_linear_2d;
+ }
+ else {
+ /* check for a few optimized cases */
+ const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
+ if (t->Sampler.WrapS == GL_REPEAT &&
+ t->Sampler.WrapT == GL_REPEAT &&
+ img->_IsPowerOfTwo &&
+ img->Border == 0 &&
+ img->TexFormat == MESA_FORMAT_RGB888) {
+ return &opt_sample_rgb_2d;
+ }
+ else if (t->Sampler.WrapS == GL_REPEAT &&
+ t->Sampler.WrapT == GL_REPEAT &&
+ img->_IsPowerOfTwo &&
+ img->Border == 0 &&
+ img->TexFormat == MESA_FORMAT_RGBA8888) {
+ return &opt_sample_rgba_2d;
+ }
+ else {
+ return &sample_nearest_2d;
+ }
+ }
+ case GL_TEXTURE_3D:
+ if (needLambda) {
+ return &sample_lambda_3d;
+ }
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
+ return &sample_linear_3d;
+ }
+ else {
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
+ return &sample_nearest_3d;
+ }
+ case GL_TEXTURE_CUBE_MAP:
+ if (needLambda) {
+ return &sample_lambda_cube;
+ }
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
+ return &sample_linear_cube;
+ }
+ else {
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
+ return &sample_nearest_cube;
+ }
+ case GL_TEXTURE_RECTANGLE_NV:
+ if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
+ return &sample_depth_texture;
+ }
+ else if (needLambda) {
+ return &sample_lambda_rect;
+ }
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
+ return &sample_linear_rect;
+ }
+ else {
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
+ return &sample_nearest_rect;
+ }
+ case GL_TEXTURE_1D_ARRAY_EXT:
+ if (needLambda) {
+ return &sample_lambda_1d_array;
+ }
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
+ return &sample_linear_1d_array;
+ }
+ else {
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
+ return &sample_nearest_1d_array;
+ }
+ case GL_TEXTURE_2D_ARRAY_EXT:
+ if (needLambda) {
+ return &sample_lambda_2d_array;
+ }
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
+ return &sample_linear_2d_array;
+ }
+ else {
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
+ return &sample_nearest_2d_array;
+ }
+ default:
+ _mesa_problem(ctx,
+ "invalid target in _swrast_choose_texture_sample_func");
+ return &null_sample_func;
+ }
+ }
+}
|