aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/mesa/swrast
diff options
context:
space:
mode:
Diffstat (limited to 'mesalib/src/mesa/swrast')
-rw-r--r--mesalib/src/mesa/swrast/s_bitmap.c446
-rw-r--r--mesalib/src/mesa/swrast/s_drawpix.c1506
-rw-r--r--mesalib/src/mesa/swrast/s_readpix.c1016
-rw-r--r--mesalib/src/mesa/swrast/s_texcombine.c1474
-rw-r--r--mesalib/src/mesa/swrast/s_texfilter.c6628
5 files changed, 5535 insertions, 5535 deletions
diff --git a/mesalib/src/mesa/swrast/s_bitmap.c b/mesalib/src/mesa/swrast/s_bitmap.c
index 18f1c1866..af65874fd 100644
--- a/mesalib/src/mesa/swrast/s_bitmap.c
+++ b/mesalib/src/mesa/swrast/s_bitmap.c
@@ -1,223 +1,223 @@
-/*
- * Mesa 3-D graphics library
- * Version: 7.1
- *
- * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-/**
- * \file swrast/s_bitmap.c
- * \brief glBitmap rendering.
- * \author Brian Paul
- */
-
-#include "main/glheader.h"
-#include "main/bufferobj.h"
-#include "main/condrender.h"
-#include "main/image.h"
-#include "main/macros.h"
-#include "main/pbo.h"
-
-#include "s_context.h"
-#include "s_span.h"
-
-
-
-/**
- * Render a bitmap.
- * Called via ctx->Driver.Bitmap()
- * All parameter error checking will have been done before this is called.
- */
-void
-_swrast_Bitmap( struct gl_context *ctx, GLint px, GLint py,
- GLsizei width, GLsizei height,
- const struct gl_pixelstore_attrib *unpack,
- const GLubyte *bitmap )
-{
- GLint row, col;
- GLuint count = 0;
- SWspan span;
-
- ASSERT(ctx->RenderMode == GL_RENDER);
-
- if (!_mesa_check_conditional_render(ctx))
- return; /* don't draw */
-
- bitmap = (const GLubyte *) _mesa_map_pbo_source(ctx, unpack, bitmap);
- if (!bitmap)
- return;
-
- swrast_render_start(ctx);
-
- if (SWRAST_CONTEXT(ctx)->NewState)
- _swrast_validate_derived( ctx );
-
- INIT_SPAN(span, GL_BITMAP);
- span.end = width;
- span.arrayMask = SPAN_XY;
- _swrast_span_default_attribs(ctx, &span);
-
- for (row = 0; row < height; row++) {
- const GLubyte *src = (const GLubyte *) _mesa_image_address2d(unpack,
- bitmap, width, height, GL_COLOR_INDEX, GL_BITMAP, row, 0);
-
- if (unpack->LsbFirst) {
- /* Lsb first */
- GLubyte mask = 1U << (unpack->SkipPixels & 0x7);
- for (col = 0; col < width; col++) {
- if (*src & mask) {
- span.array->x[count] = px + col;
- span.array->y[count] = py + row;
- count++;
- }
- if (mask == 128U) {
- src++;
- mask = 1U;
- }
- else {
- mask = mask << 1;
- }
- }
-
- /* get ready for next row */
- if (mask != 1)
- src++;
- }
- else {
- /* Msb first */
- GLubyte mask = 128U >> (unpack->SkipPixels & 0x7);
- for (col = 0; col < width; col++) {
- if (*src & mask) {
- span.array->x[count] = px + col;
- span.array->y[count] = py + row;
- count++;
- }
- if (mask == 1U) {
- src++;
- mask = 128U;
- }
- else {
- mask = mask >> 1;
- }
- }
-
- /* get ready for next row */
- if (mask != 128)
- src++;
- }
-
- if (count + width >= MAX_WIDTH || row + 1 == height) {
- /* flush the span */
- span.end = count;
- _swrast_write_rgba_span(ctx, &span);
- span.end = 0;
- count = 0;
- }
- }
-
- swrast_render_finish(ctx);
-
- _mesa_unmap_pbo_source(ctx, unpack);
-}
-
-
-#if 0
-/*
- * XXX this is another way to implement Bitmap. Use horizontal runs of
- * fragments, initializing the mask array to indicate which fragments to
- * draw or skip.
- */
-void
-_swrast_Bitmap( struct gl_context *ctx, GLint px, GLint py,
- GLsizei width, GLsizei height,
- const struct gl_pixelstore_attrib *unpack,
- const GLubyte *bitmap )
-{
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- GLint row, col;
- SWspan span;
-
- ASSERT(ctx->RenderMode == GL_RENDER);
- ASSERT(bitmap);
-
- swrast_render_start(ctx);
-
- if (SWRAST_CONTEXT(ctx)->NewState)
- _swrast_validate_derived( ctx );
-
- INIT_SPAN(span, GL_BITMAP);
- span.end = width;
- span.arrayMask = SPAN_MASK;
- _swrast_span_default_attribs(ctx, &span);
-
- /*span.arrayMask |= SPAN_MASK;*/ /* we'll init span.mask[] */
- span.x = px;
- span.y = py;
- /*span.end = width;*/
-
- for (row=0; row<height; row++, span.y++) {
- const GLubyte *src = (const GLubyte *) _mesa_image_address2d(unpack,
- bitmap, width, height, GL_COLOR_INDEX, GL_BITMAP, row, 0);
-
- if (unpack->LsbFirst) {
- /* Lsb first */
- GLubyte mask = 1U << (unpack->SkipPixels & 0x7);
- for (col=0; col<width; col++) {
- span.array->mask[col] = (*src & mask) ? GL_TRUE : GL_FALSE;
- if (mask == 128U) {
- src++;
- mask = 1U;
- }
- else {
- mask = mask << 1;
- }
- }
-
- _swrast_write_rgba_span(ctx, &span);
-
- /* get ready for next row */
- if (mask != 1)
- src++;
- }
- else {
- /* Msb first */
- GLubyte mask = 128U >> (unpack->SkipPixels & 0x7);
- for (col=0; col<width; col++) {
- span.array->mask[col] = (*src & mask) ? GL_TRUE : GL_FALSE;
- if (mask == 1U) {
- src++;
- mask = 128U;
- }
- else {
- mask = mask >> 1;
- }
- }
-
- _swrast_write_rgba_span(ctx, &span);
-
- /* get ready for next row */
- if (mask != 128)
- src++;
- }
- }
-
- swrast_render_finish(ctx);
-}
-#endif
+/*
+ * Mesa 3-D graphics library
+ * Version: 7.1
+ *
+ * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file swrast/s_bitmap.c
+ * \brief glBitmap rendering.
+ * \author Brian Paul
+ */
+
+#include "main/glheader.h"
+#include "main/bufferobj.h"
+#include "main/condrender.h"
+#include "main/image.h"
+#include "main/macros.h"
+#include "main/pbo.h"
+
+#include "s_context.h"
+#include "s_span.h"
+
+
+
+/**
+ * Render a bitmap.
+ * Called via ctx->Driver.Bitmap()
+ * All parameter error checking will have been done before this is called.
+ */
+void
+_swrast_Bitmap( struct gl_context *ctx, GLint px, GLint py,
+ GLsizei width, GLsizei height,
+ const struct gl_pixelstore_attrib *unpack,
+ const GLubyte *bitmap )
+{
+ GLint row, col;
+ GLuint count = 0;
+ SWspan span;
+
+ ASSERT(ctx->RenderMode == GL_RENDER);
+
+ if (!_mesa_check_conditional_render(ctx))
+ return; /* don't draw */
+
+ bitmap = (const GLubyte *) _mesa_map_pbo_source(ctx, unpack, bitmap);
+ if (!bitmap)
+ return;
+
+ swrast_render_start(ctx);
+
+ if (SWRAST_CONTEXT(ctx)->NewState)
+ _swrast_validate_derived( ctx );
+
+ INIT_SPAN(span, GL_BITMAP);
+ span.end = width;
+ span.arrayMask = SPAN_XY;
+ _swrast_span_default_attribs(ctx, &span);
+
+ for (row = 0; row < height; row++) {
+ const GLubyte *src = (const GLubyte *) _mesa_image_address2d(unpack,
+ bitmap, width, height, GL_COLOR_INDEX, GL_BITMAP, row, 0);
+
+ if (unpack->LsbFirst) {
+ /* Lsb first */
+ GLubyte mask = 1U << (unpack->SkipPixels & 0x7);
+ for (col = 0; col < width; col++) {
+ if (*src & mask) {
+ span.array->x[count] = px + col;
+ span.array->y[count] = py + row;
+ count++;
+ }
+ if (mask == 128U) {
+ src++;
+ mask = 1U;
+ }
+ else {
+ mask = mask << 1;
+ }
+ }
+
+ /* get ready for next row */
+ if (mask != 1)
+ src++;
+ }
+ else {
+ /* Msb first */
+ GLubyte mask = 128U >> (unpack->SkipPixels & 0x7);
+ for (col = 0; col < width; col++) {
+ if (*src & mask) {
+ span.array->x[count] = px + col;
+ span.array->y[count] = py + row;
+ count++;
+ }
+ if (mask == 1U) {
+ src++;
+ mask = 128U;
+ }
+ else {
+ mask = mask >> 1;
+ }
+ }
+
+ /* get ready for next row */
+ if (mask != 128)
+ src++;
+ }
+
+ if (count + width >= MAX_WIDTH || row + 1 == height) {
+ /* flush the span */
+ span.end = count;
+ _swrast_write_rgba_span(ctx, &span);
+ span.end = 0;
+ count = 0;
+ }
+ }
+
+ swrast_render_finish(ctx);
+
+ _mesa_unmap_pbo_source(ctx, unpack);
+}
+
+
+#if 0
+/*
+ * XXX this is another way to implement Bitmap. Use horizontal runs of
+ * fragments, initializing the mask array to indicate which fragments to
+ * draw or skip.
+ */
+void
+_swrast_Bitmap( struct gl_context *ctx, GLint px, GLint py,
+ GLsizei width, GLsizei height,
+ const struct gl_pixelstore_attrib *unpack,
+ const GLubyte *bitmap )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ GLint row, col;
+ SWspan span;
+
+ ASSERT(ctx->RenderMode == GL_RENDER);
+ ASSERT(bitmap);
+
+ swrast_render_start(ctx);
+
+ if (SWRAST_CONTEXT(ctx)->NewState)
+ _swrast_validate_derived( ctx );
+
+ INIT_SPAN(span, GL_BITMAP);
+ span.end = width;
+ span.arrayMask = SPAN_MASK;
+ _swrast_span_default_attribs(ctx, &span);
+
+ /*span.arrayMask |= SPAN_MASK;*/ /* we'll init span.mask[] */
+ span.x = px;
+ span.y = py;
+ /*span.end = width;*/
+
+ for (row=0; row<height; row++, span.y++) {
+ const GLubyte *src = (const GLubyte *) _mesa_image_address2d(unpack,
+ bitmap, width, height, GL_COLOR_INDEX, GL_BITMAP, row, 0);
+
+ if (unpack->LsbFirst) {
+ /* Lsb first */
+ GLubyte mask = 1U << (unpack->SkipPixels & 0x7);
+ for (col=0; col<width; col++) {
+ span.array->mask[col] = (*src & mask) ? GL_TRUE : GL_FALSE;
+ if (mask == 128U) {
+ src++;
+ mask = 1U;
+ }
+ else {
+ mask = mask << 1;
+ }
+ }
+
+ _swrast_write_rgba_span(ctx, &span);
+
+ /* get ready for next row */
+ if (mask != 1)
+ src++;
+ }
+ else {
+ /* Msb first */
+ GLubyte mask = 128U >> (unpack->SkipPixels & 0x7);
+ for (col=0; col<width; col++) {
+ span.array->mask[col] = (*src & mask) ? GL_TRUE : GL_FALSE;
+ if (mask == 1U) {
+ src++;
+ mask = 128U;
+ }
+ else {
+ mask = mask >> 1;
+ }
+ }
+
+ _swrast_write_rgba_span(ctx, &span);
+
+ /* get ready for next row */
+ if (mask != 128)
+ src++;
+ }
+ }
+
+ swrast_render_finish(ctx);
+}
+#endif
diff --git a/mesalib/src/mesa/swrast/s_drawpix.c b/mesalib/src/mesa/swrast/s_drawpix.c
index 11c63457f..71f998324 100644
--- a/mesalib/src/mesa/swrast/s_drawpix.c
+++ b/mesalib/src/mesa/swrast/s_drawpix.c
@@ -1,753 +1,753 @@
-/*
- * Mesa 3-D graphics library
- * Version: 7.1
- *
- * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-
-#include "main/glheader.h"
-#include "main/bufferobj.h"
-#include "main/condrender.h"
-#include "main/context.h"
-#include "main/image.h"
-#include "main/imports.h"
-#include "main/macros.h"
-#include "main/pack.h"
-#include "main/pbo.h"
-#include "main/pixeltransfer.h"
-#include "main/state.h"
-
-#include "s_context.h"
-#include "s_span.h"
-#include "s_stencil.h"
-#include "s_zoom.h"
-
-
-
-/**
- * Try to do a fast and simple RGB(a) glDrawPixels.
- * Return: GL_TRUE if success, GL_FALSE if slow path must be used instead
- */
-static GLboolean
-fast_draw_rgba_pixels(struct gl_context *ctx, GLint x, GLint y,
- GLsizei width, GLsizei height,
- GLenum format, GLenum type,
- const struct gl_pixelstore_attrib *userUnpack,
- const GLvoid *pixels)
-{
- const GLint imgX = x, imgY = y;
- struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
- GLenum rbType;
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- SWspan span;
- GLboolean simpleZoom;
- GLint yStep; /* +1 or -1 */
- struct gl_pixelstore_attrib unpack;
- GLint destX, destY, drawWidth, drawHeight; /* post clipping */
-
- if (!rb)
- return GL_TRUE; /* no-op */
-
- rbType = rb->DataType;
-
- if ((swrast->_RasterMask & ~CLIP_BIT) ||
- ctx->Texture._EnabledCoordUnits ||
- userUnpack->SwapBytes ||
- ctx->_ImageTransferState) {
- /* can't handle any of those conditions */
- return GL_FALSE;
- }
-
- INIT_SPAN(span, GL_BITMAP);
- span.arrayMask = SPAN_RGBA;
- span.arrayAttribs = FRAG_BIT_COL0;
- _swrast_span_default_attribs(ctx, &span);
-
- /* copy input params since clipping may change them */
- unpack = *userUnpack;
- destX = x;
- destY = y;
- drawWidth = width;
- drawHeight = height;
-
- /* check for simple zooming and clipping */
- if (ctx->Pixel.ZoomX == 1.0F &&
- (ctx->Pixel.ZoomY == 1.0F || ctx->Pixel.ZoomY == -1.0F)) {
- if (!_mesa_clip_drawpixels(ctx, &destX, &destY,
- &drawWidth, &drawHeight, &unpack)) {
- /* image was completely clipped: no-op, all done */
- return GL_TRUE;
- }
- simpleZoom = GL_TRUE;
- yStep = (GLint) ctx->Pixel.ZoomY;
- ASSERT(yStep == 1 || yStep == -1);
- }
- else {
- /* non-simple zooming */
- simpleZoom = GL_FALSE;
- yStep = 1;
- if (unpack.RowLength == 0)
- unpack.RowLength = width;
- }
-
- /*
- * Ready to draw!
- */
-
- if (format == GL_RGBA && type == rbType) {
- const GLubyte *src
- = (const GLubyte *) _mesa_image_address2d(&unpack, pixels, width,
- height, format, type, 0, 0);
- const GLint srcStride = _mesa_image_row_stride(&unpack, width,
- format, type);
- if (simpleZoom) {
- GLint row;
- for (row = 0; row < drawHeight; row++) {
- rb->PutRow(ctx, rb, drawWidth, destX, destY, src, NULL);
- src += srcStride;
- destY += yStep;
- }
- }
- else {
- /* with zooming */
- GLint row;
- for (row = 0; row < drawHeight; row++) {
- span.x = destX;
- span.y = destY + row;
- span.end = drawWidth;
- span.array->ChanType = rbType;
- _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span, src);
- src += srcStride;
- }
- span.array->ChanType = CHAN_TYPE;
- }
- return GL_TRUE;
- }
-
- if (format == GL_RGB && type == rbType) {
- const GLubyte *src
- = (const GLubyte *) _mesa_image_address2d(&unpack, pixels, width,
- height, format, type, 0, 0);
- const GLint srcStride = _mesa_image_row_stride(&unpack, width,
- format, type);
- if (simpleZoom) {
- GLint row;
- for (row = 0; row < drawHeight; row++) {
- rb->PutRowRGB(ctx, rb, drawWidth, destX, destY, src, NULL);
- src += srcStride;
- destY += yStep;
- }
- }
- else {
- /* with zooming */
- GLint row;
- for (row = 0; row < drawHeight; row++) {
- span.x = destX;
- span.y = destY;
- span.end = drawWidth;
- span.array->ChanType = rbType;
- _swrast_write_zoomed_rgb_span(ctx, imgX, imgY, &span, src);
- src += srcStride;
- destY++;
- }
- span.array->ChanType = CHAN_TYPE;
- }
- return GL_TRUE;
- }
-
- /* Remaining cases haven't been tested with alignment != 1 */
- if (userUnpack->Alignment != 1)
- return GL_FALSE;
-
- if (format == GL_LUMINANCE && type == CHAN_TYPE && rbType == CHAN_TYPE) {
- const GLchan *src = (const GLchan *) pixels
- + (unpack.SkipRows * unpack.RowLength + unpack.SkipPixels);
- if (simpleZoom) {
- /* no zooming */
- GLint row;
- ASSERT(drawWidth <= MAX_WIDTH);
- for (row = 0; row < drawHeight; row++) {
- GLchan rgb[MAX_WIDTH][3];
- GLint i;
- for (i = 0;i<drawWidth;i++) {
- rgb[i][0] = src[i];
- rgb[i][1] = src[i];
- rgb[i][2] = src[i];
- }
- rb->PutRowRGB(ctx, rb, drawWidth, destX, destY, rgb, NULL);
- src += unpack.RowLength;
- destY += yStep;
- }
- }
- else {
- /* with zooming */
- GLint row;
- ASSERT(drawWidth <= MAX_WIDTH);
- for (row = 0; row < drawHeight; row++) {
- GLchan rgb[MAX_WIDTH][3];
- GLint i;
- for (i = 0;i<drawWidth;i++) {
- rgb[i][0] = src[i];
- rgb[i][1] = src[i];
- rgb[i][2] = src[i];
- }
- span.x = destX;
- span.y = destY;
- span.end = drawWidth;
- _swrast_write_zoomed_rgb_span(ctx, imgX, imgY, &span, rgb);
- src += unpack.RowLength;
- destY++;
- }
- }
- return GL_TRUE;
- }
-
- if (format == GL_LUMINANCE_ALPHA && type == CHAN_TYPE && rbType == CHAN_TYPE) {
- const GLchan *src = (const GLchan *) pixels
- + (unpack.SkipRows * unpack.RowLength + unpack.SkipPixels)*2;
- if (simpleZoom) {
- GLint row;
- ASSERT(drawWidth <= MAX_WIDTH);
- for (row = 0; row < drawHeight; row++) {
- GLint i;
- const GLchan *ptr = src;
- for (i = 0;i<drawWidth;i++) {
- span.array->rgba[i][0] = *ptr;
- span.array->rgba[i][1] = *ptr;
- span.array->rgba[i][2] = *ptr++;
- span.array->rgba[i][3] = *ptr++;
- }
- rb->PutRow(ctx, rb, drawWidth, destX, destY,
- span.array->rgba, NULL);
- src += unpack.RowLength*2;
- destY += yStep;
- }
- }
- else {
- /* with zooming */
- GLint row;
- ASSERT(drawWidth <= MAX_WIDTH);
- for (row = 0; row < drawHeight; row++) {
- const GLchan *ptr = src;
- GLint i;
- for (i = 0;i<drawWidth;i++) {
- span.array->rgba[i][0] = *ptr;
- span.array->rgba[i][1] = *ptr;
- span.array->rgba[i][2] = *ptr++;
- span.array->rgba[i][3] = *ptr++;
- }
- span.x = destX;
- span.y = destY;
- span.end = drawWidth;
- _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span,
- span.array->rgba);
- src += unpack.RowLength*2;
- destY++;
- }
- }
- return GL_TRUE;
- }
-
- if (format == GL_COLOR_INDEX && type == GL_UNSIGNED_BYTE) {
- const GLubyte *src = (const GLubyte *) pixels
- + unpack.SkipRows * unpack.RowLength + unpack.SkipPixels;
- if (rbType == GL_UNSIGNED_BYTE) {
- /* convert ubyte/CI data to ubyte/RGBA */
- if (simpleZoom) {
- GLint row;
- for (row = 0; row < drawHeight; row++) {
- ASSERT(drawWidth <= MAX_WIDTH);
- _mesa_map_ci8_to_rgba8(ctx, drawWidth, src,
- span.array->rgba8);
- rb->PutRow(ctx, rb, drawWidth, destX, destY,
- span.array->rgba8, NULL);
- src += unpack.RowLength;
- destY += yStep;
- }
- }
- else {
- /* ubyte/CI to ubyte/RGBA with zooming */
- GLint row;
- for (row = 0; row < drawHeight; row++) {
- ASSERT(drawWidth <= MAX_WIDTH);
- _mesa_map_ci8_to_rgba8(ctx, drawWidth, src,
- span.array->rgba8);
- span.x = destX;
- span.y = destY;
- span.end = drawWidth;
- _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span,
- span.array->rgba8);
- src += unpack.RowLength;
- destY++;
- }
- }
- return GL_TRUE;
- }
- }
-
- /* can't handle this pixel format and/or data type */
- return GL_FALSE;
-}
-
-
-
-/*
- * Draw stencil image.
- */
-static void
-draw_stencil_pixels( struct gl_context *ctx, GLint x, GLint y,
- GLsizei width, GLsizei height,
- GLenum type,
- const struct gl_pixelstore_attrib *unpack,
- const GLvoid *pixels )
-{
- const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0;
- GLint skipPixels;
-
- /* if width > MAX_WIDTH, have to process image in chunks */
- skipPixels = 0;
- while (skipPixels < width) {
- const GLint spanX = x + skipPixels;
- const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH);
- GLint row;
- for (row = 0; row < height; row++) {
- const GLint spanY = y + row;
- GLstencil values[MAX_WIDTH];
- GLenum destType = (sizeof(GLstencil) == sizeof(GLubyte))
- ? GL_UNSIGNED_BYTE : GL_UNSIGNED_SHORT;
- const GLvoid *source = _mesa_image_address2d(unpack, pixels,
- width, height,
- GL_COLOR_INDEX, type,
- row, skipPixels);
- _mesa_unpack_stencil_span(ctx, spanWidth, destType, values,
- type, source, unpack,
- ctx->_ImageTransferState);
- if (zoom) {
- _swrast_write_zoomed_stencil_span(ctx, x, y, spanWidth,
- spanX, spanY, values);
- }
- else {
- _swrast_write_stencil_span(ctx, spanWidth, spanX, spanY, values);
- }
- }
- skipPixels += spanWidth;
- }
-}
-
-
-/*
- * Draw depth image.
- */
-static void
-draw_depth_pixels( struct gl_context *ctx, GLint x, GLint y,
- GLsizei width, GLsizei height,
- GLenum type,
- const struct gl_pixelstore_attrib *unpack,
- const GLvoid *pixels )
-{
- const GLboolean scaleOrBias
- = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0;
- const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0;
- SWspan span;
-
- INIT_SPAN(span, GL_BITMAP);
- span.arrayMask = SPAN_Z;
- _swrast_span_default_attribs(ctx, &span);
-
- if (type == GL_UNSIGNED_SHORT
- && ctx->DrawBuffer->Visual.depthBits == 16
- && !scaleOrBias
- && !zoom
- && width <= MAX_WIDTH
- && !unpack->SwapBytes) {
- /* Special case: directly write 16-bit depth values */
- GLint row;
- for (row = 0; row < height; row++) {
- const GLushort *zSrc = (const GLushort *)
- _mesa_image_address2d(unpack, pixels, width, height,
- GL_DEPTH_COMPONENT, type, row, 0);
- GLint i;
- for (i = 0; i < width; i++)
- span.array->z[i] = zSrc[i];
- span.x = x;
- span.y = y + row;
- span.end = width;
- _swrast_write_rgba_span(ctx, &span);
- }
- }
- else if (type == GL_UNSIGNED_INT
- && !scaleOrBias
- && !zoom
- && width <= MAX_WIDTH
- && !unpack->SwapBytes) {
- /* Special case: shift 32-bit values down to Visual.depthBits */
- const GLint shift = 32 - ctx->DrawBuffer->Visual.depthBits;
- GLint row;
- for (row = 0; row < height; row++) {
- const GLuint *zSrc = (const GLuint *)
- _mesa_image_address2d(unpack, pixels, width, height,
- GL_DEPTH_COMPONENT, type, row, 0);
- if (shift == 0) {
- memcpy(span.array->z, zSrc, width * sizeof(GLuint));
- }
- else {
- GLint col;
- for (col = 0; col < width; col++)
- span.array->z[col] = zSrc[col] >> shift;
- }
- span.x = x;
- span.y = y + row;
- span.end = width;
- _swrast_write_rgba_span(ctx, &span);
- }
- }
- else {
- /* General case */
- const GLuint depthMax = ctx->DrawBuffer->_DepthMax;
- GLint skipPixels = 0;
-
- /* in case width > MAX_WIDTH do the copy in chunks */
- while (skipPixels < width) {
- const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH);
- GLint row;
- ASSERT(span.end <= MAX_WIDTH);
- for (row = 0; row < height; row++) {
- const GLvoid *zSrc = _mesa_image_address2d(unpack,
- pixels, width, height,
- GL_DEPTH_COMPONENT, type,
- row, skipPixels);
-
- /* Set these for each row since the _swrast_write_* function may
- * change them while clipping.
- */
- span.x = x + skipPixels;
- span.y = y + row;
- span.end = spanWidth;
-
- _mesa_unpack_depth_span(ctx, spanWidth,
- GL_UNSIGNED_INT, span.array->z, depthMax,
- type, zSrc, unpack);
- if (zoom) {
- _swrast_write_zoomed_depth_span(ctx, x, y, &span);
- }
- else {
- _swrast_write_rgba_span(ctx, &span);
- }
- }
- skipPixels += spanWidth;
- }
- }
-}
-
-
-
-/**
- * Draw RGBA image.
- */
-static void
-draw_rgba_pixels( struct gl_context *ctx, GLint x, GLint y,
- GLsizei width, GLsizei height,
- GLenum format, GLenum type,
- const struct gl_pixelstore_attrib *unpack,
- const GLvoid *pixels )
-{
- const GLint imgX = x, imgY = y;
- const GLboolean zoom = ctx->Pixel.ZoomX!=1.0 || ctx->Pixel.ZoomY!=1.0;
- GLfloat *convImage = NULL;
- GLbitfield transferOps = ctx->_ImageTransferState;
- SWspan span;
-
- /* Try an optimized glDrawPixels first */
- if (fast_draw_rgba_pixels(ctx, x, y, width, height, format, type,
- unpack, pixels)) {
- return;
- }
-
- INIT_SPAN(span, GL_BITMAP);
- _swrast_span_default_attribs(ctx, &span);
- span.arrayMask = SPAN_RGBA;
- span.arrayAttribs = FRAG_BIT_COL0; /* we're fill in COL0 attrib values */
-
- if (ctx->DrawBuffer->_NumColorDrawBuffers > 0 &&
- ctx->DrawBuffer->_ColorDrawBuffers[0]->DataType != GL_FLOAT &&
- ctx->Color.ClampFragmentColor != GL_FALSE) {
- /* need to clamp colors before applying fragment ops */
- transferOps |= IMAGE_CLAMP_BIT;
- }
-
- /*
- * General solution
- */
- {
- const GLbitfield interpMask = span.interpMask;
- const GLbitfield arrayMask = span.arrayMask;
- const GLint srcStride
- = _mesa_image_row_stride(unpack, width, format, type);
- GLint skipPixels = 0;
- /* use span array for temp color storage */
- GLfloat *rgba = (GLfloat *) span.array->attribs[FRAG_ATTRIB_COL0];
-
- /* if the span is wider than MAX_WIDTH we have to do it in chunks */
- while (skipPixels < width) {
- const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH);
- const GLubyte *source
- = (const GLubyte *) _mesa_image_address2d(unpack, pixels,
- width, height, format,
- type, 0, skipPixels);
- GLint row;
-
- for (row = 0; row < height; row++) {
- /* get image row as float/RGBA */
- _mesa_unpack_color_span_float(ctx, spanWidth, GL_RGBA, rgba,
- format, type, source, unpack,
- transferOps);
- /* Set these for each row since the _swrast_write_* functions
- * may change them while clipping/rendering.
- */
- span.array->ChanType = GL_FLOAT;
- span.x = x + skipPixels;
- span.y = y + row;
- span.end = spanWidth;
- span.arrayMask = arrayMask;
- span.interpMask = interpMask;
- if (zoom) {
- _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span, rgba);
- }
- else {
- _swrast_write_rgba_span(ctx, &span);
- }
-
- source += srcStride;
- } /* for row */
-
- skipPixels += spanWidth;
- } /* while skipPixels < width */
-
- /* XXX this is ugly/temporary, to undo above change */
- span.array->ChanType = CHAN_TYPE;
- }
-
- if (convImage) {
- free(convImage);
- }
-}
-
-
-/**
- * This is a bit different from drawing GL_DEPTH_COMPONENT pixels.
- * The only per-pixel operations that apply are depth scale/bias,
- * stencil offset/shift, GL_DEPTH_WRITEMASK and GL_STENCIL_WRITEMASK,
- * and pixel zoom.
- * Also, only the depth buffer and stencil buffers are touched, not the
- * color buffer(s).
- */
-static void
-draw_depth_stencil_pixels(struct gl_context *ctx, GLint x, GLint y,
- GLsizei width, GLsizei height, GLenum type,
- const struct gl_pixelstore_attrib *unpack,
- const GLvoid *pixels)
-{
- const GLint imgX = x, imgY = y;
- const GLboolean scaleOrBias
- = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0;
- const GLuint depthMax = ctx->DrawBuffer->_DepthMax;
- const GLuint stencilMask = ctx->Stencil.WriteMask[0];
- const GLuint stencilType = (STENCIL_BITS == 8) ?
- GL_UNSIGNED_BYTE : GL_UNSIGNED_SHORT;
- const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0;
- struct gl_renderbuffer *depthRb, *stencilRb;
- struct gl_pixelstore_attrib clippedUnpack = *unpack;
-
- if (!zoom) {
- if (!_mesa_clip_drawpixels(ctx, &x, &y, &width, &height,
- &clippedUnpack)) {
- /* totally clipped */
- return;
- }
- }
-
- depthRb = ctx->ReadBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
- stencilRb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
- ASSERT(depthRb);
- ASSERT(stencilRb);
-
- if (depthRb->_BaseFormat == GL_DEPTH_STENCIL_EXT &&
- stencilRb->_BaseFormat == GL_DEPTH_STENCIL_EXT &&
- depthRb == stencilRb &&
- !scaleOrBias &&
- !zoom &&
- ctx->Depth.Mask &&
- (stencilMask & 0xff) == 0xff) {
- /* This is the ideal case.
- * Drawing GL_DEPTH_STENCIL pixels into a combined depth/stencil buffer.
- * Plus, no pixel transfer ops, zooming, or masking needed.
- */
- GLint i;
- for (i = 0; i < height; i++) {
- const GLuint *src = (const GLuint *)
- _mesa_image_address2d(&clippedUnpack, pixels, width, height,
- GL_DEPTH_STENCIL_EXT, type, i, 0);
- depthRb->PutRow(ctx, depthRb, width, x, y + i, src, NULL);
- }
- }
- else {
- /* sub-optimal cases:
- * Separate depth/stencil buffers, or pixel transfer ops required.
- */
- /* XXX need to handle very wide images (skippixels) */
- GLint i;
-
- depthRb = ctx->DrawBuffer->_DepthBuffer;
- stencilRb = ctx->DrawBuffer->_StencilBuffer;
-
- for (i = 0; i < height; i++) {
- const GLuint *depthStencilSrc = (const GLuint *)
- _mesa_image_address2d(&clippedUnpack, pixels, width, height,
- GL_DEPTH_STENCIL_EXT, type, i, 0);
-
- if (ctx->Depth.Mask) {
- if (!scaleOrBias && ctx->DrawBuffer->Visual.depthBits == 24) {
- /* fast path 24-bit zbuffer */
- GLuint zValues[MAX_WIDTH];
- GLint j;
- ASSERT(depthRb->DataType == GL_UNSIGNED_INT);
- for (j = 0; j < width; j++) {
- zValues[j] = depthStencilSrc[j] >> 8;
- }
- if (zoom)
- _swrast_write_zoomed_z_span(ctx, imgX, imgY, width,
- x, y + i, zValues);
- else
- depthRb->PutRow(ctx, depthRb, width, x, y + i, zValues,NULL);
- }
- else if (!scaleOrBias && ctx->DrawBuffer->Visual.depthBits == 16) {
- /* fast path 16-bit zbuffer */
- GLushort zValues[MAX_WIDTH];
- GLint j;
- ASSERT(depthRb->DataType == GL_UNSIGNED_SHORT);
- for (j = 0; j < width; j++) {
- zValues[j] = depthStencilSrc[j] >> 16;
- }
- if (zoom)
- _swrast_write_zoomed_z_span(ctx, imgX, imgY, width,
- x, y + i, zValues);
- else
- depthRb->PutRow(ctx, depthRb, width, x, y + i, zValues,NULL);
- }
- else {
- /* general case */
- GLuint zValues[MAX_WIDTH]; /* 16 or 32-bit Z value storage */
- _mesa_unpack_depth_span(ctx, width,
- depthRb->DataType, zValues, depthMax,
- type, depthStencilSrc, &clippedUnpack);
- if (zoom) {
- _swrast_write_zoomed_z_span(ctx, imgX, imgY, width, x,
- y + i, zValues);
- }
- else {
- depthRb->PutRow(ctx, depthRb, width, x, y + i, zValues,NULL);
- }
- }
- }
-
- if (stencilMask != 0x0) {
- GLstencil stencilValues[MAX_WIDTH];
- /* get stencil values, with shift/offset/mapping */
- _mesa_unpack_stencil_span(ctx, width, stencilType, stencilValues,
- type, depthStencilSrc, &clippedUnpack,
- ctx->_ImageTransferState);
- if (zoom)
- _swrast_write_zoomed_stencil_span(ctx, imgX, imgY, width,
- x, y + i, stencilValues);
- else
- _swrast_write_stencil_span(ctx, width, x, y + i, stencilValues);
- }
- }
- }
-}
-
-
-/**
- * Execute software-based glDrawPixels.
- * By time we get here, all error checking will have been done.
- */
-void
-_swrast_DrawPixels( struct gl_context *ctx,
- GLint x, GLint y,
- GLsizei width, GLsizei height,
- GLenum format, GLenum type,
- const struct gl_pixelstore_attrib *unpack,
- const GLvoid *pixels )
-{
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- GLboolean save_vp_override = ctx->VertexProgram._Overriden;
-
- if (!_mesa_check_conditional_render(ctx))
- return; /* don't draw */
-
- /* We are creating fragments directly, without going through vertex
- * programs.
- *
- * This override flag tells the fragment processing code that its input
- * comes from a non-standard source, and it may therefore not rely on
- * optimizations that assume e.g. constant color if there is no color
- * vertex array.
- */
- _mesa_set_vp_override(ctx, GL_TRUE);
-
- swrast_render_start(ctx);
-
- if (ctx->NewState)
- _mesa_update_state(ctx);
-
- if (swrast->NewState)
- _swrast_validate_derived( ctx );
-
- pixels = _mesa_map_pbo_source(ctx, unpack, pixels);
- if (!pixels) {
- swrast_render_finish(ctx);
- _mesa_set_vp_override(ctx, save_vp_override);
- return;
- }
-
- /*
- * By time we get here, all error checking should have been done.
- */
- switch (format) {
- case GL_STENCIL_INDEX:
- draw_stencil_pixels( ctx, x, y, width, height, type, unpack, pixels );
- break;
- case GL_DEPTH_COMPONENT:
- draw_depth_pixels( ctx, x, y, width, height, type, unpack, pixels );
- break;
- case GL_DEPTH_STENCIL_EXT:
- draw_depth_stencil_pixels(ctx, x, y, width, height, type, unpack, pixels);
- break;
- default:
- /* all other formats should be color formats */
- draw_rgba_pixels(ctx, x, y, width, height, format, type, unpack, pixels);
- }
-
- swrast_render_finish(ctx);
- _mesa_set_vp_override(ctx, save_vp_override);
-
- _mesa_unmap_pbo_source(ctx, unpack);
-}
+/*
+ * Mesa 3-D graphics library
+ * Version: 7.1
+ *
+ * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+#include "main/glheader.h"
+#include "main/bufferobj.h"
+#include "main/condrender.h"
+#include "main/context.h"
+#include "main/image.h"
+#include "main/imports.h"
+#include "main/macros.h"
+#include "main/pack.h"
+#include "main/pbo.h"
+#include "main/pixeltransfer.h"
+#include "main/state.h"
+
+#include "s_context.h"
+#include "s_span.h"
+#include "s_stencil.h"
+#include "s_zoom.h"
+
+
+
+/**
+ * Try to do a fast and simple RGB(a) glDrawPixels.
+ * Return: GL_TRUE if success, GL_FALSE if slow path must be used instead
+ */
+static GLboolean
+fast_draw_rgba_pixels(struct gl_context *ctx, GLint x, GLint y,
+ GLsizei width, GLsizei height,
+ GLenum format, GLenum type,
+ const struct gl_pixelstore_attrib *userUnpack,
+ const GLvoid *pixels)
+{
+ const GLint imgX = x, imgY = y;
+ struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
+ GLenum rbType;
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ SWspan span;
+ GLboolean simpleZoom;
+ GLint yStep; /* +1 or -1 */
+ struct gl_pixelstore_attrib unpack;
+ GLint destX, destY, drawWidth, drawHeight; /* post clipping */
+
+ if (!rb)
+ return GL_TRUE; /* no-op */
+
+ rbType = rb->DataType;
+
+ if ((swrast->_RasterMask & ~CLIP_BIT) ||
+ ctx->Texture._EnabledCoordUnits ||
+ userUnpack->SwapBytes ||
+ ctx->_ImageTransferState) {
+ /* can't handle any of those conditions */
+ return GL_FALSE;
+ }
+
+ INIT_SPAN(span, GL_BITMAP);
+ span.arrayMask = SPAN_RGBA;
+ span.arrayAttribs = FRAG_BIT_COL0;
+ _swrast_span_default_attribs(ctx, &span);
+
+ /* copy input params since clipping may change them */
+ unpack = *userUnpack;
+ destX = x;
+ destY = y;
+ drawWidth = width;
+ drawHeight = height;
+
+ /* check for simple zooming and clipping */
+ if (ctx->Pixel.ZoomX == 1.0F &&
+ (ctx->Pixel.ZoomY == 1.0F || ctx->Pixel.ZoomY == -1.0F)) {
+ if (!_mesa_clip_drawpixels(ctx, &destX, &destY,
+ &drawWidth, &drawHeight, &unpack)) {
+ /* image was completely clipped: no-op, all done */
+ return GL_TRUE;
+ }
+ simpleZoom = GL_TRUE;
+ yStep = (GLint) ctx->Pixel.ZoomY;
+ ASSERT(yStep == 1 || yStep == -1);
+ }
+ else {
+ /* non-simple zooming */
+ simpleZoom = GL_FALSE;
+ yStep = 1;
+ if (unpack.RowLength == 0)
+ unpack.RowLength = width;
+ }
+
+ /*
+ * Ready to draw!
+ */
+
+ if (format == GL_RGBA && type == rbType) {
+ const GLubyte *src
+ = (const GLubyte *) _mesa_image_address2d(&unpack, pixels, width,
+ height, format, type, 0, 0);
+ const GLint srcStride = _mesa_image_row_stride(&unpack, width,
+ format, type);
+ if (simpleZoom) {
+ GLint row;
+ for (row = 0; row < drawHeight; row++) {
+ rb->PutRow(ctx, rb, drawWidth, destX, destY, src, NULL);
+ src += srcStride;
+ destY += yStep;
+ }
+ }
+ else {
+ /* with zooming */
+ GLint row;
+ for (row = 0; row < drawHeight; row++) {
+ span.x = destX;
+ span.y = destY + row;
+ span.end = drawWidth;
+ span.array->ChanType = rbType;
+ _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span, src);
+ src += srcStride;
+ }
+ span.array->ChanType = CHAN_TYPE;
+ }
+ return GL_TRUE;
+ }
+
+ if (format == GL_RGB && type == rbType) {
+ const GLubyte *src
+ = (const GLubyte *) _mesa_image_address2d(&unpack, pixels, width,
+ height, format, type, 0, 0);
+ const GLint srcStride = _mesa_image_row_stride(&unpack, width,
+ format, type);
+ if (simpleZoom) {
+ GLint row;
+ for (row = 0; row < drawHeight; row++) {
+ rb->PutRowRGB(ctx, rb, drawWidth, destX, destY, src, NULL);
+ src += srcStride;
+ destY += yStep;
+ }
+ }
+ else {
+ /* with zooming */
+ GLint row;
+ for (row = 0; row < drawHeight; row++) {
+ span.x = destX;
+ span.y = destY;
+ span.end = drawWidth;
+ span.array->ChanType = rbType;
+ _swrast_write_zoomed_rgb_span(ctx, imgX, imgY, &span, src);
+ src += srcStride;
+ destY++;
+ }
+ span.array->ChanType = CHAN_TYPE;
+ }
+ return GL_TRUE;
+ }
+
+ /* Remaining cases haven't been tested with alignment != 1 */
+ if (userUnpack->Alignment != 1)
+ return GL_FALSE;
+
+ if (format == GL_LUMINANCE && type == CHAN_TYPE && rbType == CHAN_TYPE) {
+ const GLchan *src = (const GLchan *) pixels
+ + (unpack.SkipRows * unpack.RowLength + unpack.SkipPixels);
+ if (simpleZoom) {
+ /* no zooming */
+ GLint row;
+ ASSERT(drawWidth <= MAX_WIDTH);
+ for (row = 0; row < drawHeight; row++) {
+ GLchan rgb[MAX_WIDTH][3];
+ GLint i;
+ for (i = 0;i<drawWidth;i++) {
+ rgb[i][0] = src[i];
+ rgb[i][1] = src[i];
+ rgb[i][2] = src[i];
+ }
+ rb->PutRowRGB(ctx, rb, drawWidth, destX, destY, rgb, NULL);
+ src += unpack.RowLength;
+ destY += yStep;
+ }
+ }
+ else {
+ /* with zooming */
+ GLint row;
+ ASSERT(drawWidth <= MAX_WIDTH);
+ for (row = 0; row < drawHeight; row++) {
+ GLchan rgb[MAX_WIDTH][3];
+ GLint i;
+ for (i = 0;i<drawWidth;i++) {
+ rgb[i][0] = src[i];
+ rgb[i][1] = src[i];
+ rgb[i][2] = src[i];
+ }
+ span.x = destX;
+ span.y = destY;
+ span.end = drawWidth;
+ _swrast_write_zoomed_rgb_span(ctx, imgX, imgY, &span, rgb);
+ src += unpack.RowLength;
+ destY++;
+ }
+ }
+ return GL_TRUE;
+ }
+
+ if (format == GL_LUMINANCE_ALPHA && type == CHAN_TYPE && rbType == CHAN_TYPE) {
+ const GLchan *src = (const GLchan *) pixels
+ + (unpack.SkipRows * unpack.RowLength + unpack.SkipPixels)*2;
+ if (simpleZoom) {
+ GLint row;
+ ASSERT(drawWidth <= MAX_WIDTH);
+ for (row = 0; row < drawHeight; row++) {
+ GLint i;
+ const GLchan *ptr = src;
+ for (i = 0;i<drawWidth;i++) {
+ span.array->rgba[i][0] = *ptr;
+ span.array->rgba[i][1] = *ptr;
+ span.array->rgba[i][2] = *ptr++;
+ span.array->rgba[i][3] = *ptr++;
+ }
+ rb->PutRow(ctx, rb, drawWidth, destX, destY,
+ span.array->rgba, NULL);
+ src += unpack.RowLength*2;
+ destY += yStep;
+ }
+ }
+ else {
+ /* with zooming */
+ GLint row;
+ ASSERT(drawWidth <= MAX_WIDTH);
+ for (row = 0; row < drawHeight; row++) {
+ const GLchan *ptr = src;
+ GLint i;
+ for (i = 0;i<drawWidth;i++) {
+ span.array->rgba[i][0] = *ptr;
+ span.array->rgba[i][1] = *ptr;
+ span.array->rgba[i][2] = *ptr++;
+ span.array->rgba[i][3] = *ptr++;
+ }
+ span.x = destX;
+ span.y = destY;
+ span.end = drawWidth;
+ _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span,
+ span.array->rgba);
+ src += unpack.RowLength*2;
+ destY++;
+ }
+ }
+ return GL_TRUE;
+ }
+
+ if (format == GL_COLOR_INDEX && type == GL_UNSIGNED_BYTE) {
+ const GLubyte *src = (const GLubyte *) pixels
+ + unpack.SkipRows * unpack.RowLength + unpack.SkipPixels;
+ if (rbType == GL_UNSIGNED_BYTE) {
+ /* convert ubyte/CI data to ubyte/RGBA */
+ if (simpleZoom) {
+ GLint row;
+ for (row = 0; row < drawHeight; row++) {
+ ASSERT(drawWidth <= MAX_WIDTH);
+ _mesa_map_ci8_to_rgba8(ctx, drawWidth, src,
+ span.array->rgba8);
+ rb->PutRow(ctx, rb, drawWidth, destX, destY,
+ span.array->rgba8, NULL);
+ src += unpack.RowLength;
+ destY += yStep;
+ }
+ }
+ else {
+ /* ubyte/CI to ubyte/RGBA with zooming */
+ GLint row;
+ for (row = 0; row < drawHeight; row++) {
+ ASSERT(drawWidth <= MAX_WIDTH);
+ _mesa_map_ci8_to_rgba8(ctx, drawWidth, src,
+ span.array->rgba8);
+ span.x = destX;
+ span.y = destY;
+ span.end = drawWidth;
+ _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span,
+ span.array->rgba8);
+ src += unpack.RowLength;
+ destY++;
+ }
+ }
+ return GL_TRUE;
+ }
+ }
+
+ /* can't handle this pixel format and/or data type */
+ return GL_FALSE;
+}
+
+
+
+/*
+ * Draw stencil image.
+ */
+static void
+draw_stencil_pixels( struct gl_context *ctx, GLint x, GLint y,
+ GLsizei width, GLsizei height,
+ GLenum type,
+ const struct gl_pixelstore_attrib *unpack,
+ const GLvoid *pixels )
+{
+ const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0;
+ GLint skipPixels;
+
+ /* if width > MAX_WIDTH, have to process image in chunks */
+ skipPixels = 0;
+ while (skipPixels < width) {
+ const GLint spanX = x + skipPixels;
+ const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH);
+ GLint row;
+ for (row = 0; row < height; row++) {
+ const GLint spanY = y + row;
+ GLstencil values[MAX_WIDTH];
+ GLenum destType = (sizeof(GLstencil) == sizeof(GLubyte))
+ ? GL_UNSIGNED_BYTE : GL_UNSIGNED_SHORT;
+ const GLvoid *source = _mesa_image_address2d(unpack, pixels,
+ width, height,
+ GL_COLOR_INDEX, type,
+ row, skipPixels);
+ _mesa_unpack_stencil_span(ctx, spanWidth, destType, values,
+ type, source, unpack,
+ ctx->_ImageTransferState);
+ if (zoom) {
+ _swrast_write_zoomed_stencil_span(ctx, x, y, spanWidth,
+ spanX, spanY, values);
+ }
+ else {
+ _swrast_write_stencil_span(ctx, spanWidth, spanX, spanY, values);
+ }
+ }
+ skipPixels += spanWidth;
+ }
+}
+
+
+/*
+ * Draw depth image.
+ */
+static void
+draw_depth_pixels( struct gl_context *ctx, GLint x, GLint y,
+ GLsizei width, GLsizei height,
+ GLenum type,
+ const struct gl_pixelstore_attrib *unpack,
+ const GLvoid *pixels )
+{
+ const GLboolean scaleOrBias
+ = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0;
+ const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0;
+ SWspan span;
+
+ INIT_SPAN(span, GL_BITMAP);
+ span.arrayMask = SPAN_Z;
+ _swrast_span_default_attribs(ctx, &span);
+
+ if (type == GL_UNSIGNED_SHORT
+ && ctx->DrawBuffer->Visual.depthBits == 16
+ && !scaleOrBias
+ && !zoom
+ && width <= MAX_WIDTH
+ && !unpack->SwapBytes) {
+ /* Special case: directly write 16-bit depth values */
+ GLint row;
+ for (row = 0; row < height; row++) {
+ const GLushort *zSrc = (const GLushort *)
+ _mesa_image_address2d(unpack, pixels, width, height,
+ GL_DEPTH_COMPONENT, type, row, 0);
+ GLint i;
+ for (i = 0; i < width; i++)
+ span.array->z[i] = zSrc[i];
+ span.x = x;
+ span.y = y + row;
+ span.end = width;
+ _swrast_write_rgba_span(ctx, &span);
+ }
+ }
+ else if (type == GL_UNSIGNED_INT
+ && !scaleOrBias
+ && !zoom
+ && width <= MAX_WIDTH
+ && !unpack->SwapBytes) {
+ /* Special case: shift 32-bit values down to Visual.depthBits */
+ const GLint shift = 32 - ctx->DrawBuffer->Visual.depthBits;
+ GLint row;
+ for (row = 0; row < height; row++) {
+ const GLuint *zSrc = (const GLuint *)
+ _mesa_image_address2d(unpack, pixels, width, height,
+ GL_DEPTH_COMPONENT, type, row, 0);
+ if (shift == 0) {
+ memcpy(span.array->z, zSrc, width * sizeof(GLuint));
+ }
+ else {
+ GLint col;
+ for (col = 0; col < width; col++)
+ span.array->z[col] = zSrc[col] >> shift;
+ }
+ span.x = x;
+ span.y = y + row;
+ span.end = width;
+ _swrast_write_rgba_span(ctx, &span);
+ }
+ }
+ else {
+ /* General case */
+ const GLuint depthMax = ctx->DrawBuffer->_DepthMax;
+ GLint skipPixels = 0;
+
+ /* in case width > MAX_WIDTH do the copy in chunks */
+ while (skipPixels < width) {
+ const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH);
+ GLint row;
+ ASSERT(span.end <= MAX_WIDTH);
+ for (row = 0; row < height; row++) {
+ const GLvoid *zSrc = _mesa_image_address2d(unpack,
+ pixels, width, height,
+ GL_DEPTH_COMPONENT, type,
+ row, skipPixels);
+
+ /* Set these for each row since the _swrast_write_* function may
+ * change them while clipping.
+ */
+ span.x = x + skipPixels;
+ span.y = y + row;
+ span.end = spanWidth;
+
+ _mesa_unpack_depth_span(ctx, spanWidth,
+ GL_UNSIGNED_INT, span.array->z, depthMax,
+ type, zSrc, unpack);
+ if (zoom) {
+ _swrast_write_zoomed_depth_span(ctx, x, y, &span);
+ }
+ else {
+ _swrast_write_rgba_span(ctx, &span);
+ }
+ }
+ skipPixels += spanWidth;
+ }
+ }
+}
+
+
+
+/**
+ * Draw RGBA image.
+ */
+static void
+draw_rgba_pixels( struct gl_context *ctx, GLint x, GLint y,
+ GLsizei width, GLsizei height,
+ GLenum format, GLenum type,
+ const struct gl_pixelstore_attrib *unpack,
+ const GLvoid *pixels )
+{
+ const GLint imgX = x, imgY = y;
+ const GLboolean zoom = ctx->Pixel.ZoomX!=1.0 || ctx->Pixel.ZoomY!=1.0;
+ GLfloat *convImage = NULL;
+ GLbitfield transferOps = ctx->_ImageTransferState;
+ SWspan span;
+
+ /* Try an optimized glDrawPixels first */
+ if (fast_draw_rgba_pixels(ctx, x, y, width, height, format, type,
+ unpack, pixels)) {
+ return;
+ }
+
+ INIT_SPAN(span, GL_BITMAP);
+ _swrast_span_default_attribs(ctx, &span);
+ span.arrayMask = SPAN_RGBA;
+ span.arrayAttribs = FRAG_BIT_COL0; /* we're fill in COL0 attrib values */
+
+ if (ctx->DrawBuffer->_NumColorDrawBuffers > 0 &&
+ ctx->DrawBuffer->_ColorDrawBuffers[0]->DataType != GL_FLOAT &&
+ ctx->Color.ClampFragmentColor != GL_FALSE) {
+ /* need to clamp colors before applying fragment ops */
+ transferOps |= IMAGE_CLAMP_BIT;
+ }
+
+ /*
+ * General solution
+ */
+ {
+ const GLbitfield interpMask = span.interpMask;
+ const GLbitfield arrayMask = span.arrayMask;
+ const GLint srcStride
+ = _mesa_image_row_stride(unpack, width, format, type);
+ GLint skipPixels = 0;
+ /* use span array for temp color storage */
+ GLfloat *rgba = (GLfloat *) span.array->attribs[FRAG_ATTRIB_COL0];
+
+ /* if the span is wider than MAX_WIDTH we have to do it in chunks */
+ while (skipPixels < width) {
+ const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH);
+ const GLubyte *source
+ = (const GLubyte *) _mesa_image_address2d(unpack, pixels,
+ width, height, format,
+ type, 0, skipPixels);
+ GLint row;
+
+ for (row = 0; row < height; row++) {
+ /* get image row as float/RGBA */
+ _mesa_unpack_color_span_float(ctx, spanWidth, GL_RGBA, rgba,
+ format, type, source, unpack,
+ transferOps);
+ /* Set these for each row since the _swrast_write_* functions
+ * may change them while clipping/rendering.
+ */
+ span.array->ChanType = GL_FLOAT;
+ span.x = x + skipPixels;
+ span.y = y + row;
+ span.end = spanWidth;
+ span.arrayMask = arrayMask;
+ span.interpMask = interpMask;
+ if (zoom) {
+ _swrast_write_zoomed_rgba_span(ctx, imgX, imgY, &span, rgba);
+ }
+ else {
+ _swrast_write_rgba_span(ctx, &span);
+ }
+
+ source += srcStride;
+ } /* for row */
+
+ skipPixels += spanWidth;
+ } /* while skipPixels < width */
+
+ /* XXX this is ugly/temporary, to undo above change */
+ span.array->ChanType = CHAN_TYPE;
+ }
+
+ if (convImage) {
+ free(convImage);
+ }
+}
+
+
+/**
+ * This is a bit different from drawing GL_DEPTH_COMPONENT pixels.
+ * The only per-pixel operations that apply are depth scale/bias,
+ * stencil offset/shift, GL_DEPTH_WRITEMASK and GL_STENCIL_WRITEMASK,
+ * and pixel zoom.
+ * Also, only the depth buffer and stencil buffers are touched, not the
+ * color buffer(s).
+ */
+static void
+draw_depth_stencil_pixels(struct gl_context *ctx, GLint x, GLint y,
+ GLsizei width, GLsizei height, GLenum type,
+ const struct gl_pixelstore_attrib *unpack,
+ const GLvoid *pixels)
+{
+ const GLint imgX = x, imgY = y;
+ const GLboolean scaleOrBias
+ = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0;
+ const GLuint depthMax = ctx->DrawBuffer->_DepthMax;
+ const GLuint stencilMask = ctx->Stencil.WriteMask[0];
+ const GLuint stencilType = (STENCIL_BITS == 8) ?
+ GL_UNSIGNED_BYTE : GL_UNSIGNED_SHORT;
+ const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0;
+ struct gl_renderbuffer *depthRb, *stencilRb;
+ struct gl_pixelstore_attrib clippedUnpack = *unpack;
+
+ if (!zoom) {
+ if (!_mesa_clip_drawpixels(ctx, &x, &y, &width, &height,
+ &clippedUnpack)) {
+ /* totally clipped */
+ return;
+ }
+ }
+
+ depthRb = ctx->ReadBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
+ stencilRb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
+ ASSERT(depthRb);
+ ASSERT(stencilRb);
+
+ if (depthRb->_BaseFormat == GL_DEPTH_STENCIL_EXT &&
+ stencilRb->_BaseFormat == GL_DEPTH_STENCIL_EXT &&
+ depthRb == stencilRb &&
+ !scaleOrBias &&
+ !zoom &&
+ ctx->Depth.Mask &&
+ (stencilMask & 0xff) == 0xff) {
+ /* This is the ideal case.
+ * Drawing GL_DEPTH_STENCIL pixels into a combined depth/stencil buffer.
+ * Plus, no pixel transfer ops, zooming, or masking needed.
+ */
+ GLint i;
+ for (i = 0; i < height; i++) {
+ const GLuint *src = (const GLuint *)
+ _mesa_image_address2d(&clippedUnpack, pixels, width, height,
+ GL_DEPTH_STENCIL_EXT, type, i, 0);
+ depthRb->PutRow(ctx, depthRb, width, x, y + i, src, NULL);
+ }
+ }
+ else {
+ /* sub-optimal cases:
+ * Separate depth/stencil buffers, or pixel transfer ops required.
+ */
+ /* XXX need to handle very wide images (skippixels) */
+ GLint i;
+
+ depthRb = ctx->DrawBuffer->_DepthBuffer;
+ stencilRb = ctx->DrawBuffer->_StencilBuffer;
+
+ for (i = 0; i < height; i++) {
+ const GLuint *depthStencilSrc = (const GLuint *)
+ _mesa_image_address2d(&clippedUnpack, pixels, width, height,
+ GL_DEPTH_STENCIL_EXT, type, i, 0);
+
+ if (ctx->Depth.Mask) {
+ if (!scaleOrBias && ctx->DrawBuffer->Visual.depthBits == 24) {
+ /* fast path 24-bit zbuffer */
+ GLuint zValues[MAX_WIDTH];
+ GLint j;
+ ASSERT(depthRb->DataType == GL_UNSIGNED_INT);
+ for (j = 0; j < width; j++) {
+ zValues[j] = depthStencilSrc[j] >> 8;
+ }
+ if (zoom)
+ _swrast_write_zoomed_z_span(ctx, imgX, imgY, width,
+ x, y + i, zValues);
+ else
+ depthRb->PutRow(ctx, depthRb, width, x, y + i, zValues,NULL);
+ }
+ else if (!scaleOrBias && ctx->DrawBuffer->Visual.depthBits == 16) {
+ /* fast path 16-bit zbuffer */
+ GLushort zValues[MAX_WIDTH];
+ GLint j;
+ ASSERT(depthRb->DataType == GL_UNSIGNED_SHORT);
+ for (j = 0; j < width; j++) {
+ zValues[j] = depthStencilSrc[j] >> 16;
+ }
+ if (zoom)
+ _swrast_write_zoomed_z_span(ctx, imgX, imgY, width,
+ x, y + i, zValues);
+ else
+ depthRb->PutRow(ctx, depthRb, width, x, y + i, zValues,NULL);
+ }
+ else {
+ /* general case */
+ GLuint zValues[MAX_WIDTH]; /* 16 or 32-bit Z value storage */
+ _mesa_unpack_depth_span(ctx, width,
+ depthRb->DataType, zValues, depthMax,
+ type, depthStencilSrc, &clippedUnpack);
+ if (zoom) {
+ _swrast_write_zoomed_z_span(ctx, imgX, imgY, width, x,
+ y + i, zValues);
+ }
+ else {
+ depthRb->PutRow(ctx, depthRb, width, x, y + i, zValues,NULL);
+ }
+ }
+ }
+
+ if (stencilMask != 0x0) {
+ GLstencil stencilValues[MAX_WIDTH];
+ /* get stencil values, with shift/offset/mapping */
+ _mesa_unpack_stencil_span(ctx, width, stencilType, stencilValues,
+ type, depthStencilSrc, &clippedUnpack,
+ ctx->_ImageTransferState);
+ if (zoom)
+ _swrast_write_zoomed_stencil_span(ctx, imgX, imgY, width,
+ x, y + i, stencilValues);
+ else
+ _swrast_write_stencil_span(ctx, width, x, y + i, stencilValues);
+ }
+ }
+ }
+}
+
+
+/**
+ * Execute software-based glDrawPixels.
+ * By time we get here, all error checking will have been done.
+ */
+void
+_swrast_DrawPixels( struct gl_context *ctx,
+ GLint x, GLint y,
+ GLsizei width, GLsizei height,
+ GLenum format, GLenum type,
+ const struct gl_pixelstore_attrib *unpack,
+ const GLvoid *pixels )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ GLboolean save_vp_override = ctx->VertexProgram._Overriden;
+
+ if (!_mesa_check_conditional_render(ctx))
+ return; /* don't draw */
+
+ /* We are creating fragments directly, without going through vertex
+ * programs.
+ *
+ * This override flag tells the fragment processing code that its input
+ * comes from a non-standard source, and it may therefore not rely on
+ * optimizations that assume e.g. constant color if there is no color
+ * vertex array.
+ */
+ _mesa_set_vp_override(ctx, GL_TRUE);
+
+ swrast_render_start(ctx);
+
+ if (ctx->NewState)
+ _mesa_update_state(ctx);
+
+ if (swrast->NewState)
+ _swrast_validate_derived( ctx );
+
+ pixels = _mesa_map_pbo_source(ctx, unpack, pixels);
+ if (!pixels) {
+ swrast_render_finish(ctx);
+ _mesa_set_vp_override(ctx, save_vp_override);
+ return;
+ }
+
+ /*
+ * By time we get here, all error checking should have been done.
+ */
+ switch (format) {
+ case GL_STENCIL_INDEX:
+ draw_stencil_pixels( ctx, x, y, width, height, type, unpack, pixels );
+ break;
+ case GL_DEPTH_COMPONENT:
+ draw_depth_pixels( ctx, x, y, width, height, type, unpack, pixels );
+ break;
+ case GL_DEPTH_STENCIL_EXT:
+ draw_depth_stencil_pixels(ctx, x, y, width, height, type, unpack, pixels);
+ break;
+ default:
+ /* all other formats should be color formats */
+ draw_rgba_pixels(ctx, x, y, width, height, format, type, unpack, pixels);
+ }
+
+ swrast_render_finish(ctx);
+ _mesa_set_vp_override(ctx, save_vp_override);
+
+ _mesa_unmap_pbo_source(ctx, unpack);
+}
diff --git a/mesalib/src/mesa/swrast/s_readpix.c b/mesalib/src/mesa/swrast/s_readpix.c
index 5c8d7e9c5..23da10dab 100644
--- a/mesalib/src/mesa/swrast/s_readpix.c
+++ b/mesalib/src/mesa/swrast/s_readpix.c
@@ -1,508 +1,508 @@
-/*
- * Mesa 3-D graphics library
- * Version: 7.0.3
- *
- * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-
-#include "main/glheader.h"
-#include "main/colormac.h"
-#include "main/feedback.h"
-#include "main/formats.h"
-#include "main/image.h"
-#include "main/imports.h"
-#include "main/macros.h"
-#include "main/pack.h"
-#include "main/pbo.h"
-#include "main/state.h"
-
-#include "s_context.h"
-#include "s_depth.h"
-#include "s_span.h"
-#include "s_stencil.h"
-
-
-/**
- * Read pixels for format=GL_DEPTH_COMPONENT.
- */
-static void
-read_depth_pixels( struct gl_context *ctx,
- GLint x, GLint y,
- GLsizei width, GLsizei height,
- GLenum type, GLvoid *pixels,
- const struct gl_pixelstore_attrib *packing )
-{
- struct gl_framebuffer *fb = ctx->ReadBuffer;
- struct gl_renderbuffer *rb = fb->_DepthBuffer;
- const GLboolean biasOrScale
- = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0;
-
- if (!rb)
- return;
-
- /* clipping should have been done already */
- ASSERT(x >= 0);
- ASSERT(y >= 0);
- ASSERT(x + width <= (GLint) rb->Width);
- ASSERT(y + height <= (GLint) rb->Height);
- /* width should never be > MAX_WIDTH since we did clipping earlier */
- ASSERT(width <= MAX_WIDTH);
-
- if (type == GL_UNSIGNED_SHORT && fb->Visual.depthBits == 16
- && !biasOrScale && !packing->SwapBytes) {
- /* Special case: directly read 16-bit unsigned depth values. */
- GLint j;
- ASSERT(rb->Format == MESA_FORMAT_Z16);
- ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
- for (j = 0; j < height; j++, y++) {
- void *dest =_mesa_image_address2d(packing, pixels, width, height,
- GL_DEPTH_COMPONENT, type, j, 0);
- rb->GetRow(ctx, rb, width, x, y, dest);
- }
- }
- else if (type == GL_UNSIGNED_INT && fb->Visual.depthBits == 24
- && !biasOrScale && !packing->SwapBytes) {
- /* Special case: directly read 24-bit unsigned depth values. */
- GLint j;
- ASSERT(rb->Format == MESA_FORMAT_X8_Z24 ||
- rb->Format == MESA_FORMAT_S8_Z24 ||
- rb->Format == MESA_FORMAT_Z24_X8 ||
- rb->Format == MESA_FORMAT_Z24_S8);
- ASSERT(rb->DataType == GL_UNSIGNED_INT ||
- rb->DataType == GL_UNSIGNED_INT_24_8);
- for (j = 0; j < height; j++, y++) {
- GLuint *dest = (GLuint *)
- _mesa_image_address2d(packing, pixels, width, height,
- GL_DEPTH_COMPONENT, type, j, 0);
- GLint k;
- rb->GetRow(ctx, rb, width, x, y, dest);
- /* convert range from 24-bit to 32-bit */
- if (rb->Format == MESA_FORMAT_X8_Z24 ||
- rb->Format == MESA_FORMAT_S8_Z24) {
- for (k = 0; k < width; k++) {
- /* Note: put MSByte of 24-bit value into LSByte */
- dest[k] = (dest[k] << 8) | ((dest[k] >> 16) & 0xff);
- }
- }
- else {
- for (k = 0; k < width; k++) {
- /* Note: fill in LSByte by replication */
- dest[k] = dest[k] | ((dest[k] >> 8) & 0xff);
- }
- }
- }
- }
- else if (type == GL_UNSIGNED_INT && fb->Visual.depthBits == 32
- && !biasOrScale && !packing->SwapBytes) {
- /* Special case: directly read 32-bit unsigned depth values. */
- GLint j;
- ASSERT(rb->Format == MESA_FORMAT_Z32);
- ASSERT(rb->DataType == GL_UNSIGNED_INT);
- for (j = 0; j < height; j++, y++) {
- void *dest = _mesa_image_address2d(packing, pixels, width, height,
- GL_DEPTH_COMPONENT, type, j, 0);
- rb->GetRow(ctx, rb, width, x, y, dest);
- }
- }
- else {
- /* General case (slower) */
- GLint j;
- for (j = 0; j < height; j++, y++) {
- GLfloat depthValues[MAX_WIDTH];
- GLvoid *dest = _mesa_image_address2d(packing, pixels, width, height,
- GL_DEPTH_COMPONENT, type, j, 0);
- _swrast_read_depth_span_float(ctx, rb, width, x, y, depthValues);
- _mesa_pack_depth_span(ctx, width, dest, type, depthValues, packing);
- }
- }
-}
-
-
-/**
- * Read pixels for format=GL_STENCIL_INDEX.
- */
-static void
-read_stencil_pixels( struct gl_context *ctx,
- GLint x, GLint y,
- GLsizei width, GLsizei height,
- GLenum type, GLvoid *pixels,
- const struct gl_pixelstore_attrib *packing )
-{
- struct gl_framebuffer *fb = ctx->ReadBuffer;
- struct gl_renderbuffer *rb = fb->_StencilBuffer;
- GLint j;
-
- if (!rb)
- return;
-
- /* width should never be > MAX_WIDTH since we did clipping earlier */
- ASSERT(width <= MAX_WIDTH);
-
- /* process image row by row */
- for (j=0;j<height;j++,y++) {
- GLvoid *dest;
- GLstencil stencil[MAX_WIDTH];
-
- _swrast_read_stencil_span(ctx, rb, width, x, y, stencil);
-
- dest = _mesa_image_address2d(packing, pixels, width, height,
- GL_STENCIL_INDEX, type, j, 0);
-
- _mesa_pack_stencil_span(ctx, width, type, dest, stencil, packing);
- }
-}
-
-
-
-/**
- * Optimized glReadPixels for particular pixel formats when pixel
- * scaling, biasing, mapping, etc. are disabled.
- * \return GL_TRUE if success, GL_FALSE if unable to do the readpixels
- */
-static GLboolean
-fast_read_rgba_pixels( struct gl_context *ctx,
- GLint x, GLint y,
- GLsizei width, GLsizei height,
- GLenum format, GLenum type,
- GLvoid *pixels,
- const struct gl_pixelstore_attrib *packing,
- GLbitfield transferOps)
-{
- struct gl_renderbuffer *rb = ctx->ReadBuffer->_ColorReadBuffer;
-
- if (!rb)
- return GL_FALSE;
-
- ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB ||
- rb->_BaseFormat == GL_ALPHA);
-
- /* clipping should have already been done */
- ASSERT(x + width <= (GLint) rb->Width);
- ASSERT(y + height <= (GLint) rb->Height);
-
- /* check for things we can't handle here */
- if (transferOps ||
- packing->SwapBytes ||
- packing->LsbFirst) {
- return GL_FALSE;
- }
-
- if (format == GL_RGBA && rb->DataType == type) {
- const GLint dstStride = _mesa_image_row_stride(packing, width,
- format, type);
- GLubyte *dest
- = (GLubyte *) _mesa_image_address2d(packing, pixels, width, height,
- format, type, 0, 0);
- GLint row;
- ASSERT(rb->GetRow);
- for (row = 0; row < height; row++) {
- rb->GetRow(ctx, rb, width, x, y + row, dest);
- dest += dstStride;
- }
- return GL_TRUE;
- }
-
- if (format == GL_RGB &&
- rb->DataType == GL_UNSIGNED_BYTE &&
- type == GL_UNSIGNED_BYTE) {
- const GLint dstStride = _mesa_image_row_stride(packing, width,
- format, type);
- GLubyte *dest
- = (GLubyte *) _mesa_image_address2d(packing, pixels, width, height,
- format, type, 0, 0);
- GLint row;
- ASSERT(rb->GetRow);
- for (row = 0; row < height; row++) {
- GLubyte tempRow[MAX_WIDTH][4];
- GLint col;
- rb->GetRow(ctx, rb, width, x, y + row, tempRow);
- /* convert RGBA to RGB */
- for (col = 0; col < width; col++) {
- dest[col * 3 + 0] = tempRow[col][0];
- dest[col * 3 + 1] = tempRow[col][1];
- dest[col * 3 + 2] = tempRow[col][2];
- }
- dest += dstStride;
- }
- return GL_TRUE;
- }
-
- /* not handled */
- return GL_FALSE;
-}
-
-
-/**
- * When we're using a low-precision color buffer (like 16-bit 5/6/5)
- * we have to adjust our color values a bit to pass conformance.
- * The problem is when a 5 or 6-bit color value is converted to an 8-bit
- * value and then a floating point value, the floating point values don't
- * increment uniformly as the 5 or 6-bit value is incremented.
- *
- * This function adjusts floating point values to compensate.
- */
-static void
-adjust_colors(const struct gl_framebuffer *fb, GLuint n, GLfloat rgba[][4])
-{
- const GLuint rShift = 8 - fb->Visual.redBits;
- const GLuint gShift = 8 - fb->Visual.greenBits;
- const GLuint bShift = 8 - fb->Visual.blueBits;
- GLfloat rScale = 1.0F / (GLfloat) ((1 << fb->Visual.redBits ) - 1);
- GLfloat gScale = 1.0F / (GLfloat) ((1 << fb->Visual.greenBits) - 1);
- GLfloat bScale = 1.0F / (GLfloat) ((1 << fb->Visual.blueBits ) - 1);
- GLuint i;
-
- if (fb->Visual.redBits == 0)
- rScale = 0;
- if (fb->Visual.greenBits == 0)
- gScale = 0;
- if (fb->Visual.blueBits == 0)
- bScale = 0;
-
- for (i = 0; i < n; i++) {
- GLint r, g, b;
- /* convert float back to ubyte */
- CLAMPED_FLOAT_TO_UBYTE(r, rgba[i][RCOMP]);
- CLAMPED_FLOAT_TO_UBYTE(g, rgba[i][GCOMP]);
- CLAMPED_FLOAT_TO_UBYTE(b, rgba[i][BCOMP]);
- /* using only the N most significant bits of the ubyte value, convert to
- * float in [0,1].
- */
- rgba[i][RCOMP] = (GLfloat) (r >> rShift) * rScale;
- rgba[i][GCOMP] = (GLfloat) (g >> gShift) * gScale;
- rgba[i][BCOMP] = (GLfloat) (b >> bShift) * bScale;
- }
-}
-
-
-
-/*
- * Read R, G, B, A, RGB, L, or LA pixels.
- */
-static void
-read_rgba_pixels( struct gl_context *ctx,
- GLint x, GLint y,
- GLsizei width, GLsizei height,
- GLenum format, GLenum type, GLvoid *pixels,
- const struct gl_pixelstore_attrib *packing )
-{
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- GLbitfield transferOps = ctx->_ImageTransferState;
- struct gl_framebuffer *fb = ctx->ReadBuffer;
- struct gl_renderbuffer *rb = fb->_ColorReadBuffer;
-
- if (!rb)
- return;
-
- if (type == GL_FLOAT && ((ctx->Color.ClampReadColor == GL_TRUE) ||
- (ctx->Color.ClampReadColor == GL_FIXED_ONLY_ARB &&
- rb->DataType != GL_FLOAT)))
- transferOps |= IMAGE_CLAMP_BIT;
-
- /* Try optimized path first */
- if (fast_read_rgba_pixels(ctx, x, y, width, height,
- format, type, pixels, packing, transferOps)) {
- return; /* done! */
- }
-
- /* width should never be > MAX_WIDTH since we did clipping earlier */
- ASSERT(width <= MAX_WIDTH);
-
- do {
- const GLint dstStride
- = _mesa_image_row_stride(packing, width, format, type);
- GLfloat (*rgba)[4] = swrast->SpanArrays->attribs[FRAG_ATTRIB_COL0];
- GLint row;
- GLubyte *dst
- = (GLubyte *) _mesa_image_address2d(packing, pixels, width, height,
- format, type, 0, 0);
-
- for (row = 0; row < height; row++, y++) {
-
- /* Get float rgba pixels */
- _swrast_read_rgba_span(ctx, rb, width, x, y, GL_FLOAT, rgba);
-
- /* apply fudge factor for shallow color buffers */
- if (fb->Visual.redBits < 8 ||
- fb->Visual.greenBits < 8 ||
- fb->Visual.blueBits < 8) {
- adjust_colors(fb, width, rgba);
- }
-
- /* pack the row of RGBA pixels into user's buffer */
- _mesa_pack_rgba_span_float(ctx, width, rgba, format, type, dst,
- packing, transferOps);
-
- dst += dstStride;
- }
- } while (0);
-}
-
-
-/**
- * Read combined depth/stencil values.
- * We'll have already done error checking to be sure the expected
- * depth and stencil buffers really exist.
- */
-static void
-read_depth_stencil_pixels(struct gl_context *ctx,
- GLint x, GLint y,
- GLsizei width, GLsizei height,
- GLenum type, GLvoid *pixels,
- const struct gl_pixelstore_attrib *packing )
-{
- const GLboolean scaleOrBias
- = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0;
- const GLboolean stencilTransfer = ctx->Pixel.IndexShift
- || ctx->Pixel.IndexOffset || ctx->Pixel.MapStencilFlag;
- struct gl_renderbuffer *depthRb, *stencilRb;
-
- depthRb = ctx->ReadBuffer->_DepthBuffer;
- stencilRb = ctx->ReadBuffer->_StencilBuffer;
-
- if (!depthRb || !stencilRb)
- return;
-
- depthRb = ctx->ReadBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
- stencilRb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
-
- if (depthRb->_BaseFormat == GL_DEPTH_STENCIL_EXT &&
- stencilRb->_BaseFormat == GL_DEPTH_STENCIL_EXT &&
- depthRb == stencilRb &&
- !scaleOrBias &&
- !stencilTransfer) {
- /* This is the ideal case.
- * Reading GL_DEPTH_STENCIL pixels from combined depth/stencil buffer.
- * Plus, no pixel transfer ops to worry about!
- */
- GLint i;
- GLint dstStride = _mesa_image_row_stride(packing, width,
- GL_DEPTH_STENCIL_EXT, type);
- GLubyte *dst = (GLubyte *) _mesa_image_address2d(packing, pixels,
- width, height,
- GL_DEPTH_STENCIL_EXT,
- type, 0, 0);
- for (i = 0; i < height; i++) {
- depthRb->GetRow(ctx, depthRb, width, x, y + i, dst);
- dst += dstStride;
- }
- }
- else {
- /* Reading GL_DEPTH_STENCIL pixels from separate depth/stencil buffers,
- * or we need pixel transfer.
- */
- GLint i;
- depthRb = ctx->ReadBuffer->_DepthBuffer;
- stencilRb = ctx->ReadBuffer->_StencilBuffer;
-
- for (i = 0; i < height; i++) {
- GLstencil stencilVals[MAX_WIDTH];
-
- GLuint *depthStencilDst = (GLuint *)
- _mesa_image_address2d(packing, pixels, width, height,
- GL_DEPTH_STENCIL_EXT, type, i, 0);
-
- _swrast_read_stencil_span(ctx, stencilRb, width,
- x, y + i, stencilVals);
-
- if (!scaleOrBias && !stencilTransfer
- && ctx->ReadBuffer->Visual.depthBits == 24) {
- /* ideal case */
- GLuint zVals[MAX_WIDTH]; /* 24-bit values! */
- GLint j;
- ASSERT(depthRb->DataType == GL_UNSIGNED_INT);
- /* note, we've already been clipped */
- depthRb->GetRow(ctx, depthRb, width, x, y + i, zVals);
- for (j = 0; j < width; j++) {
- depthStencilDst[j] = (zVals[j] << 8) | (stencilVals[j] & 0xff);
- }
- }
- else {
- /* general case */
- GLfloat depthVals[MAX_WIDTH];
- _swrast_read_depth_span_float(ctx, depthRb, width, x, y + i,
- depthVals);
- _mesa_pack_depth_stencil_span(ctx, width, depthStencilDst,
- depthVals, stencilVals, packing);
- }
- }
- }
-}
-
-
-
-/**
- * Software fallback routine for ctx->Driver.ReadPixels().
- * By time we get here, all error checking will have been done.
- */
-void
-_swrast_ReadPixels( struct gl_context *ctx,
- GLint x, GLint y, GLsizei width, GLsizei height,
- GLenum format, GLenum type,
- const struct gl_pixelstore_attrib *packing,
- GLvoid *pixels )
-{
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- struct gl_pixelstore_attrib clippedPacking = *packing;
-
- if (ctx->NewState)
- _mesa_update_state(ctx);
-
- /* Need to do swrast_render_start() before clipping or anything else
- * since this is where a driver may grab the hw lock and get an updated
- * window size.
- */
- swrast_render_start(ctx);
-
- if (swrast->NewState)
- _swrast_validate_derived( ctx );
-
- /* Do all needed clipping here, so that we can forget about it later */
- if (_mesa_clip_readpixels(ctx, &x, &y, &width, &height, &clippedPacking)) {
-
- pixels = _mesa_map_pbo_dest(ctx, &clippedPacking, pixels);
-
- if (pixels) {
- switch (format) {
- case GL_STENCIL_INDEX:
- read_stencil_pixels(ctx, x, y, width, height, type, pixels,
- &clippedPacking);
- break;
- case GL_DEPTH_COMPONENT:
- read_depth_pixels(ctx, x, y, width, height, type, pixels,
- &clippedPacking);
- break;
- case GL_DEPTH_STENCIL_EXT:
- read_depth_stencil_pixels(ctx, x, y, width, height, type, pixels,
- &clippedPacking);
- break;
- default:
- /* all other formats should be color formats */
- read_rgba_pixels(ctx, x, y, width, height, format, type, pixels,
- &clippedPacking);
- }
-
- _mesa_unmap_pbo_dest(ctx, &clippedPacking);
- }
- }
-
- swrast_render_finish(ctx);
-}
+/*
+ * Mesa 3-D graphics library
+ * Version: 7.0.3
+ *
+ * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+#include "main/glheader.h"
+#include "main/colormac.h"
+#include "main/feedback.h"
+#include "main/formats.h"
+#include "main/image.h"
+#include "main/imports.h"
+#include "main/macros.h"
+#include "main/pack.h"
+#include "main/pbo.h"
+#include "main/state.h"
+
+#include "s_context.h"
+#include "s_depth.h"
+#include "s_span.h"
+#include "s_stencil.h"
+
+
+/**
+ * Read pixels for format=GL_DEPTH_COMPONENT.
+ */
+static void
+read_depth_pixels( struct gl_context *ctx,
+ GLint x, GLint y,
+ GLsizei width, GLsizei height,
+ GLenum type, GLvoid *pixels,
+ const struct gl_pixelstore_attrib *packing )
+{
+ struct gl_framebuffer *fb = ctx->ReadBuffer;
+ struct gl_renderbuffer *rb = fb->_DepthBuffer;
+ const GLboolean biasOrScale
+ = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0;
+
+ if (!rb)
+ return;
+
+ /* clipping should have been done already */
+ ASSERT(x >= 0);
+ ASSERT(y >= 0);
+ ASSERT(x + width <= (GLint) rb->Width);
+ ASSERT(y + height <= (GLint) rb->Height);
+ /* width should never be > MAX_WIDTH since we did clipping earlier */
+ ASSERT(width <= MAX_WIDTH);
+
+ if (type == GL_UNSIGNED_SHORT && fb->Visual.depthBits == 16
+ && !biasOrScale && !packing->SwapBytes) {
+ /* Special case: directly read 16-bit unsigned depth values. */
+ GLint j;
+ ASSERT(rb->Format == MESA_FORMAT_Z16);
+ ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
+ for (j = 0; j < height; j++, y++) {
+ void *dest =_mesa_image_address2d(packing, pixels, width, height,
+ GL_DEPTH_COMPONENT, type, j, 0);
+ rb->GetRow(ctx, rb, width, x, y, dest);
+ }
+ }
+ else if (type == GL_UNSIGNED_INT && fb->Visual.depthBits == 24
+ && !biasOrScale && !packing->SwapBytes) {
+ /* Special case: directly read 24-bit unsigned depth values. */
+ GLint j;
+ ASSERT(rb->Format == MESA_FORMAT_X8_Z24 ||
+ rb->Format == MESA_FORMAT_S8_Z24 ||
+ rb->Format == MESA_FORMAT_Z24_X8 ||
+ rb->Format == MESA_FORMAT_Z24_S8);
+ ASSERT(rb->DataType == GL_UNSIGNED_INT ||
+ rb->DataType == GL_UNSIGNED_INT_24_8);
+ for (j = 0; j < height; j++, y++) {
+ GLuint *dest = (GLuint *)
+ _mesa_image_address2d(packing, pixels, width, height,
+ GL_DEPTH_COMPONENT, type, j, 0);
+ GLint k;
+ rb->GetRow(ctx, rb, width, x, y, dest);
+ /* convert range from 24-bit to 32-bit */
+ if (rb->Format == MESA_FORMAT_X8_Z24 ||
+ rb->Format == MESA_FORMAT_S8_Z24) {
+ for (k = 0; k < width; k++) {
+ /* Note: put MSByte of 24-bit value into LSByte */
+ dest[k] = (dest[k] << 8) | ((dest[k] >> 16) & 0xff);
+ }
+ }
+ else {
+ for (k = 0; k < width; k++) {
+ /* Note: fill in LSByte by replication */
+ dest[k] = dest[k] | ((dest[k] >> 8) & 0xff);
+ }
+ }
+ }
+ }
+ else if (type == GL_UNSIGNED_INT && fb->Visual.depthBits == 32
+ && !biasOrScale && !packing->SwapBytes) {
+ /* Special case: directly read 32-bit unsigned depth values. */
+ GLint j;
+ ASSERT(rb->Format == MESA_FORMAT_Z32);
+ ASSERT(rb->DataType == GL_UNSIGNED_INT);
+ for (j = 0; j < height; j++, y++) {
+ void *dest = _mesa_image_address2d(packing, pixels, width, height,
+ GL_DEPTH_COMPONENT, type, j, 0);
+ rb->GetRow(ctx, rb, width, x, y, dest);
+ }
+ }
+ else {
+ /* General case (slower) */
+ GLint j;
+ for (j = 0; j < height; j++, y++) {
+ GLfloat depthValues[MAX_WIDTH];
+ GLvoid *dest = _mesa_image_address2d(packing, pixels, width, height,
+ GL_DEPTH_COMPONENT, type, j, 0);
+ _swrast_read_depth_span_float(ctx, rb, width, x, y, depthValues);
+ _mesa_pack_depth_span(ctx, width, dest, type, depthValues, packing);
+ }
+ }
+}
+
+
+/**
+ * Read pixels for format=GL_STENCIL_INDEX.
+ */
+static void
+read_stencil_pixels( struct gl_context *ctx,
+ GLint x, GLint y,
+ GLsizei width, GLsizei height,
+ GLenum type, GLvoid *pixels,
+ const struct gl_pixelstore_attrib *packing )
+{
+ struct gl_framebuffer *fb = ctx->ReadBuffer;
+ struct gl_renderbuffer *rb = fb->_StencilBuffer;
+ GLint j;
+
+ if (!rb)
+ return;
+
+ /* width should never be > MAX_WIDTH since we did clipping earlier */
+ ASSERT(width <= MAX_WIDTH);
+
+ /* process image row by row */
+ for (j=0;j<height;j++,y++) {
+ GLvoid *dest;
+ GLstencil stencil[MAX_WIDTH];
+
+ _swrast_read_stencil_span(ctx, rb, width, x, y, stencil);
+
+ dest = _mesa_image_address2d(packing, pixels, width, height,
+ GL_STENCIL_INDEX, type, j, 0);
+
+ _mesa_pack_stencil_span(ctx, width, type, dest, stencil, packing);
+ }
+}
+
+
+
+/**
+ * Optimized glReadPixels for particular pixel formats when pixel
+ * scaling, biasing, mapping, etc. are disabled.
+ * \return GL_TRUE if success, GL_FALSE if unable to do the readpixels
+ */
+static GLboolean
+fast_read_rgba_pixels( struct gl_context *ctx,
+ GLint x, GLint y,
+ GLsizei width, GLsizei height,
+ GLenum format, GLenum type,
+ GLvoid *pixels,
+ const struct gl_pixelstore_attrib *packing,
+ GLbitfield transferOps)
+{
+ struct gl_renderbuffer *rb = ctx->ReadBuffer->_ColorReadBuffer;
+
+ if (!rb)
+ return GL_FALSE;
+
+ ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB ||
+ rb->_BaseFormat == GL_ALPHA);
+
+ /* clipping should have already been done */
+ ASSERT(x + width <= (GLint) rb->Width);
+ ASSERT(y + height <= (GLint) rb->Height);
+
+ /* check for things we can't handle here */
+ if (transferOps ||
+ packing->SwapBytes ||
+ packing->LsbFirst) {
+ return GL_FALSE;
+ }
+
+ if (format == GL_RGBA && rb->DataType == type) {
+ const GLint dstStride = _mesa_image_row_stride(packing, width,
+ format, type);
+ GLubyte *dest
+ = (GLubyte *) _mesa_image_address2d(packing, pixels, width, height,
+ format, type, 0, 0);
+ GLint row;
+ ASSERT(rb->GetRow);
+ for (row = 0; row < height; row++) {
+ rb->GetRow(ctx, rb, width, x, y + row, dest);
+ dest += dstStride;
+ }
+ return GL_TRUE;
+ }
+
+ if (format == GL_RGB &&
+ rb->DataType == GL_UNSIGNED_BYTE &&
+ type == GL_UNSIGNED_BYTE) {
+ const GLint dstStride = _mesa_image_row_stride(packing, width,
+ format, type);
+ GLubyte *dest
+ = (GLubyte *) _mesa_image_address2d(packing, pixels, width, height,
+ format, type, 0, 0);
+ GLint row;
+ ASSERT(rb->GetRow);
+ for (row = 0; row < height; row++) {
+ GLubyte tempRow[MAX_WIDTH][4];
+ GLint col;
+ rb->GetRow(ctx, rb, width, x, y + row, tempRow);
+ /* convert RGBA to RGB */
+ for (col = 0; col < width; col++) {
+ dest[col * 3 + 0] = tempRow[col][0];
+ dest[col * 3 + 1] = tempRow[col][1];
+ dest[col * 3 + 2] = tempRow[col][2];
+ }
+ dest += dstStride;
+ }
+ return GL_TRUE;
+ }
+
+ /* not handled */
+ return GL_FALSE;
+}
+
+
+/**
+ * When we're using a low-precision color buffer (like 16-bit 5/6/5)
+ * we have to adjust our color values a bit to pass conformance.
+ * The problem is when a 5 or 6-bit color value is converted to an 8-bit
+ * value and then a floating point value, the floating point values don't
+ * increment uniformly as the 5 or 6-bit value is incremented.
+ *
+ * This function adjusts floating point values to compensate.
+ */
+static void
+adjust_colors(const struct gl_framebuffer *fb, GLuint n, GLfloat rgba[][4])
+{
+ const GLuint rShift = 8 - fb->Visual.redBits;
+ const GLuint gShift = 8 - fb->Visual.greenBits;
+ const GLuint bShift = 8 - fb->Visual.blueBits;
+ GLfloat rScale = 1.0F / (GLfloat) ((1 << fb->Visual.redBits ) - 1);
+ GLfloat gScale = 1.0F / (GLfloat) ((1 << fb->Visual.greenBits) - 1);
+ GLfloat bScale = 1.0F / (GLfloat) ((1 << fb->Visual.blueBits ) - 1);
+ GLuint i;
+
+ if (fb->Visual.redBits == 0)
+ rScale = 0;
+ if (fb->Visual.greenBits == 0)
+ gScale = 0;
+ if (fb->Visual.blueBits == 0)
+ bScale = 0;
+
+ for (i = 0; i < n; i++) {
+ GLint r, g, b;
+ /* convert float back to ubyte */
+ CLAMPED_FLOAT_TO_UBYTE(r, rgba[i][RCOMP]);
+ CLAMPED_FLOAT_TO_UBYTE(g, rgba[i][GCOMP]);
+ CLAMPED_FLOAT_TO_UBYTE(b, rgba[i][BCOMP]);
+ /* using only the N most significant bits of the ubyte value, convert to
+ * float in [0,1].
+ */
+ rgba[i][RCOMP] = (GLfloat) (r >> rShift) * rScale;
+ rgba[i][GCOMP] = (GLfloat) (g >> gShift) * gScale;
+ rgba[i][BCOMP] = (GLfloat) (b >> bShift) * bScale;
+ }
+}
+
+
+
+/*
+ * Read R, G, B, A, RGB, L, or LA pixels.
+ */
+static void
+read_rgba_pixels( struct gl_context *ctx,
+ GLint x, GLint y,
+ GLsizei width, GLsizei height,
+ GLenum format, GLenum type, GLvoid *pixels,
+ const struct gl_pixelstore_attrib *packing )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ GLbitfield transferOps = ctx->_ImageTransferState;
+ struct gl_framebuffer *fb = ctx->ReadBuffer;
+ struct gl_renderbuffer *rb = fb->_ColorReadBuffer;
+
+ if (!rb)
+ return;
+
+ if (type == GL_FLOAT && ((ctx->Color.ClampReadColor == GL_TRUE) ||
+ (ctx->Color.ClampReadColor == GL_FIXED_ONLY_ARB &&
+ rb->DataType != GL_FLOAT)))
+ transferOps |= IMAGE_CLAMP_BIT;
+
+ /* Try optimized path first */
+ if (fast_read_rgba_pixels(ctx, x, y, width, height,
+ format, type, pixels, packing, transferOps)) {
+ return; /* done! */
+ }
+
+ /* width should never be > MAX_WIDTH since we did clipping earlier */
+ ASSERT(width <= MAX_WIDTH);
+
+ do {
+ const GLint dstStride
+ = _mesa_image_row_stride(packing, width, format, type);
+ GLfloat (*rgba)[4] = swrast->SpanArrays->attribs[FRAG_ATTRIB_COL0];
+ GLint row;
+ GLubyte *dst
+ = (GLubyte *) _mesa_image_address2d(packing, pixels, width, height,
+ format, type, 0, 0);
+
+ for (row = 0; row < height; row++, y++) {
+
+ /* Get float rgba pixels */
+ _swrast_read_rgba_span(ctx, rb, width, x, y, GL_FLOAT, rgba);
+
+ /* apply fudge factor for shallow color buffers */
+ if (fb->Visual.redBits < 8 ||
+ fb->Visual.greenBits < 8 ||
+ fb->Visual.blueBits < 8) {
+ adjust_colors(fb, width, rgba);
+ }
+
+ /* pack the row of RGBA pixels into user's buffer */
+ _mesa_pack_rgba_span_float(ctx, width, rgba, format, type, dst,
+ packing, transferOps);
+
+ dst += dstStride;
+ }
+ } while (0);
+}
+
+
+/**
+ * Read combined depth/stencil values.
+ * We'll have already done error checking to be sure the expected
+ * depth and stencil buffers really exist.
+ */
+static void
+read_depth_stencil_pixels(struct gl_context *ctx,
+ GLint x, GLint y,
+ GLsizei width, GLsizei height,
+ GLenum type, GLvoid *pixels,
+ const struct gl_pixelstore_attrib *packing )
+{
+ const GLboolean scaleOrBias
+ = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0;
+ const GLboolean stencilTransfer = ctx->Pixel.IndexShift
+ || ctx->Pixel.IndexOffset || ctx->Pixel.MapStencilFlag;
+ struct gl_renderbuffer *depthRb, *stencilRb;
+
+ depthRb = ctx->ReadBuffer->_DepthBuffer;
+ stencilRb = ctx->ReadBuffer->_StencilBuffer;
+
+ if (!depthRb || !stencilRb)
+ return;
+
+ depthRb = ctx->ReadBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
+ stencilRb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
+
+ if (depthRb->_BaseFormat == GL_DEPTH_STENCIL_EXT &&
+ stencilRb->_BaseFormat == GL_DEPTH_STENCIL_EXT &&
+ depthRb == stencilRb &&
+ !scaleOrBias &&
+ !stencilTransfer) {
+ /* This is the ideal case.
+ * Reading GL_DEPTH_STENCIL pixels from combined depth/stencil buffer.
+ * Plus, no pixel transfer ops to worry about!
+ */
+ GLint i;
+ GLint dstStride = _mesa_image_row_stride(packing, width,
+ GL_DEPTH_STENCIL_EXT, type);
+ GLubyte *dst = (GLubyte *) _mesa_image_address2d(packing, pixels,
+ width, height,
+ GL_DEPTH_STENCIL_EXT,
+ type, 0, 0);
+ for (i = 0; i < height; i++) {
+ depthRb->GetRow(ctx, depthRb, width, x, y + i, dst);
+ dst += dstStride;
+ }
+ }
+ else {
+ /* Reading GL_DEPTH_STENCIL pixels from separate depth/stencil buffers,
+ * or we need pixel transfer.
+ */
+ GLint i;
+ depthRb = ctx->ReadBuffer->_DepthBuffer;
+ stencilRb = ctx->ReadBuffer->_StencilBuffer;
+
+ for (i = 0; i < height; i++) {
+ GLstencil stencilVals[MAX_WIDTH];
+
+ GLuint *depthStencilDst = (GLuint *)
+ _mesa_image_address2d(packing, pixels, width, height,
+ GL_DEPTH_STENCIL_EXT, type, i, 0);
+
+ _swrast_read_stencil_span(ctx, stencilRb, width,
+ x, y + i, stencilVals);
+
+ if (!scaleOrBias && !stencilTransfer
+ && ctx->ReadBuffer->Visual.depthBits == 24) {
+ /* ideal case */
+ GLuint zVals[MAX_WIDTH]; /* 24-bit values! */
+ GLint j;
+ ASSERT(depthRb->DataType == GL_UNSIGNED_INT);
+ /* note, we've already been clipped */
+ depthRb->GetRow(ctx, depthRb, width, x, y + i, zVals);
+ for (j = 0; j < width; j++) {
+ depthStencilDst[j] = (zVals[j] << 8) | (stencilVals[j] & 0xff);
+ }
+ }
+ else {
+ /* general case */
+ GLfloat depthVals[MAX_WIDTH];
+ _swrast_read_depth_span_float(ctx, depthRb, width, x, y + i,
+ depthVals);
+ _mesa_pack_depth_stencil_span(ctx, width, depthStencilDst,
+ depthVals, stencilVals, packing);
+ }
+ }
+ }
+}
+
+
+
+/**
+ * Software fallback routine for ctx->Driver.ReadPixels().
+ * By time we get here, all error checking will have been done.
+ */
+void
+_swrast_ReadPixels( struct gl_context *ctx,
+ GLint x, GLint y, GLsizei width, GLsizei height,
+ GLenum format, GLenum type,
+ const struct gl_pixelstore_attrib *packing,
+ GLvoid *pixels )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ struct gl_pixelstore_attrib clippedPacking = *packing;
+
+ if (ctx->NewState)
+ _mesa_update_state(ctx);
+
+ /* Need to do swrast_render_start() before clipping or anything else
+ * since this is where a driver may grab the hw lock and get an updated
+ * window size.
+ */
+ swrast_render_start(ctx);
+
+ if (swrast->NewState)
+ _swrast_validate_derived( ctx );
+
+ /* Do all needed clipping here, so that we can forget about it later */
+ if (_mesa_clip_readpixels(ctx, &x, &y, &width, &height, &clippedPacking)) {
+
+ pixels = _mesa_map_pbo_dest(ctx, &clippedPacking, pixels);
+
+ if (pixels) {
+ switch (format) {
+ case GL_STENCIL_INDEX:
+ read_stencil_pixels(ctx, x, y, width, height, type, pixels,
+ &clippedPacking);
+ break;
+ case GL_DEPTH_COMPONENT:
+ read_depth_pixels(ctx, x, y, width, height, type, pixels,
+ &clippedPacking);
+ break;
+ case GL_DEPTH_STENCIL_EXT:
+ read_depth_stencil_pixels(ctx, x, y, width, height, type, pixels,
+ &clippedPacking);
+ break;
+ default:
+ /* all other formats should be color formats */
+ read_rgba_pixels(ctx, x, y, width, height, format, type, pixels,
+ &clippedPacking);
+ }
+
+ _mesa_unmap_pbo_dest(ctx, &clippedPacking);
+ }
+ }
+
+ swrast_render_finish(ctx);
+}
diff --git a/mesalib/src/mesa/swrast/s_texcombine.c b/mesalib/src/mesa/swrast/s_texcombine.c
index 0c8cc9ff3..a7f4fe67d 100644
--- a/mesalib/src/mesa/swrast/s_texcombine.c
+++ b/mesalib/src/mesa/swrast/s_texcombine.c
@@ -1,737 +1,737 @@
-/*
- * Mesa 3-D graphics library
- * Version: 7.5
- *
- * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
- * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-
-#include "main/glheader.h"
-#include "main/context.h"
-#include "main/colormac.h"
-#include "main/imports.h"
-#include "main/pixeltransfer.h"
-#include "program/prog_instruction.h"
-
-#include "s_context.h"
-#include "s_texcombine.h"
-
-
-/**
- * Pointer to array of float[4]
- * This type makes the code below more concise and avoids a lot of casting.
- */
-typedef float (*float4_array)[4];
-
-
-/**
- * Return array of texels for given unit.
- */
-static INLINE float4_array
-get_texel_array(SWcontext *swrast, GLuint unit)
-{
- return (float4_array) (swrast->TexelBuffer + unit * MAX_WIDTH * 4);
-}
-
-
-
-/**
- * Do texture application for:
- * GL_EXT_texture_env_combine
- * GL_ARB_texture_env_combine
- * GL_EXT_texture_env_dot3
- * GL_ARB_texture_env_dot3
- * GL_ATI_texture_env_combine3
- * GL_NV_texture_env_combine4
- * conventional GL texture env modes
- *
- * \param ctx rendering context
- * \param unit the texture combiner unit
- * \param n number of fragments to process (span width)
- * \param primary_rgba incoming fragment color array
- * \param texelBuffer pointer to texel colors for all texture units
- *
- * \param rgba incoming/result fragment colors
- */
-static void
-texture_combine( struct gl_context *ctx, GLuint unit, GLuint n,
- const float4_array primary_rgba,
- const GLfloat *texelBuffer,
- GLchan (*rgbaChan)[4] )
-{
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]);
- const struct gl_tex_env_combine_state *combine = textureUnit->_CurrentCombine;
- float4_array argRGB[MAX_COMBINER_TERMS];
- float4_array argA[MAX_COMBINER_TERMS];
- const GLfloat scaleRGB = (GLfloat) (1 << combine->ScaleShiftRGB);
- const GLfloat scaleA = (GLfloat) (1 << combine->ScaleShiftA);
- const GLuint numArgsRGB = combine->_NumArgsRGB;
- const GLuint numArgsA = combine->_NumArgsA;
- float4_array ccolor[4], rgba;
- GLuint i, term;
-
- /* alloc temp pixel buffers */
- rgba = (float4_array) malloc(4 * n * sizeof(GLfloat));
- if (!rgba) {
- _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_combine");
- return;
- }
-
- for (i = 0; i < numArgsRGB || i < numArgsA; i++) {
- ccolor[i] = (float4_array) malloc(4 * n * sizeof(GLfloat));
- if (!ccolor[i]) {
- while (i) {
- free(ccolor[i]);
- i--;
- }
- _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_combine");
- return;
- }
- }
-
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = CHAN_TO_FLOAT(rgbaChan[i][RCOMP]);
- rgba[i][GCOMP] = CHAN_TO_FLOAT(rgbaChan[i][GCOMP]);
- rgba[i][BCOMP] = CHAN_TO_FLOAT(rgbaChan[i][BCOMP]);
- rgba[i][ACOMP] = CHAN_TO_FLOAT(rgbaChan[i][ACOMP]);
- }
-
- /*
- printf("modeRGB 0x%x modeA 0x%x srcRGB1 0x%x srcA1 0x%x srcRGB2 0x%x srcA2 0x%x\n",
- combine->ModeRGB,
- combine->ModeA,
- combine->SourceRGB[0],
- combine->SourceA[0],
- combine->SourceRGB[1],
- combine->SourceA[1]);
- */
-
- /*
- * Do operand setup for up to 4 operands. Loop over the terms.
- */
- for (term = 0; term < numArgsRGB; term++) {
- const GLenum srcRGB = combine->SourceRGB[term];
- const GLenum operandRGB = combine->OperandRGB[term];
-
- switch (srcRGB) {
- case GL_TEXTURE:
- argRGB[term] = get_texel_array(swrast, unit);
- break;
- case GL_PRIMARY_COLOR:
- argRGB[term] = primary_rgba;
- break;
- case GL_PREVIOUS:
- argRGB[term] = rgba;
- break;
- case GL_CONSTANT:
- {
- float4_array c = ccolor[term];
- GLfloat red = textureUnit->EnvColor[0];
- GLfloat green = textureUnit->EnvColor[1];
- GLfloat blue = textureUnit->EnvColor[2];
- GLfloat alpha = textureUnit->EnvColor[3];
- for (i = 0; i < n; i++) {
- ASSIGN_4V(c[i], red, green, blue, alpha);
- }
- argRGB[term] = ccolor[term];
- }
- break;
- /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources.
- */
- case GL_ZERO:
- {
- float4_array c = ccolor[term];
- for (i = 0; i < n; i++) {
- ASSIGN_4V(c[i], 0.0F, 0.0F, 0.0F, 0.0F);
- }
- argRGB[term] = ccolor[term];
- }
- break;
- case GL_ONE:
- {
- float4_array c = ccolor[term];
- for (i = 0; i < n; i++) {
- ASSIGN_4V(c[i], 1.0F, 1.0F, 1.0F, 1.0F);
- }
- argRGB[term] = ccolor[term];
- }
- break;
- default:
- /* ARB_texture_env_crossbar source */
- {
- const GLuint srcUnit = srcRGB - GL_TEXTURE0;
- ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
- if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
- goto end;
- argRGB[term] = get_texel_array(swrast, srcUnit);
- }
- }
-
- if (operandRGB != GL_SRC_COLOR) {
- float4_array src = argRGB[term];
- float4_array dst = ccolor[term];
-
- /* point to new arg[term] storage */
- argRGB[term] = ccolor[term];
-
- switch (operandRGB) {
- case GL_ONE_MINUS_SRC_COLOR:
- for (i = 0; i < n; i++) {
- dst[i][RCOMP] = 1.0F - src[i][RCOMP];
- dst[i][GCOMP] = 1.0F - src[i][GCOMP];
- dst[i][BCOMP] = 1.0F - src[i][BCOMP];
- }
- break;
- case GL_SRC_ALPHA:
- for (i = 0; i < n; i++) {
- dst[i][RCOMP] =
- dst[i][GCOMP] =
- dst[i][BCOMP] = src[i][ACOMP];
- }
- break;
- case GL_ONE_MINUS_SRC_ALPHA:
- for (i = 0; i < n; i++) {
- dst[i][RCOMP] =
- dst[i][GCOMP] =
- dst[i][BCOMP] = 1.0F - src[i][ACOMP];
- }
- break;
- default:
- _mesa_problem(ctx, "Bad operandRGB");
- }
- }
- }
-
- /*
- * Set up the argA[term] pointers
- */
- for (term = 0; term < numArgsA; term++) {
- const GLenum srcA = combine->SourceA[term];
- const GLenum operandA = combine->OperandA[term];
-
- switch (srcA) {
- case GL_TEXTURE:
- argA[term] = get_texel_array(swrast, unit);
- break;
- case GL_PRIMARY_COLOR:
- argA[term] = primary_rgba;
- break;
- case GL_PREVIOUS:
- argA[term] = rgba;
- break;
- case GL_CONSTANT:
- {
- float4_array c = ccolor[term];
- GLfloat alpha = textureUnit->EnvColor[3];
- for (i = 0; i < n; i++)
- c[i][ACOMP] = alpha;
- argA[term] = ccolor[term];
- }
- break;
- /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources.
- */
- case GL_ZERO:
- {
- float4_array c = ccolor[term];
- for (i = 0; i < n; i++)
- c[i][ACOMP] = 0.0F;
- argA[term] = ccolor[term];
- }
- break;
- case GL_ONE:
- {
- float4_array c = ccolor[term];
- for (i = 0; i < n; i++)
- c[i][ACOMP] = 1.0F;
- argA[term] = ccolor[term];
- }
- break;
- default:
- /* ARB_texture_env_crossbar source */
- {
- const GLuint srcUnit = srcA - GL_TEXTURE0;
- ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
- if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
- goto end;
- argA[term] = get_texel_array(swrast, srcUnit);
- }
- }
-
- if (operandA == GL_ONE_MINUS_SRC_ALPHA) {
- float4_array src = argA[term];
- float4_array dst = ccolor[term];
- argA[term] = ccolor[term];
- for (i = 0; i < n; i++) {
- dst[i][ACOMP] = 1.0F - src[i][ACOMP];
- }
- }
- }
-
- /* RGB channel combine */
- {
- float4_array arg0 = argRGB[0];
- float4_array arg1 = argRGB[1];
- float4_array arg2 = argRGB[2];
- float4_array arg3 = argRGB[3];
-
- switch (combine->ModeRGB) {
- case GL_REPLACE:
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = arg0[i][RCOMP] * scaleRGB;
- rgba[i][GCOMP] = arg0[i][GCOMP] * scaleRGB;
- rgba[i][BCOMP] = arg0[i][BCOMP] * scaleRGB;
- }
- break;
- case GL_MODULATE:
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * scaleRGB;
- rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * scaleRGB;
- rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * scaleRGB;
- }
- break;
- case GL_ADD:
- if (textureUnit->EnvMode == GL_COMBINE4_NV) {
- /* (a * b) + (c * d) */
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] +
- arg2[i][RCOMP] * arg3[i][RCOMP]) * scaleRGB;
- rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] +
- arg2[i][GCOMP] * arg3[i][GCOMP]) * scaleRGB;
- rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] +
- arg2[i][BCOMP] * arg3[i][BCOMP]) * scaleRGB;
- }
- }
- else {
- /* 2-term addition */
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * scaleRGB;
- rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * scaleRGB;
- rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * scaleRGB;
- }
- }
- break;
- case GL_ADD_SIGNED:
- if (textureUnit->EnvMode == GL_COMBINE4_NV) {
- /* (a * b) + (c * d) - 0.5 */
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] +
- arg2[i][RCOMP] * arg3[i][RCOMP] - 0.5F) * scaleRGB;
- rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] +
- arg2[i][GCOMP] * arg3[i][GCOMP] - 0.5F) * scaleRGB;
- rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] +
- arg2[i][BCOMP] * arg3[i][BCOMP] - 0.5F) * scaleRGB;
- }
- }
- else {
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5F) * scaleRGB;
- rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5F) * scaleRGB;
- rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5F) * scaleRGB;
- }
- }
- break;
- case GL_INTERPOLATE:
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] +
- arg1[i][RCOMP] * (1.0F - arg2[i][RCOMP])) * scaleRGB;
- rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] +
- arg1[i][GCOMP] * (1.0F - arg2[i][GCOMP])) * scaleRGB;
- rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] +
- arg1[i][BCOMP] * (1.0F - arg2[i][BCOMP])) * scaleRGB;
- }
- break;
- case GL_SUBTRACT:
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * scaleRGB;
- rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * scaleRGB;
- rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * scaleRGB;
- }
- break;
- case GL_DOT3_RGB_EXT:
- case GL_DOT3_RGBA_EXT:
- /* Do not scale the result by 1 2 or 4 */
- for (i = 0; i < n; i++) {
- GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) +
- (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) +
- (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F))
- * 4.0F;
- dot = CLAMP(dot, 0.0F, 1.0F);
- rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot;
- }
- break;
- case GL_DOT3_RGB:
- case GL_DOT3_RGBA:
- /* DO scale the result by 1 2 or 4 */
- for (i = 0; i < n; i++) {
- GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) +
- (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) +
- (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F))
- * 4.0F * scaleRGB;
- dot = CLAMP(dot, 0.0F, 1.0F);
- rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot;
- }
- break;
- case GL_MODULATE_ADD_ATI:
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) +
- arg1[i][RCOMP]) * scaleRGB;
- rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) +
- arg1[i][GCOMP]) * scaleRGB;
- rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) +
- arg1[i][BCOMP]) * scaleRGB;
- }
- break;
- case GL_MODULATE_SIGNED_ADD_ATI:
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) +
- arg1[i][RCOMP] - 0.5F) * scaleRGB;
- rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) +
- arg1[i][GCOMP] - 0.5F) * scaleRGB;
- rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) +
- arg1[i][BCOMP] - 0.5F) * scaleRGB;
- }
- break;
- case GL_MODULATE_SUBTRACT_ATI:
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) -
- arg1[i][RCOMP]) * scaleRGB;
- rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) -
- arg1[i][GCOMP]) * scaleRGB;
- rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) -
- arg1[i][BCOMP]) * scaleRGB;
- }
- break;
- case GL_BUMP_ENVMAP_ATI:
- /* this produces a fixed rgba color, and the coord calc is done elsewhere */
- for (i = 0; i < n; i++) {
- /* rgba result is 0,0,0,1 */
- rgba[i][RCOMP] = 0.0;
- rgba[i][GCOMP] = 0.0;
- rgba[i][BCOMP] = 0.0;
- rgba[i][ACOMP] = 1.0;
- }
- goto end; /* no alpha processing */
- default:
- _mesa_problem(ctx, "invalid combine mode");
- }
- }
-
- /* Alpha channel combine */
- {
- float4_array arg0 = argA[0];
- float4_array arg1 = argA[1];
- float4_array arg2 = argA[2];
- float4_array arg3 = argA[3];
-
- switch (combine->ModeA) {
- case GL_REPLACE:
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = arg0[i][ACOMP] * scaleA;
- }
- break;
- case GL_MODULATE:
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * scaleA;
- }
- break;
- case GL_ADD:
- if (textureUnit->EnvMode == GL_COMBINE4_NV) {
- /* (a * b) + (c * d) */
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] +
- arg2[i][ACOMP] * arg3[i][ACOMP]) * scaleA;
- }
- }
- else {
- /* two-term add */
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * scaleA;
- }
- }
- break;
- case GL_ADD_SIGNED:
- if (textureUnit->EnvMode == GL_COMBINE4_NV) {
- /* (a * b) + (c * d) - 0.5 */
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] +
- arg2[i][ACOMP] * arg3[i][ACOMP] -
- 0.5F) * scaleA;
- }
- }
- else {
- /* a + b - 0.5 */
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * scaleA;
- }
- }
- break;
- case GL_INTERPOLATE:
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = (arg0[i][ACOMP] * arg2[i][ACOMP] +
- arg1[i][ACOMP] * (1.0F - arg2[i][ACOMP]))
- * scaleA;
- }
- break;
- case GL_SUBTRACT:
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * scaleA;
- }
- break;
- case GL_MODULATE_ADD_ATI:
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP])
- + arg1[i][ACOMP]) * scaleA;
- }
- break;
- case GL_MODULATE_SIGNED_ADD_ATI:
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) +
- arg1[i][ACOMP] - 0.5F) * scaleA;
- }
- break;
- case GL_MODULATE_SUBTRACT_ATI:
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP])
- - arg1[i][ACOMP]) * scaleA;
- }
- break;
- default:
- _mesa_problem(ctx, "invalid combine mode");
- }
- }
-
- /* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining.
- * This is kind of a kludge. It would have been better if the spec
- * were written such that the GL_COMBINE_ALPHA value could be set to
- * GL_DOT3.
- */
- if (combine->ModeRGB == GL_DOT3_RGBA_EXT ||
- combine->ModeRGB == GL_DOT3_RGBA) {
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = rgba[i][RCOMP];
- }
- }
-
- for (i = 0; i < n; i++) {
- UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][RCOMP], rgba[i][RCOMP]);
- UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][GCOMP], rgba[i][GCOMP]);
- UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][BCOMP], rgba[i][BCOMP]);
- UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][ACOMP], rgba[i][ACOMP]);
- }
-
-end:
- for (i = 0; i < numArgsRGB || i < numArgsA; i++) {
- free(ccolor[i]);
- }
- free(rgba);
-}
-
-
-/**
- * Apply X/Y/Z/W/0/1 swizzle to an array of colors/texels.
- * See GL_EXT_texture_swizzle.
- */
-static void
-swizzle_texels(GLuint swizzle, GLuint count, float4_array texels)
-{
- const GLuint swzR = GET_SWZ(swizzle, 0);
- const GLuint swzG = GET_SWZ(swizzle, 1);
- const GLuint swzB = GET_SWZ(swizzle, 2);
- const GLuint swzA = GET_SWZ(swizzle, 3);
- GLfloat vector[6];
- GLuint i;
-
- vector[SWIZZLE_ZERO] = 0;
- vector[SWIZZLE_ONE] = 1.0F;
-
- for (i = 0; i < count; i++) {
- vector[SWIZZLE_X] = texels[i][0];
- vector[SWIZZLE_Y] = texels[i][1];
- vector[SWIZZLE_Z] = texels[i][2];
- vector[SWIZZLE_W] = texels[i][3];
- texels[i][RCOMP] = vector[swzR];
- texels[i][GCOMP] = vector[swzG];
- texels[i][BCOMP] = vector[swzB];
- texels[i][ACOMP] = vector[swzA];
- }
-}
-
-
-/**
- * Apply texture mapping to a span of fragments.
- */
-void
-_swrast_texture_span( struct gl_context *ctx, SWspan *span )
-{
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- float4_array primary_rgba;
- GLuint unit;
-
- primary_rgba = (float4_array) malloc(span->end * 4 * sizeof(GLfloat));
-
- if (!primary_rgba) {
- _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_span");
- return;
- }
-
- ASSERT(span->end <= MAX_WIDTH);
-
- /*
- * Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR)
- */
- if (swrast->_TextureCombinePrimary) {
- GLuint i;
- for (i = 0; i < span->end; i++) {
- primary_rgba[i][RCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][RCOMP]);
- primary_rgba[i][GCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][GCOMP]);
- primary_rgba[i][BCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][BCOMP]);
- primary_rgba[i][ACOMP] = CHAN_TO_FLOAT(span->array->rgba[i][ACOMP]);
- }
- }
-
- /* First must sample all bump maps */
- for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
- const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
-
- if (texUnit->_ReallyEnabled &&
- texUnit->_CurrentCombine->ModeRGB == GL_BUMP_ENVMAP_ATI) {
- const GLfloat (*texcoords)[4] = (const GLfloat (*)[4])
- span->array->attribs[FRAG_ATTRIB_TEX0 + unit];
- float4_array targetcoords =
- span->array->attribs[FRAG_ATTRIB_TEX0 +
- ctx->Texture.Unit[unit].BumpTarget - GL_TEXTURE0];
-
- const struct gl_texture_object *curObj = texUnit->_Current;
- GLfloat *lambda = span->array->lambda[unit];
- float4_array texels = get_texel_array(swrast, unit);
- GLuint i;
- GLfloat rotMatrix00 = ctx->Texture.Unit[unit].RotMatrix[0];
- GLfloat rotMatrix01 = ctx->Texture.Unit[unit].RotMatrix[1];
- GLfloat rotMatrix10 = ctx->Texture.Unit[unit].RotMatrix[2];
- GLfloat rotMatrix11 = ctx->Texture.Unit[unit].RotMatrix[3];
-
- /* adjust texture lod (lambda) */
- if (span->arrayMask & SPAN_LAMBDA) {
- if (texUnit->LodBias + curObj->LodBias != 0.0F) {
- /* apply LOD bias, but don't clamp yet */
- const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias,
- -ctx->Const.MaxTextureLodBias,
- ctx->Const.MaxTextureLodBias);
- GLuint i;
- for (i = 0; i < span->end; i++) {
- lambda[i] += bias;
- }
- }
-
- if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) {
- /* apply LOD clamping to lambda */
- const GLfloat min = curObj->MinLod;
- const GLfloat max = curObj->MaxLod;
- GLuint i;
- for (i = 0; i < span->end; i++) {
- GLfloat l = lambda[i];
- lambda[i] = CLAMP(l, min, max);
- }
- }
- }
-
- /* Sample the texture (span->end = number of fragments) */
- swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end,
- texcoords, lambda, texels );
-
- /* manipulate the span values of the bump target
- not sure this can work correctly even ignoring
- the problem that channel is unsigned */
- for (i = 0; i < span->end; i++) {
- targetcoords[i][0] += (texels[i][0] * rotMatrix00 + texels[i][1] *
- rotMatrix01) / targetcoords[i][3];
- targetcoords[i][1] += (texels[i][0] * rotMatrix10 + texels[i][1] *
- rotMatrix11) / targetcoords[i][3];
- }
- }
- }
-
- /*
- * Must do all texture sampling before combining in order to
- * accomodate GL_ARB_texture_env_crossbar.
- */
- for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
- const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
- if (texUnit->_ReallyEnabled &&
- texUnit->_CurrentCombine->ModeRGB != GL_BUMP_ENVMAP_ATI) {
- const GLfloat (*texcoords)[4] = (const GLfloat (*)[4])
- span->array->attribs[FRAG_ATTRIB_TEX0 + unit];
- const struct gl_texture_object *curObj = texUnit->_Current;
- GLfloat *lambda = span->array->lambda[unit];
- float4_array texels = get_texel_array(swrast, unit);
-
- /* adjust texture lod (lambda) */
- if (span->arrayMask & SPAN_LAMBDA) {
- if (texUnit->LodBias + curObj->LodBias != 0.0F) {
- /* apply LOD bias, but don't clamp yet */
- const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias,
- -ctx->Const.MaxTextureLodBias,
- ctx->Const.MaxTextureLodBias);
- GLuint i;
- for (i = 0; i < span->end; i++) {
- lambda[i] += bias;
- }
- }
-
- if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) {
- /* apply LOD clamping to lambda */
- const GLfloat min = curObj->MinLod;
- const GLfloat max = curObj->MaxLod;
- GLuint i;
- for (i = 0; i < span->end; i++) {
- GLfloat l = lambda[i];
- lambda[i] = CLAMP(l, min, max);
- }
- }
- }
-
- /* Sample the texture (span->end = number of fragments) */
- swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end,
- texcoords, lambda, texels );
-
- /* GL_EXT_texture_swizzle */
- if (curObj->_Swizzle != SWIZZLE_NOOP) {
- swizzle_texels(curObj->_Swizzle, span->end, texels);
- }
- }
- }
-
- /*
- * OK, now apply the texture (aka texture combine/blend).
- * We modify the span->color.rgba values.
- */
- for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
- if (ctx->Texture.Unit[unit]._ReallyEnabled) {
- texture_combine( ctx, unit, span->end,
- primary_rgba,
- swrast->TexelBuffer,
- span->array->rgba );
- }
- }
-
- free(primary_rgba);
-}
+/*
+ * Mesa 3-D graphics library
+ * Version: 7.5
+ *
+ * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
+ * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+#include "main/glheader.h"
+#include "main/context.h"
+#include "main/colormac.h"
+#include "main/imports.h"
+#include "main/pixeltransfer.h"
+#include "program/prog_instruction.h"
+
+#include "s_context.h"
+#include "s_texcombine.h"
+
+
+/**
+ * Pointer to array of float[4]
+ * This type makes the code below more concise and avoids a lot of casting.
+ */
+typedef float (*float4_array)[4];
+
+
+/**
+ * Return array of texels for given unit.
+ */
+static INLINE float4_array
+get_texel_array(SWcontext *swrast, GLuint unit)
+{
+ return (float4_array) (swrast->TexelBuffer + unit * MAX_WIDTH * 4);
+}
+
+
+
+/**
+ * Do texture application for:
+ * GL_EXT_texture_env_combine
+ * GL_ARB_texture_env_combine
+ * GL_EXT_texture_env_dot3
+ * GL_ARB_texture_env_dot3
+ * GL_ATI_texture_env_combine3
+ * GL_NV_texture_env_combine4
+ * conventional GL texture env modes
+ *
+ * \param ctx rendering context
+ * \param unit the texture combiner unit
+ * \param n number of fragments to process (span width)
+ * \param primary_rgba incoming fragment color array
+ * \param texelBuffer pointer to texel colors for all texture units
+ *
+ * \param rgba incoming/result fragment colors
+ */
+static void
+texture_combine( struct gl_context *ctx, GLuint unit, GLuint n,
+ const float4_array primary_rgba,
+ const GLfloat *texelBuffer,
+ GLchan (*rgbaChan)[4] )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]);
+ const struct gl_tex_env_combine_state *combine = textureUnit->_CurrentCombine;
+ float4_array argRGB[MAX_COMBINER_TERMS];
+ float4_array argA[MAX_COMBINER_TERMS];
+ const GLfloat scaleRGB = (GLfloat) (1 << combine->ScaleShiftRGB);
+ const GLfloat scaleA = (GLfloat) (1 << combine->ScaleShiftA);
+ const GLuint numArgsRGB = combine->_NumArgsRGB;
+ const GLuint numArgsA = combine->_NumArgsA;
+ float4_array ccolor[4], rgba;
+ GLuint i, term;
+
+ /* alloc temp pixel buffers */
+ rgba = (float4_array) malloc(4 * n * sizeof(GLfloat));
+ if (!rgba) {
+ _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_combine");
+ return;
+ }
+
+ for (i = 0; i < numArgsRGB || i < numArgsA; i++) {
+ ccolor[i] = (float4_array) malloc(4 * n * sizeof(GLfloat));
+ if (!ccolor[i]) {
+ while (i) {
+ free(ccolor[i]);
+ i--;
+ }
+ _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_combine");
+ return;
+ }
+ }
+
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = CHAN_TO_FLOAT(rgbaChan[i][RCOMP]);
+ rgba[i][GCOMP] = CHAN_TO_FLOAT(rgbaChan[i][GCOMP]);
+ rgba[i][BCOMP] = CHAN_TO_FLOAT(rgbaChan[i][BCOMP]);
+ rgba[i][ACOMP] = CHAN_TO_FLOAT(rgbaChan[i][ACOMP]);
+ }
+
+ /*
+ printf("modeRGB 0x%x modeA 0x%x srcRGB1 0x%x srcA1 0x%x srcRGB2 0x%x srcA2 0x%x\n",
+ combine->ModeRGB,
+ combine->ModeA,
+ combine->SourceRGB[0],
+ combine->SourceA[0],
+ combine->SourceRGB[1],
+ combine->SourceA[1]);
+ */
+
+ /*
+ * Do operand setup for up to 4 operands. Loop over the terms.
+ */
+ for (term = 0; term < numArgsRGB; term++) {
+ const GLenum srcRGB = combine->SourceRGB[term];
+ const GLenum operandRGB = combine->OperandRGB[term];
+
+ switch (srcRGB) {
+ case GL_TEXTURE:
+ argRGB[term] = get_texel_array(swrast, unit);
+ break;
+ case GL_PRIMARY_COLOR:
+ argRGB[term] = primary_rgba;
+ break;
+ case GL_PREVIOUS:
+ argRGB[term] = rgba;
+ break;
+ case GL_CONSTANT:
+ {
+ float4_array c = ccolor[term];
+ GLfloat red = textureUnit->EnvColor[0];
+ GLfloat green = textureUnit->EnvColor[1];
+ GLfloat blue = textureUnit->EnvColor[2];
+ GLfloat alpha = textureUnit->EnvColor[3];
+ for (i = 0; i < n; i++) {
+ ASSIGN_4V(c[i], red, green, blue, alpha);
+ }
+ argRGB[term] = ccolor[term];
+ }
+ break;
+ /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources.
+ */
+ case GL_ZERO:
+ {
+ float4_array c = ccolor[term];
+ for (i = 0; i < n; i++) {
+ ASSIGN_4V(c[i], 0.0F, 0.0F, 0.0F, 0.0F);
+ }
+ argRGB[term] = ccolor[term];
+ }
+ break;
+ case GL_ONE:
+ {
+ float4_array c = ccolor[term];
+ for (i = 0; i < n; i++) {
+ ASSIGN_4V(c[i], 1.0F, 1.0F, 1.0F, 1.0F);
+ }
+ argRGB[term] = ccolor[term];
+ }
+ break;
+ default:
+ /* ARB_texture_env_crossbar source */
+ {
+ const GLuint srcUnit = srcRGB - GL_TEXTURE0;
+ ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
+ if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
+ goto end;
+ argRGB[term] = get_texel_array(swrast, srcUnit);
+ }
+ }
+
+ if (operandRGB != GL_SRC_COLOR) {
+ float4_array src = argRGB[term];
+ float4_array dst = ccolor[term];
+
+ /* point to new arg[term] storage */
+ argRGB[term] = ccolor[term];
+
+ switch (operandRGB) {
+ case GL_ONE_MINUS_SRC_COLOR:
+ for (i = 0; i < n; i++) {
+ dst[i][RCOMP] = 1.0F - src[i][RCOMP];
+ dst[i][GCOMP] = 1.0F - src[i][GCOMP];
+ dst[i][BCOMP] = 1.0F - src[i][BCOMP];
+ }
+ break;
+ case GL_SRC_ALPHA:
+ for (i = 0; i < n; i++) {
+ dst[i][RCOMP] =
+ dst[i][GCOMP] =
+ dst[i][BCOMP] = src[i][ACOMP];
+ }
+ break;
+ case GL_ONE_MINUS_SRC_ALPHA:
+ for (i = 0; i < n; i++) {
+ dst[i][RCOMP] =
+ dst[i][GCOMP] =
+ dst[i][BCOMP] = 1.0F - src[i][ACOMP];
+ }
+ break;
+ default:
+ _mesa_problem(ctx, "Bad operandRGB");
+ }
+ }
+ }
+
+ /*
+ * Set up the argA[term] pointers
+ */
+ for (term = 0; term < numArgsA; term++) {
+ const GLenum srcA = combine->SourceA[term];
+ const GLenum operandA = combine->OperandA[term];
+
+ switch (srcA) {
+ case GL_TEXTURE:
+ argA[term] = get_texel_array(swrast, unit);
+ break;
+ case GL_PRIMARY_COLOR:
+ argA[term] = primary_rgba;
+ break;
+ case GL_PREVIOUS:
+ argA[term] = rgba;
+ break;
+ case GL_CONSTANT:
+ {
+ float4_array c = ccolor[term];
+ GLfloat alpha = textureUnit->EnvColor[3];
+ for (i = 0; i < n; i++)
+ c[i][ACOMP] = alpha;
+ argA[term] = ccolor[term];
+ }
+ break;
+ /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources.
+ */
+ case GL_ZERO:
+ {
+ float4_array c = ccolor[term];
+ for (i = 0; i < n; i++)
+ c[i][ACOMP] = 0.0F;
+ argA[term] = ccolor[term];
+ }
+ break;
+ case GL_ONE:
+ {
+ float4_array c = ccolor[term];
+ for (i = 0; i < n; i++)
+ c[i][ACOMP] = 1.0F;
+ argA[term] = ccolor[term];
+ }
+ break;
+ default:
+ /* ARB_texture_env_crossbar source */
+ {
+ const GLuint srcUnit = srcA - GL_TEXTURE0;
+ ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
+ if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
+ goto end;
+ argA[term] = get_texel_array(swrast, srcUnit);
+ }
+ }
+
+ if (operandA == GL_ONE_MINUS_SRC_ALPHA) {
+ float4_array src = argA[term];
+ float4_array dst = ccolor[term];
+ argA[term] = ccolor[term];
+ for (i = 0; i < n; i++) {
+ dst[i][ACOMP] = 1.0F - src[i][ACOMP];
+ }
+ }
+ }
+
+ /* RGB channel combine */
+ {
+ float4_array arg0 = argRGB[0];
+ float4_array arg1 = argRGB[1];
+ float4_array arg2 = argRGB[2];
+ float4_array arg3 = argRGB[3];
+
+ switch (combine->ModeRGB) {
+ case GL_REPLACE:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = arg0[i][RCOMP] * scaleRGB;
+ rgba[i][GCOMP] = arg0[i][GCOMP] * scaleRGB;
+ rgba[i][BCOMP] = arg0[i][BCOMP] * scaleRGB;
+ }
+ break;
+ case GL_MODULATE:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * scaleRGB;
+ rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * scaleRGB;
+ rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * scaleRGB;
+ }
+ break;
+ case GL_ADD:
+ if (textureUnit->EnvMode == GL_COMBINE4_NV) {
+ /* (a * b) + (c * d) */
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] +
+ arg2[i][RCOMP] * arg3[i][RCOMP]) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] +
+ arg2[i][GCOMP] * arg3[i][GCOMP]) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] +
+ arg2[i][BCOMP] * arg3[i][BCOMP]) * scaleRGB;
+ }
+ }
+ else {
+ /* 2-term addition */
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * scaleRGB;
+ }
+ }
+ break;
+ case GL_ADD_SIGNED:
+ if (textureUnit->EnvMode == GL_COMBINE4_NV) {
+ /* (a * b) + (c * d) - 0.5 */
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] +
+ arg2[i][RCOMP] * arg3[i][RCOMP] - 0.5F) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] +
+ arg2[i][GCOMP] * arg3[i][GCOMP] - 0.5F) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] +
+ arg2[i][BCOMP] * arg3[i][BCOMP] - 0.5F) * scaleRGB;
+ }
+ }
+ else {
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5F) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5F) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5F) * scaleRGB;
+ }
+ }
+ break;
+ case GL_INTERPOLATE:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] +
+ arg1[i][RCOMP] * (1.0F - arg2[i][RCOMP])) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] +
+ arg1[i][GCOMP] * (1.0F - arg2[i][GCOMP])) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] +
+ arg1[i][BCOMP] * (1.0F - arg2[i][BCOMP])) * scaleRGB;
+ }
+ break;
+ case GL_SUBTRACT:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * scaleRGB;
+ rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * scaleRGB;
+ rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * scaleRGB;
+ }
+ break;
+ case GL_DOT3_RGB_EXT:
+ case GL_DOT3_RGBA_EXT:
+ /* Do not scale the result by 1 2 or 4 */
+ for (i = 0; i < n; i++) {
+ GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) +
+ (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) +
+ (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F))
+ * 4.0F;
+ dot = CLAMP(dot, 0.0F, 1.0F);
+ rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot;
+ }
+ break;
+ case GL_DOT3_RGB:
+ case GL_DOT3_RGBA:
+ /* DO scale the result by 1 2 or 4 */
+ for (i = 0; i < n; i++) {
+ GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) +
+ (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) +
+ (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F))
+ * 4.0F * scaleRGB;
+ dot = CLAMP(dot, 0.0F, 1.0F);
+ rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot;
+ }
+ break;
+ case GL_MODULATE_ADD_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) +
+ arg1[i][RCOMP]) * scaleRGB;
+ rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) +
+ arg1[i][GCOMP]) * scaleRGB;
+ rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) +
+ arg1[i][BCOMP]) * scaleRGB;
+ }
+ break;
+ case GL_MODULATE_SIGNED_ADD_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) +
+ arg1[i][RCOMP] - 0.5F) * scaleRGB;
+ rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) +
+ arg1[i][GCOMP] - 0.5F) * scaleRGB;
+ rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) +
+ arg1[i][BCOMP] - 0.5F) * scaleRGB;
+ }
+ break;
+ case GL_MODULATE_SUBTRACT_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) -
+ arg1[i][RCOMP]) * scaleRGB;
+ rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) -
+ arg1[i][GCOMP]) * scaleRGB;
+ rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) -
+ arg1[i][BCOMP]) * scaleRGB;
+ }
+ break;
+ case GL_BUMP_ENVMAP_ATI:
+ /* this produces a fixed rgba color, and the coord calc is done elsewhere */
+ for (i = 0; i < n; i++) {
+ /* rgba result is 0,0,0,1 */
+ rgba[i][RCOMP] = 0.0;
+ rgba[i][GCOMP] = 0.0;
+ rgba[i][BCOMP] = 0.0;
+ rgba[i][ACOMP] = 1.0;
+ }
+ goto end; /* no alpha processing */
+ default:
+ _mesa_problem(ctx, "invalid combine mode");
+ }
+ }
+
+ /* Alpha channel combine */
+ {
+ float4_array arg0 = argA[0];
+ float4_array arg1 = argA[1];
+ float4_array arg2 = argA[2];
+ float4_array arg3 = argA[3];
+
+ switch (combine->ModeA) {
+ case GL_REPLACE:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = arg0[i][ACOMP] * scaleA;
+ }
+ break;
+ case GL_MODULATE:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * scaleA;
+ }
+ break;
+ case GL_ADD:
+ if (textureUnit->EnvMode == GL_COMBINE4_NV) {
+ /* (a * b) + (c * d) */
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] +
+ arg2[i][ACOMP] * arg3[i][ACOMP]) * scaleA;
+ }
+ }
+ else {
+ /* two-term add */
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * scaleA;
+ }
+ }
+ break;
+ case GL_ADD_SIGNED:
+ if (textureUnit->EnvMode == GL_COMBINE4_NV) {
+ /* (a * b) + (c * d) - 0.5 */
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] +
+ arg2[i][ACOMP] * arg3[i][ACOMP] -
+ 0.5F) * scaleA;
+ }
+ }
+ else {
+ /* a + b - 0.5 */
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * scaleA;
+ }
+ }
+ break;
+ case GL_INTERPOLATE:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] * arg2[i][ACOMP] +
+ arg1[i][ACOMP] * (1.0F - arg2[i][ACOMP]))
+ * scaleA;
+ }
+ break;
+ case GL_SUBTRACT:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * scaleA;
+ }
+ break;
+ case GL_MODULATE_ADD_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP])
+ + arg1[i][ACOMP]) * scaleA;
+ }
+ break;
+ case GL_MODULATE_SIGNED_ADD_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) +
+ arg1[i][ACOMP] - 0.5F) * scaleA;
+ }
+ break;
+ case GL_MODULATE_SUBTRACT_ATI:
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP])
+ - arg1[i][ACOMP]) * scaleA;
+ }
+ break;
+ default:
+ _mesa_problem(ctx, "invalid combine mode");
+ }
+ }
+
+ /* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining.
+ * This is kind of a kludge. It would have been better if the spec
+ * were written such that the GL_COMBINE_ALPHA value could be set to
+ * GL_DOT3.
+ */
+ if (combine->ModeRGB == GL_DOT3_RGBA_EXT ||
+ combine->ModeRGB == GL_DOT3_RGBA) {
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = rgba[i][RCOMP];
+ }
+ }
+
+ for (i = 0; i < n; i++) {
+ UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][RCOMP], rgba[i][RCOMP]);
+ UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][GCOMP], rgba[i][GCOMP]);
+ UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][BCOMP], rgba[i][BCOMP]);
+ UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][ACOMP], rgba[i][ACOMP]);
+ }
+
+end:
+ for (i = 0; i < numArgsRGB || i < numArgsA; i++) {
+ free(ccolor[i]);
+ }
+ free(rgba);
+}
+
+
+/**
+ * Apply X/Y/Z/W/0/1 swizzle to an array of colors/texels.
+ * See GL_EXT_texture_swizzle.
+ */
+static void
+swizzle_texels(GLuint swizzle, GLuint count, float4_array texels)
+{
+ const GLuint swzR = GET_SWZ(swizzle, 0);
+ const GLuint swzG = GET_SWZ(swizzle, 1);
+ const GLuint swzB = GET_SWZ(swizzle, 2);
+ const GLuint swzA = GET_SWZ(swizzle, 3);
+ GLfloat vector[6];
+ GLuint i;
+
+ vector[SWIZZLE_ZERO] = 0;
+ vector[SWIZZLE_ONE] = 1.0F;
+
+ for (i = 0; i < count; i++) {
+ vector[SWIZZLE_X] = texels[i][0];
+ vector[SWIZZLE_Y] = texels[i][1];
+ vector[SWIZZLE_Z] = texels[i][2];
+ vector[SWIZZLE_W] = texels[i][3];
+ texels[i][RCOMP] = vector[swzR];
+ texels[i][GCOMP] = vector[swzG];
+ texels[i][BCOMP] = vector[swzB];
+ texels[i][ACOMP] = vector[swzA];
+ }
+}
+
+
+/**
+ * Apply texture mapping to a span of fragments.
+ */
+void
+_swrast_texture_span( struct gl_context *ctx, SWspan *span )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ float4_array primary_rgba;
+ GLuint unit;
+
+ primary_rgba = (float4_array) malloc(span->end * 4 * sizeof(GLfloat));
+
+ if (!primary_rgba) {
+ _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_span");
+ return;
+ }
+
+ ASSERT(span->end <= MAX_WIDTH);
+
+ /*
+ * Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR)
+ */
+ if (swrast->_TextureCombinePrimary) {
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ primary_rgba[i][RCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][RCOMP]);
+ primary_rgba[i][GCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][GCOMP]);
+ primary_rgba[i][BCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][BCOMP]);
+ primary_rgba[i][ACOMP] = CHAN_TO_FLOAT(span->array->rgba[i][ACOMP]);
+ }
+ }
+
+ /* First must sample all bump maps */
+ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
+ const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
+
+ if (texUnit->_ReallyEnabled &&
+ texUnit->_CurrentCombine->ModeRGB == GL_BUMP_ENVMAP_ATI) {
+ const GLfloat (*texcoords)[4] = (const GLfloat (*)[4])
+ span->array->attribs[FRAG_ATTRIB_TEX0 + unit];
+ float4_array targetcoords =
+ span->array->attribs[FRAG_ATTRIB_TEX0 +
+ ctx->Texture.Unit[unit].BumpTarget - GL_TEXTURE0];
+
+ const struct gl_texture_object *curObj = texUnit->_Current;
+ GLfloat *lambda = span->array->lambda[unit];
+ float4_array texels = get_texel_array(swrast, unit);
+ GLuint i;
+ GLfloat rotMatrix00 = ctx->Texture.Unit[unit].RotMatrix[0];
+ GLfloat rotMatrix01 = ctx->Texture.Unit[unit].RotMatrix[1];
+ GLfloat rotMatrix10 = ctx->Texture.Unit[unit].RotMatrix[2];
+ GLfloat rotMatrix11 = ctx->Texture.Unit[unit].RotMatrix[3];
+
+ /* adjust texture lod (lambda) */
+ if (span->arrayMask & SPAN_LAMBDA) {
+ if (texUnit->LodBias + curObj->LodBias != 0.0F) {
+ /* apply LOD bias, but don't clamp yet */
+ const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias,
+ -ctx->Const.MaxTextureLodBias,
+ ctx->Const.MaxTextureLodBias);
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ lambda[i] += bias;
+ }
+ }
+
+ if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) {
+ /* apply LOD clamping to lambda */
+ const GLfloat min = curObj->MinLod;
+ const GLfloat max = curObj->MaxLod;
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ GLfloat l = lambda[i];
+ lambda[i] = CLAMP(l, min, max);
+ }
+ }
+ }
+
+ /* Sample the texture (span->end = number of fragments) */
+ swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end,
+ texcoords, lambda, texels );
+
+ /* manipulate the span values of the bump target
+ not sure this can work correctly even ignoring
+ the problem that channel is unsigned */
+ for (i = 0; i < span->end; i++) {
+ targetcoords[i][0] += (texels[i][0] * rotMatrix00 + texels[i][1] *
+ rotMatrix01) / targetcoords[i][3];
+ targetcoords[i][1] += (texels[i][0] * rotMatrix10 + texels[i][1] *
+ rotMatrix11) / targetcoords[i][3];
+ }
+ }
+ }
+
+ /*
+ * Must do all texture sampling before combining in order to
+ * accomodate GL_ARB_texture_env_crossbar.
+ */
+ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
+ const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
+ if (texUnit->_ReallyEnabled &&
+ texUnit->_CurrentCombine->ModeRGB != GL_BUMP_ENVMAP_ATI) {
+ const GLfloat (*texcoords)[4] = (const GLfloat (*)[4])
+ span->array->attribs[FRAG_ATTRIB_TEX0 + unit];
+ const struct gl_texture_object *curObj = texUnit->_Current;
+ GLfloat *lambda = span->array->lambda[unit];
+ float4_array texels = get_texel_array(swrast, unit);
+
+ /* adjust texture lod (lambda) */
+ if (span->arrayMask & SPAN_LAMBDA) {
+ if (texUnit->LodBias + curObj->LodBias != 0.0F) {
+ /* apply LOD bias, but don't clamp yet */
+ const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias,
+ -ctx->Const.MaxTextureLodBias,
+ ctx->Const.MaxTextureLodBias);
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ lambda[i] += bias;
+ }
+ }
+
+ if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) {
+ /* apply LOD clamping to lambda */
+ const GLfloat min = curObj->MinLod;
+ const GLfloat max = curObj->MaxLod;
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ GLfloat l = lambda[i];
+ lambda[i] = CLAMP(l, min, max);
+ }
+ }
+ }
+
+ /* Sample the texture (span->end = number of fragments) */
+ swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end,
+ texcoords, lambda, texels );
+
+ /* GL_EXT_texture_swizzle */
+ if (curObj->_Swizzle != SWIZZLE_NOOP) {
+ swizzle_texels(curObj->_Swizzle, span->end, texels);
+ }
+ }
+ }
+
+ /*
+ * OK, now apply the texture (aka texture combine/blend).
+ * We modify the span->color.rgba values.
+ */
+ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
+ if (ctx->Texture.Unit[unit]._ReallyEnabled) {
+ texture_combine( ctx, unit, span->end,
+ primary_rgba,
+ swrast->TexelBuffer,
+ span->array->rgba );
+ }
+ }
+
+ free(primary_rgba);
+}
diff --git a/mesalib/src/mesa/swrast/s_texfilter.c b/mesalib/src/mesa/swrast/s_texfilter.c
index 42785400c..1d2b635e7 100644
--- a/mesalib/src/mesa/swrast/s_texfilter.c
+++ b/mesalib/src/mesa/swrast/s_texfilter.c
@@ -1,3314 +1,3314 @@
-/*
- * Mesa 3-D graphics library
- * Version: 7.3
- *
- * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-
-#include "main/glheader.h"
-#include "main/context.h"
-#include "main/colormac.h"
-#include "main/imports.h"
-
-#include "s_context.h"
-#include "s_texfilter.h"
-
-
-/*
- * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes
- * see 1-pixel bands of improperly weighted linear-filtered textures.
- * The tests/texwrap.c demo is a good test.
- * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0.
- * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x).
- */
-#define FRAC(f) ((f) - IFLOOR(f))
-
-
-
-/**
- * Linear interpolation macro
- */
-#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) )
-
-
-/**
- * Do 2D/biliner interpolation of float values.
- * v00, v10, v01 and v11 are typically four texture samples in a square/box.
- * a and b are the horizontal and vertical interpolants.
- * It's important that this function is inlined when compiled with
- * optimization! If we find that's not true on some systems, convert
- * to a macro.
- */
-static INLINE GLfloat
-lerp_2d(GLfloat a, GLfloat b,
- GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11)
-{
- const GLfloat temp0 = LERP(a, v00, v10);
- const GLfloat temp1 = LERP(a, v01, v11);
- return LERP(b, temp0, temp1);
-}
-
-
-/**
- * Do 3D/trilinear interpolation of float values.
- * \sa lerp_2d
- */
-static INLINE GLfloat
-lerp_3d(GLfloat a, GLfloat b, GLfloat c,
- GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110,
- GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111)
-{
- const GLfloat temp00 = LERP(a, v000, v100);
- const GLfloat temp10 = LERP(a, v010, v110);
- const GLfloat temp01 = LERP(a, v001, v101);
- const GLfloat temp11 = LERP(a, v011, v111);
- const GLfloat temp0 = LERP(b, temp00, temp10);
- const GLfloat temp1 = LERP(b, temp01, temp11);
- return LERP(c, temp0, temp1);
-}
-
-
-/**
- * Do linear interpolation of colors.
- */
-static INLINE void
-lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4])
-{
- result[0] = LERP(t, a[0], b[0]);
- result[1] = LERP(t, a[1], b[1]);
- result[2] = LERP(t, a[2], b[2]);
- result[3] = LERP(t, a[3], b[3]);
-}
-
-
-/**
- * Do bilinear interpolation of colors.
- */
-static INLINE void
-lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b,
- const GLfloat t00[4], const GLfloat t10[4],
- const GLfloat t01[4], const GLfloat t11[4])
-{
- result[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]);
- result[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]);
- result[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]);
- result[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]);
-}
-
-
-/**
- * Do trilinear interpolation of colors.
- */
-static INLINE void
-lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c,
- const GLfloat t000[4], const GLfloat t100[4],
- const GLfloat t010[4], const GLfloat t110[4],
- const GLfloat t001[4], const GLfloat t101[4],
- const GLfloat t011[4], const GLfloat t111[4])
-{
- GLuint k;
- /* compiler should unroll these short loops */
- for (k = 0; k < 4; k++) {
- result[k] = lerp_3d(a, b, c, t000[k], t100[k], t010[k], t110[k],
- t001[k], t101[k], t011[k], t111[k]);
- }
-}
-
-
-/**
- * Used for GL_REPEAT wrap mode. Using A % B doesn't produce the
- * right results for A<0. Casting to A to be unsigned only works if B
- * is a power of two. Adding a bias to A (which is a multiple of B)
- * avoids the problems with A < 0 (for reasonable A) without using a
- * conditional.
- */
-#define REMAINDER(A, B) (((A) + (B) * 1024) % (B))
-
-
-/**
- * Used to compute texel locations for linear sampling.
- * Input:
- * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER
- * s = texcoord in [0,1]
- * size = width (or height or depth) of texture
- * Output:
- * i0, i1 = returns two nearest texel indexes
- * weight = returns blend factor between texels
- */
-static INLINE void
-linear_texel_locations(GLenum wrapMode,
- const struct gl_texture_image *img,
- GLint size, GLfloat s,
- GLint *i0, GLint *i1, GLfloat *weight)
-{
- GLfloat u;
- switch (wrapMode) {
- case GL_REPEAT:
- u = s * size - 0.5F;
- if (img->_IsPowerOfTwo) {
- *i0 = IFLOOR(u) & (size - 1);
- *i1 = (*i0 + 1) & (size - 1);
- }
- else {
- *i0 = REMAINDER(IFLOOR(u), size);
- *i1 = REMAINDER(*i0 + 1, size);
- }
- break;
- case GL_CLAMP_TO_EDGE:
- if (s <= 0.0F)
- u = 0.0F;
- else if (s >= 1.0F)
- u = (GLfloat) size;
- else
- u = s * size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- if (*i0 < 0)
- *i0 = 0;
- if (*i1 >= (GLint) size)
- *i1 = size - 1;
- break;
- case GL_CLAMP_TO_BORDER:
- {
- const GLfloat min = -1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- if (s <= min)
- u = min * size;
- else if (s >= max)
- u = max * size;
- else
- u = s * size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- }
- break;
- case GL_MIRRORED_REPEAT:
- {
- const GLint flr = IFLOOR(s);
- if (flr & 1)
- u = 1.0F - (s - (GLfloat) flr);
- else
- u = s - (GLfloat) flr;
- u = (u * size) - 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- if (*i0 < 0)
- *i0 = 0;
- if (*i1 >= (GLint) size)
- *i1 = size - 1;
- }
- break;
- case GL_MIRROR_CLAMP_EXT:
- u = FABSF(s);
- if (u >= 1.0F)
- u = (GLfloat) size;
- else
- u *= size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- break;
- case GL_MIRROR_CLAMP_TO_EDGE_EXT:
- u = FABSF(s);
- if (u >= 1.0F)
- u = (GLfloat) size;
- else
- u *= size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- if (*i0 < 0)
- *i0 = 0;
- if (*i1 >= (GLint) size)
- *i1 = size - 1;
- break;
- case GL_MIRROR_CLAMP_TO_BORDER_EXT:
- {
- const GLfloat min = -1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- u = FABSF(s);
- if (u <= min)
- u = min * size;
- else if (u >= max)
- u = max * size;
- else
- u *= size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- }
- break;
- case GL_CLAMP:
- if (s <= 0.0F)
- u = 0.0F;
- else if (s >= 1.0F)
- u = (GLfloat) size;
- else
- u = s * size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- break;
- default:
- _mesa_problem(NULL, "Bad wrap mode");
- u = 0.0F;
- }
- *weight = FRAC(u);
-}
-
-
-/**
- * Used to compute texel location for nearest sampling.
- */
-static INLINE GLint
-nearest_texel_location(GLenum wrapMode,
- const struct gl_texture_image *img,
- GLint size, GLfloat s)
-{
- GLint i;
-
- switch (wrapMode) {
- case GL_REPEAT:
- /* s limited to [0,1) */
- /* i limited to [0,size-1] */
- i = IFLOOR(s * size);
- if (img->_IsPowerOfTwo)
- i &= (size - 1);
- else
- i = REMAINDER(i, size);
- return i;
- case GL_CLAMP_TO_EDGE:
- {
- /* s limited to [min,max] */
- /* i limited to [0, size-1] */
- const GLfloat min = 1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- if (s < min)
- i = 0;
- else if (s > max)
- i = size - 1;
- else
- i = IFLOOR(s * size);
- }
- return i;
- case GL_CLAMP_TO_BORDER:
- {
- /* s limited to [min,max] */
- /* i limited to [-1, size] */
- const GLfloat min = -1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- if (s <= min)
- i = -1;
- else if (s >= max)
- i = size;
- else
- i = IFLOOR(s * size);
- }
- return i;
- case GL_MIRRORED_REPEAT:
- {
- const GLfloat min = 1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- const GLint flr = IFLOOR(s);
- GLfloat u;
- if (flr & 1)
- u = 1.0F - (s - (GLfloat) flr);
- else
- u = s - (GLfloat) flr;
- if (u < min)
- i = 0;
- else if (u > max)
- i = size - 1;
- else
- i = IFLOOR(u * size);
- }
- return i;
- case GL_MIRROR_CLAMP_EXT:
- {
- /* s limited to [0,1] */
- /* i limited to [0,size-1] */
- const GLfloat u = FABSF(s);
- if (u <= 0.0F)
- i = 0;
- else if (u >= 1.0F)
- i = size - 1;
- else
- i = IFLOOR(u * size);
- }
- return i;
- case GL_MIRROR_CLAMP_TO_EDGE_EXT:
- {
- /* s limited to [min,max] */
- /* i limited to [0, size-1] */
- const GLfloat min = 1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- const GLfloat u = FABSF(s);
- if (u < min)
- i = 0;
- else if (u > max)
- i = size - 1;
- else
- i = IFLOOR(u * size);
- }
- return i;
- case GL_MIRROR_CLAMP_TO_BORDER_EXT:
- {
- /* s limited to [min,max] */
- /* i limited to [0, size-1] */
- const GLfloat min = -1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- const GLfloat u = FABSF(s);
- if (u < min)
- i = -1;
- else if (u > max)
- i = size;
- else
- i = IFLOOR(u * size);
- }
- return i;
- case GL_CLAMP:
- /* s limited to [0,1] */
- /* i limited to [0,size-1] */
- if (s <= 0.0F)
- i = 0;
- else if (s >= 1.0F)
- i = size - 1;
- else
- i = IFLOOR(s * size);
- return i;
- default:
- _mesa_problem(NULL, "Bad wrap mode");
- return 0;
- }
-}
-
-
-/* Power of two image sizes only */
-static INLINE void
-linear_repeat_texel_location(GLuint size, GLfloat s,
- GLint *i0, GLint *i1, GLfloat *weight)
-{
- GLfloat u = s * size - 0.5F;
- *i0 = IFLOOR(u) & (size - 1);
- *i1 = (*i0 + 1) & (size - 1);
- *weight = FRAC(u);
-}
-
-
-/**
- * Do clamp/wrap for a texture rectangle coord, GL_NEAREST filter mode.
- */
-static INLINE GLint
-clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max)
-{
- switch (wrapMode) {
- case GL_CLAMP:
- return IFLOOR( CLAMP(coord, 0.0F, max - 1) );
- case GL_CLAMP_TO_EDGE:
- return IFLOOR( CLAMP(coord, 0.5F, max - 0.5F) );
- case GL_CLAMP_TO_BORDER:
- return IFLOOR( CLAMP(coord, -0.5F, max + 0.5F) );
- default:
- _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_nearest");
- return 0;
- }
-}
-
-
-/**
- * As above, but GL_LINEAR filtering.
- */
-static INLINE void
-clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max,
- GLint *i0out, GLint *i1out, GLfloat *weight)
-{
- GLfloat fcol;
- GLint i0, i1;
- switch (wrapMode) {
- case GL_CLAMP:
- /* Not exactly what the spec says, but it matches NVIDIA output */
- fcol = CLAMP(coord - 0.5F, 0.0F, max - 1);
- i0 = IFLOOR(fcol);
- i1 = i0 + 1;
- break;
- case GL_CLAMP_TO_EDGE:
- fcol = CLAMP(coord, 0.5F, max - 0.5F);
- fcol -= 0.5F;
- i0 = IFLOOR(fcol);
- i1 = i0 + 1;
- if (i1 > max - 1)
- i1 = max - 1;
- break;
- case GL_CLAMP_TO_BORDER:
- fcol = CLAMP(coord, -0.5F, max + 0.5F);
- fcol -= 0.5F;
- i0 = IFLOOR(fcol);
- i1 = i0 + 1;
- break;
- default:
- _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_linear");
- i0 = i1 = 0;
- fcol = 0.0F;
- }
- *i0out = i0;
- *i1out = i1;
- *weight = FRAC(fcol);
-}
-
-
-/**
- * Compute slice/image to use for 1D or 2D array texture.
- */
-static INLINE GLint
-tex_array_slice(GLfloat coord, GLsizei size)
-{
- GLint slice = IFLOOR(coord + 0.5f);
- slice = CLAMP(slice, 0, size - 1);
- return slice;
-}
-
-
-/**
- * Compute nearest integer texcoords for given texobj and coordinate.
- * NOTE: only used for depth texture sampling.
- */
-static INLINE void
-nearest_texcoord(const struct gl_texture_object *texObj,
- GLuint level,
- const GLfloat texcoord[4],
- GLint *i, GLint *j, GLint *k)
-{
- const struct gl_texture_image *img = texObj->Image[0][level];
- const GLint width = img->Width;
- const GLint height = img->Height;
- const GLint depth = img->Depth;
-
- switch (texObj->Target) {
- case GL_TEXTURE_RECTANGLE_ARB:
- *i = clamp_rect_coord_nearest(texObj->WrapS, texcoord[0], width);
- *j = clamp_rect_coord_nearest(texObj->WrapT, texcoord[1], height);
- *k = 0;
- break;
- case GL_TEXTURE_1D:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
- *j = 0;
- *k = 0;
- break;
- case GL_TEXTURE_2D:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
- *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]);
- *k = 0;
- break;
- case GL_TEXTURE_1D_ARRAY_EXT:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
- *j = tex_array_slice(texcoord[1], height);
- *k = 0;
- break;
- case GL_TEXTURE_2D_ARRAY_EXT:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
- *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]);
- *k = tex_array_slice(texcoord[2], depth);
- break;
- default:
- *i = *j = *k = 0;
- }
-}
-
-
-/**
- * Compute linear integer texcoords for given texobj and coordinate.
- * NOTE: only used for depth texture sampling.
- */
-static INLINE void
-linear_texcoord(const struct gl_texture_object *texObj,
- GLuint level,
- const GLfloat texcoord[4],
- GLint *i0, GLint *i1, GLint *j0, GLint *j1, GLint *slice,
- GLfloat *wi, GLfloat *wj)
-{
- const struct gl_texture_image *img = texObj->Image[0][level];
- const GLint width = img->Width;
- const GLint height = img->Height;
- const GLint depth = img->Depth;
-
- switch (texObj->Target) {
- case GL_TEXTURE_RECTANGLE_ARB:
- clamp_rect_coord_linear(texObj->WrapS, texcoord[0],
- width, i0, i1, wi);
- clamp_rect_coord_linear(texObj->WrapT, texcoord[1],
- height, j0, j1, wj);
- *slice = 0;
- break;
-
- case GL_TEXTURE_1D:
- case GL_TEXTURE_2D:
- linear_texel_locations(texObj->WrapS, img, width,
- texcoord[0], i0, i1, wi);
- linear_texel_locations(texObj->WrapT, img, height,
- texcoord[1], j0, j1, wj);
- *slice = 0;
- break;
-
- case GL_TEXTURE_1D_ARRAY_EXT:
- linear_texel_locations(texObj->WrapS, img, width,
- texcoord[0], i0, i1, wi);
- *j0 = tex_array_slice(texcoord[1], height);
- *j1 = *j0;
- *slice = 0;
- break;
-
- case GL_TEXTURE_2D_ARRAY_EXT:
- linear_texel_locations(texObj->WrapS, img, width,
- texcoord[0], i0, i1, wi);
- linear_texel_locations(texObj->WrapT, img, height,
- texcoord[1], j0, j1, wj);
- *slice = tex_array_slice(texcoord[2], depth);
- break;
-
- default:
- *slice = 0;
- }
-}
-
-
-
-/**
- * For linear interpolation between mipmap levels N and N+1, this function
- * computes N.
- */
-static INLINE GLint
-linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda)
-{
- if (lambda < 0.0F)
- return tObj->BaseLevel;
- else if (lambda > tObj->_MaxLambda)
- return (GLint) (tObj->BaseLevel + tObj->_MaxLambda);
- else
- return (GLint) (tObj->BaseLevel + lambda);
-}
-
-
-/**
- * Compute the nearest mipmap level to take texels from.
- */
-static INLINE GLint
-nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda)
-{
- GLfloat l;
- GLint level;
- if (lambda <= 0.5F)
- l = 0.0F;
- else if (lambda > tObj->_MaxLambda + 0.4999F)
- l = tObj->_MaxLambda + 0.4999F;
- else
- l = lambda;
- level = (GLint) (tObj->BaseLevel + l + 0.5F);
- if (level > tObj->_MaxLevel)
- level = tObj->_MaxLevel;
- return level;
-}
-
-
-
-/*
- * Bitflags for texture border color sampling.
- */
-#define I0BIT 1
-#define I1BIT 2
-#define J0BIT 4
-#define J1BIT 8
-#define K0BIT 16
-#define K1BIT 32
-
-
-
-/**
- * The lambda[] array values are always monotonic. Either the whole span
- * will be minified, magnified, or split between the two. This function
- * determines the subranges in [0, n-1] that are to be minified or magnified.
- */
-static INLINE void
-compute_min_mag_ranges(const struct gl_texture_object *tObj,
- GLuint n, const GLfloat lambda[],
- GLuint *minStart, GLuint *minEnd,
- GLuint *magStart, GLuint *magEnd)
-{
- GLfloat minMagThresh;
-
- /* we shouldn't be here if minfilter == magfilter */
- ASSERT(tObj->MinFilter != tObj->MagFilter);
-
- /* This bit comes from the OpenGL spec: */
- if (tObj->MagFilter == GL_LINEAR
- && (tObj->MinFilter == GL_NEAREST_MIPMAP_NEAREST ||
- tObj->MinFilter == GL_NEAREST_MIPMAP_LINEAR)) {
- minMagThresh = 0.5F;
- }
- else {
- minMagThresh = 0.0F;
- }
-
-#if 0
- /* DEBUG CODE: Verify that lambda[] is monotonic.
- * We can't really use this because the inaccuracy in the LOG2 function
- * causes this test to fail, yet the resulting texturing is correct.
- */
- if (n > 1) {
- GLuint i;
- printf("lambda delta = %g\n", lambda[0] - lambda[n-1]);
- if (lambda[0] >= lambda[n-1]) { /* decreasing */
- for (i = 0; i < n - 1; i++) {
- ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10));
- }
- }
- else { /* increasing */
- for (i = 0; i < n - 1; i++) {
- ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10));
- }
- }
- }
-#endif /* DEBUG */
-
- if (lambda[0] <= minMagThresh && (n <= 1 || lambda[n-1] <= minMagThresh)) {
- /* magnification for whole span */
- *magStart = 0;
- *magEnd = n;
- *minStart = *minEnd = 0;
- }
- else if (lambda[0] > minMagThresh && (n <=1 || lambda[n-1] > minMagThresh)) {
- /* minification for whole span */
- *minStart = 0;
- *minEnd = n;
- *magStart = *magEnd = 0;
- }
- else {
- /* a mix of minification and magnification */
- GLuint i;
- if (lambda[0] > minMagThresh) {
- /* start with minification */
- for (i = 1; i < n; i++) {
- if (lambda[i] <= minMagThresh)
- break;
- }
- *minStart = 0;
- *minEnd = i;
- *magStart = i;
- *magEnd = n;
- }
- else {
- /* start with magnification */
- for (i = 1; i < n; i++) {
- if (lambda[i] > minMagThresh)
- break;
- }
- *magStart = 0;
- *magEnd = i;
- *minStart = i;
- *minEnd = n;
- }
- }
-
-#if 0
- /* Verify the min/mag Start/End values
- * We don't use this either (see above)
- */
- {
- GLint i;
- for (i = 0; i < n; i++) {
- if (lambda[i] > minMagThresh) {
- /* minification */
- ASSERT(i >= *minStart);
- ASSERT(i < *minEnd);
- }
- else {
- /* magnification */
- ASSERT(i >= *magStart);
- ASSERT(i < *magEnd);
- }
- }
- }
-#endif
-}
-
-
-/**
- * When we sample the border color, it must be interpreted according to
- * the base texture format. Ex: if the texture base format it GL_ALPHA,
- * we return (0,0,0,BorderAlpha).
- */
-static INLINE void
-get_border_color(const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- GLfloat rgba[4])
-{
- switch (img->_BaseFormat) {
- case GL_RGB:
- rgba[0] = tObj->BorderColor.f[0];
- rgba[1] = tObj->BorderColor.f[1];
- rgba[2] = tObj->BorderColor.f[2];
- rgba[3] = 1.0F;
- break;
- case GL_ALPHA:
- rgba[0] = rgba[1] = rgba[2] = 0.0;
- rgba[3] = tObj->BorderColor.f[3];
- break;
- case GL_LUMINANCE:
- rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor.f[0];
- rgba[3] = 1.0;
- break;
- case GL_LUMINANCE_ALPHA:
- rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor.f[0];
- rgba[3] = tObj->BorderColor.f[3];
- break;
- case GL_INTENSITY:
- rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->BorderColor.f[0];
- break;
- default:
- COPY_4V(rgba, tObj->BorderColor.f);
- }
-}
-
-
-/**********************************************************************/
-/* 1-D Texture Sampling Functions */
-/**********************************************************************/
-
-/**
- * Return the texture sample for coordinate (s) using GL_NEAREST filter.
- */
-static INLINE void
-sample_1d_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4], GLfloat rgba[4])
-{
- const GLint width = img->Width2; /* without border, power of two */
- GLint i;
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- /* skip over the border, if any */
- i += img->Border;
- if (i < 0 || i >= (GLint) img->Width) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- get_border_color(tObj, img, rgba);
- }
- else {
- img->FetchTexelf(img, i, 0, 0, rgba);
- }
-}
-
-
-/**
- * Return the texture sample for coordinate (s) using GL_LINEAR filter.
- */
-static INLINE void
-sample_1d_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4], GLfloat rgba[4])
-{
- const GLint width = img->Width2;
- GLint i0, i1;
- GLbitfield useBorderColor = 0x0;
- GLfloat a;
- GLfloat t0[4], t1[4]; /* texels */
-
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
-
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- }
- else {
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- }
-
- /* fetch texel colors */
- if (useBorderColor & I0BIT) {
- get_border_color(tObj, img, t0);
- }
- else {
- img->FetchTexelf(img, i0, 0, 0, t0);
- }
- if (useBorderColor & I1BIT) {
- get_border_color(tObj, img, t1);
- }
- else {
- img->FetchTexelf(img, i1, 0, 0, t1);
- }
-
- lerp_rgba(rgba, a, t0, t1);
-}
-
-
-static void
-sample_1d_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_1d_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_1d_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4];
- const GLfloat f = FRAC(lambda[i]);
- sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_1d_linear_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4];
- const GLfloat f = FRAC(lambda[i]);
- sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample 1D texture, nearest filtering for both min/magnification */
-static void
-sample_nearest_1d( struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4] )
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 1D texture, linear filtering for both min/magnification */
-static void
-sample_linear_1d( struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4] )
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 1D texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_1d( struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4] )
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
- GLuint i;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- for (i = minStart; i < minEnd; i++)
- sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = minStart; i < minEnd; i++)
- sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_1d_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- for (i = magStart; i < magEnd; i++)
- sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = magStart; i < magEnd; i++)
- sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_1d_texture");
- return;
- }
- }
-}
-
-
-/**********************************************************************/
-/* 2-D Texture Sampling Functions */
-/**********************************************************************/
-
-
-/**
- * Return the texture sample for coordinate (s,t) using GL_NEAREST filter.
- */
-static INLINE void
-sample_2d_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[])
-{
- const GLint width = img->Width2; /* without border, power of two */
- const GLint height = img->Height2; /* without border, power of two */
- GLint i, j;
- (void) ctx;
-
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
-
- /* skip over the border, if any */
- i += img->Border;
- j += img->Border;
-
- if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- get_border_color(tObj, img, rgba);
- }
- else {
- img->FetchTexelf(img, i, j, 0, rgba);
- }
-}
-
-
-/**
- * Return the texture sample for coordinate (s,t) using GL_LINEAR filter.
- * New sampling code contributed by Lynn Quam <quam@ai.sri.com>.
- */
-static INLINE void
-sample_2d_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height2;
- GLint i0, j0, i1, j1;
- GLbitfield useBorderColor = 0x0;
- GLfloat a, b;
- GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
-
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
- linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
-
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- j0 += img->Border;
- j1 += img->Border;
- }
- else {
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
- if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
- }
-
- /* fetch four texel colors */
- if (useBorderColor & (I0BIT | J0BIT)) {
- get_border_color(tObj, img, t00);
- }
- else {
- img->FetchTexelf(img, i0, j0, 0, t00);
- }
- if (useBorderColor & (I1BIT | J0BIT)) {
- get_border_color(tObj, img, t10);
- }
- else {
- img->FetchTexelf(img, i1, j0, 0, t10);
- }
- if (useBorderColor & (I0BIT | J1BIT)) {
- get_border_color(tObj, img, t01);
- }
- else {
- img->FetchTexelf(img, i0, j1, 0, t01);
- }
- if (useBorderColor & (I1BIT | J1BIT)) {
- get_border_color(tObj, img, t11);
- }
- else {
- img->FetchTexelf(img, i1, j1, 0, t11);
- }
-
- lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11);
-}
-
-
-/**
- * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT.
- * We don't have to worry about the texture border.
- */
-static INLINE void
-sample_2d_linear_repeat(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height2;
- GLint i0, j0, i1, j1;
- GLfloat wi, wj;
- GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
-
- (void) ctx;
-
- ASSERT(tObj->WrapS == GL_REPEAT);
- ASSERT(tObj->WrapT == GL_REPEAT);
- ASSERT(img->Border == 0);
- ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
- ASSERT(img->_IsPowerOfTwo);
-
- linear_repeat_texel_location(width, texcoord[0], &i0, &i1, &wi);
- linear_repeat_texel_location(height, texcoord[1], &j0, &j1, &wj);
-
- img->FetchTexelf(img, i0, j0, 0, t00);
- img->FetchTexelf(img, i1, j0, 0, t10);
- img->FetchTexelf(img, i0, j1, 0, t01);
- img->FetchTexelf(img, i1, j1, 0, t11);
-
- lerp_rgba_2d(rgba, wi, wj, t00, t10, t01, t11);
-}
-
-
-static void
-sample_2d_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_2d_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_2d_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_2d_linear_mipmap_linear( struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4] )
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_2d_linear_mipmap_linear_repeat(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- ASSERT(tObj->WrapS == GL_REPEAT);
- ASSERT(tObj->WrapT == GL_REPEAT);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ],
- texcoord[i], t0);
- sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1],
- texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample 2D texture, nearest filtering for both min/magnification */
-static void
-sample_nearest_2d(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 2D texture, linear filtering for both min/magnification */
-static void
-sample_linear_2d(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- if (tObj->WrapS == GL_REPEAT &&
- tObj->WrapT == GL_REPEAT &&
- image->_IsPowerOfTwo &&
- image->Border == 0) {
- for (i = 0; i < n; i++) {
- sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]);
- }
- }
- else {
- for (i = 0; i < n; i++) {
- sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
- }
-}
-
-
-/**
- * Optimized 2-D texture sampling:
- * S and T wrap mode == GL_REPEAT
- * GL_NEAREST min/mag filter
- * No border,
- * RowStride == Width,
- * Format = GL_RGB
- */
-static void
-opt_sample_rgb_2d(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
- const GLfloat width = (GLfloat) img->Width;
- const GLfloat height = (GLfloat) img->Height;
- const GLint colMask = img->Width - 1;
- const GLint rowMask = img->Height - 1;
- const GLint shift = img->WidthLog2;
- GLuint k;
- (void) ctx;
- (void) lambda;
- ASSERT(tObj->WrapS==GL_REPEAT);
- ASSERT(tObj->WrapT==GL_REPEAT);
- ASSERT(img->Border==0);
- ASSERT(img->TexFormat == MESA_FORMAT_RGB888);
- ASSERT(img->_IsPowerOfTwo);
-
- for (k=0; k<n; k++) {
- GLint i = IFLOOR(texcoords[k][0] * width) & colMask;
- GLint j = IFLOOR(texcoords[k][1] * height) & rowMask;
- GLint pos = (j << shift) | i;
- GLubyte *texel = ((GLubyte *) img->Data) + 3*pos;
- rgba[k][RCOMP] = UBYTE_TO_FLOAT(texel[2]);
- rgba[k][GCOMP] = UBYTE_TO_FLOAT(texel[1]);
- rgba[k][BCOMP] = UBYTE_TO_FLOAT(texel[0]);
- rgba[k][ACOMP] = 1.0F;
- }
-}
-
-
-/**
- * Optimized 2-D texture sampling:
- * S and T wrap mode == GL_REPEAT
- * GL_NEAREST min/mag filter
- * No border
- * RowStride == Width,
- * Format = GL_RGBA
- */
-static void
-opt_sample_rgba_2d(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
- const GLfloat width = (GLfloat) img->Width;
- const GLfloat height = (GLfloat) img->Height;
- const GLint colMask = img->Width - 1;
- const GLint rowMask = img->Height - 1;
- const GLint shift = img->WidthLog2;
- GLuint i;
- (void) ctx;
- (void) lambda;
- ASSERT(tObj->WrapS==GL_REPEAT);
- ASSERT(tObj->WrapT==GL_REPEAT);
- ASSERT(img->Border==0);
- ASSERT(img->TexFormat == MESA_FORMAT_RGBA8888);
- ASSERT(img->_IsPowerOfTwo);
-
- for (i = 0; i < n; i++) {
- const GLint col = IFLOOR(texcoords[i][0] * width) & colMask;
- const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask;
- const GLint pos = (row << shift) | col;
- const GLuint texel = *((GLuint *) img->Data + pos);
- rgba[i][RCOMP] = UBYTE_TO_FLOAT( (texel >> 24) );
- rgba[i][GCOMP] = UBYTE_TO_FLOAT( (texel >> 16) & 0xff );
- rgba[i][BCOMP] = UBYTE_TO_FLOAT( (texel >> 8) & 0xff );
- rgba[i][ACOMP] = UBYTE_TO_FLOAT( (texel ) & 0xff );
- }
-}
-
-
-/** Sample 2D texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_2d(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel];
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
-
- const GLboolean repeatNoBorderPOT = (tObj->WrapS == GL_REPEAT)
- && (tObj->WrapT == GL_REPEAT)
- && (tImg->Border == 0 && (tImg->Width == tImg->RowStride))
- && (tImg->_BaseFormat != GL_COLOR_INDEX)
- && tImg->_IsPowerOfTwo;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- if (repeatNoBorderPOT) {
- switch (tImg->TexFormat) {
- case MESA_FORMAT_RGB888:
- opt_sample_rgb_2d(ctx, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- break;
- case MESA_FORMAT_RGBA8888:
- opt_sample_rgba_2d(ctx, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- break;
- default:
- sample_nearest_2d(ctx, tObj, m, texcoords + minStart,
- NULL, rgba + minStart );
- }
- }
- else {
- sample_nearest_2d(ctx, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- }
- break;
- case GL_LINEAR:
- sample_linear_2d(ctx, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_2d_nearest_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- if (repeatNoBorderPOT)
- sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m,
- texcoords + minStart, lambda + minStart, rgba + minStart);
- else
- sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_2d_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- const GLuint m = magEnd - magStart;
-
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- if (repeatNoBorderPOT) {
- switch (tImg->TexFormat) {
- case MESA_FORMAT_RGB888:
- opt_sample_rgb_2d(ctx, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- break;
- case MESA_FORMAT_RGBA8888:
- opt_sample_rgba_2d(ctx, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- break;
- default:
- sample_nearest_2d(ctx, tObj, m, texcoords + magStart,
- NULL, rgba + magStart );
- }
- }
- else {
- sample_nearest_2d(ctx, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- }
- break;
- case GL_LINEAR:
- sample_linear_2d(ctx, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d");
- }
- }
-}
-
-
-
-/**********************************************************************/
-/* 3-D Texture Sampling Functions */
-/**********************************************************************/
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
- */
-static INLINE void
-sample_3d_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2; /* without border, power of two */
- const GLint height = img->Height2; /* without border, power of two */
- const GLint depth = img->Depth2; /* without border, power of two */
- GLint i, j, k;
- (void) ctx;
-
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
- k = nearest_texel_location(tObj->WrapR, img, depth, texcoord[2]);
-
- if (i < 0 || i >= (GLint) img->Width ||
- j < 0 || j >= (GLint) img->Height ||
- k < 0 || k >= (GLint) img->Depth) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- get_border_color(tObj, img, rgba);
- }
- else {
- img->FetchTexelf(img, i, j, k, rgba);
- }
-}
-
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
- */
-static void
-sample_3d_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height2;
- const GLint depth = img->Depth2;
- GLint i0, j0, k0, i1, j1, k1;
- GLbitfield useBorderColor = 0x0;
- GLfloat a, b, c;
- GLfloat t000[4], t010[4], t001[4], t011[4];
- GLfloat t100[4], t110[4], t101[4], t111[4];
-
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
- linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
- linear_texel_locations(tObj->WrapR, img, depth, texcoord[2], &k0, &k1, &c);
-
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- j0 += img->Border;
- j1 += img->Border;
- k0 += img->Border;
- k1 += img->Border;
- }
- else {
- /* check if sampling texture border color */
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
- if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
- if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT;
- if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT;
- }
-
- /* Fetch texels */
- if (useBorderColor & (I0BIT | J0BIT | K0BIT)) {
- get_border_color(tObj, img, t000);
- }
- else {
- img->FetchTexelf(img, i0, j0, k0, t000);
- }
- if (useBorderColor & (I1BIT | J0BIT | K0BIT)) {
- get_border_color(tObj, img, t100);
- }
- else {
- img->FetchTexelf(img, i1, j0, k0, t100);
- }
- if (useBorderColor & (I0BIT | J1BIT | K0BIT)) {
- get_border_color(tObj, img, t010);
- }
- else {
- img->FetchTexelf(img, i0, j1, k0, t010);
- }
- if (useBorderColor & (I1BIT | J1BIT | K0BIT)) {
- get_border_color(tObj, img, t110);
- }
- else {
- img->FetchTexelf(img, i1, j1, k0, t110);
- }
-
- if (useBorderColor & (I0BIT | J0BIT | K1BIT)) {
- get_border_color(tObj, img, t001);
- }
- else {
- img->FetchTexelf(img, i0, j0, k1, t001);
- }
- if (useBorderColor & (I1BIT | J0BIT | K1BIT)) {
- get_border_color(tObj, img, t101);
- }
- else {
- img->FetchTexelf(img, i1, j0, k1, t101);
- }
- if (useBorderColor & (I0BIT | J1BIT | K1BIT)) {
- get_border_color(tObj, img, t011);
- }
- else {
- img->FetchTexelf(img, i0, j1, k1, t011);
- }
- if (useBorderColor & (I1BIT | J1BIT | K1BIT)) {
- get_border_color(tObj, img, t111);
- }
- else {
- img->FetchTexelf(img, i1, j1, k1, t111);
- }
-
- /* trilinear interpolation of samples */
- lerp_rgba_3d(rgba, a, b, c, t000, t100, t010, t110, t001, t101, t011, t111);
-}
-
-
-static void
-sample_3d_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4] )
-{
- GLuint i;
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_3d_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_3d_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_3d_linear_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample 3D texture, nearest filtering for both min/magnification */
-static void
-sample_nearest_3d(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 3D texture, linear filtering for both min/magnification */
-static void
-sample_linear_3d(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 3D texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_3d(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
- GLuint i;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- for (i = minStart; i < minEnd; i++)
- sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = minStart; i < minEnd; i++)
- sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_3d_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- for (i = magStart; i < magEnd; i++)
- sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = magStart; i < magEnd; i++)
- sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_3d_texture");
- return;
- }
- }
-}
-
-
-/**********************************************************************/
-/* Texture Cube Map Sampling Functions */
-/**********************************************************************/
-
-/**
- * Choose one of six sides of a texture cube map given the texture
- * coord (rx,ry,rz). Return pointer to corresponding array of texture
- * images.
- */
-static const struct gl_texture_image **
-choose_cube_face(const struct gl_texture_object *texObj,
- const GLfloat texcoord[4], GLfloat newCoord[4])
-{
- /*
- major axis
- direction target sc tc ma
- ---------- ------------------------------- --- --- ---
- +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
- -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
- +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
- -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
- +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
- -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
- */
- const GLfloat rx = texcoord[0];
- const GLfloat ry = texcoord[1];
- const GLfloat rz = texcoord[2];
- const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz);
- GLuint face;
- GLfloat sc, tc, ma;
-
- if (arx >= ary && arx >= arz) {
- if (rx >= 0.0F) {
- face = FACE_POS_X;
- sc = -rz;
- tc = -ry;
- ma = arx;
- }
- else {
- face = FACE_NEG_X;
- sc = rz;
- tc = -ry;
- ma = arx;
- }
- }
- else if (ary >= arx && ary >= arz) {
- if (ry >= 0.0F) {
- face = FACE_POS_Y;
- sc = rx;
- tc = rz;
- ma = ary;
- }
- else {
- face = FACE_NEG_Y;
- sc = rx;
- tc = -rz;
- ma = ary;
- }
- }
- else {
- if (rz > 0.0F) {
- face = FACE_POS_Z;
- sc = rx;
- tc = -ry;
- ma = arz;
- }
- else {
- face = FACE_NEG_Z;
- sc = -rx;
- tc = -ry;
- ma = arz;
- }
- }
-
- {
- const float ima = 1.0F / ma;
- newCoord[0] = ( sc * ima + 1.0F ) * 0.5F;
- newCoord[1] = ( tc * ima + 1.0F ) * 0.5F;
- }
-
- return (const struct gl_texture_image **) texObj->Image[face];
-}
-
-
-static void
-sample_nearest_cube(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint i;
- (void) lambda;
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- images = choose_cube_face(tObj, texcoords[i], newCoord);
- sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel],
- newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_linear_cube(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- (void) lambda;
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- images = choose_cube_face(tObj, texcoords[i], newCoord);
- sample_2d_linear(ctx, tObj, images[tObj->BaseLevel],
- newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_cube_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level;
- images = choose_cube_face(tObj, texcoord[i], newCoord);
-
- /* XXX we actually need to recompute lambda here based on the newCoords.
- * But we would need the texcoords of adjacent fragments to compute that
- * properly, and we don't have those here.
- * For now, do an approximation: subtracting 1 from the chosen mipmap
- * level seems to work in some test cases.
- * The same adjustment is done in the next few functions.
- */
- level = nearest_mipmap_level(tObj, lambda[i]);
- level = MAX2(level - 1, 0);
-
- sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_cube_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- level = MAX2(level - 1, 0); /* see comment above */
- images = choose_cube_face(tObj, texcoord[i], newCoord);
- sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_cube_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- level = MAX2(level - 1, 0); /* see comment above */
- images = choose_cube_face(tObj, texcoord[i], newCoord);
- if (level >= tObj->_MaxLevel) {
- sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel],
- newCoord, rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0);
- sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_cube_linear_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- level = MAX2(level - 1, 0); /* see comment above */
- images = choose_cube_face(tObj, texcoord[i], newCoord);
- if (level >= tObj->_MaxLevel) {
- sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel],
- newCoord, rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4];
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_linear(ctx, tObj, images[level ], newCoord, t0);
- sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample cube texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_cube(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- sample_nearest_cube(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR:
- sample_linear_cube(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_cube_nearest_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_cube_linear_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_cube_nearest_mipmap_linear(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_cube_linear_mipmap_linear(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_lambda_cube");
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- const GLuint m = magEnd - magStart;
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- sample_nearest_cube(ctx, tObj, m, texcoords + magStart,
- lambda + magStart, rgba + magStart);
- break;
- case GL_LINEAR:
- sample_linear_cube(ctx, tObj, m, texcoords + magStart,
- lambda + magStart, rgba + magStart);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube");
- }
- }
-}
-
-
-/**********************************************************************/
-/* Texture Rectangle Sampling Functions */
-/**********************************************************************/
-
-
-static void
-sample_nearest_rect(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- const struct gl_texture_image *img = tObj->Image[0][0];
- const GLint width = img->Width;
- const GLint height = img->Height;
- GLuint i;
-
- (void) ctx;
- (void) lambda;
-
- ASSERT(tObj->WrapS == GL_CLAMP ||
- tObj->WrapS == GL_CLAMP_TO_EDGE ||
- tObj->WrapS == GL_CLAMP_TO_BORDER);
- ASSERT(tObj->WrapT == GL_CLAMP ||
- tObj->WrapT == GL_CLAMP_TO_EDGE ||
- tObj->WrapT == GL_CLAMP_TO_BORDER);
- ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
-
- for (i = 0; i < n; i++) {
- GLint row, col;
- col = clamp_rect_coord_nearest(tObj->WrapS, texcoords[i][0], width);
- row = clamp_rect_coord_nearest(tObj->WrapT, texcoords[i][1], height);
- if (col < 0 || col >= width || row < 0 || row >= height)
- get_border_color(tObj, img, rgba[i]);
- else
- img->FetchTexelf(img, col, row, 0, rgba[i]);
- }
-}
-
-
-static void
-sample_linear_rect(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- const struct gl_texture_image *img = tObj->Image[0][0];
- const GLint width = img->Width;
- const GLint height = img->Height;
- GLuint i;
-
- (void) ctx;
- (void) lambda;
-
- ASSERT(tObj->WrapS == GL_CLAMP ||
- tObj->WrapS == GL_CLAMP_TO_EDGE ||
- tObj->WrapS == GL_CLAMP_TO_BORDER);
- ASSERT(tObj->WrapT == GL_CLAMP ||
- tObj->WrapT == GL_CLAMP_TO_EDGE ||
- tObj->WrapT == GL_CLAMP_TO_BORDER);
- ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
-
- for (i = 0; i < n; i++) {
- GLint i0, j0, i1, j1;
- GLfloat t00[4], t01[4], t10[4], t11[4];
- GLfloat a, b;
- GLbitfield useBorderColor = 0x0;
-
- clamp_rect_coord_linear(tObj->WrapS, texcoords[i][0], width,
- &i0, &i1, &a);
- clamp_rect_coord_linear(tObj->WrapT, texcoords[i][1], height,
- &j0, &j1, &b);
-
- /* compute integer rows/columns */
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
- if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
-
- /* get four texel samples */
- if (useBorderColor & (I0BIT | J0BIT))
- get_border_color(tObj, img, t00);
- else
- img->FetchTexelf(img, i0, j0, 0, t00);
-
- if (useBorderColor & (I1BIT | J0BIT))
- get_border_color(tObj, img, t10);
- else
- img->FetchTexelf(img, i1, j0, 0, t10);
-
- if (useBorderColor & (I0BIT | J1BIT))
- get_border_color(tObj, img, t01);
- else
- img->FetchTexelf(img, i0, j1, 0, t01);
-
- if (useBorderColor & (I1BIT | J1BIT))
- get_border_color(tObj, img, t11);
- else
- img->FetchTexelf(img, i1, j1, 0, t11);
-
- lerp_rgba_2d(rgba[i], a, b, t00, t10, t01, t11);
- }
-}
-
-
-/** Sample Rect texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_rect(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint minStart, minEnd, magStart, magEnd;
-
- /* We only need lambda to decide between minification and magnification.
- * There is no mipmapping with rectangular textures.
- */
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- if (tObj->MinFilter == GL_NEAREST) {
- sample_nearest_rect(ctx, tObj, minEnd - minStart,
- texcoords + minStart, NULL, rgba + minStart);
- }
- else {
- sample_linear_rect(ctx, tObj, minEnd - minStart,
- texcoords + minStart, NULL, rgba + minStart);
- }
- }
- if (magStart < magEnd) {
- if (tObj->MagFilter == GL_NEAREST) {
- sample_nearest_rect(ctx, tObj, magEnd - magStart,
- texcoords + magStart, NULL, rgba + magStart);
- }
- else {
- sample_linear_rect(ctx, tObj, magEnd - magStart,
- texcoords + magStart, NULL, rgba + magStart);
- }
- }
-}
-
-
-/**********************************************************************/
-/* 2D Texture Array Sampling Functions */
-/**********************************************************************/
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
- */
-static void
-sample_2d_array_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2; /* without border, power of two */
- const GLint height = img->Height2; /* without border, power of two */
- const GLint depth = img->Depth;
- GLint i, j;
- GLint array;
- (void) ctx;
-
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
- array = tex_array_slice(texcoord[2], depth);
-
- if (i < 0 || i >= (GLint) img->Width ||
- j < 0 || j >= (GLint) img->Height ||
- array < 0 || array >= (GLint) img->Depth) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- get_border_color(tObj, img, rgba);
- }
- else {
- img->FetchTexelf(img, i, j, array, rgba);
- }
-}
-
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
- */
-static void
-sample_2d_array_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height2;
- const GLint depth = img->Depth;
- GLint i0, j0, i1, j1;
- GLint array;
- GLbitfield useBorderColor = 0x0;
- GLfloat a, b;
- GLfloat t00[4], t01[4], t10[4], t11[4];
-
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
- linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
- array = tex_array_slice(texcoord[2], depth);
-
- if (array < 0 || array >= depth) {
- COPY_4V(rgba, tObj->BorderColor.f);
- }
- else {
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- j0 += img->Border;
- j1 += img->Border;
- }
- else {
- /* check if sampling texture border color */
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
- if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
- }
-
- /* Fetch texels */
- if (useBorderColor & (I0BIT | J0BIT)) {
- get_border_color(tObj, img, t00);
- }
- else {
- img->FetchTexelf(img, i0, j0, array, t00);
- }
- if (useBorderColor & (I1BIT | J0BIT)) {
- get_border_color(tObj, img, t10);
- }
- else {
- img->FetchTexelf(img, i1, j0, array, t10);
- }
- if (useBorderColor & (I0BIT | J1BIT)) {
- get_border_color(tObj, img, t01);
- }
- else {
- img->FetchTexelf(img, i0, j1, array, t01);
- }
- if (useBorderColor & (I1BIT | J1BIT)) {
- get_border_color(tObj, img, t11);
- }
- else {
- img->FetchTexelf(img, i1, j1, array, t11);
- }
-
- /* trilinear interpolation of samples */
- lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11);
- }
-}
-
-
-static void
-sample_2d_array_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i],
- rgba[i]);
- }
-}
-
-
-static void
-sample_2d_array_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][level],
- texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_2d_array_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level ],
- texcoord[i], t0);
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level+1],
- texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_2d_array_linear_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][level ],
- texcoord[i], t0);
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][level+1],
- texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample 2D Array texture, nearest filtering for both min/magnification */
-static void
-sample_nearest_2d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_2d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-
-/** Sample 2D Array texture, linear filtering for both min/magnification */
-static void
-sample_linear_2d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_2d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 2D Array texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_2d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
- GLuint i;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- for (i = minStart; i < minEnd; i++)
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = minStart; i < minEnd; i++)
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_2d_array_nearest_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_2d_array_linear_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_2d_array_nearest_mipmap_linear(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_2d_array_linear_mipmap_linear(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_2d_array_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- for (i = magStart; i < magEnd; i++)
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = magStart; i < magEnd; i++)
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_2d_array_texture");
- return;
- }
- }
-}
-
-
-
-
-/**********************************************************************/
-/* 1D Texture Array Sampling Functions */
-/**********************************************************************/
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
- */
-static void
-sample_1d_array_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2; /* without border, power of two */
- const GLint height = img->Height;
- GLint i;
- GLint array;
- (void) ctx;
-
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- array = tex_array_slice(texcoord[1], height);
-
- if (i < 0 || i >= (GLint) img->Width ||
- array < 0 || array >= (GLint) img->Height) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- get_border_color(tObj, img, rgba);
- }
- else {
- img->FetchTexelf(img, i, array, 0, rgba);
- }
-}
-
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
- */
-static void
-sample_1d_array_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height;
- GLint i0, i1;
- GLint array;
- GLbitfield useBorderColor = 0x0;
- GLfloat a;
- GLfloat t0[4], t1[4];
-
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
- array = tex_array_slice(texcoord[1], height);
-
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- }
- else {
- /* check if sampling texture border color */
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- }
-
- if (array < 0 || array >= height) useBorderColor |= K0BIT;
-
- /* Fetch texels */
- if (useBorderColor & (I0BIT | K0BIT)) {
- get_border_color(tObj, img, t0);
- }
- else {
- img->FetchTexelf(img, i0, array, 0, t0);
- }
- if (useBorderColor & (I1BIT | K0BIT)) {
- get_border_color(tObj, img, t1);
- }
- else {
- img->FetchTexelf(img, i1, array, 0, t1);
- }
-
- /* bilinear interpolation of samples */
- lerp_rgba(rgba, a, t0, t1);
-}
-
-
-static void
-sample_1d_array_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i],
- rgba[i]);
- }
-}
-
-
-static void
-sample_1d_array_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][level],
- texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_1d_array_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_1d_array_linear_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample 1D Array texture, nearest filtering for both min/magnification */
-static void
-sample_nearest_1d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_1d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 1D Array texture, linear filtering for both min/magnification */
-static void
-sample_linear_1d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_1d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 1D Array texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_1d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
- GLuint i;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- for (i = minStart; i < minEnd; i++)
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = minStart; i < minEnd; i++)
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_1d_array_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_1d_array_linear_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_1d_array_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_1d_array_linear_mipmap_linear(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_1d_array_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- for (i = magStart; i < magEnd; i++)
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = magStart; i < magEnd; i++)
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_1d_array_texture");
- return;
- }
- }
-}
-
-
-/**
- * Compare texcoord against depth sample. Return 1.0 or the ambient value.
- */
-static INLINE GLfloat
-shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample,
- GLfloat ambient)
-{
- switch (function) {
- case GL_LEQUAL:
- return (coord <= depthSample) ? 1.0F : ambient;
- case GL_GEQUAL:
- return (coord >= depthSample) ? 1.0F : ambient;
- case GL_LESS:
- return (coord < depthSample) ? 1.0F : ambient;
- case GL_GREATER:
- return (coord > depthSample) ? 1.0F : ambient;
- case GL_EQUAL:
- return (coord == depthSample) ? 1.0F : ambient;
- case GL_NOTEQUAL:
- return (coord != depthSample) ? 1.0F : ambient;
- case GL_ALWAYS:
- return 1.0F;
- case GL_NEVER:
- return ambient;
- case GL_NONE:
- return depthSample;
- default:
- _mesa_problem(NULL, "Bad compare func in shadow_compare");
- return ambient;
- }
-}
-
-
-/**
- * Compare texcoord against four depth samples.
- */
-static INLINE GLfloat
-shadow_compare4(GLenum function, GLfloat coord,
- GLfloat depth00, GLfloat depth01,
- GLfloat depth10, GLfloat depth11,
- GLfloat ambient, GLfloat wi, GLfloat wj)
-{
- const GLfloat d = (1.0F - (GLfloat) ambient) * 0.25F;
- GLfloat luminance = 1.0F;
-
- switch (function) {
- case GL_LEQUAL:
- if (coord > depth00) luminance -= d;
- if (coord > depth01) luminance -= d;
- if (coord > depth10) luminance -= d;
- if (coord > depth11) luminance -= d;
- return luminance;
- case GL_GEQUAL:
- if (coord < depth00) luminance -= d;
- if (coord < depth01) luminance -= d;
- if (coord < depth10) luminance -= d;
- if (coord < depth11) luminance -= d;
- return luminance;
- case GL_LESS:
- if (coord >= depth00) luminance -= d;
- if (coord >= depth01) luminance -= d;
- if (coord >= depth10) luminance -= d;
- if (coord >= depth11) luminance -= d;
- return luminance;
- case GL_GREATER:
- if (coord <= depth00) luminance -= d;
- if (coord <= depth01) luminance -= d;
- if (coord <= depth10) luminance -= d;
- if (coord <= depth11) luminance -= d;
- return luminance;
- case GL_EQUAL:
- if (coord != depth00) luminance -= d;
- if (coord != depth01) luminance -= d;
- if (coord != depth10) luminance -= d;
- if (coord != depth11) luminance -= d;
- return luminance;
- case GL_NOTEQUAL:
- if (coord == depth00) luminance -= d;
- if (coord == depth01) luminance -= d;
- if (coord == depth10) luminance -= d;
- if (coord == depth11) luminance -= d;
- return luminance;
- case GL_ALWAYS:
- return 1.0F;
- case GL_NEVER:
- return ambient;
- case GL_NONE:
- /* ordinary bilinear filtering */
- return lerp_2d(wi, wj, depth00, depth10, depth01, depth11);
- default:
- _mesa_problem(NULL, "Bad compare func in sample_compare4");
- return ambient;
- }
-}
-
-
-/**
- * Choose the mipmap level to use when sampling from a depth texture.
- */
-static int
-choose_depth_texture_level(const struct gl_texture_object *tObj, GLfloat lambda)
-{
- GLint level;
-
- if (tObj->MinFilter == GL_NEAREST || tObj->MinFilter == GL_LINEAR) {
- /* no mipmapping - use base level */
- level = tObj->BaseLevel;
- }
- else {
- /* choose mipmap level */
- lambda = CLAMP(lambda, tObj->MinLod, tObj->MaxLod);
- level = (GLint) lambda;
- level = CLAMP(level, tObj->BaseLevel, tObj->_MaxLevel);
- }
-
- return level;
-}
-
-
-/**
- * Sample a shadow/depth texture. This function is incomplete. It doesn't
- * check for minification vs. magnification, etc.
- */
-static void
-sample_depth_texture( struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat texel[][4] )
-{
- const GLint level = choose_depth_texture_level(tObj, lambda[0]);
- const struct gl_texture_image *img = tObj->Image[0][level];
- const GLint width = img->Width;
- const GLint height = img->Height;
- const GLint depth = img->Depth;
- const GLuint compare_coord = (tObj->Target == GL_TEXTURE_2D_ARRAY_EXT)
- ? 3 : 2;
- GLfloat ambient;
- GLenum function;
- GLfloat result;
-
- ASSERT(img->_BaseFormat == GL_DEPTH_COMPONENT ||
- img->_BaseFormat == GL_DEPTH_STENCIL_EXT);
-
- ASSERT(tObj->Target == GL_TEXTURE_1D ||
- tObj->Target == GL_TEXTURE_2D ||
- tObj->Target == GL_TEXTURE_RECTANGLE_NV ||
- tObj->Target == GL_TEXTURE_1D_ARRAY_EXT ||
- tObj->Target == GL_TEXTURE_2D_ARRAY_EXT);
-
- ambient = tObj->CompareFailValue;
-
- /* XXXX if tObj->MinFilter != tObj->MagFilter, we're ignoring lambda */
-
- function = (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ?
- tObj->CompareFunc : GL_NONE;
-
- if (tObj->MagFilter == GL_NEAREST) {
- GLuint i;
- for (i = 0; i < n; i++) {
- GLfloat depthSample, depthRef;
- GLint col, row, slice;
-
- nearest_texcoord(tObj, level, texcoords[i], &col, &row, &slice);
-
- if (col >= 0 && row >= 0 && col < width && row < height &&
- slice >= 0 && slice < depth) {
- img->FetchTexelf(img, col, row, slice, &depthSample);
- }
- else {
- depthSample = tObj->BorderColor.f[0];
- }
-
- depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F);
-
- result = shadow_compare(function, depthRef, depthSample, ambient);
-
- switch (tObj->DepthMode) {
- case GL_LUMINANCE:
- ASSIGN_4V(texel[i], result, result, result, 1.0F);
- break;
- case GL_INTENSITY:
- ASSIGN_4V(texel[i], result, result, result, result);
- break;
- case GL_ALPHA:
- ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result);
- break;
- case GL_RED:
- ASSIGN_4V(texel[i], result, 0.0F, 0.0F, 1.0F);
- break;
- default:
- _mesa_problem(ctx, "Bad depth texture mode");
- }
- }
- }
- else {
- GLuint i;
- ASSERT(tObj->MagFilter == GL_LINEAR);
- for (i = 0; i < n; i++) {
- GLfloat depth00, depth01, depth10, depth11, depthRef;
- GLint i0, i1, j0, j1;
- GLint slice;
- GLfloat wi, wj;
- GLuint useBorderTexel;
-
- linear_texcoord(tObj, level, texcoords[i], &i0, &i1, &j0, &j1, &slice,
- &wi, &wj);
-
- useBorderTexel = 0;
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) {
- j0 += img->Border;
- j1 += img->Border;
- }
- }
- else {
- if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT;
- if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT;
- if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT;
- if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT;
- }
-
- if (slice < 0 || slice >= (GLint) depth) {
- depth00 = tObj->BorderColor.f[0];
- depth01 = tObj->BorderColor.f[0];
- depth10 = tObj->BorderColor.f[0];
- depth11 = tObj->BorderColor.f[0];
- }
- else {
- /* get four depth samples from the texture */
- if (useBorderTexel & (I0BIT | J0BIT)) {
- depth00 = tObj->BorderColor.f[0];
- }
- else {
- img->FetchTexelf(img, i0, j0, slice, &depth00);
- }
- if (useBorderTexel & (I1BIT | J0BIT)) {
- depth10 = tObj->BorderColor.f[0];
- }
- else {
- img->FetchTexelf(img, i1, j0, slice, &depth10);
- }
-
- if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) {
- if (useBorderTexel & (I0BIT | J1BIT)) {
- depth01 = tObj->BorderColor.f[0];
- }
- else {
- img->FetchTexelf(img, i0, j1, slice, &depth01);
- }
- if (useBorderTexel & (I1BIT | J1BIT)) {
- depth11 = tObj->BorderColor.f[0];
- }
- else {
- img->FetchTexelf(img, i1, j1, slice, &depth11);
- }
- }
- else {
- depth01 = depth00;
- depth11 = depth10;
- }
- }
-
- depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F);
-
- result = shadow_compare4(function, depthRef,
- depth00, depth01, depth10, depth11,
- ambient, wi, wj);
-
- switch (tObj->DepthMode) {
- case GL_LUMINANCE:
- ASSIGN_4V(texel[i], result, result, result, 1.0F);
- break;
- case GL_INTENSITY:
- ASSIGN_4V(texel[i], result, result, result, result);
- break;
- case GL_ALPHA:
- ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result);
- break;
- default:
- _mesa_problem(ctx, "Bad depth texture mode");
- }
-
- } /* for */
- } /* if filter */
-}
-
-
-/**
- * We use this function when a texture object is in an "incomplete" state.
- * When a fragment program attempts to sample an incomplete texture we
- * return black (see issue 23 in GL_ARB_fragment_program spec).
- * Note: fragment programs don't observe the texture enable/disable flags.
- */
-static void
-null_sample_func( struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint i;
- (void) ctx;
- (void) tObj;
- (void) texcoords;
- (void) lambda;
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = 0;
- rgba[i][GCOMP] = 0;
- rgba[i][BCOMP] = 0;
- rgba[i][ACOMP] = 1.0;
- }
-}
-
-
-/**
- * Choose the texture sampling function for the given texture object.
- */
-texture_sample_func
-_swrast_choose_texture_sample_func( struct gl_context *ctx,
- const struct gl_texture_object *t )
-{
- if (!t || !t->_Complete) {
- return &null_sample_func;
- }
- else {
- const GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter);
- const GLenum format = t->Image[0][t->BaseLevel]->_BaseFormat;
-
- switch (t->Target) {
- case GL_TEXTURE_1D:
- if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
- return &sample_depth_texture;
- }
- else if (needLambda) {
- return &sample_lambda_1d;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_1d;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_1d;
- }
- case GL_TEXTURE_2D:
- if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
- return &sample_depth_texture;
- }
- else if (needLambda) {
- return &sample_lambda_2d;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_2d;
- }
- else {
- /* check for a few optimized cases */
- const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
- ASSERT(t->MinFilter == GL_NEAREST);
- if (t->WrapS == GL_REPEAT &&
- t->WrapT == GL_REPEAT &&
- img->_IsPowerOfTwo &&
- img->Border == 0 &&
- img->TexFormat == MESA_FORMAT_RGB888) {
- return &opt_sample_rgb_2d;
- }
- else if (t->WrapS == GL_REPEAT &&
- t->WrapT == GL_REPEAT &&
- img->_IsPowerOfTwo &&
- img->Border == 0 &&
- img->TexFormat == MESA_FORMAT_RGBA8888) {
- return &opt_sample_rgba_2d;
- }
- else {
- return &sample_nearest_2d;
- }
- }
- case GL_TEXTURE_3D:
- if (needLambda) {
- return &sample_lambda_3d;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_3d;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_3d;
- }
- case GL_TEXTURE_CUBE_MAP:
- if (needLambda) {
- return &sample_lambda_cube;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_cube;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_cube;
- }
- case GL_TEXTURE_RECTANGLE_NV:
- if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
- return &sample_depth_texture;
- }
- else if (needLambda) {
- return &sample_lambda_rect;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_rect;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_rect;
- }
- case GL_TEXTURE_1D_ARRAY_EXT:
- if (needLambda) {
- return &sample_lambda_1d_array;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_1d_array;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_1d_array;
- }
- case GL_TEXTURE_2D_ARRAY_EXT:
- if (needLambda) {
- return &sample_lambda_2d_array;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_2d_array;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_2d_array;
- }
- default:
- _mesa_problem(ctx,
- "invalid target in _swrast_choose_texture_sample_func");
- return &null_sample_func;
- }
- }
-}
+/*
+ * Mesa 3-D graphics library
+ * Version: 7.3
+ *
+ * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+#include "main/glheader.h"
+#include "main/context.h"
+#include "main/colormac.h"
+#include "main/imports.h"
+
+#include "s_context.h"
+#include "s_texfilter.h"
+
+
+/*
+ * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes
+ * see 1-pixel bands of improperly weighted linear-filtered textures.
+ * The tests/texwrap.c demo is a good test.
+ * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0.
+ * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x).
+ */
+#define FRAC(f) ((f) - IFLOOR(f))
+
+
+
+/**
+ * Linear interpolation macro
+ */
+#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) )
+
+
+/**
+ * Do 2D/biliner interpolation of float values.
+ * v00, v10, v01 and v11 are typically four texture samples in a square/box.
+ * a and b are the horizontal and vertical interpolants.
+ * It's important that this function is inlined when compiled with
+ * optimization! If we find that's not true on some systems, convert
+ * to a macro.
+ */
+static INLINE GLfloat
+lerp_2d(GLfloat a, GLfloat b,
+ GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11)
+{
+ const GLfloat temp0 = LERP(a, v00, v10);
+ const GLfloat temp1 = LERP(a, v01, v11);
+ return LERP(b, temp0, temp1);
+}
+
+
+/**
+ * Do 3D/trilinear interpolation of float values.
+ * \sa lerp_2d
+ */
+static INLINE GLfloat
+lerp_3d(GLfloat a, GLfloat b, GLfloat c,
+ GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110,
+ GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111)
+{
+ const GLfloat temp00 = LERP(a, v000, v100);
+ const GLfloat temp10 = LERP(a, v010, v110);
+ const GLfloat temp01 = LERP(a, v001, v101);
+ const GLfloat temp11 = LERP(a, v011, v111);
+ const GLfloat temp0 = LERP(b, temp00, temp10);
+ const GLfloat temp1 = LERP(b, temp01, temp11);
+ return LERP(c, temp0, temp1);
+}
+
+
+/**
+ * Do linear interpolation of colors.
+ */
+static INLINE void
+lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4])
+{
+ result[0] = LERP(t, a[0], b[0]);
+ result[1] = LERP(t, a[1], b[1]);
+ result[2] = LERP(t, a[2], b[2]);
+ result[3] = LERP(t, a[3], b[3]);
+}
+
+
+/**
+ * Do bilinear interpolation of colors.
+ */
+static INLINE void
+lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b,
+ const GLfloat t00[4], const GLfloat t10[4],
+ const GLfloat t01[4], const GLfloat t11[4])
+{
+ result[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]);
+ result[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]);
+ result[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]);
+ result[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]);
+}
+
+
+/**
+ * Do trilinear interpolation of colors.
+ */
+static INLINE void
+lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c,
+ const GLfloat t000[4], const GLfloat t100[4],
+ const GLfloat t010[4], const GLfloat t110[4],
+ const GLfloat t001[4], const GLfloat t101[4],
+ const GLfloat t011[4], const GLfloat t111[4])
+{
+ GLuint k;
+ /* compiler should unroll these short loops */
+ for (k = 0; k < 4; k++) {
+ result[k] = lerp_3d(a, b, c, t000[k], t100[k], t010[k], t110[k],
+ t001[k], t101[k], t011[k], t111[k]);
+ }
+}
+
+
+/**
+ * Used for GL_REPEAT wrap mode. Using A % B doesn't produce the
+ * right results for A<0. Casting to A to be unsigned only works if B
+ * is a power of two. Adding a bias to A (which is a multiple of B)
+ * avoids the problems with A < 0 (for reasonable A) without using a
+ * conditional.
+ */
+#define REMAINDER(A, B) (((A) + (B) * 1024) % (B))
+
+
+/**
+ * Used to compute texel locations for linear sampling.
+ * Input:
+ * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER
+ * s = texcoord in [0,1]
+ * size = width (or height or depth) of texture
+ * Output:
+ * i0, i1 = returns two nearest texel indexes
+ * weight = returns blend factor between texels
+ */
+static INLINE void
+linear_texel_locations(GLenum wrapMode,
+ const struct gl_texture_image *img,
+ GLint size, GLfloat s,
+ GLint *i0, GLint *i1, GLfloat *weight)
+{
+ GLfloat u;
+ switch (wrapMode) {
+ case GL_REPEAT:
+ u = s * size - 0.5F;
+ if (img->_IsPowerOfTwo) {
+ *i0 = IFLOOR(u) & (size - 1);
+ *i1 = (*i0 + 1) & (size - 1);
+ }
+ else {
+ *i0 = REMAINDER(IFLOOR(u), size);
+ *i1 = REMAINDER(*i0 + 1, size);
+ }
+ break;
+ case GL_CLAMP_TO_EDGE:
+ if (s <= 0.0F)
+ u = 0.0F;
+ else if (s >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (GLint) size)
+ *i1 = size - 1;
+ break;
+ case GL_CLAMP_TO_BORDER:
+ {
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ if (s <= min)
+ u = min * size;
+ else if (s >= max)
+ u = max * size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ }
+ break;
+ case GL_MIRRORED_REPEAT:
+ {
+ const GLint flr = IFLOOR(s);
+ if (flr & 1)
+ u = 1.0F - (s - (GLfloat) flr);
+ else
+ u = s - (GLfloat) flr;
+ u = (u * size) - 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (GLint) size)
+ *i1 = size - 1;
+ }
+ break;
+ case GL_MIRROR_CLAMP_EXT:
+ u = FABSF(s);
+ if (u >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ break;
+ case GL_MIRROR_CLAMP_TO_EDGE_EXT:
+ u = FABSF(s);
+ if (u >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (GLint) size)
+ *i1 = size - 1;
+ break;
+ case GL_MIRROR_CLAMP_TO_BORDER_EXT:
+ {
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ u = FABSF(s);
+ if (u <= min)
+ u = min * size;
+ else if (u >= max)
+ u = max * size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ }
+ break;
+ case GL_CLAMP:
+ if (s <= 0.0F)
+ u = 0.0F;
+ else if (s >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ break;
+ default:
+ _mesa_problem(NULL, "Bad wrap mode");
+ u = 0.0F;
+ }
+ *weight = FRAC(u);
+}
+
+
+/**
+ * Used to compute texel location for nearest sampling.
+ */
+static INLINE GLint
+nearest_texel_location(GLenum wrapMode,
+ const struct gl_texture_image *img,
+ GLint size, GLfloat s)
+{
+ GLint i;
+
+ switch (wrapMode) {
+ case GL_REPEAT:
+ /* s limited to [0,1) */
+ /* i limited to [0,size-1] */
+ i = IFLOOR(s * size);
+ if (img->_IsPowerOfTwo)
+ i &= (size - 1);
+ else
+ i = REMAINDER(i, size);
+ return i;
+ case GL_CLAMP_TO_EDGE:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const GLfloat min = 1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ if (s < min)
+ i = 0;
+ else if (s > max)
+ i = size - 1;
+ else
+ i = IFLOOR(s * size);
+ }
+ return i;
+ case GL_CLAMP_TO_BORDER:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [-1, size] */
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ if (s <= min)
+ i = -1;
+ else if (s >= max)
+ i = size;
+ else
+ i = IFLOOR(s * size);
+ }
+ return i;
+ case GL_MIRRORED_REPEAT:
+ {
+ const GLfloat min = 1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ const GLint flr = IFLOOR(s);
+ GLfloat u;
+ if (flr & 1)
+ u = 1.0F - (s - (GLfloat) flr);
+ else
+ u = s - (GLfloat) flr;
+ if (u < min)
+ i = 0;
+ else if (u > max)
+ i = size - 1;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_MIRROR_CLAMP_EXT:
+ {
+ /* s limited to [0,1] */
+ /* i limited to [0,size-1] */
+ const GLfloat u = FABSF(s);
+ if (u <= 0.0F)
+ i = 0;
+ else if (u >= 1.0F)
+ i = size - 1;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_MIRROR_CLAMP_TO_EDGE_EXT:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const GLfloat min = 1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ const GLfloat u = FABSF(s);
+ if (u < min)
+ i = 0;
+ else if (u > max)
+ i = size - 1;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_MIRROR_CLAMP_TO_BORDER_EXT:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ const GLfloat u = FABSF(s);
+ if (u < min)
+ i = -1;
+ else if (u > max)
+ i = size;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_CLAMP:
+ /* s limited to [0,1] */
+ /* i limited to [0,size-1] */
+ if (s <= 0.0F)
+ i = 0;
+ else if (s >= 1.0F)
+ i = size - 1;
+ else
+ i = IFLOOR(s * size);
+ return i;
+ default:
+ _mesa_problem(NULL, "Bad wrap mode");
+ return 0;
+ }
+}
+
+
+/* Power of two image sizes only */
+static INLINE void
+linear_repeat_texel_location(GLuint size, GLfloat s,
+ GLint *i0, GLint *i1, GLfloat *weight)
+{
+ GLfloat u = s * size - 0.5F;
+ *i0 = IFLOOR(u) & (size - 1);
+ *i1 = (*i0 + 1) & (size - 1);
+ *weight = FRAC(u);
+}
+
+
+/**
+ * Do clamp/wrap for a texture rectangle coord, GL_NEAREST filter mode.
+ */
+static INLINE GLint
+clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max)
+{
+ switch (wrapMode) {
+ case GL_CLAMP:
+ return IFLOOR( CLAMP(coord, 0.0F, max - 1) );
+ case GL_CLAMP_TO_EDGE:
+ return IFLOOR( CLAMP(coord, 0.5F, max - 0.5F) );
+ case GL_CLAMP_TO_BORDER:
+ return IFLOOR( CLAMP(coord, -0.5F, max + 0.5F) );
+ default:
+ _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_nearest");
+ return 0;
+ }
+}
+
+
+/**
+ * As above, but GL_LINEAR filtering.
+ */
+static INLINE void
+clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max,
+ GLint *i0out, GLint *i1out, GLfloat *weight)
+{
+ GLfloat fcol;
+ GLint i0, i1;
+ switch (wrapMode) {
+ case GL_CLAMP:
+ /* Not exactly what the spec says, but it matches NVIDIA output */
+ fcol = CLAMP(coord - 0.5F, 0.0F, max - 1);
+ i0 = IFLOOR(fcol);
+ i1 = i0 + 1;
+ break;
+ case GL_CLAMP_TO_EDGE:
+ fcol = CLAMP(coord, 0.5F, max - 0.5F);
+ fcol -= 0.5F;
+ i0 = IFLOOR(fcol);
+ i1 = i0 + 1;
+ if (i1 > max - 1)
+ i1 = max - 1;
+ break;
+ case GL_CLAMP_TO_BORDER:
+ fcol = CLAMP(coord, -0.5F, max + 0.5F);
+ fcol -= 0.5F;
+ i0 = IFLOOR(fcol);
+ i1 = i0 + 1;
+ break;
+ default:
+ _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_linear");
+ i0 = i1 = 0;
+ fcol = 0.0F;
+ }
+ *i0out = i0;
+ *i1out = i1;
+ *weight = FRAC(fcol);
+}
+
+
+/**
+ * Compute slice/image to use for 1D or 2D array texture.
+ */
+static INLINE GLint
+tex_array_slice(GLfloat coord, GLsizei size)
+{
+ GLint slice = IFLOOR(coord + 0.5f);
+ slice = CLAMP(slice, 0, size - 1);
+ return slice;
+}
+
+
+/**
+ * Compute nearest integer texcoords for given texobj and coordinate.
+ * NOTE: only used for depth texture sampling.
+ */
+static INLINE void
+nearest_texcoord(const struct gl_texture_object *texObj,
+ GLuint level,
+ const GLfloat texcoord[4],
+ GLint *i, GLint *j, GLint *k)
+{
+ const struct gl_texture_image *img = texObj->Image[0][level];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ const GLint depth = img->Depth;
+
+ switch (texObj->Target) {
+ case GL_TEXTURE_RECTANGLE_ARB:
+ *i = clamp_rect_coord_nearest(texObj->WrapS, texcoord[0], width);
+ *j = clamp_rect_coord_nearest(texObj->WrapT, texcoord[1], height);
+ *k = 0;
+ break;
+ case GL_TEXTURE_1D:
+ *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
+ *j = 0;
+ *k = 0;
+ break;
+ case GL_TEXTURE_2D:
+ *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
+ *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]);
+ *k = 0;
+ break;
+ case GL_TEXTURE_1D_ARRAY_EXT:
+ *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
+ *j = tex_array_slice(texcoord[1], height);
+ *k = 0;
+ break;
+ case GL_TEXTURE_2D_ARRAY_EXT:
+ *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
+ *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]);
+ *k = tex_array_slice(texcoord[2], depth);
+ break;
+ default:
+ *i = *j = *k = 0;
+ }
+}
+
+
+/**
+ * Compute linear integer texcoords for given texobj and coordinate.
+ * NOTE: only used for depth texture sampling.
+ */
+static INLINE void
+linear_texcoord(const struct gl_texture_object *texObj,
+ GLuint level,
+ const GLfloat texcoord[4],
+ GLint *i0, GLint *i1, GLint *j0, GLint *j1, GLint *slice,
+ GLfloat *wi, GLfloat *wj)
+{
+ const struct gl_texture_image *img = texObj->Image[0][level];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ const GLint depth = img->Depth;
+
+ switch (texObj->Target) {
+ case GL_TEXTURE_RECTANGLE_ARB:
+ clamp_rect_coord_linear(texObj->WrapS, texcoord[0],
+ width, i0, i1, wi);
+ clamp_rect_coord_linear(texObj->WrapT, texcoord[1],
+ height, j0, j1, wj);
+ *slice = 0;
+ break;
+
+ case GL_TEXTURE_1D:
+ case GL_TEXTURE_2D:
+ linear_texel_locations(texObj->WrapS, img, width,
+ texcoord[0], i0, i1, wi);
+ linear_texel_locations(texObj->WrapT, img, height,
+ texcoord[1], j0, j1, wj);
+ *slice = 0;
+ break;
+
+ case GL_TEXTURE_1D_ARRAY_EXT:
+ linear_texel_locations(texObj->WrapS, img, width,
+ texcoord[0], i0, i1, wi);
+ *j0 = tex_array_slice(texcoord[1], height);
+ *j1 = *j0;
+ *slice = 0;
+ break;
+
+ case GL_TEXTURE_2D_ARRAY_EXT:
+ linear_texel_locations(texObj->WrapS, img, width,
+ texcoord[0], i0, i1, wi);
+ linear_texel_locations(texObj->WrapT, img, height,
+ texcoord[1], j0, j1, wj);
+ *slice = tex_array_slice(texcoord[2], depth);
+ break;
+
+ default:
+ *slice = 0;
+ }
+}
+
+
+
+/**
+ * For linear interpolation between mipmap levels N and N+1, this function
+ * computes N.
+ */
+static INLINE GLint
+linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda)
+{
+ if (lambda < 0.0F)
+ return tObj->BaseLevel;
+ else if (lambda > tObj->_MaxLambda)
+ return (GLint) (tObj->BaseLevel + tObj->_MaxLambda);
+ else
+ return (GLint) (tObj->BaseLevel + lambda);
+}
+
+
+/**
+ * Compute the nearest mipmap level to take texels from.
+ */
+static INLINE GLint
+nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda)
+{
+ GLfloat l;
+ GLint level;
+ if (lambda <= 0.5F)
+ l = 0.0F;
+ else if (lambda > tObj->_MaxLambda + 0.4999F)
+ l = tObj->_MaxLambda + 0.4999F;
+ else
+ l = lambda;
+ level = (GLint) (tObj->BaseLevel + l + 0.5F);
+ if (level > tObj->_MaxLevel)
+ level = tObj->_MaxLevel;
+ return level;
+}
+
+
+
+/*
+ * Bitflags for texture border color sampling.
+ */
+#define I0BIT 1
+#define I1BIT 2
+#define J0BIT 4
+#define J1BIT 8
+#define K0BIT 16
+#define K1BIT 32
+
+
+
+/**
+ * The lambda[] array values are always monotonic. Either the whole span
+ * will be minified, magnified, or split between the two. This function
+ * determines the subranges in [0, n-1] that are to be minified or magnified.
+ */
+static INLINE void
+compute_min_mag_ranges(const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat lambda[],
+ GLuint *minStart, GLuint *minEnd,
+ GLuint *magStart, GLuint *magEnd)
+{
+ GLfloat minMagThresh;
+
+ /* we shouldn't be here if minfilter == magfilter */
+ ASSERT(tObj->MinFilter != tObj->MagFilter);
+
+ /* This bit comes from the OpenGL spec: */
+ if (tObj->MagFilter == GL_LINEAR
+ && (tObj->MinFilter == GL_NEAREST_MIPMAP_NEAREST ||
+ tObj->MinFilter == GL_NEAREST_MIPMAP_LINEAR)) {
+ minMagThresh = 0.5F;
+ }
+ else {
+ minMagThresh = 0.0F;
+ }
+
+#if 0
+ /* DEBUG CODE: Verify that lambda[] is monotonic.
+ * We can't really use this because the inaccuracy in the LOG2 function
+ * causes this test to fail, yet the resulting texturing is correct.
+ */
+ if (n > 1) {
+ GLuint i;
+ printf("lambda delta = %g\n", lambda[0] - lambda[n-1]);
+ if (lambda[0] >= lambda[n-1]) { /* decreasing */
+ for (i = 0; i < n - 1; i++) {
+ ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10));
+ }
+ }
+ else { /* increasing */
+ for (i = 0; i < n - 1; i++) {
+ ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10));
+ }
+ }
+ }
+#endif /* DEBUG */
+
+ if (lambda[0] <= minMagThresh && (n <= 1 || lambda[n-1] <= minMagThresh)) {
+ /* magnification for whole span */
+ *magStart = 0;
+ *magEnd = n;
+ *minStart = *minEnd = 0;
+ }
+ else if (lambda[0] > minMagThresh && (n <=1 || lambda[n-1] > minMagThresh)) {
+ /* minification for whole span */
+ *minStart = 0;
+ *minEnd = n;
+ *magStart = *magEnd = 0;
+ }
+ else {
+ /* a mix of minification and magnification */
+ GLuint i;
+ if (lambda[0] > minMagThresh) {
+ /* start with minification */
+ for (i = 1; i < n; i++) {
+ if (lambda[i] <= minMagThresh)
+ break;
+ }
+ *minStart = 0;
+ *minEnd = i;
+ *magStart = i;
+ *magEnd = n;
+ }
+ else {
+ /* start with magnification */
+ for (i = 1; i < n; i++) {
+ if (lambda[i] > minMagThresh)
+ break;
+ }
+ *magStart = 0;
+ *magEnd = i;
+ *minStart = i;
+ *minEnd = n;
+ }
+ }
+
+#if 0
+ /* Verify the min/mag Start/End values
+ * We don't use this either (see above)
+ */
+ {
+ GLint i;
+ for (i = 0; i < n; i++) {
+ if (lambda[i] > minMagThresh) {
+ /* minification */
+ ASSERT(i >= *minStart);
+ ASSERT(i < *minEnd);
+ }
+ else {
+ /* magnification */
+ ASSERT(i >= *magStart);
+ ASSERT(i < *magEnd);
+ }
+ }
+ }
+#endif
+}
+
+
+/**
+ * When we sample the border color, it must be interpreted according to
+ * the base texture format. Ex: if the texture base format it GL_ALPHA,
+ * we return (0,0,0,BorderAlpha).
+ */
+static INLINE void
+get_border_color(const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ GLfloat rgba[4])
+{
+ switch (img->_BaseFormat) {
+ case GL_RGB:
+ rgba[0] = tObj->BorderColor.f[0];
+ rgba[1] = tObj->BorderColor.f[1];
+ rgba[2] = tObj->BorderColor.f[2];
+ rgba[3] = 1.0F;
+ break;
+ case GL_ALPHA:
+ rgba[0] = rgba[1] = rgba[2] = 0.0;
+ rgba[3] = tObj->BorderColor.f[3];
+ break;
+ case GL_LUMINANCE:
+ rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor.f[0];
+ rgba[3] = 1.0;
+ break;
+ case GL_LUMINANCE_ALPHA:
+ rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor.f[0];
+ rgba[3] = tObj->BorderColor.f[3];
+ break;
+ case GL_INTENSITY:
+ rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->BorderColor.f[0];
+ break;
+ default:
+ COPY_4V(rgba, tObj->BorderColor.f);
+ }
+}
+
+
+/**********************************************************************/
+/* 1-D Texture Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s) using GL_NEAREST filter.
+ */
+static INLINE void
+sample_1d_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4], GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ GLint i;
+ i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ /* skip over the border, if any */
+ i += img->Border;
+ if (i < 0 || i >= (GLint) img->Width) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, 0, 0, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s) using GL_LINEAR filter.
+ */
+static INLINE void
+sample_1d_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4], GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ GLint i0, i1;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a;
+ GLfloat t0[4], t1[4]; /* texels */
+
+ linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ }
+ else {
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ }
+
+ /* fetch texel colors */
+ if (useBorderColor & I0BIT) {
+ get_border_color(tObj, img, t0);
+ }
+ else {
+ img->FetchTexelf(img, i0, 0, 0, t0);
+ }
+ if (useBorderColor & I1BIT) {
+ get_border_color(tObj, img, t1);
+ }
+ else {
+ img->FetchTexelf(img, i1, 0, 0, t1);
+ }
+
+ lerp_rgba(rgba, a, t0, t1);
+}
+
+
+static void
+sample_1d_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4];
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_1d_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4];
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 1D texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_1d( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D texture, linear filtering for both min/magnification */
+static void
+sample_linear_1d( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_1d( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4] )
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ const GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_1d_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_1d_texture");
+ return;
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* 2-D Texture Sampling Functions */
+/**********************************************************************/
+
+
+/**
+ * Return the texture sample for coordinate (s,t) using GL_NEAREST filter.
+ */
+static INLINE void
+sample_2d_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height2; /* without border, power of two */
+ GLint i, j;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
+
+ /* skip over the border, if any */
+ i += img->Border;
+ j += img->Border;
+
+ if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, j, 0, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t) using GL_LINEAR filter.
+ * New sampling code contributed by Lynn Quam <quam@ai.sri.com>.
+ */
+static INLINE void
+sample_2d_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ GLint i0, j0, i1, j1;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a, b;
+ GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
+
+ linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ j0 += img->Border;
+ j1 += img->Border;
+ }
+ else {
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+ }
+
+ /* fetch four texel colors */
+ if (useBorderColor & (I0BIT | J0BIT)) {
+ get_border_color(tObj, img, t00);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, 0, t00);
+ }
+ if (useBorderColor & (I1BIT | J0BIT)) {
+ get_border_color(tObj, img, t10);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, 0, t10);
+ }
+ if (useBorderColor & (I0BIT | J1BIT)) {
+ get_border_color(tObj, img, t01);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, 0, t01);
+ }
+ if (useBorderColor & (I1BIT | J1BIT)) {
+ get_border_color(tObj, img, t11);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, 0, t11);
+ }
+
+ lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11);
+}
+
+
+/**
+ * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT.
+ * We don't have to worry about the texture border.
+ */
+static INLINE void
+sample_2d_linear_repeat(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ GLint i0, j0, i1, j1;
+ GLfloat wi, wj;
+ GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
+
+ (void) ctx;
+
+ ASSERT(tObj->WrapS == GL_REPEAT);
+ ASSERT(tObj->WrapT == GL_REPEAT);
+ ASSERT(img->Border == 0);
+ ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
+ ASSERT(img->_IsPowerOfTwo);
+
+ linear_repeat_texel_location(width, texcoord[0], &i0, &i1, &wi);
+ linear_repeat_texel_location(height, texcoord[1], &j0, &j1, &wj);
+
+ img->FetchTexelf(img, i0, j0, 0, t00);
+ img->FetchTexelf(img, i1, j0, 0, t10);
+ img->FetchTexelf(img, i0, j1, 0, t01);
+ img->FetchTexelf(img, i1, j1, 0, t11);
+
+ lerp_rgba_2d(rgba, wi, wj, t00, t10, t01, t11);
+}
+
+
+static void
+sample_2d_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_2d_linear_mipmap_linear( struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4] )
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_2d_linear_mipmap_linear_repeat(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ ASSERT(tObj->WrapS == GL_REPEAT);
+ ASSERT(tObj->WrapT == GL_REPEAT);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ],
+ texcoord[i], t0);
+ sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1],
+ texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 2D texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 2D texture, linear filtering for both min/magnification */
+static void
+sample_linear_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ if (tObj->WrapS == GL_REPEAT &&
+ tObj->WrapT == GL_REPEAT &&
+ image->_IsPowerOfTwo &&
+ image->Border == 0) {
+ for (i = 0; i < n; i++) {
+ sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+ }
+ else {
+ for (i = 0; i < n; i++) {
+ sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+ }
+}
+
+
+/**
+ * Optimized 2-D texture sampling:
+ * S and T wrap mode == GL_REPEAT
+ * GL_NEAREST min/mag filter
+ * No border,
+ * RowStride == Width,
+ * Format = GL_RGB
+ */
+static void
+opt_sample_rgb_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
+ const GLfloat width = (GLfloat) img->Width;
+ const GLfloat height = (GLfloat) img->Height;
+ const GLint colMask = img->Width - 1;
+ const GLint rowMask = img->Height - 1;
+ const GLint shift = img->WidthLog2;
+ GLuint k;
+ (void) ctx;
+ (void) lambda;
+ ASSERT(tObj->WrapS==GL_REPEAT);
+ ASSERT(tObj->WrapT==GL_REPEAT);
+ ASSERT(img->Border==0);
+ ASSERT(img->TexFormat == MESA_FORMAT_RGB888);
+ ASSERT(img->_IsPowerOfTwo);
+
+ for (k=0; k<n; k++) {
+ GLint i = IFLOOR(texcoords[k][0] * width) & colMask;
+ GLint j = IFLOOR(texcoords[k][1] * height) & rowMask;
+ GLint pos = (j << shift) | i;
+ GLubyte *texel = ((GLubyte *) img->Data) + 3*pos;
+ rgba[k][RCOMP] = UBYTE_TO_FLOAT(texel[2]);
+ rgba[k][GCOMP] = UBYTE_TO_FLOAT(texel[1]);
+ rgba[k][BCOMP] = UBYTE_TO_FLOAT(texel[0]);
+ rgba[k][ACOMP] = 1.0F;
+ }
+}
+
+
+/**
+ * Optimized 2-D texture sampling:
+ * S and T wrap mode == GL_REPEAT
+ * GL_NEAREST min/mag filter
+ * No border
+ * RowStride == Width,
+ * Format = GL_RGBA
+ */
+static void
+opt_sample_rgba_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
+ const GLfloat width = (GLfloat) img->Width;
+ const GLfloat height = (GLfloat) img->Height;
+ const GLint colMask = img->Width - 1;
+ const GLint rowMask = img->Height - 1;
+ const GLint shift = img->WidthLog2;
+ GLuint i;
+ (void) ctx;
+ (void) lambda;
+ ASSERT(tObj->WrapS==GL_REPEAT);
+ ASSERT(tObj->WrapT==GL_REPEAT);
+ ASSERT(img->Border==0);
+ ASSERT(img->TexFormat == MESA_FORMAT_RGBA8888);
+ ASSERT(img->_IsPowerOfTwo);
+
+ for (i = 0; i < n; i++) {
+ const GLint col = IFLOOR(texcoords[i][0] * width) & colMask;
+ const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask;
+ const GLint pos = (row << shift) | col;
+ const GLuint texel = *((GLuint *) img->Data + pos);
+ rgba[i][RCOMP] = UBYTE_TO_FLOAT( (texel >> 24) );
+ rgba[i][GCOMP] = UBYTE_TO_FLOAT( (texel >> 16) & 0xff );
+ rgba[i][BCOMP] = UBYTE_TO_FLOAT( (texel >> 8) & 0xff );
+ rgba[i][ACOMP] = UBYTE_TO_FLOAT( (texel ) & 0xff );
+ }
+}
+
+
+/** Sample 2D texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel];
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+
+ const GLboolean repeatNoBorderPOT = (tObj->WrapS == GL_REPEAT)
+ && (tObj->WrapT == GL_REPEAT)
+ && (tImg->Border == 0 && (tImg->Width == tImg->RowStride))
+ && (tImg->_BaseFormat != GL_COLOR_INDEX)
+ && tImg->_IsPowerOfTwo;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ const GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ if (repeatNoBorderPOT) {
+ switch (tImg->TexFormat) {
+ case MESA_FORMAT_RGB888:
+ opt_sample_rgb_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ break;
+ case MESA_FORMAT_RGBA8888:
+ opt_sample_rgba_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ break;
+ default:
+ sample_nearest_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart );
+ }
+ }
+ else {
+ sample_nearest_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ }
+ break;
+ case GL_LINEAR:
+ sample_linear_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_2d_nearest_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ if (repeatNoBorderPOT)
+ sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m,
+ texcoords + minStart, lambda + minStart, rgba + minStart);
+ else
+ sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_2d_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ const GLuint m = magEnd - magStart;
+
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ if (repeatNoBorderPOT) {
+ switch (tImg->TexFormat) {
+ case MESA_FORMAT_RGB888:
+ opt_sample_rgb_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ break;
+ case MESA_FORMAT_RGBA8888:
+ opt_sample_rgba_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ break;
+ default:
+ sample_nearest_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart );
+ }
+ }
+ else {
+ sample_nearest_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ }
+ break;
+ case GL_LINEAR:
+ sample_linear_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d");
+ }
+ }
+}
+
+
+
+/**********************************************************************/
+/* 3-D Texture Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
+ */
+static INLINE void
+sample_3d_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height2; /* without border, power of two */
+ const GLint depth = img->Depth2; /* without border, power of two */
+ GLint i, j, k;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
+ k = nearest_texel_location(tObj->WrapR, img, depth, texcoord[2]);
+
+ if (i < 0 || i >= (GLint) img->Width ||
+ j < 0 || j >= (GLint) img->Height ||
+ k < 0 || k >= (GLint) img->Depth) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, j, k, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
+ */
+static void
+sample_3d_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ const GLint depth = img->Depth2;
+ GLint i0, j0, k0, i1, j1, k1;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a, b, c;
+ GLfloat t000[4], t010[4], t001[4], t011[4];
+ GLfloat t100[4], t110[4], t101[4], t111[4];
+
+ linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
+ linear_texel_locations(tObj->WrapR, img, depth, texcoord[2], &k0, &k1, &c);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ j0 += img->Border;
+ j1 += img->Border;
+ k0 += img->Border;
+ k1 += img->Border;
+ }
+ else {
+ /* check if sampling texture border color */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+ if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT;
+ if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT;
+ }
+
+ /* Fetch texels */
+ if (useBorderColor & (I0BIT | J0BIT | K0BIT)) {
+ get_border_color(tObj, img, t000);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, k0, t000);
+ }
+ if (useBorderColor & (I1BIT | J0BIT | K0BIT)) {
+ get_border_color(tObj, img, t100);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, k0, t100);
+ }
+ if (useBorderColor & (I0BIT | J1BIT | K0BIT)) {
+ get_border_color(tObj, img, t010);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, k0, t010);
+ }
+ if (useBorderColor & (I1BIT | J1BIT | K0BIT)) {
+ get_border_color(tObj, img, t110);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, k0, t110);
+ }
+
+ if (useBorderColor & (I0BIT | J0BIT | K1BIT)) {
+ get_border_color(tObj, img, t001);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, k1, t001);
+ }
+ if (useBorderColor & (I1BIT | J0BIT | K1BIT)) {
+ get_border_color(tObj, img, t101);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, k1, t101);
+ }
+ if (useBorderColor & (I0BIT | J1BIT | K1BIT)) {
+ get_border_color(tObj, img, t011);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, k1, t011);
+ }
+ if (useBorderColor & (I1BIT | J1BIT | K1BIT)) {
+ get_border_color(tObj, img, t111);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, k1, t111);
+ }
+
+ /* trilinear interpolation of samples */
+ lerp_rgba_3d(rgba, a, b, c, t000, t100, t010, t110, t001, t101, t011, t111);
+}
+
+
+static void
+sample_3d_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4] )
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_3d_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_3d_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_3d_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 3D texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_3d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 3D texture, linear filtering for both min/magnification */
+static void
+sample_linear_3d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 3D texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_3d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_3d_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_3d_texture");
+ return;
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* Texture Cube Map Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Choose one of six sides of a texture cube map given the texture
+ * coord (rx,ry,rz). Return pointer to corresponding array of texture
+ * images.
+ */
+static const struct gl_texture_image **
+choose_cube_face(const struct gl_texture_object *texObj,
+ const GLfloat texcoord[4], GLfloat newCoord[4])
+{
+ /*
+ major axis
+ direction target sc tc ma
+ ---------- ------------------------------- --- --- ---
+ +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
+ -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
+ +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
+ -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
+ +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
+ -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
+ */
+ const GLfloat rx = texcoord[0];
+ const GLfloat ry = texcoord[1];
+ const GLfloat rz = texcoord[2];
+ const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz);
+ GLuint face;
+ GLfloat sc, tc, ma;
+
+ if (arx >= ary && arx >= arz) {
+ if (rx >= 0.0F) {
+ face = FACE_POS_X;
+ sc = -rz;
+ tc = -ry;
+ ma = arx;
+ }
+ else {
+ face = FACE_NEG_X;
+ sc = rz;
+ tc = -ry;
+ ma = arx;
+ }
+ }
+ else if (ary >= arx && ary >= arz) {
+ if (ry >= 0.0F) {
+ face = FACE_POS_Y;
+ sc = rx;
+ tc = rz;
+ ma = ary;
+ }
+ else {
+ face = FACE_NEG_Y;
+ sc = rx;
+ tc = -rz;
+ ma = ary;
+ }
+ }
+ else {
+ if (rz > 0.0F) {
+ face = FACE_POS_Z;
+ sc = rx;
+ tc = -ry;
+ ma = arz;
+ }
+ else {
+ face = FACE_NEG_Z;
+ sc = -rx;
+ tc = -ry;
+ ma = arz;
+ }
+ }
+
+ {
+ const float ima = 1.0F / ma;
+ newCoord[0] = ( sc * ima + 1.0F ) * 0.5F;
+ newCoord[1] = ( tc * ima + 1.0F ) * 0.5F;
+ }
+
+ return (const struct gl_texture_image **) texObj->Image[face];
+}
+
+
+static void
+sample_nearest_cube(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ images = choose_cube_face(tObj, texcoords[i], newCoord);
+ sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel],
+ newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_linear_cube(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ images = choose_cube_face(tObj, texcoords[i], newCoord);
+ sample_2d_linear(ctx, tObj, images[tObj->BaseLevel],
+ newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_cube_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level;
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+
+ /* XXX we actually need to recompute lambda here based on the newCoords.
+ * But we would need the texcoords of adjacent fragments to compute that
+ * properly, and we don't have those here.
+ * For now, do an approximation: subtracting 1 from the chosen mipmap
+ * level seems to work in some test cases.
+ * The same adjustment is done in the next few functions.
+ */
+ level = nearest_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0);
+
+ sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_cube_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0); /* see comment above */
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+ sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_cube_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0); /* see comment above */
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel],
+ newCoord, rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0);
+ sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_cube_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0); /* see comment above */
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel],
+ newCoord, rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4];
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_linear(ctx, tObj, images[level ], newCoord, t0);
+ sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample cube texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_cube(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ const GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ sample_nearest_cube(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR:
+ sample_linear_cube(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_cube_nearest_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_cube_linear_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_cube_nearest_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_cube_linear_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_lambda_cube");
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ const GLuint m = magEnd - magStart;
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ sample_nearest_cube(ctx, tObj, m, texcoords + magStart,
+ lambda + magStart, rgba + magStart);
+ break;
+ case GL_LINEAR:
+ sample_linear_cube(ctx, tObj, m, texcoords + magStart,
+ lambda + magStart, rgba + magStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube");
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* Texture Rectangle Sampling Functions */
+/**********************************************************************/
+
+
+static void
+sample_nearest_rect(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][0];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ GLuint i;
+
+ (void) ctx;
+ (void) lambda;
+
+ ASSERT(tObj->WrapS == GL_CLAMP ||
+ tObj->WrapS == GL_CLAMP_TO_EDGE ||
+ tObj->WrapS == GL_CLAMP_TO_BORDER);
+ ASSERT(tObj->WrapT == GL_CLAMP ||
+ tObj->WrapT == GL_CLAMP_TO_EDGE ||
+ tObj->WrapT == GL_CLAMP_TO_BORDER);
+ ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
+
+ for (i = 0; i < n; i++) {
+ GLint row, col;
+ col = clamp_rect_coord_nearest(tObj->WrapS, texcoords[i][0], width);
+ row = clamp_rect_coord_nearest(tObj->WrapT, texcoords[i][1], height);
+ if (col < 0 || col >= width || row < 0 || row >= height)
+ get_border_color(tObj, img, rgba[i]);
+ else
+ img->FetchTexelf(img, col, row, 0, rgba[i]);
+ }
+}
+
+
+static void
+sample_linear_rect(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][0];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ GLuint i;
+
+ (void) ctx;
+ (void) lambda;
+
+ ASSERT(tObj->WrapS == GL_CLAMP ||
+ tObj->WrapS == GL_CLAMP_TO_EDGE ||
+ tObj->WrapS == GL_CLAMP_TO_BORDER);
+ ASSERT(tObj->WrapT == GL_CLAMP ||
+ tObj->WrapT == GL_CLAMP_TO_EDGE ||
+ tObj->WrapT == GL_CLAMP_TO_BORDER);
+ ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
+
+ for (i = 0; i < n; i++) {
+ GLint i0, j0, i1, j1;
+ GLfloat t00[4], t01[4], t10[4], t11[4];
+ GLfloat a, b;
+ GLbitfield useBorderColor = 0x0;
+
+ clamp_rect_coord_linear(tObj->WrapS, texcoords[i][0], width,
+ &i0, &i1, &a);
+ clamp_rect_coord_linear(tObj->WrapT, texcoords[i][1], height,
+ &j0, &j1, &b);
+
+ /* compute integer rows/columns */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+
+ /* get four texel samples */
+ if (useBorderColor & (I0BIT | J0BIT))
+ get_border_color(tObj, img, t00);
+ else
+ img->FetchTexelf(img, i0, j0, 0, t00);
+
+ if (useBorderColor & (I1BIT | J0BIT))
+ get_border_color(tObj, img, t10);
+ else
+ img->FetchTexelf(img, i1, j0, 0, t10);
+
+ if (useBorderColor & (I0BIT | J1BIT))
+ get_border_color(tObj, img, t01);
+ else
+ img->FetchTexelf(img, i0, j1, 0, t01);
+
+ if (useBorderColor & (I1BIT | J1BIT))
+ get_border_color(tObj, img, t11);
+ else
+ img->FetchTexelf(img, i1, j1, 0, t11);
+
+ lerp_rgba_2d(rgba[i], a, b, t00, t10, t01, t11);
+ }
+}
+
+
+/** Sample Rect texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_rect(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd, magStart, magEnd;
+
+ /* We only need lambda to decide between minification and magnification.
+ * There is no mipmapping with rectangular textures.
+ */
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ if (tObj->MinFilter == GL_NEAREST) {
+ sample_nearest_rect(ctx, tObj, minEnd - minStart,
+ texcoords + minStart, NULL, rgba + minStart);
+ }
+ else {
+ sample_linear_rect(ctx, tObj, minEnd - minStart,
+ texcoords + minStart, NULL, rgba + minStart);
+ }
+ }
+ if (magStart < magEnd) {
+ if (tObj->MagFilter == GL_NEAREST) {
+ sample_nearest_rect(ctx, tObj, magEnd - magStart,
+ texcoords + magStart, NULL, rgba + magStart);
+ }
+ else {
+ sample_linear_rect(ctx, tObj, magEnd - magStart,
+ texcoords + magStart, NULL, rgba + magStart);
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* 2D Texture Array Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
+ */
+static void
+sample_2d_array_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height2; /* without border, power of two */
+ const GLint depth = img->Depth;
+ GLint i, j;
+ GLint array;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
+ array = tex_array_slice(texcoord[2], depth);
+
+ if (i < 0 || i >= (GLint) img->Width ||
+ j < 0 || j >= (GLint) img->Height ||
+ array < 0 || array >= (GLint) img->Depth) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, j, array, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
+ */
+static void
+sample_2d_array_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ const GLint depth = img->Depth;
+ GLint i0, j0, i1, j1;
+ GLint array;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a, b;
+ GLfloat t00[4], t01[4], t10[4], t11[4];
+
+ linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
+ array = tex_array_slice(texcoord[2], depth);
+
+ if (array < 0 || array >= depth) {
+ COPY_4V(rgba, tObj->BorderColor.f);
+ }
+ else {
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ j0 += img->Border;
+ j1 += img->Border;
+ }
+ else {
+ /* check if sampling texture border color */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+ }
+
+ /* Fetch texels */
+ if (useBorderColor & (I0BIT | J0BIT)) {
+ get_border_color(tObj, img, t00);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, array, t00);
+ }
+ if (useBorderColor & (I1BIT | J0BIT)) {
+ get_border_color(tObj, img, t10);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, array, t10);
+ }
+ if (useBorderColor & (I0BIT | J1BIT)) {
+ get_border_color(tObj, img, t01);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, array, t01);
+ }
+ if (useBorderColor & (I1BIT | J1BIT)) {
+ get_border_color(tObj, img, t11);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, array, t11);
+ }
+
+ /* trilinear interpolation of samples */
+ lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11);
+ }
+}
+
+
+static void
+sample_2d_array_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i],
+ rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_array_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][level],
+ texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_array_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level ],
+ texcoord[i], t0);
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level+1],
+ texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_2d_array_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][level ],
+ texcoord[i], t0);
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][level+1],
+ texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 2D Array texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_2d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_2d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+
+/** Sample 2D Array texture, linear filtering for both min/magnification */
+static void
+sample_linear_2d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_2d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 2D Array texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_2d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_2d_array_nearest_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_2d_array_linear_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_2d_array_nearest_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_2d_array_linear_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_2d_array_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_2d_array_texture");
+ return;
+ }
+ }
+}
+
+
+
+
+/**********************************************************************/
+/* 1D Texture Array Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
+ */
+static void
+sample_1d_array_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height;
+ GLint i;
+ GLint array;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ array = tex_array_slice(texcoord[1], height);
+
+ if (i < 0 || i >= (GLint) img->Width ||
+ array < 0 || array >= (GLint) img->Height) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, array, 0, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
+ */
+static void
+sample_1d_array_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height;
+ GLint i0, i1;
+ GLint array;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a;
+ GLfloat t0[4], t1[4];
+
+ linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ array = tex_array_slice(texcoord[1], height);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ }
+ else {
+ /* check if sampling texture border color */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ }
+
+ if (array < 0 || array >= height) useBorderColor |= K0BIT;
+
+ /* Fetch texels */
+ if (useBorderColor & (I0BIT | K0BIT)) {
+ get_border_color(tObj, img, t0);
+ }
+ else {
+ img->FetchTexelf(img, i0, array, 0, t0);
+ }
+ if (useBorderColor & (I1BIT | K0BIT)) {
+ get_border_color(tObj, img, t1);
+ }
+ else {
+ img->FetchTexelf(img, i1, array, 0, t1);
+ }
+
+ /* bilinear interpolation of samples */
+ lerp_rgba(rgba, a, t0, t1);
+}
+
+
+static void
+sample_1d_array_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i],
+ rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_array_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][level],
+ texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_array_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_1d_array_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 1D Array texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_1d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D Array texture, linear filtering for both min/magnification */
+static void
+sample_linear_1d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D Array texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_1d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_1d_array_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_1d_array_linear_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_1d_array_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_1d_array_linear_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_1d_array_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_1d_array_texture");
+ return;
+ }
+ }
+}
+
+
+/**
+ * Compare texcoord against depth sample. Return 1.0 or the ambient value.
+ */
+static INLINE GLfloat
+shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample,
+ GLfloat ambient)
+{
+ switch (function) {
+ case GL_LEQUAL:
+ return (coord <= depthSample) ? 1.0F : ambient;
+ case GL_GEQUAL:
+ return (coord >= depthSample) ? 1.0F : ambient;
+ case GL_LESS:
+ return (coord < depthSample) ? 1.0F : ambient;
+ case GL_GREATER:
+ return (coord > depthSample) ? 1.0F : ambient;
+ case GL_EQUAL:
+ return (coord == depthSample) ? 1.0F : ambient;
+ case GL_NOTEQUAL:
+ return (coord != depthSample) ? 1.0F : ambient;
+ case GL_ALWAYS:
+ return 1.0F;
+ case GL_NEVER:
+ return ambient;
+ case GL_NONE:
+ return depthSample;
+ default:
+ _mesa_problem(NULL, "Bad compare func in shadow_compare");
+ return ambient;
+ }
+}
+
+
+/**
+ * Compare texcoord against four depth samples.
+ */
+static INLINE GLfloat
+shadow_compare4(GLenum function, GLfloat coord,
+ GLfloat depth00, GLfloat depth01,
+ GLfloat depth10, GLfloat depth11,
+ GLfloat ambient, GLfloat wi, GLfloat wj)
+{
+ const GLfloat d = (1.0F - (GLfloat) ambient) * 0.25F;
+ GLfloat luminance = 1.0F;
+
+ switch (function) {
+ case GL_LEQUAL:
+ if (coord > depth00) luminance -= d;
+ if (coord > depth01) luminance -= d;
+ if (coord > depth10) luminance -= d;
+ if (coord > depth11) luminance -= d;
+ return luminance;
+ case GL_GEQUAL:
+ if (coord < depth00) luminance -= d;
+ if (coord < depth01) luminance -= d;
+ if (coord < depth10) luminance -= d;
+ if (coord < depth11) luminance -= d;
+ return luminance;
+ case GL_LESS:
+ if (coord >= depth00) luminance -= d;
+ if (coord >= depth01) luminance -= d;
+ if (coord >= depth10) luminance -= d;
+ if (coord >= depth11) luminance -= d;
+ return luminance;
+ case GL_GREATER:
+ if (coord <= depth00) luminance -= d;
+ if (coord <= depth01) luminance -= d;
+ if (coord <= depth10) luminance -= d;
+ if (coord <= depth11) luminance -= d;
+ return luminance;
+ case GL_EQUAL:
+ if (coord != depth00) luminance -= d;
+ if (coord != depth01) luminance -= d;
+ if (coord != depth10) luminance -= d;
+ if (coord != depth11) luminance -= d;
+ return luminance;
+ case GL_NOTEQUAL:
+ if (coord == depth00) luminance -= d;
+ if (coord == depth01) luminance -= d;
+ if (coord == depth10) luminance -= d;
+ if (coord == depth11) luminance -= d;
+ return luminance;
+ case GL_ALWAYS:
+ return 1.0F;
+ case GL_NEVER:
+ return ambient;
+ case GL_NONE:
+ /* ordinary bilinear filtering */
+ return lerp_2d(wi, wj, depth00, depth10, depth01, depth11);
+ default:
+ _mesa_problem(NULL, "Bad compare func in sample_compare4");
+ return ambient;
+ }
+}
+
+
+/**
+ * Choose the mipmap level to use when sampling from a depth texture.
+ */
+static int
+choose_depth_texture_level(const struct gl_texture_object *tObj, GLfloat lambda)
+{
+ GLint level;
+
+ if (tObj->MinFilter == GL_NEAREST || tObj->MinFilter == GL_LINEAR) {
+ /* no mipmapping - use base level */
+ level = tObj->BaseLevel;
+ }
+ else {
+ /* choose mipmap level */
+ lambda = CLAMP(lambda, tObj->MinLod, tObj->MaxLod);
+ level = (GLint) lambda;
+ level = CLAMP(level, tObj->BaseLevel, tObj->_MaxLevel);
+ }
+
+ return level;
+}
+
+
+/**
+ * Sample a shadow/depth texture. This function is incomplete. It doesn't
+ * check for minification vs. magnification, etc.
+ */
+static void
+sample_depth_texture( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat texel[][4] )
+{
+ const GLint level = choose_depth_texture_level(tObj, lambda[0]);
+ const struct gl_texture_image *img = tObj->Image[0][level];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ const GLint depth = img->Depth;
+ const GLuint compare_coord = (tObj->Target == GL_TEXTURE_2D_ARRAY_EXT)
+ ? 3 : 2;
+ GLfloat ambient;
+ GLenum function;
+ GLfloat result;
+
+ ASSERT(img->_BaseFormat == GL_DEPTH_COMPONENT ||
+ img->_BaseFormat == GL_DEPTH_STENCIL_EXT);
+
+ ASSERT(tObj->Target == GL_TEXTURE_1D ||
+ tObj->Target == GL_TEXTURE_2D ||
+ tObj->Target == GL_TEXTURE_RECTANGLE_NV ||
+ tObj->Target == GL_TEXTURE_1D_ARRAY_EXT ||
+ tObj->Target == GL_TEXTURE_2D_ARRAY_EXT);
+
+ ambient = tObj->CompareFailValue;
+
+ /* XXXX if tObj->MinFilter != tObj->MagFilter, we're ignoring lambda */
+
+ function = (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ?
+ tObj->CompareFunc : GL_NONE;
+
+ if (tObj->MagFilter == GL_NEAREST) {
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLfloat depthSample, depthRef;
+ GLint col, row, slice;
+
+ nearest_texcoord(tObj, level, texcoords[i], &col, &row, &slice);
+
+ if (col >= 0 && row >= 0 && col < width && row < height &&
+ slice >= 0 && slice < depth) {
+ img->FetchTexelf(img, col, row, slice, &depthSample);
+ }
+ else {
+ depthSample = tObj->BorderColor.f[0];
+ }
+
+ depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F);
+
+ result = shadow_compare(function, depthRef, depthSample, ambient);
+
+ switch (tObj->DepthMode) {
+ case GL_LUMINANCE:
+ ASSIGN_4V(texel[i], result, result, result, 1.0F);
+ break;
+ case GL_INTENSITY:
+ ASSIGN_4V(texel[i], result, result, result, result);
+ break;
+ case GL_ALPHA:
+ ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result);
+ break;
+ case GL_RED:
+ ASSIGN_4V(texel[i], result, 0.0F, 0.0F, 1.0F);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad depth texture mode");
+ }
+ }
+ }
+ else {
+ GLuint i;
+ ASSERT(tObj->MagFilter == GL_LINEAR);
+ for (i = 0; i < n; i++) {
+ GLfloat depth00, depth01, depth10, depth11, depthRef;
+ GLint i0, i1, j0, j1;
+ GLint slice;
+ GLfloat wi, wj;
+ GLuint useBorderTexel;
+
+ linear_texcoord(tObj, level, texcoords[i], &i0, &i1, &j0, &j1, &slice,
+ &wi, &wj);
+
+ useBorderTexel = 0;
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) {
+ j0 += img->Border;
+ j1 += img->Border;
+ }
+ }
+ else {
+ if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT;
+ if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT;
+ if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT;
+ if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT;
+ }
+
+ if (slice < 0 || slice >= (GLint) depth) {
+ depth00 = tObj->BorderColor.f[0];
+ depth01 = tObj->BorderColor.f[0];
+ depth10 = tObj->BorderColor.f[0];
+ depth11 = tObj->BorderColor.f[0];
+ }
+ else {
+ /* get four depth samples from the texture */
+ if (useBorderTexel & (I0BIT | J0BIT)) {
+ depth00 = tObj->BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, slice, &depth00);
+ }
+ if (useBorderTexel & (I1BIT | J0BIT)) {
+ depth10 = tObj->BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, slice, &depth10);
+ }
+
+ if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) {
+ if (useBorderTexel & (I0BIT | J1BIT)) {
+ depth01 = tObj->BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, slice, &depth01);
+ }
+ if (useBorderTexel & (I1BIT | J1BIT)) {
+ depth11 = tObj->BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, slice, &depth11);
+ }
+ }
+ else {
+ depth01 = depth00;
+ depth11 = depth10;
+ }
+ }
+
+ depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F);
+
+ result = shadow_compare4(function, depthRef,
+ depth00, depth01, depth10, depth11,
+ ambient, wi, wj);
+
+ switch (tObj->DepthMode) {
+ case GL_LUMINANCE:
+ ASSIGN_4V(texel[i], result, result, result, 1.0F);
+ break;
+ case GL_INTENSITY:
+ ASSIGN_4V(texel[i], result, result, result, result);
+ break;
+ case GL_ALPHA:
+ ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad depth texture mode");
+ }
+
+ } /* for */
+ } /* if filter */
+}
+
+
+/**
+ * We use this function when a texture object is in an "incomplete" state.
+ * When a fragment program attempts to sample an incomplete texture we
+ * return black (see issue 23 in GL_ARB_fragment_program spec).
+ * Note: fragment programs don't observe the texture enable/disable flags.
+ */
+static void
+null_sample_func( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ (void) ctx;
+ (void) tObj;
+ (void) texcoords;
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = 0;
+ rgba[i][GCOMP] = 0;
+ rgba[i][BCOMP] = 0;
+ rgba[i][ACOMP] = 1.0;
+ }
+}
+
+
+/**
+ * Choose the texture sampling function for the given texture object.
+ */
+texture_sample_func
+_swrast_choose_texture_sample_func( struct gl_context *ctx,
+ const struct gl_texture_object *t )
+{
+ if (!t || !t->_Complete) {
+ return &null_sample_func;
+ }
+ else {
+ const GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter);
+ const GLenum format = t->Image[0][t->BaseLevel]->_BaseFormat;
+
+ switch (t->Target) {
+ case GL_TEXTURE_1D:
+ if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
+ return &sample_depth_texture;
+ }
+ else if (needLambda) {
+ return &sample_lambda_1d;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_1d;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_1d;
+ }
+ case GL_TEXTURE_2D:
+ if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
+ return &sample_depth_texture;
+ }
+ else if (needLambda) {
+ return &sample_lambda_2d;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_2d;
+ }
+ else {
+ /* check for a few optimized cases */
+ const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
+ ASSERT(t->MinFilter == GL_NEAREST);
+ if (t->WrapS == GL_REPEAT &&
+ t->WrapT == GL_REPEAT &&
+ img->_IsPowerOfTwo &&
+ img->Border == 0 &&
+ img->TexFormat == MESA_FORMAT_RGB888) {
+ return &opt_sample_rgb_2d;
+ }
+ else if (t->WrapS == GL_REPEAT &&
+ t->WrapT == GL_REPEAT &&
+ img->_IsPowerOfTwo &&
+ img->Border == 0 &&
+ img->TexFormat == MESA_FORMAT_RGBA8888) {
+ return &opt_sample_rgba_2d;
+ }
+ else {
+ return &sample_nearest_2d;
+ }
+ }
+ case GL_TEXTURE_3D:
+ if (needLambda) {
+ return &sample_lambda_3d;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_3d;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_3d;
+ }
+ case GL_TEXTURE_CUBE_MAP:
+ if (needLambda) {
+ return &sample_lambda_cube;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_cube;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_cube;
+ }
+ case GL_TEXTURE_RECTANGLE_NV:
+ if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
+ return &sample_depth_texture;
+ }
+ else if (needLambda) {
+ return &sample_lambda_rect;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_rect;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_rect;
+ }
+ case GL_TEXTURE_1D_ARRAY_EXT:
+ if (needLambda) {
+ return &sample_lambda_1d_array;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_1d_array;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_1d_array;
+ }
+ case GL_TEXTURE_2D_ARRAY_EXT:
+ if (needLambda) {
+ return &sample_lambda_2d_array;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_2d_array;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_2d_array;
+ }
+ default:
+ _mesa_problem(ctx,
+ "invalid target in _swrast_choose_texture_sample_func");
+ return &null_sample_func;
+ }
+ }
+}