diff options
Diffstat (limited to 'openssl/crypto/bn/asm/s390x-gf2m.pl')
-rw-r--r-- | openssl/crypto/bn/asm/s390x-gf2m.pl | 221 |
1 files changed, 221 insertions, 0 deletions
diff --git a/openssl/crypto/bn/asm/s390x-gf2m.pl b/openssl/crypto/bn/asm/s390x-gf2m.pl new file mode 100644 index 000000000..cd9f13eca --- /dev/null +++ b/openssl/crypto/bn/asm/s390x-gf2m.pl @@ -0,0 +1,221 @@ +#!/usr/bin/env perl +# +# ==================================================================== +# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== +# +# May 2011 +# +# The module implements bn_GF2m_mul_2x2 polynomial multiplication used +# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for +# the time being... gcc 4.3 appeared to generate poor code, therefore +# the effort. And indeed, the module delivers 55%-90%(*) improvement +# on haviest ECDSA verify and ECDH benchmarks for 163- and 571-bit +# key lengths on z990, 30%-55%(*) - on z10, and 70%-110%(*) - on z196. +# This is for 64-bit build. In 32-bit "highgprs" case improvement is +# even higher, for example on z990 it was measured 80%-150%. ECDSA +# sign is modest 9%-12% faster. Keep in mind that these coefficients +# are not ones for bn_GF2m_mul_2x2 itself, as not all CPU time is +# burnt in it... +# +# (*) gcc 4.1 was observed to deliver better results than gcc 4.3, +# so that improvement coefficients can vary from one specific +# setup to another. + +$flavour = shift; + +if ($flavour =~ /3[12]/) { + $SIZE_T=4; + $g=""; +} else { + $SIZE_T=8; + $g="g"; +} + +while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} +open STDOUT,">$output"; + +$stdframe=16*$SIZE_T+4*8; + +$rp="%r2"; +$a1="%r3"; +$a0="%r4"; +$b1="%r5"; +$b0="%r6"; + +$ra="%r14"; +$sp="%r15"; + +@T=("%r0","%r1"); +@i=("%r12","%r13"); + +($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(6..11)); +($lo,$hi,$b)=map("%r$_",(3..5)); $a=$lo; $mask=$a8; + +$code.=<<___; +.text + +.type _mul_1x1,\@function +.align 16 +_mul_1x1: + lgr $a1,$a + sllg $a2,$a,1 + sllg $a4,$a,2 + sllg $a8,$a,3 + + srag $lo,$a1,63 # broadcast 63rd bit + nihh $a1,0x1fff + srag @i[0],$a2,63 # broadcast 62nd bit + nihh $a2,0x3fff + srag @i[1],$a4,63 # broadcast 61st bit + nihh $a4,0x7fff + ngr $lo,$b + ngr @i[0],$b + ngr @i[1],$b + + lghi @T[0],0 + lgr $a12,$a1 + stg @T[0],`$stdframe+0*8`($sp) # tab[0]=0 + xgr $a12,$a2 + stg $a1,`$stdframe+1*8`($sp) # tab[1]=a1 + lgr $a48,$a4 + stg $a2,`$stdframe+2*8`($sp) # tab[2]=a2 + xgr $a48,$a8 + stg $a12,`$stdframe+3*8`($sp) # tab[3]=a1^a2 + xgr $a1,$a4 + + stg $a4,`$stdframe+4*8`($sp) # tab[4]=a4 + xgr $a2,$a4 + stg $a1,`$stdframe+5*8`($sp) # tab[5]=a1^a4 + xgr $a12,$a4 + stg $a2,`$stdframe+6*8`($sp) # tab[6]=a2^a4 + xgr $a1,$a48 + stg $a12,`$stdframe+7*8`($sp) # tab[7]=a1^a2^a4 + xgr $a2,$a48 + + stg $a8,`$stdframe+8*8`($sp) # tab[8]=a8 + xgr $a12,$a48 + stg $a1,`$stdframe+9*8`($sp) # tab[9]=a1^a8 + xgr $a1,$a4 + stg $a2,`$stdframe+10*8`($sp) # tab[10]=a2^a8 + xgr $a2,$a4 + stg $a12,`$stdframe+11*8`($sp) # tab[11]=a1^a2^a8 + + xgr $a12,$a4 + stg $a48,`$stdframe+12*8`($sp) # tab[12]=a4^a8 + srlg $hi,$lo,1 + stg $a1,`$stdframe+13*8`($sp) # tab[13]=a1^a4^a8 + sllg $lo,$lo,63 + stg $a2,`$stdframe+14*8`($sp) # tab[14]=a2^a4^a8 + srlg @T[0],@i[0],2 + stg $a12,`$stdframe+15*8`($sp) # tab[15]=a1^a2^a4^a8 + + lghi $mask,`0xf<<3` + sllg $a1,@i[0],62 + sllg @i[0],$b,3 + srlg @T[1],@i[1],3 + ngr @i[0],$mask + sllg $a2,@i[1],61 + srlg @i[1],$b,4-3 + xgr $hi,@T[0] + ngr @i[1],$mask + xgr $lo,$a1 + xgr $hi,@T[1] + xgr $lo,$a2 + + xg $lo,$stdframe(@i[0],$sp) + srlg @i[0],$b,8-3 + ngr @i[0],$mask +___ +for($n=1;$n<14;$n++) { +$code.=<<___; + lg @T[1],$stdframe(@i[1],$sp) + srlg @i[1],$b,`($n+2)*4`-3 + sllg @T[0],@T[1],`$n*4` + ngr @i[1],$mask + srlg @T[1],@T[1],`64-$n*4` + xgr $lo,@T[0] + xgr $hi,@T[1] +___ + push(@i,shift(@i)); push(@T,shift(@T)); +} +$code.=<<___; + lg @T[1],$stdframe(@i[1],$sp) + sllg @T[0],@T[1],`$n*4` + srlg @T[1],@T[1],`64-$n*4` + xgr $lo,@T[0] + xgr $hi,@T[1] + + lg @T[0],$stdframe(@i[0],$sp) + sllg @T[1],@T[0],`($n+1)*4` + srlg @T[0],@T[0],`64-($n+1)*4` + xgr $lo,@T[1] + xgr $hi,@T[0] + + br $ra +.size _mul_1x1,.-_mul_1x1 + +.globl bn_GF2m_mul_2x2 +.type bn_GF2m_mul_2x2,\@function +.align 16 +bn_GF2m_mul_2x2: + stm${g} %r3,%r15,3*$SIZE_T($sp) + + lghi %r1,-$stdframe-128 + la %r0,0($sp) + la $sp,0(%r1,$sp) # alloca + st${g} %r0,0($sp) # back chain +___ +if ($SIZE_T==8) { +my @r=map("%r$_",(6..9)); +$code.=<<___; + bras $ra,_mul_1x1 # a1·b1 + stmg $lo,$hi,16($rp) + + lg $a,`$stdframe+128+4*$SIZE_T`($sp) + lg $b,`$stdframe+128+6*$SIZE_T`($sp) + bras $ra,_mul_1x1 # a0·b0 + stmg $lo,$hi,0($rp) + + lg $a,`$stdframe+128+3*$SIZE_T`($sp) + lg $b,`$stdframe+128+5*$SIZE_T`($sp) + xg $a,`$stdframe+128+4*$SIZE_T`($sp) + xg $b,`$stdframe+128+6*$SIZE_T`($sp) + bras $ra,_mul_1x1 # (a0+a1)·(b0+b1) + lmg @r[0],@r[3],0($rp) + + xgr $lo,$hi + xgr $hi,@r[1] + xgr $lo,@r[0] + xgr $hi,@r[2] + xgr $lo,@r[3] + xgr $hi,@r[3] + xgr $lo,$hi + stg $hi,16($rp) + stg $lo,8($rp) +___ +} else { +$code.=<<___; + sllg %r3,%r3,32 + sllg %r5,%r5,32 + or %r3,%r4 + or %r5,%r6 + bras $ra,_mul_1x1 + rllg $lo,$lo,32 + rllg $hi,$hi,32 + stmg $lo,$hi,0($rp) +___ +} +$code.=<<___; + lm${g} %r6,%r15,`$stdframe+128+6*$SIZE_T`($sp) + br $ra +.size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2 +.string "GF(2^m) Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>" +___ + +$code =~ s/\`([^\`]*)\`/eval($1)/gem; +print $code; +close STDOUT; |