diff options
Diffstat (limited to 'openssl/crypto/bn/bn_gf2m.c')
-rw-r--r-- | openssl/crypto/bn/bn_gf2m.c | 145 |
1 files changed, 42 insertions, 103 deletions
diff --git a/openssl/crypto/bn/bn_gf2m.c b/openssl/crypto/bn/bn_gf2m.c index 306f029f2..527b0fa15 100644 --- a/openssl/crypto/bn/bn_gf2m.c +++ b/openssl/crypto/bn/bn_gf2m.c @@ -121,74 +121,12 @@ static const BN_ULONG SQR_tb[16] = SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] #endif -#ifdef SIXTEEN_BIT -#define SQR1(w) \ - SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF] -#define SQR0(w) \ - SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] -#endif -#ifdef EIGHT_BIT -#define SQR1(w) \ - SQR_tb[(w) >> 4 & 0xF] -#define SQR0(w) \ - SQR_tb[(w) & 15] -#endif /* Product of two polynomials a, b each with degree < BN_BITS2 - 1, * result is a polynomial r with degree < 2 * BN_BITS - 1 * The caller MUST ensure that the variables have the right amount * of space allocated. */ -#ifdef EIGHT_BIT -static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) - { - register BN_ULONG h, l, s; - BN_ULONG tab[4], top1b = a >> 7; - register BN_ULONG a1, a2; - - a1 = a & (0x7F); a2 = a1 << 1; - - tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; - - s = tab[b & 0x3]; l = s; - s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6; - s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4; - s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2; - - /* compensate for the top bit of a */ - - if (top1b & 01) { l ^= b << 7; h ^= b >> 1; } - - *r1 = h; *r0 = l; - } -#endif -#ifdef SIXTEEN_BIT -static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) - { - register BN_ULONG h, l, s; - BN_ULONG tab[4], top1b = a >> 15; - register BN_ULONG a1, a2; - - a1 = a & (0x7FFF); a2 = a1 << 1; - - tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; - - s = tab[b & 0x3]; l = s; - s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14; - s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12; - s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10; - s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8; - s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6; - s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4; - s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2; - - /* compensate for the top bit of a */ - - if (top1b & 01) { l ^= b << 15; h ^= b >> 1; } - - *r1 = h; *r0 = l; - } -#endif #ifdef THIRTY_TWO_BIT static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) { @@ -294,7 +232,8 @@ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) if (a->top < b->top) { at = b; bt = a; } else { at = a; bt = b; } - bn_wexpand(r, at->top); + if(bn_wexpand(r, at->top) == NULL) + return 0; for (i = 0; i < bt->top; i++) { @@ -320,7 +259,7 @@ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) /* Performs modular reduction of a and store result in r. r could be a. */ -int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) +int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) { int j, k; int n, dN, d0, d1; @@ -421,11 +360,11 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { @@ -443,7 +382,7 @@ err: /* Compute the product of two polynomials a and b, reduce modulo p, and store * the result in r. r could be a or b; a could be b. */ -int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) { int zlen, i, j, k, ret = 0; BIGNUM *s; @@ -499,12 +438,12 @@ err: int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(b); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { @@ -520,7 +459,7 @@ err: /* Square a, reduce the result mod p, and store it in a. r could be a. */ -int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) { int i, ret = 0; BIGNUM *s; @@ -555,12 +494,12 @@ err: int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { @@ -642,7 +581,7 @@ err: * function is only provided for convenience; for best performance, use the * BN_GF2m_mod_inv function. */ -int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx) { BIGNUM *field; int ret = 0; @@ -768,7 +707,7 @@ err: * function is only provided for convenience; for best performance, use the * BN_GF2m_mod_div function. */ -int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx) { BIGNUM *field; int ret = 0; @@ -793,7 +732,7 @@ err: * the result in r. r could be a. * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. */ -int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) { int ret = 0, i, n; BIGNUM *u; @@ -839,12 +778,12 @@ err: int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(b); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { @@ -862,7 +801,7 @@ err: * the result in r. r could be a. * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. */ -int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) { int ret = 0; BIGNUM *u; @@ -898,11 +837,11 @@ err: int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { @@ -919,10 +858,9 @@ err: /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. */ -int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx) { - int ret = 0, count = 0; - unsigned int j; + int ret = 0, count = 0, j; BIGNUM *a, *z, *rho, *w, *w2, *tmp; bn_check_top(a_); @@ -1017,11 +955,11 @@ err: int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) @@ -1037,20 +975,17 @@ err: } /* Convert the bit-string representation of a polynomial - * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array - * of integers corresponding to the bits with non-zero coefficient. + * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding + * to the bits with non-zero coefficient. Array is terminated with -1. * Up to max elements of the array will be filled. Return value is total - * number of coefficients that would be extracted if array was large enough. + * number of array elements that would be filled if array was large enough. */ -int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max) +int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) { int i, j, k = 0; BN_ULONG mask; - if (BN_is_zero(a) || !BN_is_bit_set(a, 0)) - /* a_0 == 0 => return error (the unsigned int array - * must be terminated by 0) - */ + if (BN_is_zero(a)) return 0; for (i = a->top - 1; i >= 0; i--) @@ -1070,24 +1005,28 @@ int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max) } } + if (k < max) { + p[k] = -1; + k++; + } + return k; } /* Convert the coefficient array representation of a polynomial to a - * bit-string. The array must be terminated by 0. + * bit-string. The array must be terminated by -1. */ -int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a) +int BN_GF2m_arr2poly(const int p[], BIGNUM *a) { int i; bn_check_top(a); BN_zero(a); - for (i = 0; p[i] != 0; i++) + for (i = 0; p[i] != -1; i++) { if (BN_set_bit(a, p[i]) == 0) return 0; } - BN_set_bit(a, 0); bn_check_top(a); return 1; |