diff options
Diffstat (limited to 'openssl/crypto/bn/bn_x931p.c')
-rw-r--r-- | openssl/crypto/bn/bn_x931p.c | 334 |
1 files changed, 168 insertions, 166 deletions
diff --git a/openssl/crypto/bn/bn_x931p.c b/openssl/crypto/bn/bn_x931p.c index 04c5c874e..6d76b1284 100644 --- a/openssl/crypto/bn/bn_x931p.c +++ b/openssl/crypto/bn/bn_x931p.c @@ -1,6 +1,7 @@ /* bn_x931p.c */ -/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL - * project 2005. +/* + * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project + * 2005. */ /* ==================================================================== * Copyright (c) 2005 The OpenSSL Project. All rights reserved. @@ -10,7 +11,7 @@ * are met: * * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. + * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in @@ -61,212 +62,213 @@ /* X9.31 routines for prime derivation */ -/* X9.31 prime derivation. This is used to generate the primes pi - * (p1, p2, q1, q2) from a parameter Xpi by checking successive odd - * integers. +/* + * X9.31 prime derivation. This is used to generate the primes pi (p1, p2, + * q1, q2) from a parameter Xpi by checking successive odd integers. */ static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx, - BN_GENCB *cb) - { - int i = 0; - if (!BN_copy(pi, Xpi)) - return 0; - if (!BN_is_odd(pi) && !BN_add_word(pi, 1)) - return 0; - for(;;) - { - i++; - BN_GENCB_call(cb, 0, i); - /* NB 27 MR is specificed in X9.31 */ - if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb)) - break; - if (!BN_add_word(pi, 2)) - return 0; - } - BN_GENCB_call(cb, 2, i); - return 1; - } - -/* This is the main X9.31 prime derivation function. From parameters - * Xp1, Xp2 and Xp derive the prime p. If the parameters p1 or p2 are - * not NULL they will be returned too: this is needed for testing. + BN_GENCB *cb) +{ + int i = 0; + if (!BN_copy(pi, Xpi)) + return 0; + if (!BN_is_odd(pi) && !BN_add_word(pi, 1)) + return 0; + for (;;) { + i++; + BN_GENCB_call(cb, 0, i); + /* NB 27 MR is specificed in X9.31 */ + if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb)) + break; + if (!BN_add_word(pi, 2)) + return 0; + } + BN_GENCB_call(cb, 2, i); + return 1; +} + +/* + * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2 + * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they + * will be returned too: this is needed for testing. */ int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, - const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2, - const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) - { - int ret = 0; + const BIGNUM *Xp, const BIGNUM *Xp1, + const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, + BN_GENCB *cb) +{ + int ret = 0; - BIGNUM *t, *p1p2, *pm1; + BIGNUM *t, *p1p2, *pm1; - /* Only even e supported */ - if (!BN_is_odd(e)) - return 0; + /* Only even e supported */ + if (!BN_is_odd(e)) + return 0; - BN_CTX_start(ctx); - if (!p1) - p1 = BN_CTX_get(ctx); + BN_CTX_start(ctx); + if (!p1) + p1 = BN_CTX_get(ctx); - if (!p2) - p2 = BN_CTX_get(ctx); + if (!p2) + p2 = BN_CTX_get(ctx); - t = BN_CTX_get(ctx); + t = BN_CTX_get(ctx); - p1p2 = BN_CTX_get(ctx); + p1p2 = BN_CTX_get(ctx); - pm1 = BN_CTX_get(ctx); + pm1 = BN_CTX_get(ctx); - if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) - goto err; + if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) + goto err; - if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) - goto err; + if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) + goto err; - if (!BN_mul(p1p2, p1, p2, ctx)) - goto err; + if (!BN_mul(p1p2, p1, p2, ctx)) + goto err; - /* First set p to value of Rp */ + /* First set p to value of Rp */ - if (!BN_mod_inverse(p, p2, p1, ctx)) - goto err; + if (!BN_mod_inverse(p, p2, p1, ctx)) + goto err; - if (!BN_mul(p, p, p2, ctx)) - goto err; + if (!BN_mul(p, p, p2, ctx)) + goto err; - if (!BN_mod_inverse(t, p1, p2, ctx)) - goto err; + if (!BN_mod_inverse(t, p1, p2, ctx)) + goto err; - if (!BN_mul(t, t, p1, ctx)) - goto err; + if (!BN_mul(t, t, p1, ctx)) + goto err; - if (!BN_sub(p, p, t)) - goto err; + if (!BN_sub(p, p, t)) + goto err; - if (p->neg && !BN_add(p, p, p1p2)) - goto err; + if (p->neg && !BN_add(p, p, p1p2)) + goto err; - /* p now equals Rp */ + /* p now equals Rp */ - if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) - goto err; + if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) + goto err; - if (!BN_add(p, p, Xp)) - goto err; + if (!BN_add(p, p, Xp)) + goto err; - /* p now equals Yp0 */ + /* p now equals Yp0 */ - for (;;) - { - int i = 1; - BN_GENCB_call(cb, 0, i++); - if (!BN_copy(pm1, p)) - goto err; - if (!BN_sub_word(pm1, 1)) - goto err; - if (!BN_gcd(t, pm1, e, ctx)) - goto err; - if (BN_is_one(t) - /* X9.31 specifies 8 MR and 1 Lucas test or any prime test - * offering similar or better guarantees 50 MR is considerably - * better. - */ - && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb)) - break; - if (!BN_add(p, p, p1p2)) - goto err; - } + for (;;) { + int i = 1; + BN_GENCB_call(cb, 0, i++); + if (!BN_copy(pm1, p)) + goto err; + if (!BN_sub_word(pm1, 1)) + goto err; + if (!BN_gcd(t, pm1, e, ctx)) + goto err; + if (BN_is_one(t) + /* + * X9.31 specifies 8 MR and 1 Lucas test or any prime test + * offering similar or better guarantees 50 MR is considerably + * better. + */ + && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb)) + break; + if (!BN_add(p, p, p1p2)) + goto err; + } - BN_GENCB_call(cb, 3, 0); + BN_GENCB_call(cb, 3, 0); - ret = 1; + ret = 1; - err: + err: - BN_CTX_end(ctx); + BN_CTX_end(ctx); - return ret; - } + return ret; +} -/* Generate pair of paramters Xp, Xq for X9.31 prime generation. - * Note: nbits paramter is sum of number of bits in both. +/* + * Generate pair of paramters Xp, Xq for X9.31 prime generation. Note: nbits + * paramter is sum of number of bits in both. */ int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx) - { - BIGNUM *t; - int i; - /* Number of bits for each prime is of the form - * 512+128s for s = 0, 1, ... - */ - if ((nbits < 1024) || (nbits & 0xff)) - return 0; - nbits >>= 1; - /* The random value Xp must be between sqrt(2) * 2^(nbits-1) and - * 2^nbits - 1. By setting the top two bits we ensure that the lower - * bound is exceeded. - */ - if (!BN_rand(Xp, nbits, 1, 0)) - return 0; - - BN_CTX_start(ctx); - t = BN_CTX_get(ctx); - - for (i = 0; i < 1000; i++) - { - if (!BN_rand(Xq, nbits, 1, 0)) - return 0; - /* Check that |Xp - Xq| > 2^(nbits - 100) */ - BN_sub(t, Xp, Xq); - if (BN_num_bits(t) > (nbits - 100)) - break; - } - - BN_CTX_end(ctx); - - if (i < 1000) - return 1; - - return 0; - - } - -/* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 - * and Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL - * the relevant parameter will be stored in it. - * - * Due to the fact that |Xp - Xq| > 2^(nbits - 100) must be satisfied Xp and Xq - * are generated using the previous function and supplied as input. +{ + BIGNUM *t; + int i; + /* + * Number of bits for each prime is of the form 512+128s for s = 0, 1, + * ... + */ + if ((nbits < 1024) || (nbits & 0xff)) + return 0; + nbits >>= 1; + /* + * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits + * - 1. By setting the top two bits we ensure that the lower bound is + * exceeded. + */ + if (!BN_rand(Xp, nbits, 1, 0)) + return 0; + + BN_CTX_start(ctx); + t = BN_CTX_get(ctx); + + for (i = 0; i < 1000; i++) { + if (!BN_rand(Xq, nbits, 1, 0)) + return 0; + /* Check that |Xp - Xq| > 2^(nbits - 100) */ + BN_sub(t, Xp, Xq); + if (BN_num_bits(t) > (nbits - 100)) + break; + } + + BN_CTX_end(ctx); + + if (i < 1000) + return 1; + + return 0; + +} + +/* + * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and + * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the + * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| > + * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the + * previous function and supplied as input. */ int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, - BIGNUM *Xp1, BIGNUM *Xp2, - const BIGNUM *Xp, - const BIGNUM *e, BN_CTX *ctx, - BN_GENCB *cb) - { - int ret = 0; - - BN_CTX_start(ctx); - if (!Xp1) - Xp1 = BN_CTX_get(ctx); - if (!Xp2) - Xp2 = BN_CTX_get(ctx); + BIGNUM *Xp1, BIGNUM *Xp2, + const BIGNUM *Xp, + const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) +{ + int ret = 0; - if (!BN_rand(Xp1, 101, 0, 0)) - goto error; - if (!BN_rand(Xp2, 101, 0, 0)) - goto error; - if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) - goto error; + BN_CTX_start(ctx); + if (!Xp1) + Xp1 = BN_CTX_get(ctx); + if (!Xp2) + Xp2 = BN_CTX_get(ctx); - ret = 1; + if (!BN_rand(Xp1, 101, 0, 0)) + goto error; + if (!BN_rand(Xp2, 101, 0, 0)) + goto error; + if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) + goto error; - error: - BN_CTX_end(ctx); + ret = 1; - return ret; + error: + BN_CTX_end(ctx); - } + return ret; +} |