aboutsummaryrefslogtreecommitdiff
path: root/openssl/crypto/bn/bn_x931p.c
diff options
context:
space:
mode:
Diffstat (limited to 'openssl/crypto/bn/bn_x931p.c')
-rw-r--r--openssl/crypto/bn/bn_x931p.c334
1 files changed, 168 insertions, 166 deletions
diff --git a/openssl/crypto/bn/bn_x931p.c b/openssl/crypto/bn/bn_x931p.c
index 04c5c874e..6d76b1284 100644
--- a/openssl/crypto/bn/bn_x931p.c
+++ b/openssl/crypto/bn/bn_x931p.c
@@ -1,6 +1,7 @@
/* bn_x931p.c */
-/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
- * project 2005.
+/*
+ * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project
+ * 2005.
*/
/* ====================================================================
* Copyright (c) 2005 The OpenSSL Project. All rights reserved.
@@ -10,7 +11,7 @@
* are met:
*
* 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
+ * notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
@@ -61,212 +62,213 @@
/* X9.31 routines for prime derivation */
-/* X9.31 prime derivation. This is used to generate the primes pi
- * (p1, p2, q1, q2) from a parameter Xpi by checking successive odd
- * integers.
+/*
+ * X9.31 prime derivation. This is used to generate the primes pi (p1, p2,
+ * q1, q2) from a parameter Xpi by checking successive odd integers.
*/
static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
- BN_GENCB *cb)
- {
- int i = 0;
- if (!BN_copy(pi, Xpi))
- return 0;
- if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
- return 0;
- for(;;)
- {
- i++;
- BN_GENCB_call(cb, 0, i);
- /* NB 27 MR is specificed in X9.31 */
- if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb))
- break;
- if (!BN_add_word(pi, 2))
- return 0;
- }
- BN_GENCB_call(cb, 2, i);
- return 1;
- }
-
-/* This is the main X9.31 prime derivation function. From parameters
- * Xp1, Xp2 and Xp derive the prime p. If the parameters p1 or p2 are
- * not NULL they will be returned too: this is needed for testing.
+ BN_GENCB *cb)
+{
+ int i = 0;
+ if (!BN_copy(pi, Xpi))
+ return 0;
+ if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
+ return 0;
+ for (;;) {
+ i++;
+ BN_GENCB_call(cb, 0, i);
+ /* NB 27 MR is specificed in X9.31 */
+ if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb))
+ break;
+ if (!BN_add_word(pi, 2))
+ return 0;
+ }
+ BN_GENCB_call(cb, 2, i);
+ return 1;
+}
+
+/*
+ * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2
+ * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they
+ * will be returned too: this is needed for testing.
*/
int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
- const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2,
- const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
- {
- int ret = 0;
+ const BIGNUM *Xp, const BIGNUM *Xp1,
+ const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
+ BN_GENCB *cb)
+{
+ int ret = 0;
- BIGNUM *t, *p1p2, *pm1;
+ BIGNUM *t, *p1p2, *pm1;
- /* Only even e supported */
- if (!BN_is_odd(e))
- return 0;
+ /* Only even e supported */
+ if (!BN_is_odd(e))
+ return 0;
- BN_CTX_start(ctx);
- if (!p1)
- p1 = BN_CTX_get(ctx);
+ BN_CTX_start(ctx);
+ if (!p1)
+ p1 = BN_CTX_get(ctx);
- if (!p2)
- p2 = BN_CTX_get(ctx);
+ if (!p2)
+ p2 = BN_CTX_get(ctx);
- t = BN_CTX_get(ctx);
+ t = BN_CTX_get(ctx);
- p1p2 = BN_CTX_get(ctx);
+ p1p2 = BN_CTX_get(ctx);
- pm1 = BN_CTX_get(ctx);
+ pm1 = BN_CTX_get(ctx);
- if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
- goto err;
+ if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
+ goto err;
- if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
- goto err;
+ if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
+ goto err;
- if (!BN_mul(p1p2, p1, p2, ctx))
- goto err;
+ if (!BN_mul(p1p2, p1, p2, ctx))
+ goto err;
- /* First set p to value of Rp */
+ /* First set p to value of Rp */
- if (!BN_mod_inverse(p, p2, p1, ctx))
- goto err;
+ if (!BN_mod_inverse(p, p2, p1, ctx))
+ goto err;
- if (!BN_mul(p, p, p2, ctx))
- goto err;
+ if (!BN_mul(p, p, p2, ctx))
+ goto err;
- if (!BN_mod_inverse(t, p1, p2, ctx))
- goto err;
+ if (!BN_mod_inverse(t, p1, p2, ctx))
+ goto err;
- if (!BN_mul(t, t, p1, ctx))
- goto err;
+ if (!BN_mul(t, t, p1, ctx))
+ goto err;
- if (!BN_sub(p, p, t))
- goto err;
+ if (!BN_sub(p, p, t))
+ goto err;
- if (p->neg && !BN_add(p, p, p1p2))
- goto err;
+ if (p->neg && !BN_add(p, p, p1p2))
+ goto err;
- /* p now equals Rp */
+ /* p now equals Rp */
- if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
- goto err;
+ if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
+ goto err;
- if (!BN_add(p, p, Xp))
- goto err;
+ if (!BN_add(p, p, Xp))
+ goto err;
- /* p now equals Yp0 */
+ /* p now equals Yp0 */
- for (;;)
- {
- int i = 1;
- BN_GENCB_call(cb, 0, i++);
- if (!BN_copy(pm1, p))
- goto err;
- if (!BN_sub_word(pm1, 1))
- goto err;
- if (!BN_gcd(t, pm1, e, ctx))
- goto err;
- if (BN_is_one(t)
- /* X9.31 specifies 8 MR and 1 Lucas test or any prime test
- * offering similar or better guarantees 50 MR is considerably
- * better.
- */
- && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb))
- break;
- if (!BN_add(p, p, p1p2))
- goto err;
- }
+ for (;;) {
+ int i = 1;
+ BN_GENCB_call(cb, 0, i++);
+ if (!BN_copy(pm1, p))
+ goto err;
+ if (!BN_sub_word(pm1, 1))
+ goto err;
+ if (!BN_gcd(t, pm1, e, ctx))
+ goto err;
+ if (BN_is_one(t)
+ /*
+ * X9.31 specifies 8 MR and 1 Lucas test or any prime test
+ * offering similar or better guarantees 50 MR is considerably
+ * better.
+ */
+ && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb))
+ break;
+ if (!BN_add(p, p, p1p2))
+ goto err;
+ }
- BN_GENCB_call(cb, 3, 0);
+ BN_GENCB_call(cb, 3, 0);
- ret = 1;
+ ret = 1;
- err:
+ err:
- BN_CTX_end(ctx);
+ BN_CTX_end(ctx);
- return ret;
- }
+ return ret;
+}
-/* Generate pair of paramters Xp, Xq for X9.31 prime generation.
- * Note: nbits paramter is sum of number of bits in both.
+/*
+ * Generate pair of paramters Xp, Xq for X9.31 prime generation. Note: nbits
+ * paramter is sum of number of bits in both.
*/
int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
- {
- BIGNUM *t;
- int i;
- /* Number of bits for each prime is of the form
- * 512+128s for s = 0, 1, ...
- */
- if ((nbits < 1024) || (nbits & 0xff))
- return 0;
- nbits >>= 1;
- /* The random value Xp must be between sqrt(2) * 2^(nbits-1) and
- * 2^nbits - 1. By setting the top two bits we ensure that the lower
- * bound is exceeded.
- */
- if (!BN_rand(Xp, nbits, 1, 0))
- return 0;
-
- BN_CTX_start(ctx);
- t = BN_CTX_get(ctx);
-
- for (i = 0; i < 1000; i++)
- {
- if (!BN_rand(Xq, nbits, 1, 0))
- return 0;
- /* Check that |Xp - Xq| > 2^(nbits - 100) */
- BN_sub(t, Xp, Xq);
- if (BN_num_bits(t) > (nbits - 100))
- break;
- }
-
- BN_CTX_end(ctx);
-
- if (i < 1000)
- return 1;
-
- return 0;
-
- }
-
-/* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1
- * and Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL
- * the relevant parameter will be stored in it.
- *
- * Due to the fact that |Xp - Xq| > 2^(nbits - 100) must be satisfied Xp and Xq
- * are generated using the previous function and supplied as input.
+{
+ BIGNUM *t;
+ int i;
+ /*
+ * Number of bits for each prime is of the form 512+128s for s = 0, 1,
+ * ...
+ */
+ if ((nbits < 1024) || (nbits & 0xff))
+ return 0;
+ nbits >>= 1;
+ /*
+ * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits
+ * - 1. By setting the top two bits we ensure that the lower bound is
+ * exceeded.
+ */
+ if (!BN_rand(Xp, nbits, 1, 0))
+ return 0;
+
+ BN_CTX_start(ctx);
+ t = BN_CTX_get(ctx);
+
+ for (i = 0; i < 1000; i++) {
+ if (!BN_rand(Xq, nbits, 1, 0))
+ return 0;
+ /* Check that |Xp - Xq| > 2^(nbits - 100) */
+ BN_sub(t, Xp, Xq);
+ if (BN_num_bits(t) > (nbits - 100))
+ break;
+ }
+
+ BN_CTX_end(ctx);
+
+ if (i < 1000)
+ return 1;
+
+ return 0;
+
+}
+
+/*
+ * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and
+ * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the
+ * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| >
+ * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the
+ * previous function and supplied as input.
*/
int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
- BIGNUM *Xp1, BIGNUM *Xp2,
- const BIGNUM *Xp,
- const BIGNUM *e, BN_CTX *ctx,
- BN_GENCB *cb)
- {
- int ret = 0;
-
- BN_CTX_start(ctx);
- if (!Xp1)
- Xp1 = BN_CTX_get(ctx);
- if (!Xp2)
- Xp2 = BN_CTX_get(ctx);
+ BIGNUM *Xp1, BIGNUM *Xp2,
+ const BIGNUM *Xp,
+ const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
+{
+ int ret = 0;
- if (!BN_rand(Xp1, 101, 0, 0))
- goto error;
- if (!BN_rand(Xp2, 101, 0, 0))
- goto error;
- if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
- goto error;
+ BN_CTX_start(ctx);
+ if (!Xp1)
+ Xp1 = BN_CTX_get(ctx);
+ if (!Xp2)
+ Xp2 = BN_CTX_get(ctx);
- ret = 1;
+ if (!BN_rand(Xp1, 101, 0, 0))
+ goto error;
+ if (!BN_rand(Xp2, 101, 0, 0))
+ goto error;
+ if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
+ goto error;
- error:
- BN_CTX_end(ctx);
+ ret = 1;
- return ret;
+ error:
+ BN_CTX_end(ctx);
- }
+ return ret;
+}