aboutsummaryrefslogtreecommitdiff
path: root/openssl/crypto/ec/ec2_smpl.c
diff options
context:
space:
mode:
Diffstat (limited to 'openssl/crypto/ec/ec2_smpl.c')
-rw-r--r--openssl/crypto/ec/ec2_smpl.c1241
1 files changed, 659 insertions, 582 deletions
diff --git a/openssl/crypto/ec/ec2_smpl.c b/openssl/crypto/ec/ec2_smpl.c
index 62223cbb0..077c7fc8d 100644
--- a/openssl/crypto/ec/ec2_smpl.c
+++ b/openssl/crypto/ec/ec2_smpl.c
@@ -21,7 +21,7 @@
* are met:
*
* 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
+ * notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
@@ -73,648 +73,725 @@
#ifndef OPENSSL_NO_EC2M
-#ifdef OPENSSL_FIPS
-#include <openssl/fips.h>
-#endif
-
+# ifdef OPENSSL_FIPS
+# include <openssl/fips.h>
+# endif
const EC_METHOD *EC_GF2m_simple_method(void)
- {
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_characteristic_two_field,
- ec_GF2m_simple_group_init,
- ec_GF2m_simple_group_finish,
- ec_GF2m_simple_group_clear_finish,
- ec_GF2m_simple_group_copy,
- ec_GF2m_simple_group_set_curve,
- ec_GF2m_simple_group_get_curve,
- ec_GF2m_simple_group_get_degree,
- ec_GF2m_simple_group_check_discriminant,
- ec_GF2m_simple_point_init,
- ec_GF2m_simple_point_finish,
- ec_GF2m_simple_point_clear_finish,
- ec_GF2m_simple_point_copy,
- ec_GF2m_simple_point_set_to_infinity,
- 0 /* set_Jprojective_coordinates_GFp */,
- 0 /* get_Jprojective_coordinates_GFp */,
- ec_GF2m_simple_point_set_affine_coordinates,
- ec_GF2m_simple_point_get_affine_coordinates,
- 0,0,0,
- ec_GF2m_simple_add,
- ec_GF2m_simple_dbl,
- ec_GF2m_simple_invert,
- ec_GF2m_simple_is_at_infinity,
- ec_GF2m_simple_is_on_curve,
- ec_GF2m_simple_cmp,
- ec_GF2m_simple_make_affine,
- ec_GF2m_simple_points_make_affine,
-
- /* the following three method functions are defined in ec2_mult.c */
- ec_GF2m_simple_mul,
- ec_GF2m_precompute_mult,
- ec_GF2m_have_precompute_mult,
-
- ec_GF2m_simple_field_mul,
- ec_GF2m_simple_field_sqr,
- ec_GF2m_simple_field_div,
- 0 /* field_encode */,
- 0 /* field_decode */,
- 0 /* field_set_to_one */ };
-
-#ifdef OPENSSL_FIPS
- if (FIPS_mode())
- return fips_ec_gf2m_simple_method();
-#endif
-
- return &ret;
- }
-
-
-/* Initialize a GF(2^m)-based EC_GROUP structure.
- * Note that all other members are handled by EC_GROUP_new.
+{
+ static const EC_METHOD ret = {
+ EC_FLAGS_DEFAULT_OCT,
+ NID_X9_62_characteristic_two_field,
+ ec_GF2m_simple_group_init,
+ ec_GF2m_simple_group_finish,
+ ec_GF2m_simple_group_clear_finish,
+ ec_GF2m_simple_group_copy,
+ ec_GF2m_simple_group_set_curve,
+ ec_GF2m_simple_group_get_curve,
+ ec_GF2m_simple_group_get_degree,
+ ec_GF2m_simple_group_check_discriminant,
+ ec_GF2m_simple_point_init,
+ ec_GF2m_simple_point_finish,
+ ec_GF2m_simple_point_clear_finish,
+ ec_GF2m_simple_point_copy,
+ ec_GF2m_simple_point_set_to_infinity,
+ 0 /* set_Jprojective_coordinates_GFp */ ,
+ 0 /* get_Jprojective_coordinates_GFp */ ,
+ ec_GF2m_simple_point_set_affine_coordinates,
+ ec_GF2m_simple_point_get_affine_coordinates,
+ 0, 0, 0,
+ ec_GF2m_simple_add,
+ ec_GF2m_simple_dbl,
+ ec_GF2m_simple_invert,
+ ec_GF2m_simple_is_at_infinity,
+ ec_GF2m_simple_is_on_curve,
+ ec_GF2m_simple_cmp,
+ ec_GF2m_simple_make_affine,
+ ec_GF2m_simple_points_make_affine,
+
+ /*
+ * the following three method functions are defined in ec2_mult.c
+ */
+ ec_GF2m_simple_mul,
+ ec_GF2m_precompute_mult,
+ ec_GF2m_have_precompute_mult,
+
+ ec_GF2m_simple_field_mul,
+ ec_GF2m_simple_field_sqr,
+ ec_GF2m_simple_field_div,
+ 0 /* field_encode */ ,
+ 0 /* field_decode */ ,
+ 0 /* field_set_to_one */
+ };
+
+# ifdef OPENSSL_FIPS
+ if (FIPS_mode())
+ return fips_ec_gf2m_simple_method();
+# endif
+
+ return &ret;
+}
+
+/*
+ * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
+ * are handled by EC_GROUP_new.
*/
int ec_GF2m_simple_group_init(EC_GROUP *group)
- {
- BN_init(&group->field);
- BN_init(&group->a);
- BN_init(&group->b);
- return 1;
- }
-
-
-/* Free a GF(2^m)-based EC_GROUP structure.
- * Note that all other members are handled by EC_GROUP_free.
+{
+ BN_init(&group->field);
+ BN_init(&group->a);
+ BN_init(&group->b);
+ return 1;
+}
+
+/*
+ * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
+ * handled by EC_GROUP_free.
*/
void ec_GF2m_simple_group_finish(EC_GROUP *group)
- {
- BN_free(&group->field);
- BN_free(&group->a);
- BN_free(&group->b);
- }
-
-
-/* Clear and free a GF(2^m)-based EC_GROUP structure.
- * Note that all other members are handled by EC_GROUP_clear_free.
+{
+ BN_free(&group->field);
+ BN_free(&group->a);
+ BN_free(&group->b);
+}
+
+/*
+ * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
+ * members are handled by EC_GROUP_clear_free.
*/
void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
- {
- BN_clear_free(&group->field);
- BN_clear_free(&group->a);
- BN_clear_free(&group->b);
- group->poly[0] = 0;
- group->poly[1] = 0;
- group->poly[2] = 0;
- group->poly[3] = 0;
- group->poly[4] = 0;
- group->poly[5] = -1;
- }
-
-
-/* Copy a GF(2^m)-based EC_GROUP structure.
- * Note that all other members are handled by EC_GROUP_copy.
+{
+ BN_clear_free(&group->field);
+ BN_clear_free(&group->a);
+ BN_clear_free(&group->b);
+ group->poly[0] = 0;
+ group->poly[1] = 0;
+ group->poly[2] = 0;
+ group->poly[3] = 0;
+ group->poly[4] = 0;
+ group->poly[5] = -1;
+}
+
+/*
+ * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
+ * handled by EC_GROUP_copy.
*/
int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
- {
- int i;
- if (!BN_copy(&dest->field, &src->field)) return 0;
- if (!BN_copy(&dest->a, &src->a)) return 0;
- if (!BN_copy(&dest->b, &src->b)) return 0;
- dest->poly[0] = src->poly[0];
- dest->poly[1] = src->poly[1];
- dest->poly[2] = src->poly[2];
- dest->poly[3] = src->poly[3];
- dest->poly[4] = src->poly[4];
- dest->poly[5] = src->poly[5];
- if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
- if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
- for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0;
- for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0;
- return 1;
- }
-
+{
+ int i;
+ if (!BN_copy(&dest->field, &src->field))
+ return 0;
+ if (!BN_copy(&dest->a, &src->a))
+ return 0;
+ if (!BN_copy(&dest->b, &src->b))
+ return 0;
+ dest->poly[0] = src->poly[0];
+ dest->poly[1] = src->poly[1];
+ dest->poly[2] = src->poly[2];
+ dest->poly[3] = src->poly[3];
+ dest->poly[4] = src->poly[4];
+ dest->poly[5] = src->poly[5];
+ if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2)
+ == NULL)
+ return 0;
+ if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2)
+ == NULL)
+ return 0;
+ for (i = dest->a.top; i < dest->a.dmax; i++)
+ dest->a.d[i] = 0;
+ for (i = dest->b.top; i < dest->b.dmax; i++)
+ dest->b.d[i] = 0;
+ return 1;
+}
/* Set the curve parameters of an EC_GROUP structure. */
int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
- const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0, i;
-
- /* group->field */
- if (!BN_copy(&group->field, p)) goto err;
- i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
- if ((i != 5) && (i != 3))
- {
- ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
- goto err;
- }
-
- /* group->a */
- if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err;
- if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
- for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0;
-
- /* group->b */
- if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err;
- if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
- for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0;
-
- ret = 1;
- err:
- return ret;
- }
-
-
-/* Get the curve parameters of an EC_GROUP structure.
- * If p, a, or b are NULL then there values will not be set but the method will return with success.
+ const BIGNUM *p, const BIGNUM *a,
+ const BIGNUM *b, BN_CTX *ctx)
+{
+ int ret = 0, i;
+
+ /* group->field */
+ if (!BN_copy(&group->field, p))
+ goto err;
+ i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
+ if ((i != 5) && (i != 3)) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
+ goto err;
+ }
+
+ /* group->a */
+ if (!BN_GF2m_mod_arr(&group->a, a, group->poly))
+ goto err;
+ if (bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
+ == NULL)
+ goto err;
+ for (i = group->a.top; i < group->a.dmax; i++)
+ group->a.d[i] = 0;
+
+ /* group->b */
+ if (!BN_GF2m_mod_arr(&group->b, b, group->poly))
+ goto err;
+ if (bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
+ == NULL)
+ goto err;
+ for (i = group->b.top; i < group->b.dmax; i++)
+ group->b.d[i] = 0;
+
+ ret = 1;
+ err:
+ return ret;
+}
+
+/*
+ * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
+ * then there values will not be set but the method will return with success.
*/
-int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0;
-
- if (p != NULL)
- {
- if (!BN_copy(p, &group->field)) return 0;
- }
-
- if (a != NULL)
- {
- if (!BN_copy(a, &group->a)) goto err;
- }
-
- if (b != NULL)
- {
- if (!BN_copy(b, &group->b)) goto err;
- }
-
- ret = 1;
-
- err:
- return ret;
- }
-
-
-/* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */
-int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
- {
- return BN_num_bits(&group->field)-1;
- }
+int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
+ BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
+{
+ int ret = 0;
+
+ if (p != NULL) {
+ if (!BN_copy(p, &group->field))
+ return 0;
+ }
+
+ if (a != NULL) {
+ if (!BN_copy(a, &group->a))
+ goto err;
+ }
+
+ if (b != NULL) {
+ if (!BN_copy(b, &group->b))
+ goto err;
+ }
+
+ ret = 1;
+
+ err:
+ return ret;
+}
+/*
+ * Gets the degree of the field. For a curve over GF(2^m) this is the value
+ * m.
+ */
+int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
+{
+ return BN_num_bits(&group->field) - 1;
+}
-/* Checks the discriminant of the curve.
- * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
+/*
+ * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
+ * elliptic curve <=> b != 0 (mod p)
*/
-int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *b;
- BN_CTX *new_ctx = NULL;
-
- if (ctx == NULL)
- {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- {
- ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- }
- BN_CTX_start(ctx);
- b = BN_CTX_get(ctx);
- if (b == NULL) goto err;
-
- if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err;
-
- /* check the discriminant:
- * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
- */
- if (BN_is_zero(b)) goto err;
-
- ret = 1;
-
-err:
- if (ctx != NULL)
- BN_CTX_end(ctx);
- if (new_ctx != NULL)
- BN_CTX_free(new_ctx);
- return ret;
- }
+int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
+ BN_CTX *ctx)
+{
+ int ret = 0;
+ BIGNUM *b;
+ BN_CTX *new_ctx = NULL;
+
+ if (ctx == NULL) {
+ ctx = new_ctx = BN_CTX_new();
+ if (ctx == NULL) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
+ ERR_R_MALLOC_FAILURE);
+ goto err;
+ }
+ }
+ BN_CTX_start(ctx);
+ b = BN_CTX_get(ctx);
+ if (b == NULL)
+ goto err;
+
+ if (!BN_GF2m_mod_arr(b, &group->b, group->poly))
+ goto err;
+
+ /*
+ * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
+ * curve <=> b != 0 (mod p)
+ */
+ if (BN_is_zero(b))
+ goto err;
+
+ ret = 1;
+ err:
+ if (ctx != NULL)
+ BN_CTX_end(ctx);
+ if (new_ctx != NULL)
+ BN_CTX_free(new_ctx);
+ return ret;
+}
/* Initializes an EC_POINT. */
int ec_GF2m_simple_point_init(EC_POINT *point)
- {
- BN_init(&point->X);
- BN_init(&point->Y);
- BN_init(&point->Z);
- return 1;
- }
-
+{
+ BN_init(&point->X);
+ BN_init(&point->Y);
+ BN_init(&point->Z);
+ return 1;
+}
/* Frees an EC_POINT. */
void ec_GF2m_simple_point_finish(EC_POINT *point)
- {
- BN_free(&point->X);
- BN_free(&point->Y);
- BN_free(&point->Z);
- }
-
+{
+ BN_free(&point->X);
+ BN_free(&point->Y);
+ BN_free(&point->Z);
+}
/* Clears and frees an EC_POINT. */
void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
- {
- BN_clear_free(&point->X);
- BN_clear_free(&point->Y);
- BN_clear_free(&point->Z);
- point->Z_is_one = 0;
- }
-
-
-/* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */
-int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
- {
- if (!BN_copy(&dest->X, &src->X)) return 0;
- if (!BN_copy(&dest->Y, &src->Y)) return 0;
- if (!BN_copy(&dest->Z, &src->Z)) return 0;
- dest->Z_is_one = src->Z_is_one;
-
- return 1;
- }
-
-
-/* Set an EC_POINT to the point at infinity.
- * A point at infinity is represented by having Z=0.
+{
+ BN_clear_free(&point->X);
+ BN_clear_free(&point->Y);
+ BN_clear_free(&point->Z);
+ point->Z_is_one = 0;
+}
+
+/*
+ * Copy the contents of one EC_POINT into another. Assumes dest is
+ * initialized.
*/
-int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
- {
- point->Z_is_one = 0;
- BN_zero(&point->Z);
- return 1;
- }
-
-
-/* Set the coordinates of an EC_POINT using affine coordinates.
- * Note that the simple implementation only uses affine coordinates.
+int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
+{
+ if (!BN_copy(&dest->X, &src->X))
+ return 0;
+ if (!BN_copy(&dest->Y, &src->Y))
+ return 0;
+ if (!BN_copy(&dest->Z, &src->Z))
+ return 0;
+ dest->Z_is_one = src->Z_is_one;
+
+ return 1;
+}
+
+/*
+ * Set an EC_POINT to the point at infinity. A point at infinity is
+ * represented by having Z=0.
*/
-int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
- const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
- {
- int ret = 0;
- if (x == NULL || y == NULL)
- {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
- return 0;
- }
-
- if (!BN_copy(&point->X, x)) goto err;
- BN_set_negative(&point->X, 0);
- if (!BN_copy(&point->Y, y)) goto err;
- BN_set_negative(&point->Y, 0);
- if (!BN_copy(&point->Z, BN_value_one())) goto err;
- BN_set_negative(&point->Z, 0);
- point->Z_is_one = 1;
- ret = 1;
-
- err:
- return ret;
- }
-
-
-/* Gets the affine coordinates of an EC_POINT.
- * Note that the simple implementation only uses affine coordinates.
+int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
+ EC_POINT *point)
+{
+ point->Z_is_one = 0;
+ BN_zero(&point->Z);
+ return 1;
+}
+
+/*
+ * Set the coordinates of an EC_POINT using affine coordinates. Note that
+ * the simple implementation only uses affine coordinates.
*/
-int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
- BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
- {
- int ret = 0;
-
- if (EC_POINT_is_at_infinity(group, point))
- {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
- return 0;
- }
-
- if (BN_cmp(&point->Z, BN_value_one()))
- {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
- return 0;
- }
- if (x != NULL)
- {
- if (!BN_copy(x, &point->X)) goto err;
- BN_set_negative(x, 0);
- }
- if (y != NULL)
- {
- if (!BN_copy(y, &point->Y)) goto err;
- BN_set_negative(y, 0);
- }
- ret = 1;
-
+int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
+ EC_POINT *point,
+ const BIGNUM *x,
+ const BIGNUM *y, BN_CTX *ctx)
+{
+ int ret = 0;
+ if (x == NULL || y == NULL) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
+ ERR_R_PASSED_NULL_PARAMETER);
+ return 0;
+ }
+
+ if (!BN_copy(&point->X, x))
+ goto err;
+ BN_set_negative(&point->X, 0);
+ if (!BN_copy(&point->Y, y))
+ goto err;
+ BN_set_negative(&point->Y, 0);
+ if (!BN_copy(&point->Z, BN_value_one()))
+ goto err;
+ BN_set_negative(&point->Z, 0);
+ point->Z_is_one = 1;
+ ret = 1;
+
err:
- return ret;
- }
+ return ret;
+}
-/* Computes a + b and stores the result in r. r could be a or b, a could be b.
- * Uses algorithm A.10.2 of IEEE P1363.
+/*
+ * Gets the affine coordinates of an EC_POINT. Note that the simple
+ * implementation only uses affine coordinates.
*/
-int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
- int ret = 0;
-
- if (EC_POINT_is_at_infinity(group, a))
- {
- if (!EC_POINT_copy(r, b)) return 0;
- return 1;
- }
-
- if (EC_POINT_is_at_infinity(group, b))
- {
- if (!EC_POINT_copy(r, a)) return 0;
- return 1;
- }
-
- if (ctx == NULL)
- {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
-
- BN_CTX_start(ctx);
- x0 = BN_CTX_get(ctx);
- y0 = BN_CTX_get(ctx);
- x1 = BN_CTX_get(ctx);
- y1 = BN_CTX_get(ctx);
- x2 = BN_CTX_get(ctx);
- y2 = BN_CTX_get(ctx);
- s = BN_CTX_get(ctx);
- t = BN_CTX_get(ctx);
- if (t == NULL) goto err;
-
- if (a->Z_is_one)
- {
- if (!BN_copy(x0, &a->X)) goto err;
- if (!BN_copy(y0, &a->Y)) goto err;
- }
- else
- {
- if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err;
- }
- if (b->Z_is_one)
- {
- if (!BN_copy(x1, &b->X)) goto err;
- if (!BN_copy(y1, &b->Y)) goto err;
- }
- else
- {
- if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err;
- }
-
-
- if (BN_GF2m_cmp(x0, x1))
- {
- if (!BN_GF2m_add(t, x0, x1)) goto err;
- if (!BN_GF2m_add(s, y0, y1)) goto err;
- if (!group->meth->field_div(group, s, s, t, ctx)) goto err;
- if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
- if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
- if (!BN_GF2m_add(x2, x2, s)) goto err;
- if (!BN_GF2m_add(x2, x2, t)) goto err;
- }
- else
- {
- if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1))
- {
- if (!EC_POINT_set_to_infinity(group, r)) goto err;
- ret = 1;
- goto err;
- }
- if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err;
- if (!BN_GF2m_add(s, s, x1)) goto err;
-
- if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
- if (!BN_GF2m_add(x2, x2, s)) goto err;
- if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
- }
-
- if (!BN_GF2m_add(y2, x1, x2)) goto err;
- if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err;
- if (!BN_GF2m_add(y2, y2, x2)) goto err;
- if (!BN_GF2m_add(y2, y2, y1)) goto err;
-
- if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err;
-
- ret = 1;
+int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
+ const EC_POINT *point,
+ BIGNUM *x, BIGNUM *y,
+ BN_CTX *ctx)
+{
+ int ret = 0;
+
+ if (EC_POINT_is_at_infinity(group, point)) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
+ EC_R_POINT_AT_INFINITY);
+ return 0;
+ }
+
+ if (BN_cmp(&point->Z, BN_value_one())) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
+ ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
+ return 0;
+ }
+ if (x != NULL) {
+ if (!BN_copy(x, &point->X))
+ goto err;
+ BN_set_negative(x, 0);
+ }
+ if (y != NULL) {
+ if (!BN_copy(y, &point->Y))
+ goto err;
+ BN_set_negative(y, 0);
+ }
+ ret = 1;
err:
- BN_CTX_end(ctx);
- if (new_ctx != NULL)
- BN_CTX_free(new_ctx);
- return ret;
- }
-
+ return ret;
+}
-/* Computes 2 * a and stores the result in r. r could be a.
- * Uses algorithm A.10.2 of IEEE P1363.
+/*
+ * Computes a + b and stores the result in r. r could be a or b, a could be
+ * b. Uses algorithm A.10.2 of IEEE P1363.
*/
-int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
- {
- return ec_GF2m_simple_add(group, r, a, a, ctx);
- }
+int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
+ const EC_POINT *b, BN_CTX *ctx)
+{
+ BN_CTX *new_ctx = NULL;
+ BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
+ int ret = 0;
+
+ if (EC_POINT_is_at_infinity(group, a)) {
+ if (!EC_POINT_copy(r, b))
+ return 0;
+ return 1;
+ }
+
+ if (EC_POINT_is_at_infinity(group, b)) {
+ if (!EC_POINT_copy(r, a))
+ return 0;
+ return 1;
+ }
+
+ if (ctx == NULL) {
+ ctx = new_ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return 0;
+ }
+
+ BN_CTX_start(ctx);
+ x0 = BN_CTX_get(ctx);
+ y0 = BN_CTX_get(ctx);
+ x1 = BN_CTX_get(ctx);
+ y1 = BN_CTX_get(ctx);
+ x2 = BN_CTX_get(ctx);
+ y2 = BN_CTX_get(ctx);
+ s = BN_CTX_get(ctx);
+ t = BN_CTX_get(ctx);
+ if (t == NULL)
+ goto err;
+
+ if (a->Z_is_one) {
+ if (!BN_copy(x0, &a->X))
+ goto err;
+ if (!BN_copy(y0, &a->Y))
+ goto err;
+ } else {
+ if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx))
+ goto err;
+ }
+ if (b->Z_is_one) {
+ if (!BN_copy(x1, &b->X))
+ goto err;
+ if (!BN_copy(y1, &b->Y))
+ goto err;
+ } else {
+ if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx))
+ goto err;
+ }
+
+ if (BN_GF2m_cmp(x0, x1)) {
+ if (!BN_GF2m_add(t, x0, x1))
+ goto err;
+ if (!BN_GF2m_add(s, y0, y1))
+ goto err;
+ if (!group->meth->field_div(group, s, s, t, ctx))
+ goto err;
+ if (!group->meth->field_sqr(group, x2, s, ctx))
+ goto err;
+ if (!BN_GF2m_add(x2, x2, &group->a))
+ goto err;
+ if (!BN_GF2m_add(x2, x2, s))
+ goto err;
+ if (!BN_GF2m_add(x2, x2, t))
+ goto err;
+ } else {
+ if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
+ if (!EC_POINT_set_to_infinity(group, r))
+ goto err;
+ ret = 1;
+ goto err;
+ }
+ if (!group->meth->field_div(group, s, y1, x1, ctx))
+ goto err;
+ if (!BN_GF2m_add(s, s, x1))
+ goto err;
+
+ if (!group->meth->field_sqr(group, x2, s, ctx))
+ goto err;
+ if (!BN_GF2m_add(x2, x2, s))
+ goto err;
+ if (!BN_GF2m_add(x2, x2, &group->a))
+ goto err;
+ }
+
+ if (!BN_GF2m_add(y2, x1, x2))
+ goto err;
+ if (!group->meth->field_mul(group, y2, y2, s, ctx))
+ goto err;
+ if (!BN_GF2m_add(y2, y2, x2))
+ goto err;
+ if (!BN_GF2m_add(y2, y2, y1))
+ goto err;
+
+ if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx))
+ goto err;
+
+ ret = 1;
+ err:
+ BN_CTX_end(ctx);
+ if (new_ctx != NULL)
+ BN_CTX_free(new_ctx);
+ return ret;
+}
+
+/*
+ * Computes 2 * a and stores the result in r. r could be a. Uses algorithm
+ * A.10.2 of IEEE P1363.
+ */
+int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
+ BN_CTX *ctx)
+{
+ return ec_GF2m_simple_add(group, r, a, a, ctx);
+}
int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
- {
- if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
- /* point is its own inverse */
- return 1;
-
- if (!EC_POINT_make_affine(group, point, ctx)) return 0;
- return BN_GF2m_add(&point->Y, &point->X, &point->Y);
- }
+{
+ if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
+ /* point is its own inverse */
+ return 1;
+ if (!EC_POINT_make_affine(group, point, ctx))
+ return 0;
+ return BN_GF2m_add(&point->Y, &point->X, &point->Y);
+}
/* Indicates whether the given point is the point at infinity. */
-int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
- {
- return BN_is_zero(&point->Z);
- }
-
-
-/* Determines whether the given EC_POINT is an actual point on the curve defined
+int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
+ const EC_POINT *point)
+{
+ return BN_is_zero(&point->Z);
+}
+
+/*-
+ * Determines whether the given EC_POINT is an actual point on the curve defined
* in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
* y^2 + x*y = x^3 + a*x^2 + b.
*/
-int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
- {
- int ret = -1;
- BN_CTX *new_ctx = NULL;
- BIGNUM *lh, *y2;
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
-
- if (EC_POINT_is_at_infinity(group, point))
- return 1;
-
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
-
- /* only support affine coordinates */
- if (!point->Z_is_one) return -1;
-
- if (ctx == NULL)
- {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return -1;
- }
-
- BN_CTX_start(ctx);
- y2 = BN_CTX_get(ctx);
- lh = BN_CTX_get(ctx);
- if (lh == NULL) goto err;
-
- /* We have a curve defined by a Weierstrass equation
- * y^2 + x*y = x^3 + a*x^2 + b.
- * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
- * <=> ((x + a) * x + y ) * x + b + y^2 = 0
- */
- if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err;
- if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
- if (!BN_GF2m_add(lh, lh, &point->Y)) goto err;
- if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
- if (!BN_GF2m_add(lh, lh, &group->b)) goto err;
- if (!field_sqr(group, y2, &point->Y, ctx)) goto err;
- if (!BN_GF2m_add(lh, lh, y2)) goto err;
- ret = BN_is_zero(lh);
+int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
+ BN_CTX *ctx)
+{
+ int ret = -1;
+ BN_CTX *new_ctx = NULL;
+ BIGNUM *lh, *y2;
+ int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
+ const BIGNUM *, BN_CTX *);
+ int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
+
+ if (EC_POINT_is_at_infinity(group, point))
+ return 1;
+
+ field_mul = group->meth->field_mul;
+ field_sqr = group->meth->field_sqr;
+
+ /* only support affine coordinates */
+ if (!point->Z_is_one)
+ return -1;
+
+ if (ctx == NULL) {
+ ctx = new_ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return -1;
+ }
+
+ BN_CTX_start(ctx);
+ y2 = BN_CTX_get(ctx);
+ lh = BN_CTX_get(ctx);
+ if (lh == NULL)
+ goto err;
+
+ /*-
+ * We have a curve defined by a Weierstrass equation
+ * y^2 + x*y = x^3 + a*x^2 + b.
+ * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
+ * <=> ((x + a) * x + y ) * x + b + y^2 = 0
+ */
+ if (!BN_GF2m_add(lh, &point->X, &group->a))
+ goto err;
+ if (!field_mul(group, lh, lh, &point->X, ctx))
+ goto err;
+ if (!BN_GF2m_add(lh, lh, &point->Y))
+ goto err;
+ if (!field_mul(group, lh, lh, &point->X, ctx))
+ goto err;
+ if (!BN_GF2m_add(lh, lh, &group->b))
+ goto err;
+ if (!field_sqr(group, y2, &point->Y, ctx))
+ goto err;
+ if (!BN_GF2m_add(lh, lh, y2))
+ goto err;
+ ret = BN_is_zero(lh);
err:
- if (ctx) BN_CTX_end(ctx);
- if (new_ctx) BN_CTX_free(new_ctx);
- return ret;
- }
-
-
-/* Indicates whether two points are equal.
+ if (ctx)
+ BN_CTX_end(ctx);
+ if (new_ctx)
+ BN_CTX_free(new_ctx);
+ return ret;
+}
+
+/*-
+ * Indicates whether two points are equal.
* Return values:
* -1 error
* 0 equal (in affine coordinates)
* 1 not equal
*/
-int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
- {
- BIGNUM *aX, *aY, *bX, *bY;
- BN_CTX *new_ctx = NULL;
- int ret = -1;
-
- if (EC_POINT_is_at_infinity(group, a))
- {
- return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
- }
-
- if (EC_POINT_is_at_infinity(group, b))
- return 1;
-
- if (a->Z_is_one && b->Z_is_one)
- {
- return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
- }
-
- if (ctx == NULL)
- {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return -1;
- }
-
- BN_CTX_start(ctx);
- aX = BN_CTX_get(ctx);
- aY = BN_CTX_get(ctx);
- bX = BN_CTX_get(ctx);
- bY = BN_CTX_get(ctx);
- if (bY == NULL) goto err;
-
- if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err;
- if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err;
- ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
-
- err:
- if (ctx) BN_CTX_end(ctx);
- if (new_ctx) BN_CTX_free(new_ctx);
- return ret;
- }
+int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
+ const EC_POINT *b, BN_CTX *ctx)
+{
+ BIGNUM *aX, *aY, *bX, *bY;
+ BN_CTX *new_ctx = NULL;
+ int ret = -1;
+
+ if (EC_POINT_is_at_infinity(group, a)) {
+ return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
+ }
+
+ if (EC_POINT_is_at_infinity(group, b))
+ return 1;
+
+ if (a->Z_is_one && b->Z_is_one) {
+ return ((BN_cmp(&a->X, &b->X) == 0)
+ && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
+ }
+
+ if (ctx == NULL) {
+ ctx = new_ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return -1;
+ }
+
+ BN_CTX_start(ctx);
+ aX = BN_CTX_get(ctx);
+ aY = BN_CTX_get(ctx);
+ bX = BN_CTX_get(ctx);
+ bY = BN_CTX_get(ctx);
+ if (bY == NULL)
+ goto err;
+
+ if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx))
+ goto err;
+ if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx))
+ goto err;
+ ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
+ err:
+ if (ctx)
+ BN_CTX_end(ctx);
+ if (new_ctx)
+ BN_CTX_free(new_ctx);
+ return ret;
+}
/* Forces the given EC_POINT to internally use affine coordinates. */
-int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y;
- int ret = 0;
-
- if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
- return 1;
-
- if (ctx == NULL)
- {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
-
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- if (y == NULL) goto err;
-
- if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
- if (!BN_copy(&point->X, x)) goto err;
- if (!BN_copy(&point->Y, y)) goto err;
- if (!BN_one(&point->Z)) goto err;
-
- ret = 1;
-
- err:
- if (ctx) BN_CTX_end(ctx);
- if (new_ctx) BN_CTX_free(new_ctx);
- return ret;
- }
-
-
-/* Forces each of the EC_POINTs in the given array to use affine coordinates. */
-int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
- {
- size_t i;
-
- for (i = 0; i < num; i++)
- {
- if (!group->meth->make_affine(group, points[i], ctx)) return 0;
- }
-
- return 1;
- }
+int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
+ BN_CTX *ctx)
+{
+ BN_CTX *new_ctx = NULL;
+ BIGNUM *x, *y;
+ int ret = 0;
+
+ if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
+ return 1;
+
+ if (ctx == NULL) {
+ ctx = new_ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return 0;
+ }
+
+ BN_CTX_start(ctx);
+ x = BN_CTX_get(ctx);
+ y = BN_CTX_get(ctx);
+ if (y == NULL)
+ goto err;
+
+ if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx))
+ goto err;
+ if (!BN_copy(&point->X, x))
+ goto err;
+ if (!BN_copy(&point->Y, y))
+ goto err;
+ if (!BN_one(&point->Z))
+ goto err;
+
+ ret = 1;
+ err:
+ if (ctx)
+ BN_CTX_end(ctx);
+ if (new_ctx)
+ BN_CTX_free(new_ctx);
+ return ret;
+}
+
+/*
+ * Forces each of the EC_POINTs in the given array to use affine coordinates.
+ */
+int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
+ EC_POINT *points[], BN_CTX *ctx)
+{
+ size_t i;
-/* Wrapper to simple binary polynomial field multiplication implementation. */
-int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
- }
+ for (i = 0; i < num; i++) {
+ if (!group->meth->make_affine(group, points[i], ctx))
+ return 0;
+ }
+ return 1;
+}
-/* Wrapper to simple binary polynomial field squaring implementation. */
-int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
- {
- return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
- }
+/* Wrapper to simple binary polynomial field multiplication implementation. */
+int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
+ const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
+{
+ return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
+}
+/* Wrapper to simple binary polynomial field squaring implementation. */
+int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
+ const BIGNUM *a, BN_CTX *ctx)
+{
+ return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
+}
/* Wrapper to simple binary polynomial field division implementation. */
-int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
- }
+int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
+ const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
+{
+ return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
+}
#endif