diff options
Diffstat (limited to 'openssl/crypto/ec/ecp_smpl.c')
-rw-r--r-- | openssl/crypto/ec/ecp_smpl.c | 2489 |
1 files changed, 1284 insertions, 1205 deletions
diff --git a/openssl/crypto/ec/ecp_smpl.c b/openssl/crypto/ec/ecp_smpl.c index 2d1f35768..2b848216d 100644 --- a/openssl/crypto/ec/ecp_smpl.c +++ b/openssl/crypto/ec/ecp_smpl.c @@ -1,8 +1,9 @@ /* crypto/ec/ecp_smpl.c */ -/* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> - * for the OpenSSL project. - * Includes code written by Bodo Moeller for the OpenSSL project. -*/ +/* + * Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> + * for the OpenSSL project. Includes code written by Bodo Moeller for the + * OpenSSL project. + */ /* ==================================================================== * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. * @@ -11,7 +12,7 @@ * are met: * * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. + * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in @@ -66,1274 +67,1352 @@ #include <openssl/symhacks.h> #ifdef OPENSSL_FIPS -#include <openssl/fips.h> +# include <openssl/fips.h> #endif #include "ec_lcl.h" const EC_METHOD *EC_GFp_simple_method(void) - { - static const EC_METHOD ret = { - EC_FLAGS_DEFAULT_OCT, - NID_X9_62_prime_field, - ec_GFp_simple_group_init, - ec_GFp_simple_group_finish, - ec_GFp_simple_group_clear_finish, - ec_GFp_simple_group_copy, - ec_GFp_simple_group_set_curve, - ec_GFp_simple_group_get_curve, - ec_GFp_simple_group_get_degree, - ec_GFp_simple_group_check_discriminant, - ec_GFp_simple_point_init, - ec_GFp_simple_point_finish, - ec_GFp_simple_point_clear_finish, - ec_GFp_simple_point_copy, - ec_GFp_simple_point_set_to_infinity, - ec_GFp_simple_set_Jprojective_coordinates_GFp, - ec_GFp_simple_get_Jprojective_coordinates_GFp, - ec_GFp_simple_point_set_affine_coordinates, - ec_GFp_simple_point_get_affine_coordinates, - 0,0,0, - ec_GFp_simple_add, - ec_GFp_simple_dbl, - ec_GFp_simple_invert, - ec_GFp_simple_is_at_infinity, - ec_GFp_simple_is_on_curve, - ec_GFp_simple_cmp, - ec_GFp_simple_make_affine, - ec_GFp_simple_points_make_affine, - 0 /* mul */, - 0 /* precompute_mult */, - 0 /* have_precompute_mult */, - ec_GFp_simple_field_mul, - ec_GFp_simple_field_sqr, - 0 /* field_div */, - 0 /* field_encode */, - 0 /* field_decode */, - 0 /* field_set_to_one */ }; +{ + static const EC_METHOD ret = { + EC_FLAGS_DEFAULT_OCT, + NID_X9_62_prime_field, + ec_GFp_simple_group_init, + ec_GFp_simple_group_finish, + ec_GFp_simple_group_clear_finish, + ec_GFp_simple_group_copy, + ec_GFp_simple_group_set_curve, + ec_GFp_simple_group_get_curve, + ec_GFp_simple_group_get_degree, + ec_GFp_simple_group_check_discriminant, + ec_GFp_simple_point_init, + ec_GFp_simple_point_finish, + ec_GFp_simple_point_clear_finish, + ec_GFp_simple_point_copy, + ec_GFp_simple_point_set_to_infinity, + ec_GFp_simple_set_Jprojective_coordinates_GFp, + ec_GFp_simple_get_Jprojective_coordinates_GFp, + ec_GFp_simple_point_set_affine_coordinates, + ec_GFp_simple_point_get_affine_coordinates, + 0, 0, 0, + ec_GFp_simple_add, + ec_GFp_simple_dbl, + ec_GFp_simple_invert, + ec_GFp_simple_is_at_infinity, + ec_GFp_simple_is_on_curve, + ec_GFp_simple_cmp, + ec_GFp_simple_make_affine, + ec_GFp_simple_points_make_affine, + 0 /* mul */ , + 0 /* precompute_mult */ , + 0 /* have_precompute_mult */ , + ec_GFp_simple_field_mul, + ec_GFp_simple_field_sqr, + 0 /* field_div */ , + 0 /* field_encode */ , + 0 /* field_decode */ , + 0 /* field_set_to_one */ + }; #ifdef OPENSSL_FIPS - if (FIPS_mode()) - return fips_ec_gfp_simple_method(); + if (FIPS_mode()) + return fips_ec_gfp_simple_method(); #endif - return &ret; - } - + return &ret; +} -/* Most method functions in this file are designed to work with +/* + * Most method functions in this file are designed to work with * non-trivial representations of field elements if necessary * (see ecp_mont.c): while standard modular addition and subtraction * are used, the field_mul and field_sqr methods will be used for * multiplication, and field_encode and field_decode (if defined) * will be used for converting between representations. - + * * Functions ec_GFp_simple_points_make_affine() and * ec_GFp_simple_point_get_affine_coordinates() specifically assume * that if a non-trivial representation is used, it is a Montgomery * representation (i.e. 'encoding' means multiplying by some factor R). */ - int ec_GFp_simple_group_init(EC_GROUP *group) - { - BN_init(&group->field); - BN_init(&group->a); - BN_init(&group->b); - group->a_is_minus3 = 0; - return 1; - } - +{ + BN_init(&group->field); + BN_init(&group->a); + BN_init(&group->b); + group->a_is_minus3 = 0; + return 1; +} void ec_GFp_simple_group_finish(EC_GROUP *group) - { - BN_free(&group->field); - BN_free(&group->a); - BN_free(&group->b); - } - +{ + BN_free(&group->field); + BN_free(&group->a); + BN_free(&group->b); +} void ec_GFp_simple_group_clear_finish(EC_GROUP *group) - { - BN_clear_free(&group->field); - BN_clear_free(&group->a); - BN_clear_free(&group->b); - } - +{ + BN_clear_free(&group->field); + BN_clear_free(&group->a); + BN_clear_free(&group->b); +} int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) - { - if (!BN_copy(&dest->field, &src->field)) return 0; - if (!BN_copy(&dest->a, &src->a)) return 0; - if (!BN_copy(&dest->b, &src->b)) return 0; - - dest->a_is_minus3 = src->a_is_minus3; +{ + if (!BN_copy(&dest->field, &src->field)) + return 0; + if (!BN_copy(&dest->a, &src->a)) + return 0; + if (!BN_copy(&dest->b, &src->b)) + return 0; - return 1; - } + dest->a_is_minus3 = src->a_is_minus3; + return 1; +} int ec_GFp_simple_group_set_curve(EC_GROUP *group, - const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) - { - int ret = 0; - BN_CTX *new_ctx = NULL; - BIGNUM *tmp_a; - - /* p must be a prime > 3 */ - if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) - { - ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); - return 0; - } - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - - BN_CTX_start(ctx); - tmp_a = BN_CTX_get(ctx); - if (tmp_a == NULL) goto err; - - /* group->field */ - if (!BN_copy(&group->field, p)) goto err; - BN_set_negative(&group->field, 0); - - /* group->a */ - if (!BN_nnmod(tmp_a, a, p, ctx)) goto err; - if (group->meth->field_encode) - { if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) goto err; } - else - if (!BN_copy(&group->a, tmp_a)) goto err; - - /* group->b */ - if (!BN_nnmod(&group->b, b, p, ctx)) goto err; - if (group->meth->field_encode) - if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) goto err; - - /* group->a_is_minus3 */ - if (!BN_add_word(tmp_a, 3)) goto err; - group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field)); - - ret = 1; + const BIGNUM *p, const BIGNUM *a, + const BIGNUM *b, BN_CTX *ctx) +{ + int ret = 0; + BN_CTX *new_ctx = NULL; + BIGNUM *tmp_a; + + /* p must be a prime > 3 */ + if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { + ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); + return 0; + } + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + + BN_CTX_start(ctx); + tmp_a = BN_CTX_get(ctx); + if (tmp_a == NULL) + goto err; + + /* group->field */ + if (!BN_copy(&group->field, p)) + goto err; + BN_set_negative(&group->field, 0); + + /* group->a */ + if (!BN_nnmod(tmp_a, a, p, ctx)) + goto err; + if (group->meth->field_encode) { + if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) + goto err; + } else if (!BN_copy(&group->a, tmp_a)) + goto err; + + /* group->b */ + if (!BN_nnmod(&group->b, b, p, ctx)) + goto err; + if (group->meth->field_encode) + if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) + goto err; + + /* group->a_is_minus3 */ + if (!BN_add_word(tmp_a, 3)) + goto err; + group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field)); + + ret = 1; err: - BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - - -int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) - { - int ret = 0; - BN_CTX *new_ctx = NULL; - - if (p != NULL) - { - if (!BN_copy(p, &group->field)) return 0; - } - - if (a != NULL || b != NULL) - { - if (group->meth->field_decode) - { - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - if (a != NULL) - { - if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err; - } - if (b != NULL) - { - if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err; - } - } - else - { - if (a != NULL) - { - if (!BN_copy(a, &group->a)) goto err; - } - if (b != NULL) - { - if (!BN_copy(b, &group->b)) goto err; - } - } - } - - ret = 1; - - err: - if (new_ctx) - BN_CTX_free(new_ctx); - return ret; - } + BN_CTX_end(ctx); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} + +int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, + BIGNUM *b, BN_CTX *ctx) +{ + int ret = 0; + BN_CTX *new_ctx = NULL; + + if (p != NULL) { + if (!BN_copy(p, &group->field)) + return 0; + } + + if (a != NULL || b != NULL) { + if (group->meth->field_decode) { + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + if (a != NULL) { + if (!group->meth->field_decode(group, a, &group->a, ctx)) + goto err; + } + if (b != NULL) { + if (!group->meth->field_decode(group, b, &group->b, ctx)) + goto err; + } + } else { + if (a != NULL) { + if (!BN_copy(a, &group->a)) + goto err; + } + if (b != NULL) { + if (!BN_copy(b, &group->b)) + goto err; + } + } + } + + ret = 1; + err: + if (new_ctx) + BN_CTX_free(new_ctx); + return ret; +} int ec_GFp_simple_group_get_degree(const EC_GROUP *group) - { - return BN_num_bits(&group->field); - } - +{ + return BN_num_bits(&group->field); +} int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) - { - int ret = 0; - BIGNUM *a,*b,*order,*tmp_1,*tmp_2; - const BIGNUM *p = &group->field; - BN_CTX *new_ctx = NULL; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - { - ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); - goto err; - } - } - BN_CTX_start(ctx); - a = BN_CTX_get(ctx); - b = BN_CTX_get(ctx); - tmp_1 = BN_CTX_get(ctx); - tmp_2 = BN_CTX_get(ctx); - order = BN_CTX_get(ctx); - if (order == NULL) goto err; - - if (group->meth->field_decode) - { - if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err; - if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err; - } - else - { - if (!BN_copy(a, &group->a)) goto err; - if (!BN_copy(b, &group->b)) goto err; - } - - /* check the discriminant: - * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p) - * 0 =< a, b < p */ - if (BN_is_zero(a)) - { - if (BN_is_zero(b)) goto err; - } - else if (!BN_is_zero(b)) - { - if (!BN_mod_sqr(tmp_1, a, p, ctx)) goto err; - if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) goto err; - if (!BN_lshift(tmp_1, tmp_2, 2)) goto err; - /* tmp_1 = 4*a^3 */ - - if (!BN_mod_sqr(tmp_2, b, p, ctx)) goto err; - if (!BN_mul_word(tmp_2, 27)) goto err; - /* tmp_2 = 27*b^2 */ - - if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) goto err; - if (BN_is_zero(a)) goto err; - } - ret = 1; - -err: - if (ctx != NULL) - BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } +{ + int ret = 0; + BIGNUM *a, *b, *order, *tmp_1, *tmp_2; + const BIGNUM *p = &group->field; + BN_CTX *new_ctx = NULL; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) { + ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, + ERR_R_MALLOC_FAILURE); + goto err; + } + } + BN_CTX_start(ctx); + a = BN_CTX_get(ctx); + b = BN_CTX_get(ctx); + tmp_1 = BN_CTX_get(ctx); + tmp_2 = BN_CTX_get(ctx); + order = BN_CTX_get(ctx); + if (order == NULL) + goto err; + + if (group->meth->field_decode) { + if (!group->meth->field_decode(group, a, &group->a, ctx)) + goto err; + if (!group->meth->field_decode(group, b, &group->b, ctx)) + goto err; + } else { + if (!BN_copy(a, &group->a)) + goto err; + if (!BN_copy(b, &group->b)) + goto err; + } + + /*- + * check the discriminant: + * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p) + * 0 =< a, b < p + */ + if (BN_is_zero(a)) { + if (BN_is_zero(b)) + goto err; + } else if (!BN_is_zero(b)) { + if (!BN_mod_sqr(tmp_1, a, p, ctx)) + goto err; + if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) + goto err; + if (!BN_lshift(tmp_1, tmp_2, 2)) + goto err; + /* tmp_1 = 4*a^3 */ + + if (!BN_mod_sqr(tmp_2, b, p, ctx)) + goto err; + if (!BN_mul_word(tmp_2, 27)) + goto err; + /* tmp_2 = 27*b^2 */ + + if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) + goto err; + if (BN_is_zero(a)) + goto err; + } + ret = 1; + err: + if (ctx != NULL) + BN_CTX_end(ctx); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} int ec_GFp_simple_point_init(EC_POINT *point) - { - BN_init(&point->X); - BN_init(&point->Y); - BN_init(&point->Z); - point->Z_is_one = 0; - - return 1; - } +{ + BN_init(&point->X); + BN_init(&point->Y); + BN_init(&point->Z); + point->Z_is_one = 0; + return 1; +} void ec_GFp_simple_point_finish(EC_POINT *point) - { - BN_free(&point->X); - BN_free(&point->Y); - BN_free(&point->Z); - } - +{ + BN_free(&point->X); + BN_free(&point->Y); + BN_free(&point->Z); +} void ec_GFp_simple_point_clear_finish(EC_POINT *point) - { - BN_clear_free(&point->X); - BN_clear_free(&point->Y); - BN_clear_free(&point->Z); - point->Z_is_one = 0; - } - +{ + BN_clear_free(&point->X); + BN_clear_free(&point->Y); + BN_clear_free(&point->Z); + point->Z_is_one = 0; +} int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) - { - if (!BN_copy(&dest->X, &src->X)) return 0; - if (!BN_copy(&dest->Y, &src->Y)) return 0; - if (!BN_copy(&dest->Z, &src->Z)) return 0; - dest->Z_is_one = src->Z_is_one; - - return 1; - } - - -int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) - { - point->Z_is_one = 0; - BN_zero(&point->Z); - return 1; - } - - -int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, - const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) - { - BN_CTX *new_ctx = NULL; - int ret = 0; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - - if (x != NULL) - { - if (!BN_nnmod(&point->X, x, &group->field, ctx)) goto err; - if (group->meth->field_encode) - { - if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) goto err; - } - } - - if (y != NULL) - { - if (!BN_nnmod(&point->Y, y, &group->field, ctx)) goto err; - if (group->meth->field_encode) - { - if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) goto err; - } - } - - if (z != NULL) - { - int Z_is_one; - - if (!BN_nnmod(&point->Z, z, &group->field, ctx)) goto err; - Z_is_one = BN_is_one(&point->Z); - if (group->meth->field_encode) - { - if (Z_is_one && (group->meth->field_set_to_one != 0)) - { - if (!group->meth->field_set_to_one(group, &point->Z, ctx)) goto err; - } - else - { - if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) goto err; - } - } - point->Z_is_one = Z_is_one; - } - - ret = 1; - +{ + if (!BN_copy(&dest->X, &src->X)) + return 0; + if (!BN_copy(&dest->Y, &src->Y)) + return 0; + if (!BN_copy(&dest->Z, &src->Z)) + return 0; + dest->Z_is_one = src->Z_is_one; + + return 1; +} + +int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, + EC_POINT *point) +{ + point->Z_is_one = 0; + BN_zero(&point->Z); + return 1; +} + +int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, + EC_POINT *point, + const BIGNUM *x, + const BIGNUM *y, + const BIGNUM *z, + BN_CTX *ctx) +{ + BN_CTX *new_ctx = NULL; + int ret = 0; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + + if (x != NULL) { + if (!BN_nnmod(&point->X, x, &group->field, ctx)) + goto err; + if (group->meth->field_encode) { + if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) + goto err; + } + } + + if (y != NULL) { + if (!BN_nnmod(&point->Y, y, &group->field, ctx)) + goto err; + if (group->meth->field_encode) { + if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) + goto err; + } + } + + if (z != NULL) { + int Z_is_one; + + if (!BN_nnmod(&point->Z, z, &group->field, ctx)) + goto err; + Z_is_one = BN_is_one(&point->Z); + if (group->meth->field_encode) { + if (Z_is_one && (group->meth->field_set_to_one != 0)) { + if (!group->meth->field_set_to_one(group, &point->Z, ctx)) + goto err; + } else { + if (!group-> + meth->field_encode(group, &point->Z, &point->Z, ctx)) + goto err; + } + } + point->Z_is_one = Z_is_one; + } + + ret = 1; + err: - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - - -int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, - BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) - { - BN_CTX *new_ctx = NULL; - int ret = 0; - - if (group->meth->field_decode != 0) - { - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - - if (x != NULL) - { - if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err; - } - if (y != NULL) - { - if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err; - } - if (z != NULL) - { - if (!group->meth->field_decode(group, z, &point->Z, ctx)) goto err; - } - } - else - { - if (x != NULL) - { - if (!BN_copy(x, &point->X)) goto err; - } - if (y != NULL) - { - if (!BN_copy(y, &point->Y)) goto err; - } - if (z != NULL) - { - if (!BN_copy(z, &point->Z)) goto err; - } - } - - ret = 1; + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} + +int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, + const EC_POINT *point, + BIGNUM *x, BIGNUM *y, + BIGNUM *z, BN_CTX *ctx) +{ + BN_CTX *new_ctx = NULL; + int ret = 0; + + if (group->meth->field_decode != 0) { + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + + if (x != NULL) { + if (!group->meth->field_decode(group, x, &point->X, ctx)) + goto err; + } + if (y != NULL) { + if (!group->meth->field_decode(group, y, &point->Y, ctx)) + goto err; + } + if (z != NULL) { + if (!group->meth->field_decode(group, z, &point->Z, ctx)) + goto err; + } + } else { + if (x != NULL) { + if (!BN_copy(x, &point->X)) + goto err; + } + if (y != NULL) { + if (!BN_copy(y, &point->Y)) + goto err; + } + if (z != NULL) { + if (!BN_copy(z, &point->Z)) + goto err; + } + } + + ret = 1; err: - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - - -int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, - const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) - { - if (x == NULL || y == NULL) - { - /* unlike for projective coordinates, we do not tolerate this */ - ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); - return 0; - } - - return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx); - } - - -int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, - BIGNUM *x, BIGNUM *y, BN_CTX *ctx) - { - BN_CTX *new_ctx = NULL; - BIGNUM *Z, *Z_1, *Z_2, *Z_3; - const BIGNUM *Z_; - int ret = 0; - - if (EC_POINT_is_at_infinity(group, point)) - { - ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); - return 0; - } - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - - BN_CTX_start(ctx); - Z = BN_CTX_get(ctx); - Z_1 = BN_CTX_get(ctx); - Z_2 = BN_CTX_get(ctx); - Z_3 = BN_CTX_get(ctx); - if (Z_3 == NULL) goto err; - - /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ - - if (group->meth->field_decode) - { - if (!group->meth->field_decode(group, Z, &point->Z, ctx)) goto err; - Z_ = Z; - } - else - { - Z_ = &point->Z; - } - - if (BN_is_one(Z_)) - { - if (group->meth->field_decode) - { - if (x != NULL) - { - if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err; - } - if (y != NULL) - { - if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err; - } - } - else - { - if (x != NULL) - { - if (!BN_copy(x, &point->X)) goto err; - } - if (y != NULL) - { - if (!BN_copy(y, &point->Y)) goto err; - } - } - } - else - { - if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) - { - ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); - goto err; - } - - if (group->meth->field_encode == 0) - { - /* field_sqr works on standard representation */ - if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) goto err; - } - else - { - if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) goto err; - } - - if (x != NULL) - { - /* in the Montgomery case, field_mul will cancel out Montgomery factor in X: */ - if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) goto err; - } - - if (y != NULL) - { - if (group->meth->field_encode == 0) - { - /* field_mul works on standard representation */ - if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) goto err; - } - else - { - if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) goto err; - } - - /* in the Montgomery case, field_mul will cancel out Montgomery factor in Y: */ - if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) goto err; - } - } - - ret = 1; + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} + +int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, + EC_POINT *point, + const BIGNUM *x, + const BIGNUM *y, BN_CTX *ctx) +{ + if (x == NULL || y == NULL) { + /* + * unlike for projective coordinates, we do not tolerate this + */ + ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, + ERR_R_PASSED_NULL_PARAMETER); + return 0; + } + + return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, + BN_value_one(), ctx); +} + +int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, + const EC_POINT *point, + BIGNUM *x, BIGNUM *y, + BN_CTX *ctx) +{ + BN_CTX *new_ctx = NULL; + BIGNUM *Z, *Z_1, *Z_2, *Z_3; + const BIGNUM *Z_; + int ret = 0; + + if (EC_POINT_is_at_infinity(group, point)) { + ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, + EC_R_POINT_AT_INFINITY); + return 0; + } + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + + BN_CTX_start(ctx); + Z = BN_CTX_get(ctx); + Z_1 = BN_CTX_get(ctx); + Z_2 = BN_CTX_get(ctx); + Z_3 = BN_CTX_get(ctx); + if (Z_3 == NULL) + goto err; + + /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ + + if (group->meth->field_decode) { + if (!group->meth->field_decode(group, Z, &point->Z, ctx)) + goto err; + Z_ = Z; + } else { + Z_ = &point->Z; + } + + if (BN_is_one(Z_)) { + if (group->meth->field_decode) { + if (x != NULL) { + if (!group->meth->field_decode(group, x, &point->X, ctx)) + goto err; + } + if (y != NULL) { + if (!group->meth->field_decode(group, y, &point->Y, ctx)) + goto err; + } + } else { + if (x != NULL) { + if (!BN_copy(x, &point->X)) + goto err; + } + if (y != NULL) { + if (!BN_copy(y, &point->Y)) + goto err; + } + } + } else { + if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) { + ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, + ERR_R_BN_LIB); + goto err; + } + + if (group->meth->field_encode == 0) { + /* field_sqr works on standard representation */ + if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) + goto err; + } else { + if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) + goto err; + } + + if (x != NULL) { + /* + * in the Montgomery case, field_mul will cancel out Montgomery + * factor in X: + */ + if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) + goto err; + } + + if (y != NULL) { + if (group->meth->field_encode == 0) { + /* + * field_mul works on standard representation + */ + if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) + goto err; + } else { + if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) + goto err; + } + + /* + * in the Montgomery case, field_mul will cancel out Montgomery + * factor in Y: + */ + if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) + goto err; + } + } + + ret = 1; err: - BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - -int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) - { - int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); - int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); - const BIGNUM *p; - BN_CTX *new_ctx = NULL; - BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; - int ret = 0; - - if (a == b) - return EC_POINT_dbl(group, r, a, ctx); - if (EC_POINT_is_at_infinity(group, a)) - return EC_POINT_copy(r, b); - if (EC_POINT_is_at_infinity(group, b)) - return EC_POINT_copy(r, a); - - field_mul = group->meth->field_mul; - field_sqr = group->meth->field_sqr; - p = &group->field; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - - BN_CTX_start(ctx); - n0 = BN_CTX_get(ctx); - n1 = BN_CTX_get(ctx); - n2 = BN_CTX_get(ctx); - n3 = BN_CTX_get(ctx); - n4 = BN_CTX_get(ctx); - n5 = BN_CTX_get(ctx); - n6 = BN_CTX_get(ctx); - if (n6 == NULL) goto end; - - /* Note that in this function we must not read components of 'a' or 'b' - * once we have written the corresponding components of 'r'. - * ('r' might be one of 'a' or 'b'.) - */ - - /* n1, n2 */ - if (b->Z_is_one) - { - if (!BN_copy(n1, &a->X)) goto end; - if (!BN_copy(n2, &a->Y)) goto end; - /* n1 = X_a */ - /* n2 = Y_a */ - } - else - { - if (!field_sqr(group, n0, &b->Z, ctx)) goto end; - if (!field_mul(group, n1, &a->X, n0, ctx)) goto end; - /* n1 = X_a * Z_b^2 */ - - if (!field_mul(group, n0, n0, &b->Z, ctx)) goto end; - if (!field_mul(group, n2, &a->Y, n0, ctx)) goto end; - /* n2 = Y_a * Z_b^3 */ - } - - /* n3, n4 */ - if (a->Z_is_one) - { - if (!BN_copy(n3, &b->X)) goto end; - if (!BN_copy(n4, &b->Y)) goto end; - /* n3 = X_b */ - /* n4 = Y_b */ - } - else - { - if (!field_sqr(group, n0, &a->Z, ctx)) goto end; - if (!field_mul(group, n3, &b->X, n0, ctx)) goto end; - /* n3 = X_b * Z_a^2 */ - - if (!field_mul(group, n0, n0, &a->Z, ctx)) goto end; - if (!field_mul(group, n4, &b->Y, n0, ctx)) goto end; - /* n4 = Y_b * Z_a^3 */ - } - - /* n5, n6 */ - if (!BN_mod_sub_quick(n5, n1, n3, p)) goto end; - if (!BN_mod_sub_quick(n6, n2, n4, p)) goto end; - /* n5 = n1 - n3 */ - /* n6 = n2 - n4 */ - - if (BN_is_zero(n5)) - { - if (BN_is_zero(n6)) - { - /* a is the same point as b */ - BN_CTX_end(ctx); - ret = EC_POINT_dbl(group, r, a, ctx); - ctx = NULL; - goto end; - } - else - { - /* a is the inverse of b */ - BN_zero(&r->Z); - r->Z_is_one = 0; - ret = 1; - goto end; - } - } - - /* 'n7', 'n8' */ - if (!BN_mod_add_quick(n1, n1, n3, p)) goto end; - if (!BN_mod_add_quick(n2, n2, n4, p)) goto end; - /* 'n7' = n1 + n3 */ - /* 'n8' = n2 + n4 */ - - /* Z_r */ - if (a->Z_is_one && b->Z_is_one) - { - if (!BN_copy(&r->Z, n5)) goto end; - } - else - { - if (a->Z_is_one) - { if (!BN_copy(n0, &b->Z)) goto end; } - else if (b->Z_is_one) - { if (!BN_copy(n0, &a->Z)) goto end; } - else - { if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) goto end; } - if (!field_mul(group, &r->Z, n0, n5, ctx)) goto end; - } - r->Z_is_one = 0; - /* Z_r = Z_a * Z_b * n5 */ - - /* X_r */ - if (!field_sqr(group, n0, n6, ctx)) goto end; - if (!field_sqr(group, n4, n5, ctx)) goto end; - if (!field_mul(group, n3, n1, n4, ctx)) goto end; - if (!BN_mod_sub_quick(&r->X, n0, n3, p)) goto end; - /* X_r = n6^2 - n5^2 * 'n7' */ - - /* 'n9' */ - if (!BN_mod_lshift1_quick(n0, &r->X, p)) goto end; - if (!BN_mod_sub_quick(n0, n3, n0, p)) goto end; - /* n9 = n5^2 * 'n7' - 2 * X_r */ - - /* Y_r */ - if (!field_mul(group, n0, n0, n6, ctx)) goto end; - if (!field_mul(group, n5, n4, n5, ctx)) goto end; /* now n5 is n5^3 */ - if (!field_mul(group, n1, n2, n5, ctx)) goto end; - if (!BN_mod_sub_quick(n0, n0, n1, p)) goto end; - if (BN_is_odd(n0)) - if (!BN_add(n0, n0, p)) goto end; - /* now 0 <= n0 < 2*p, and n0 is even */ - if (!BN_rshift1(&r->Y, n0)) goto end; - /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ - - ret = 1; + BN_CTX_end(ctx); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} + +int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, + const EC_POINT *b, BN_CTX *ctx) +{ + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, + const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); + const BIGNUM *p; + BN_CTX *new_ctx = NULL; + BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; + int ret = 0; + + if (a == b) + return EC_POINT_dbl(group, r, a, ctx); + if (EC_POINT_is_at_infinity(group, a)) + return EC_POINT_copy(r, b); + if (EC_POINT_is_at_infinity(group, b)) + return EC_POINT_copy(r, a); + + field_mul = group->meth->field_mul; + field_sqr = group->meth->field_sqr; + p = &group->field; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + + BN_CTX_start(ctx); + n0 = BN_CTX_get(ctx); + n1 = BN_CTX_get(ctx); + n2 = BN_CTX_get(ctx); + n3 = BN_CTX_get(ctx); + n4 = BN_CTX_get(ctx); + n5 = BN_CTX_get(ctx); + n6 = BN_CTX_get(ctx); + if (n6 == NULL) + goto end; + + /* + * Note that in this function we must not read components of 'a' or 'b' + * once we have written the corresponding components of 'r'. ('r' might + * be one of 'a' or 'b'.) + */ + + /* n1, n2 */ + if (b->Z_is_one) { + if (!BN_copy(n1, &a->X)) + goto end; + if (!BN_copy(n2, &a->Y)) + goto end; + /* n1 = X_a */ + /* n2 = Y_a */ + } else { + if (!field_sqr(group, n0, &b->Z, ctx)) + goto end; + if (!field_mul(group, n1, &a->X, n0, ctx)) + goto end; + /* n1 = X_a * Z_b^2 */ + + if (!field_mul(group, n0, n0, &b->Z, ctx)) + goto end; + if (!field_mul(group, n2, &a->Y, n0, ctx)) + goto end; + /* n2 = Y_a * Z_b^3 */ + } + + /* n3, n4 */ + if (a->Z_is_one) { + if (!BN_copy(n3, &b->X)) + goto end; + if (!BN_copy(n4, &b->Y)) + goto end; + /* n3 = X_b */ + /* n4 = Y_b */ + } else { + if (!field_sqr(group, n0, &a->Z, ctx)) + goto end; + if (!field_mul(group, n3, &b->X, n0, ctx)) + goto end; + /* n3 = X_b * Z_a^2 */ + + if (!field_mul(group, n0, n0, &a->Z, ctx)) + goto end; + if (!field_mul(group, n4, &b->Y, n0, ctx)) + goto end; + /* n4 = Y_b * Z_a^3 */ + } + + /* n5, n6 */ + if (!BN_mod_sub_quick(n5, n1, n3, p)) + goto end; + if (!BN_mod_sub_quick(n6, n2, n4, p)) + goto end; + /* n5 = n1 - n3 */ + /* n6 = n2 - n4 */ + + if (BN_is_zero(n5)) { + if (BN_is_zero(n6)) { + /* a is the same point as b */ + BN_CTX_end(ctx); + ret = EC_POINT_dbl(group, r, a, ctx); + ctx = NULL; + goto end; + } else { + /* a is the inverse of b */ + BN_zero(&r->Z); + r->Z_is_one = 0; + ret = 1; + goto end; + } + } + + /* 'n7', 'n8' */ + if (!BN_mod_add_quick(n1, n1, n3, p)) + goto end; + if (!BN_mod_add_quick(n2, n2, n4, p)) + goto end; + /* 'n7' = n1 + n3 */ + /* 'n8' = n2 + n4 */ + + /* Z_r */ + if (a->Z_is_one && b->Z_is_one) { + if (!BN_copy(&r->Z, n5)) + goto end; + } else { + if (a->Z_is_one) { + if (!BN_copy(n0, &b->Z)) + goto end; + } else if (b->Z_is_one) { + if (!BN_copy(n0, &a->Z)) + goto end; + } else { + if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) + goto end; + } + if (!field_mul(group, &r->Z, n0, n5, ctx)) + goto end; + } + r->Z_is_one = 0; + /* Z_r = Z_a * Z_b * n5 */ + + /* X_r */ + if (!field_sqr(group, n0, n6, ctx)) + goto end; + if (!field_sqr(group, n4, n5, ctx)) + goto end; + if (!field_mul(group, n3, n1, n4, ctx)) + goto end; + if (!BN_mod_sub_quick(&r->X, n0, n3, p)) + goto end; + /* X_r = n6^2 - n5^2 * 'n7' */ + + /* 'n9' */ + if (!BN_mod_lshift1_quick(n0, &r->X, p)) + goto end; + if (!BN_mod_sub_quick(n0, n3, n0, p)) + goto end; + /* n9 = n5^2 * 'n7' - 2 * X_r */ + + /* Y_r */ + if (!field_mul(group, n0, n0, n6, ctx)) + goto end; + if (!field_mul(group, n5, n4, n5, ctx)) + goto end; /* now n5 is n5^3 */ + if (!field_mul(group, n1, n2, n5, ctx)) + goto end; + if (!BN_mod_sub_quick(n0, n0, n1, p)) + goto end; + if (BN_is_odd(n0)) + if (!BN_add(n0, n0, p)) + goto end; + /* now 0 <= n0 < 2*p, and n0 is even */ + if (!BN_rshift1(&r->Y, n0)) + goto end; + /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ + + ret = 1; end: - if (ctx) /* otherwise we already called BN_CTX_end */ - BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - - -int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) - { - int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); - int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); - const BIGNUM *p; - BN_CTX *new_ctx = NULL; - BIGNUM *n0, *n1, *n2, *n3; - int ret = 0; - - if (EC_POINT_is_at_infinity(group, a)) - { - BN_zero(&r->Z); - r->Z_is_one = 0; - return 1; - } - - field_mul = group->meth->field_mul; - field_sqr = group->meth->field_sqr; - p = &group->field; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - - BN_CTX_start(ctx); - n0 = BN_CTX_get(ctx); - n1 = BN_CTX_get(ctx); - n2 = BN_CTX_get(ctx); - n3 = BN_CTX_get(ctx); - if (n3 == NULL) goto err; - - /* Note that in this function we must not read components of 'a' - * once we have written the corresponding components of 'r'. - * ('r' might the same as 'a'.) - */ - - /* n1 */ - if (a->Z_is_one) - { - if (!field_sqr(group, n0, &a->X, ctx)) goto err; - if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; - if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; - if (!BN_mod_add_quick(n1, n0, &group->a, p)) goto err; - /* n1 = 3 * X_a^2 + a_curve */ - } - else if (group->a_is_minus3) - { - if (!field_sqr(group, n1, &a->Z, ctx)) goto err; - if (!BN_mod_add_quick(n0, &a->X, n1, p)) goto err; - if (!BN_mod_sub_quick(n2, &a->X, n1, p)) goto err; - if (!field_mul(group, n1, n0, n2, ctx)) goto err; - if (!BN_mod_lshift1_quick(n0, n1, p)) goto err; - if (!BN_mod_add_quick(n1, n0, n1, p)) goto err; - /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) - * = 3 * X_a^2 - 3 * Z_a^4 */ - } - else - { - if (!field_sqr(group, n0, &a->X, ctx)) goto err; - if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; - if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; - if (!field_sqr(group, n1, &a->Z, ctx)) goto err; - if (!field_sqr(group, n1, n1, ctx)) goto err; - if (!field_mul(group, n1, n1, &group->a, ctx)) goto err; - if (!BN_mod_add_quick(n1, n1, n0, p)) goto err; - /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ - } - - /* Z_r */ - if (a->Z_is_one) - { - if (!BN_copy(n0, &a->Y)) goto err; - } - else - { - if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) goto err; - } - if (!BN_mod_lshift1_quick(&r->Z, n0, p)) goto err; - r->Z_is_one = 0; - /* Z_r = 2 * Y_a * Z_a */ - - /* n2 */ - if (!field_sqr(group, n3, &a->Y, ctx)) goto err; - if (!field_mul(group, n2, &a->X, n3, ctx)) goto err; - if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err; - /* n2 = 4 * X_a * Y_a^2 */ - - /* X_r */ - if (!BN_mod_lshift1_quick(n0, n2, p)) goto err; - if (!field_sqr(group, &r->X, n1, ctx)) goto err; - if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) goto err; - /* X_r = n1^2 - 2 * n2 */ - - /* n3 */ - if (!field_sqr(group, n0, n3, ctx)) goto err; - if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err; - /* n3 = 8 * Y_a^4 */ - - /* Y_r */ - if (!BN_mod_sub_quick(n0, n2, &r->X, p)) goto err; - if (!field_mul(group, n0, n1, n0, ctx)) goto err; - if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) goto err; - /* Y_r = n1 * (n2 - X_r) - n3 */ - - ret = 1; + if (ctx) /* otherwise we already called BN_CTX_end */ + BN_CTX_end(ctx); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} + +int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, + BN_CTX *ctx) +{ + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, + const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); + const BIGNUM *p; + BN_CTX *new_ctx = NULL; + BIGNUM *n0, *n1, *n2, *n3; + int ret = 0; + + if (EC_POINT_is_at_infinity(group, a)) { + BN_zero(&r->Z); + r->Z_is_one = 0; + return 1; + } + + field_mul = group->meth->field_mul; + field_sqr = group->meth->field_sqr; + p = &group->field; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + + BN_CTX_start(ctx); + n0 = BN_CTX_get(ctx); + n1 = BN_CTX_get(ctx); + n2 = BN_CTX_get(ctx); + n3 = BN_CTX_get(ctx); + if (n3 == NULL) + goto err; + + /* + * Note that in this function we must not read components of 'a' once we + * have written the corresponding components of 'r'. ('r' might the same + * as 'a'.) + */ + + /* n1 */ + if (a->Z_is_one) { + if (!field_sqr(group, n0, &a->X, ctx)) + goto err; + if (!BN_mod_lshift1_quick(n1, n0, p)) + goto err; + if (!BN_mod_add_quick(n0, n0, n1, p)) + goto err; + if (!BN_mod_add_quick(n1, n0, &group->a, p)) + goto err; + /* n1 = 3 * X_a^2 + a_curve */ + } else if (group->a_is_minus3) { + if (!field_sqr(group, n1, &a->Z, ctx)) + goto err; + if (!BN_mod_add_quick(n0, &a->X, n1, p)) + goto err; + if (!BN_mod_sub_quick(n2, &a->X, n1, p)) + goto err; + if (!field_mul(group, n1, n0, n2, ctx)) + goto err; + if (!BN_mod_lshift1_quick(n0, n1, p)) + goto err; + if (!BN_mod_add_quick(n1, n0, n1, p)) + goto err; + /*- + * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) + * = 3 * X_a^2 - 3 * Z_a^4 + */ + } else { + if (!field_sqr(group, n0, &a->X, ctx)) + goto err; + if (!BN_mod_lshift1_quick(n1, n0, p)) + goto err; + if (!BN_mod_add_quick(n0, n0, n1, p)) + goto err; + if (!field_sqr(group, n1, &a->Z, ctx)) + goto err; + if (!field_sqr(group, n1, n1, ctx)) + goto err; + if (!field_mul(group, n1, n1, &group->a, ctx)) + goto err; + if (!BN_mod_add_quick(n1, n1, n0, p)) + goto err; + /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ + } + + /* Z_r */ + if (a->Z_is_one) { + if (!BN_copy(n0, &a->Y)) + goto err; + } else { + if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) + goto err; + } + if (!BN_mod_lshift1_quick(&r->Z, n0, p)) + goto err; + r->Z_is_one = 0; + /* Z_r = 2 * Y_a * Z_a */ + + /* n2 */ + if (!field_sqr(group, n3, &a->Y, ctx)) + goto err; + if (!field_mul(group, n2, &a->X, n3, ctx)) + goto err; + if (!BN_mod_lshift_quick(n2, n2, 2, p)) + goto err; + /* n2 = 4 * X_a * Y_a^2 */ + + /* X_r */ + if (!BN_mod_lshift1_quick(n0, n2, p)) + goto err; + if (!field_sqr(group, &r->X, n1, ctx)) + goto err; + if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) + goto err; + /* X_r = n1^2 - 2 * n2 */ + + /* n3 */ + if (!field_sqr(group, n0, n3, ctx)) + goto err; + if (!BN_mod_lshift_quick(n3, n0, 3, p)) + goto err; + /* n3 = 8 * Y_a^4 */ + + /* Y_r */ + if (!BN_mod_sub_quick(n0, n2, &r->X, p)) + goto err; + if (!field_mul(group, n0, n1, n0, ctx)) + goto err; + if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) + goto err; + /* Y_r = n1 * (n2 - X_r) - n3 */ + + ret = 1; err: - BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - + BN_CTX_end(ctx); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) - { - if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) - /* point is its own inverse */ - return 1; - - return BN_usub(&point->Y, &group->field, &point->Y); - } +{ + if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) + /* point is its own inverse */ + return 1; + return BN_usub(&point->Y, &group->field, &point->Y); +} int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) - { - return BN_is_zero(&point->Z); - } - - -int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) - { - int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); - int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); - const BIGNUM *p; - BN_CTX *new_ctx = NULL; - BIGNUM *rh, *tmp, *Z4, *Z6; - int ret = -1; - - if (EC_POINT_is_at_infinity(group, point)) - return 1; - - field_mul = group->meth->field_mul; - field_sqr = group->meth->field_sqr; - p = &group->field; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return -1; - } - - BN_CTX_start(ctx); - rh = BN_CTX_get(ctx); - tmp = BN_CTX_get(ctx); - Z4 = BN_CTX_get(ctx); - Z6 = BN_CTX_get(ctx); - if (Z6 == NULL) goto err; - - /* We have a curve defined by a Weierstrass equation - * y^2 = x^3 + a*x + b. - * The point to consider is given in Jacobian projective coordinates - * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). - * Substituting this and multiplying by Z^6 transforms the above equation into - * Y^2 = X^3 + a*X*Z^4 + b*Z^6. - * To test this, we add up the right-hand side in 'rh'. - */ - - /* rh := X^2 */ - if (!field_sqr(group, rh, &point->X, ctx)) goto err; - - if (!point->Z_is_one) - { - if (!field_sqr(group, tmp, &point->Z, ctx)) goto err; - if (!field_sqr(group, Z4, tmp, ctx)) goto err; - if (!field_mul(group, Z6, Z4, tmp, ctx)) goto err; - - /* rh := (rh + a*Z^4)*X */ - if (group->a_is_minus3) - { - if (!BN_mod_lshift1_quick(tmp, Z4, p)) goto err; - if (!BN_mod_add_quick(tmp, tmp, Z4, p)) goto err; - if (!BN_mod_sub_quick(rh, rh, tmp, p)) goto err; - if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; - } - else - { - if (!field_mul(group, tmp, Z4, &group->a, ctx)) goto err; - if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; - if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; - } - - /* rh := rh + b*Z^6 */ - if (!field_mul(group, tmp, &group->b, Z6, ctx)) goto err; - if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; - } - else - { - /* point->Z_is_one */ - - /* rh := (rh + a)*X */ - if (!BN_mod_add_quick(rh, rh, &group->a, p)) goto err; - if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; - /* rh := rh + b */ - if (!BN_mod_add_quick(rh, rh, &group->b, p)) goto err; - } - - /* 'lh' := Y^2 */ - if (!field_sqr(group, tmp, &point->Y, ctx)) goto err; - - ret = (0 == BN_ucmp(tmp, rh)); +{ + return BN_is_zero(&point->Z); +} + +int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, + BN_CTX *ctx) +{ + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, + const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); + const BIGNUM *p; + BN_CTX *new_ctx = NULL; + BIGNUM *rh, *tmp, *Z4, *Z6; + int ret = -1; + + if (EC_POINT_is_at_infinity(group, point)) + return 1; + + field_mul = group->meth->field_mul; + field_sqr = group->meth->field_sqr; + p = &group->field; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return -1; + } + + BN_CTX_start(ctx); + rh = BN_CTX_get(ctx); + tmp = BN_CTX_get(ctx); + Z4 = BN_CTX_get(ctx); + Z6 = BN_CTX_get(ctx); + if (Z6 == NULL) + goto err; + + /*- + * We have a curve defined by a Weierstrass equation + * y^2 = x^3 + a*x + b. + * The point to consider is given in Jacobian projective coordinates + * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). + * Substituting this and multiplying by Z^6 transforms the above equation into + * Y^2 = X^3 + a*X*Z^4 + b*Z^6. + * To test this, we add up the right-hand side in 'rh'. + */ + + /* rh := X^2 */ + if (!field_sqr(group, rh, &point->X, ctx)) + goto err; + + if (!point->Z_is_one) { + if (!field_sqr(group, tmp, &point->Z, ctx)) + goto err; + if (!field_sqr(group, Z4, tmp, ctx)) + goto err; + if (!field_mul(group, Z6, Z4, tmp, ctx)) + goto err; + + /* rh := (rh + a*Z^4)*X */ + if (group->a_is_minus3) { + if (!BN_mod_lshift1_quick(tmp, Z4, p)) + goto err; + if (!BN_mod_add_quick(tmp, tmp, Z4, p)) + goto err; + if (!BN_mod_sub_quick(rh, rh, tmp, p)) + goto err; + if (!field_mul(group, rh, rh, &point->X, ctx)) + goto err; + } else { + if (!field_mul(group, tmp, Z4, &group->a, ctx)) + goto err; + if (!BN_mod_add_quick(rh, rh, tmp, p)) + goto err; + if (!field_mul(group, rh, rh, &point->X, ctx)) + goto err; + } + + /* rh := rh + b*Z^6 */ + if (!field_mul(group, tmp, &group->b, Z6, ctx)) + goto err; + if (!BN_mod_add_quick(rh, rh, tmp, p)) + goto err; + } else { + /* point->Z_is_one */ + + /* rh := (rh + a)*X */ + if (!BN_mod_add_quick(rh, rh, &group->a, p)) + goto err; + if (!field_mul(group, rh, rh, &point->X, ctx)) + goto err; + /* rh := rh + b */ + if (!BN_mod_add_quick(rh, rh, &group->b, p)) + goto err; + } + + /* 'lh' := Y^2 */ + if (!field_sqr(group, tmp, &point->Y, ctx)) + goto err; + + ret = (0 == BN_ucmp(tmp, rh)); err: - BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - - -int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) - { - /* return values: - * -1 error - * 0 equal (in affine coordinates) - * 1 not equal - */ - - int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); - int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); - BN_CTX *new_ctx = NULL; - BIGNUM *tmp1, *tmp2, *Za23, *Zb23; - const BIGNUM *tmp1_, *tmp2_; - int ret = -1; - - if (EC_POINT_is_at_infinity(group, a)) - { - return EC_POINT_is_at_infinity(group, b) ? 0 : 1; - } - - if (EC_POINT_is_at_infinity(group, b)) - return 1; - - if (a->Z_is_one && b->Z_is_one) - { - return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; - } - - field_mul = group->meth->field_mul; - field_sqr = group->meth->field_sqr; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return -1; - } - - BN_CTX_start(ctx); - tmp1 = BN_CTX_get(ctx); - tmp2 = BN_CTX_get(ctx); - Za23 = BN_CTX_get(ctx); - Zb23 = BN_CTX_get(ctx); - if (Zb23 == NULL) goto end; - - /* We have to decide whether - * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), - * or equivalently, whether - * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). - */ - - if (!b->Z_is_one) - { - if (!field_sqr(group, Zb23, &b->Z, ctx)) goto end; - if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) goto end; - tmp1_ = tmp1; - } - else - tmp1_ = &a->X; - if (!a->Z_is_one) - { - if (!field_sqr(group, Za23, &a->Z, ctx)) goto end; - if (!field_mul(group, tmp2, &b->X, Za23, ctx)) goto end; - tmp2_ = tmp2; - } - else - tmp2_ = &b->X; - - /* compare X_a*Z_b^2 with X_b*Z_a^2 */ - if (BN_cmp(tmp1_, tmp2_) != 0) - { - ret = 1; /* points differ */ - goto end; - } - - - if (!b->Z_is_one) - { - if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) goto end; - if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) goto end; - /* tmp1_ = tmp1 */ - } - else - tmp1_ = &a->Y; - if (!a->Z_is_one) - { - if (!field_mul(group, Za23, Za23, &a->Z, ctx)) goto end; - if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) goto end; - /* tmp2_ = tmp2 */ - } - else - tmp2_ = &b->Y; - - /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ - if (BN_cmp(tmp1_, tmp2_) != 0) - { - ret = 1; /* points differ */ - goto end; - } - - /* points are equal */ - ret = 0; + BN_CTX_end(ctx); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} + +int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, + const EC_POINT *b, BN_CTX *ctx) +{ + /*- + * return values: + * -1 error + * 0 equal (in affine coordinates) + * 1 not equal + */ + + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, + const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); + BN_CTX *new_ctx = NULL; + BIGNUM *tmp1, *tmp2, *Za23, *Zb23; + const BIGNUM *tmp1_, *tmp2_; + int ret = -1; + + if (EC_POINT_is_at_infinity(group, a)) { + return EC_POINT_is_at_infinity(group, b) ? 0 : 1; + } + + if (EC_POINT_is_at_infinity(group, b)) + return 1; + + if (a->Z_is_one && b->Z_is_one) { + return ((BN_cmp(&a->X, &b->X) == 0) + && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; + } + + field_mul = group->meth->field_mul; + field_sqr = group->meth->field_sqr; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return -1; + } + + BN_CTX_start(ctx); + tmp1 = BN_CTX_get(ctx); + tmp2 = BN_CTX_get(ctx); + Za23 = BN_CTX_get(ctx); + Zb23 = BN_CTX_get(ctx); + if (Zb23 == NULL) + goto end; + + /*- + * We have to decide whether + * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), + * or equivalently, whether + * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). + */ + + if (!b->Z_is_one) { + if (!field_sqr(group, Zb23, &b->Z, ctx)) + goto end; + if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) + goto end; + tmp1_ = tmp1; + } else + tmp1_ = &a->X; + if (!a->Z_is_one) { + if (!field_sqr(group, Za23, &a->Z, ctx)) + goto end; + if (!field_mul(group, tmp2, &b->X, Za23, ctx)) + goto end; + tmp2_ = tmp2; + } else + tmp2_ = &b->X; + + /* compare X_a*Z_b^2 with X_b*Z_a^2 */ + if (BN_cmp(tmp1_, tmp2_) != 0) { + ret = 1; /* points differ */ + goto end; + } + + if (!b->Z_is_one) { + if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) + goto end; + if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) + goto end; + /* tmp1_ = tmp1 */ + } else + tmp1_ = &a->Y; + if (!a->Z_is_one) { + if (!field_mul(group, Za23, Za23, &a->Z, ctx)) + goto end; + if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) + goto end; + /* tmp2_ = tmp2 */ + } else + tmp2_ = &b->Y; + + /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ + if (BN_cmp(tmp1_, tmp2_) != 0) { + ret = 1; /* points differ */ + goto end; + } + + /* points are equal */ + ret = 0; end: - BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - - -int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) - { - BN_CTX *new_ctx = NULL; - BIGNUM *x, *y; - int ret = 0; - - if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) - return 1; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - - BN_CTX_start(ctx); - x = BN_CTX_get(ctx); - y = BN_CTX_get(ctx); - if (y == NULL) goto err; - - if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; - if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; - if (!point->Z_is_one) - { - ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); - goto err; - } - - ret = 1; + BN_CTX_end(ctx); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} + +int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, + BN_CTX *ctx) +{ + BN_CTX *new_ctx = NULL; + BIGNUM *x, *y; + int ret = 0; + + if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) + return 1; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + + BN_CTX_start(ctx); + x = BN_CTX_get(ctx); + y = BN_CTX_get(ctx); + if (y == NULL) + goto err; + + if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) + goto err; + if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) + goto err; + if (!point->Z_is_one) { + ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); + goto err; + } + + ret = 1; err: - BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - - -int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) - { - BN_CTX *new_ctx = NULL; - BIGNUM *tmp, *tmp_Z; - BIGNUM **prod_Z = NULL; - size_t i; - int ret = 0; - - if (num == 0) - return 1; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - - BN_CTX_start(ctx); - tmp = BN_CTX_get(ctx); - tmp_Z = BN_CTX_get(ctx); - if (tmp == NULL || tmp_Z == NULL) goto err; - - prod_Z = OPENSSL_malloc(num * sizeof prod_Z[0]); - if (prod_Z == NULL) goto err; - for (i = 0; i < num; i++) - { - prod_Z[i] = BN_new(); - if (prod_Z[i] == NULL) goto err; - } - - /* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z, - * skipping any zero-valued inputs (pretend that they're 1). */ - - if (!BN_is_zero(&points[0]->Z)) - { - if (!BN_copy(prod_Z[0], &points[0]->Z)) goto err; - } - else - { - if (group->meth->field_set_to_one != 0) - { - if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) goto err; - } - else - { - if (!BN_one(prod_Z[0])) goto err; - } - } - - for (i = 1; i < num; i++) - { - if (!BN_is_zero(&points[i]->Z)) - { - if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1], &points[i]->Z, ctx)) goto err; - } - else - { - if (!BN_copy(prod_Z[i], prod_Z[i - 1])) goto err; - } - } - - /* Now use a single explicit inversion to replace every - * non-zero points[i]->Z by its inverse. */ - - if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx)) - { - ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); - goto err; - } - if (group->meth->field_encode != 0) - { - /* In the Montgomery case, we just turned R*H (representing H) - * into 1/(R*H), but we need R*(1/H) (representing 1/H); - * i.e. we need to multiply by the Montgomery factor twice. */ - if (!group->meth->field_encode(group, tmp, tmp, ctx)) goto err; - if (!group->meth->field_encode(group, tmp, tmp, ctx)) goto err; - } - - for (i = num - 1; i > 0; --i) - { - /* Loop invariant: tmp is the product of the inverses of - * points[0]->Z .. points[i]->Z (zero-valued inputs skipped). */ - if (!BN_is_zero(&points[i]->Z)) - { - /* Set tmp_Z to the inverse of points[i]->Z (as product - * of Z inverses 0 .. i, Z values 0 .. i - 1). */ - if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx)) goto err; - /* Update tmp to satisfy the loop invariant for i - 1. */ - if (!group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx)) goto err; - /* Replace points[i]->Z by its inverse. */ - if (!BN_copy(&points[i]->Z, tmp_Z)) goto err; - } - } - - if (!BN_is_zero(&points[0]->Z)) - { - /* Replace points[0]->Z by its inverse. */ - if (!BN_copy(&points[0]->Z, tmp)) goto err; - } - - /* Finally, fix up the X and Y coordinates for all points. */ - - for (i = 0; i < num; i++) - { - EC_POINT *p = points[i]; - - if (!BN_is_zero(&p->Z)) - { - /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ - - if (!group->meth->field_sqr(group, tmp, &p->Z, ctx)) goto err; - if (!group->meth->field_mul(group, &p->X, &p->X, tmp, ctx)) goto err; - - if (!group->meth->field_mul(group, tmp, tmp, &p->Z, ctx)) goto err; - if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) goto err; - - if (group->meth->field_set_to_one != 0) - { - if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err; - } - else - { - if (!BN_one(&p->Z)) goto err; - } - p->Z_is_one = 1; - } - } - - ret = 1; + BN_CTX_end(ctx); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + return ret; +} + +int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, + EC_POINT *points[], BN_CTX *ctx) +{ + BN_CTX *new_ctx = NULL; + BIGNUM *tmp, *tmp_Z; + BIGNUM **prod_Z = NULL; + size_t i; + int ret = 0; + + if (num == 0) + return 1; + + if (ctx == NULL) { + ctx = new_ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + } + + BN_CTX_start(ctx); + tmp = BN_CTX_get(ctx); + tmp_Z = BN_CTX_get(ctx); + if (tmp == NULL || tmp_Z == NULL) + goto err; + + prod_Z = OPENSSL_malloc(num * sizeof prod_Z[0]); + if (prod_Z == NULL) + goto err; + for (i = 0; i < num; i++) { + prod_Z[i] = BN_new(); + if (prod_Z[i] == NULL) + goto err; + } + + /* + * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z, + * skipping any zero-valued inputs (pretend that they're 1). + */ + + if (!BN_is_zero(&points[0]->Z)) { + if (!BN_copy(prod_Z[0], &points[0]->Z)) + goto err; + } else { + if (group->meth->field_set_to_one != 0) { + if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) + goto err; + } else { + if (!BN_one(prod_Z[0])) + goto err; + } + } + + for (i = 1; i < num; i++) { + if (!BN_is_zero(&points[i]->Z)) { + if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1], + &points[i]->Z, ctx)) + goto err; + } else { + if (!BN_copy(prod_Z[i], prod_Z[i - 1])) + goto err; + } + } + + /* + * Now use a single explicit inversion to replace every non-zero + * points[i]->Z by its inverse. + */ + + if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx)) { + ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); + goto err; + } + if (group->meth->field_encode != 0) { + /* + * In the Montgomery case, we just turned R*H (representing H) into + * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to + * multiply by the Montgomery factor twice. + */ + if (!group->meth->field_encode(group, tmp, tmp, ctx)) + goto err; + if (!group->meth->field_encode(group, tmp, tmp, ctx)) + goto err; + } + + for (i = num - 1; i > 0; --i) { + /* + * Loop invariant: tmp is the product of the inverses of points[0]->Z + * .. points[i]->Z (zero-valued inputs skipped). + */ + if (!BN_is_zero(&points[i]->Z)) { + /* + * Set tmp_Z to the inverse of points[i]->Z (as product of Z + * inverses 0 .. i, Z values 0 .. i - 1). + */ + if (!group-> + meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx)) + goto err; + /* + * Update tmp to satisfy the loop invariant for i - 1. + */ + if (!group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx)) + goto err; + /* Replace points[i]->Z by its inverse. */ + if (!BN_copy(&points[i]->Z, tmp_Z)) + goto err; + } + } + + if (!BN_is_zero(&points[0]->Z)) { + /* Replace points[0]->Z by its inverse. */ + if (!BN_copy(&points[0]->Z, tmp)) + goto err; + } + + /* Finally, fix up the X and Y coordinates for all points. */ + + for (i = 0; i < num; i++) { + EC_POINT *p = points[i]; + + if (!BN_is_zero(&p->Z)) { + /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ + + if (!group->meth->field_sqr(group, tmp, &p->Z, ctx)) + goto err; + if (!group->meth->field_mul(group, &p->X, &p->X, tmp, ctx)) + goto err; + + if (!group->meth->field_mul(group, tmp, tmp, &p->Z, ctx)) + goto err; + if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) + goto err; + + if (group->meth->field_set_to_one != 0) { + if (!group->meth->field_set_to_one(group, &p->Z, ctx)) + goto err; + } else { + if (!BN_one(&p->Z)) + goto err; + } + p->Z_is_one = 1; + } + } + + ret = 1; err: - BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - if (prod_Z != NULL) - { - for (i = 0; i < num; i++) - { - if (prod_Z[i] == NULL) break; - BN_clear_free(prod_Z[i]); - } - OPENSSL_free(prod_Z); - } - return ret; - } - - -int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) - { - return BN_mod_mul(r, a, b, &group->field, ctx); - } - - -int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) - { - return BN_mod_sqr(r, a, &group->field, ctx); - } + BN_CTX_end(ctx); + if (new_ctx != NULL) + BN_CTX_free(new_ctx); + if (prod_Z != NULL) { + for (i = 0; i < num; i++) { + if (prod_Z[i] == NULL) + break; + BN_clear_free(prod_Z[i]); + } + OPENSSL_free(prod_Z); + } + return ret; +} + +int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, + const BIGNUM *b, BN_CTX *ctx) +{ + return BN_mod_mul(r, a, b, &group->field, ctx); +} + +int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, + BN_CTX *ctx) +{ + return BN_mod_sqr(r, a, &group->field, ctx); +} |