aboutsummaryrefslogtreecommitdiff
path: root/openssl/crypto/modes/asm/ghash-sparcv9.pl
diff options
context:
space:
mode:
Diffstat (limited to 'openssl/crypto/modes/asm/ghash-sparcv9.pl')
-rw-r--r--openssl/crypto/modes/asm/ghash-sparcv9.pl247
1 files changed, 244 insertions, 3 deletions
diff --git a/openssl/crypto/modes/asm/ghash-sparcv9.pl b/openssl/crypto/modes/asm/ghash-sparcv9.pl
index 70e7b044a..0365e0f1f 100644
--- a/openssl/crypto/modes/asm/ghash-sparcv9.pl
+++ b/openssl/crypto/modes/asm/ghash-sparcv9.pl
@@ -36,6 +36,15 @@
# references to input data and Z.hi updates to achieve 12 cycles
# timing. To anchor to something else, sha1-sparcv9.pl spends 11.6
# cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1.
+#
+# October 2012
+#
+# Add VIS3 lookup-table-free implementation using polynomial
+# multiplication xmulx[hi] and extended addition addxc[cc]
+# instructions. 4.52/7.63x improvement on T3/T4 or in absolute
+# terms 7.90/2.14 cycles per byte. On T4 multi-process benchmark
+# saturates at ~15.5x single-process result on 8-core processor,
+# or ~20.5GBps per 2.85GHz socket.
$bits=32;
for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
@@ -66,6 +75,10 @@ $Htbl="%i1";
$inp="%i2";
$len="%i3";
+$code.=<<___ if ($bits==64);
+.register %g2,#scratch
+.register %g3,#scratch
+___
$code.=<<___;
.section ".text",#alloc,#execinstr
@@ -321,10 +334,238 @@ gcm_gmult_4bit:
restore
.type gcm_gmult_4bit,#function
.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
-.asciz "GHASH for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
+___
+
+{{{
+# Straightforward 128x128-bit multiplication using Karatsuba algorithm
+# followed by pair of 64-bit reductions [with a shortcut in first one,
+# which allowed to break dependency between reductions and remove one
+# multiplication from critical path]. While it might be suboptimal
+# with regard to sheer number of multiplications, other methods [such
+# as aggregate reduction] would require more 64-bit registers, which
+# we don't have in 32-bit application context.
+
+($Xip,$Htable,$inp,$len)=map("%i$_",(0..3));
+
+($Hhl,$Hlo,$Hhi,$Xlo,$Xhi,$xE1,$sqr, $C0,$C1,$C2,$C3,$V)=
+ (map("%o$_",(0..5,7)),map("%g$_",(1..5)));
+
+($shl,$shr)=map("%l$_",(0..7));
+
+# For details regarding "twisted H" see ghash-x86.pl.
+$code.=<<___;
+.globl gcm_init_vis3
+.align 32
+gcm_init_vis3:
+ save %sp,-$frame,%sp
+
+ ldx [%i1+0],$Hhi
+ ldx [%i1+8],$Hlo
+ mov 0xE1,$Xhi
+ mov 1,$Xlo
+ sllx $Xhi,57,$Xhi
+ srax $Hhi,63,$C0 ! broadcast carry
+ addcc $Hlo,$Hlo,$Hlo ! H<<=1
+ addxc $Hhi,$Hhi,$Hhi
+ and $C0,$Xlo,$Xlo
+ and $C0,$Xhi,$Xhi
+ xor $Xlo,$Hlo,$Hlo
+ xor $Xhi,$Hhi,$Hhi
+ stx $Hlo,[%i0+8] ! save twisted H
+ stx $Hhi,[%i0+0]
+
+ sethi %hi(0xA0406080),$V
+ sethi %hi(0x20C0E000),%l0
+ or $V,%lo(0xA0406080),$V
+ or %l0,%lo(0x20C0E000),%l0
+ sllx $V,32,$V
+ or %l0,$V,$V ! (0xE0·i)&0xff=0xA040608020C0E000
+ stx $V,[%i0+16]
+
+ ret
+ restore
+.type gcm_init_vis3,#function
+.size gcm_init_vis3,.-gcm_init_vis3
+
+.globl gcm_gmult_vis3
+.align 32
+gcm_gmult_vis3:
+ save %sp,-$frame,%sp
+
+ ldx [$Xip+8],$Xlo ! load Xi
+ ldx [$Xip+0],$Xhi
+ ldx [$Htable+8],$Hlo ! load twisted H
+ ldx [$Htable+0],$Hhi
+
+ mov 0xE1,%l7
+ sllx %l7,57,$xE1 ! 57 is not a typo
+ ldx [$Htable+16],$V ! (0xE0·i)&0xff=0xA040608020C0E000
+
+ xor $Hhi,$Hlo,$Hhl ! Karatsuba pre-processing
+ xmulx $Xlo,$Hlo,$C0
+ xor $Xlo,$Xhi,$C2 ! Karatsuba pre-processing
+ xmulx $C2,$Hhl,$C1
+ xmulxhi $Xlo,$Hlo,$Xlo
+ xmulxhi $C2,$Hhl,$C2
+ xmulxhi $Xhi,$Hhi,$C3
+ xmulx $Xhi,$Hhi,$Xhi
+
+ sll $C0,3,$sqr
+ srlx $V,$sqr,$sqr ! ·0xE0 [implicit &(7<<3)]
+ xor $C0,$sqr,$sqr
+ sllx $sqr,57,$sqr ! ($C0·0xE1)<<1<<56 [implicit &0x7f]
+
+ xor $C0,$C1,$C1 ! Karatsuba post-processing
+ xor $Xlo,$C2,$C2
+ xor $sqr,$Xlo,$Xlo ! real destination is $C1
+ xor $C3,$C2,$C2
+ xor $Xlo,$C1,$C1
+ xor $Xhi,$C2,$C2
+ xor $Xhi,$C1,$C1
+
+ xmulxhi $C0,$xE1,$Xlo ! ·0xE1<<1<<56
+ xor $C0,$C2,$C2
+ xmulx $C1,$xE1,$C0
+ xor $C1,$C3,$C3
+ xmulxhi $C1,$xE1,$C1
+
+ xor $Xlo,$C2,$C2
+ xor $C0,$C2,$C2
+ xor $C1,$C3,$C3
+
+ stx $C2,[$Xip+8] ! save Xi
+ stx $C3,[$Xip+0]
+
+ ret
+ restore
+.type gcm_gmult_vis3,#function
+.size gcm_gmult_vis3,.-gcm_gmult_vis3
+
+.globl gcm_ghash_vis3
+.align 32
+gcm_ghash_vis3:
+ save %sp,-$frame,%sp
+
+ ldx [$Xip+8],$C2 ! load Xi
+ ldx [$Xip+0],$C3
+ ldx [$Htable+8],$Hlo ! load twisted H
+ ldx [$Htable+0],$Hhi
+
+ mov 0xE1,%l7
+ sllx %l7,57,$xE1 ! 57 is not a typo
+ ldx [$Htable+16],$V ! (0xE0·i)&0xff=0xA040608020C0E000
+
+ and $inp,7,$shl
+ andn $inp,7,$inp
+ sll $shl,3,$shl
+ prefetch [$inp+63], 20
+ sub %g0,$shl,$shr
+
+ xor $Hhi,$Hlo,$Hhl ! Karatsuba pre-processing
+.Loop:
+ ldx [$inp+8],$Xlo
+ brz,pt $shl,1f
+ ldx [$inp+0],$Xhi
+
+ ldx [$inp+16],$C1 ! align data
+ srlx $Xlo,$shr,$C0
+ sllx $Xlo,$shl,$Xlo
+ sllx $Xhi,$shl,$Xhi
+ srlx $C1,$shr,$C1
+ or $C0,$Xhi,$Xhi
+ or $C1,$Xlo,$Xlo
+1:
+ add $inp,16,$inp
+ sub $len,16,$len
+ xor $C2,$Xlo,$Xlo
+ xor $C3,$Xhi,$Xhi
+ prefetch [$inp+63], 20
+
+ xmulx $Xlo,$Hlo,$C0
+ xor $Xlo,$Xhi,$C2 ! Karatsuba pre-processing
+ xmulx $C2,$Hhl,$C1
+ xmulxhi $Xlo,$Hlo,$Xlo
+ xmulxhi $C2,$Hhl,$C2
+ xmulxhi $Xhi,$Hhi,$C3
+ xmulx $Xhi,$Hhi,$Xhi
+
+ sll $C0,3,$sqr
+ srlx $V,$sqr,$sqr ! ·0xE0 [implicit &(7<<3)]
+ xor $C0,$sqr,$sqr
+ sllx $sqr,57,$sqr ! ($C0·0xE1)<<1<<56 [implicit &0x7f]
+
+ xor $C0,$C1,$C1 ! Karatsuba post-processing
+ xor $Xlo,$C2,$C2
+ xor $sqr,$Xlo,$Xlo ! real destination is $C1
+ xor $C3,$C2,$C2
+ xor $Xlo,$C1,$C1
+ xor $Xhi,$C2,$C2
+ xor $Xhi,$C1,$C1
+
+ xmulxhi $C0,$xE1,$Xlo ! ·0xE1<<1<<56
+ xor $C0,$C2,$C2
+ xmulx $C1,$xE1,$C0
+ xor $C1,$C3,$C3
+ xmulxhi $C1,$xE1,$C1
+
+ xor $Xlo,$C2,$C2
+ xor $C0,$C2,$C2
+ brnz,pt $len,.Loop
+ xor $C1,$C3,$C3
+
+ stx $C2,[$Xip+8] ! save Xi
+ stx $C3,[$Xip+0]
+
+ ret
+ restore
+.type gcm_ghash_vis3,#function
+.size gcm_ghash_vis3,.-gcm_ghash_vis3
+___
+}}}
+$code.=<<___;
+.asciz "GHASH for SPARCv9/VIS3, CRYPTOGAMS by <appro\@openssl.org>"
.align 4
___
-$code =~ s/\`([^\`]*)\`/eval $1/gem;
-print $code;
+
+# Purpose of these subroutines is to explicitly encode VIS instructions,
+# so that one can compile the module without having to specify VIS
+# extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
+# Idea is to reserve for option to produce "universal" binary and let
+# programmer detect if current CPU is VIS capable at run-time.
+sub unvis3 {
+my ($mnemonic,$rs1,$rs2,$rd)=@_;
+my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
+my ($ref,$opf);
+my %visopf = ( "addxc" => 0x011,
+ "addxccc" => 0x013,
+ "xmulx" => 0x115,
+ "xmulxhi" => 0x116 );
+
+ $ref = "$mnemonic\t$rs1,$rs2,$rd";
+
+ if ($opf=$visopf{$mnemonic}) {
+ foreach ($rs1,$rs2,$rd) {
+ return $ref if (!/%([goli])([0-9])/);
+ $_=$bias{$1}+$2;
+ }
+
+ return sprintf ".word\t0x%08x !%s",
+ 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
+ $ref;
+ } else {
+ return $ref;
+ }
+}
+
+foreach (split("\n",$code)) {
+ s/\`([^\`]*)\`/eval $1/ge;
+
+ s/\b(xmulx[hi]*|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
+ &unvis3($1,$2,$3,$4)
+ /ge;
+
+ print $_,"\n";
+}
+
close STDOUT;