diff options
Diffstat (limited to 'openssl/crypto/modes')
-rw-r--r-- | openssl/crypto/modes/Makefile | 2 | ||||
-rwxr-xr-x | openssl/crypto/modes/asm/ghashv8-armx.pl | 276 | ||||
-rw-r--r-- | openssl/crypto/modes/gcm128.c | 4 | ||||
-rw-r--r-- | openssl/crypto/modes/modes_lcl.h | 38 |
4 files changed, 245 insertions, 75 deletions
diff --git a/openssl/crypto/modes/Makefile b/openssl/crypto/modes/Makefile index cbcbfad4b..a7863d98b 100644 --- a/openssl/crypto/modes/Makefile +++ b/openssl/crypto/modes/Makefile @@ -95,6 +95,8 @@ tests: lint: lint -DLINT $(INCLUDES) $(SRC)>fluff +update: depend + depend: @[ -n "$(MAKEDEPEND)" ] # should be set by upper Makefile... $(MAKEDEPEND) -- $(CFLAG) $(INCLUDES) $(DEPFLAG) -- $(PROGS) $(LIBSRC) diff --git a/openssl/crypto/modes/asm/ghashv8-armx.pl b/openssl/crypto/modes/asm/ghashv8-armx.pl index 54a1ac4db..0b9cd7359 100755 --- a/openssl/crypto/modes/asm/ghashv8-armx.pl +++ b/openssl/crypto/modes/asm/ghashv8-armx.pl @@ -16,12 +16,17 @@ # other assembly modules. Just like aesv8-armx.pl this module # supports both AArch32 and AArch64 execution modes. # +# July 2014 +# +# Implement 2x aggregated reduction [see ghash-x86.pl for background +# information]. +# # Current performance in cycles per processed byte: # # PMULL[2] 32-bit NEON(*) -# Apple A7 1.76 5.62 -# Cortex-A53 1.45 8.39 -# Cortex-A57 2.22 7.61 +# Apple A7 0.92 5.62 +# Cortex-A53 1.01 8.39 +# Cortex-A57 1.17 7.61 # # (*) presented for reference/comparison purposes; @@ -37,7 +42,7 @@ $inc="x12"; { my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); -my ($t0,$t1,$t2,$t3,$H,$Hhl)=map("q$_",(8..14)); +my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14)); $code=<<___; #include "arm_arch.h" @@ -47,114 +52,277 @@ ___ $code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/); $code.=".fpu neon\n.code 32\n" if ($flavour !~ /64/); +################################################################################ +# void gcm_init_v8(u128 Htable[16],const u64 H[2]); +# +# input: 128-bit H - secret parameter E(K,0^128) +# output: precomputed table filled with degrees of twisted H; +# H is twisted to handle reverse bitness of GHASH; +# only few of 16 slots of Htable[16] are used; +# data is opaque to outside world (which allows to +# optimize the code independently); +# $code.=<<___; .global gcm_init_v8 .type gcm_init_v8,%function .align 4 gcm_init_v8: - vld1.64 {$t1},[x1] @ load H - vmov.i8 $t0,#0xe1 + vld1.64 {$t1},[x1] @ load input H + vmov.i8 $xC2,#0xe1 + vshl.i64 $xC2,$xC2,#57 @ 0xc2.0 vext.8 $IN,$t1,$t1,#8 - vshl.i64 $t0,$t0,#57 - vshr.u64 $t2,$t0,#63 - vext.8 $t0,$t2,$t0,#8 @ t0=0xc2....01 + vshr.u64 $t2,$xC2,#63 vdup.32 $t1,${t1}[1] - vshr.u64 $t3,$IN,#63 + vext.8 $t0,$t2,$xC2,#8 @ t0=0xc2....01 + vshr.u64 $t2,$IN,#63 vshr.s32 $t1,$t1,#31 @ broadcast carry bit - vand $t3,$t3,$t0 + vand $t2,$t2,$t0 vshl.i64 $IN,$IN,#1 - vext.8 $t3,$t3,$t3,#8 + vext.8 $t2,$t2,$t2,#8 vand $t0,$t0,$t1 - vorr $IN,$IN,$t3 @ H<<<=1 - veor $IN,$IN,$t0 @ twisted H - vst1.64 {$IN},[x0] + vorr $IN,$IN,$t2 @ H<<<=1 + veor $H,$IN,$t0 @ twisted H + vst1.64 {$H},[x0],#16 @ store Htable[0] + + @ calculate H^2 + vext.8 $t0,$H,$H,#8 @ Karatsuba pre-processing + vpmull.p64 $Xl,$H,$H + veor $t0,$t0,$H + vpmull2.p64 $Xh,$H,$H + vpmull.p64 $Xm,$t0,$t0 + + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t1 + veor $Xm,$Xm,$t2 + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase + + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + veor $Xl,$Xm,$t2 + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase + vpmull.p64 $Xl,$Xl,$xC2 + veor $t2,$t2,$Xh + veor $H2,$Xl,$t2 + + vext.8 $t1,$H2,$H2,#8 @ Karatsuba pre-processing + veor $t1,$t1,$H2 + vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed + vst1.64 {$Hhl-$H2},[x0] @ store Htable[1..2] ret .size gcm_init_v8,.-gcm_init_v8 - +___ +################################################################################ +# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]); +# +# input: Xi - current hash value; +# Htable - table precomputed in gcm_init_v8; +# output: Xi - next hash value Xi; +# +$code.=<<___; .global gcm_gmult_v8 .type gcm_gmult_v8,%function .align 4 gcm_gmult_v8: vld1.64 {$t1},[$Xi] @ load Xi - vmov.i8 $t3,#0xe1 - vld1.64 {$H},[$Htbl] @ load twisted H - vshl.u64 $t3,$t3,#57 + vmov.i8 $xC2,#0xe1 + vld1.64 {$H-$Hhl},[$Htbl] @ load twisted H, ... + vshl.u64 $xC2,$xC2,#57 #ifndef __ARMEB__ vrev64.8 $t1,$t1 #endif - vext.8 $Hhl,$H,$H,#8 - mov $len,#0 vext.8 $IN,$t1,$t1,#8 - mov $inc,#0 - veor $Hhl,$Hhl,$H @ Karatsuba pre-processing - mov $inp,$Xi - b .Lgmult_v8 -.size gcm_gmult_v8,.-gcm_gmult_v8 + vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo + veor $t1,$t1,$IN @ Karatsuba pre-processing + vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi + vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi) + + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t1 + veor $Xm,$Xm,$t2 + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction + + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + veor $Xl,$Xm,$t2 + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction + vpmull.p64 $Xl,$Xl,$xC2 + veor $t2,$t2,$Xh + veor $Xl,$Xl,$t2 + +#ifndef __ARMEB__ + vrev64.8 $Xl,$Xl +#endif + vext.8 $Xl,$Xl,$Xl,#8 + vst1.64 {$Xl},[$Xi] @ write out Xi + + ret +.size gcm_gmult_v8,.-gcm_gmult_v8 +___ +################################################################################ +# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); +# +# input: table precomputed in gcm_init_v8; +# current hash value Xi; +# pointer to input data; +# length of input data in bytes, but divisible by block size; +# output: next hash value Xi; +# +$code.=<<___; .global gcm_ghash_v8 .type gcm_ghash_v8,%function .align 4 gcm_ghash_v8: +___ +$code.=<<___ if ($flavour !~ /64/); + vstmdb sp!,{d8-d15} @ 32-bit ABI says so +___ +$code.=<<___; vld1.64 {$Xl},[$Xi] @ load [rotated] Xi - subs $len,$len,#16 - vmov.i8 $t3,#0xe1 - mov $inc,#16 - vld1.64 {$H},[$Htbl] @ load twisted H - cclr $inc,eq - vext.8 $Xl,$Xl,$Xl,#8 - vshl.u64 $t3,$t3,#57 - vld1.64 {$t1},[$inp],$inc @ load [rotated] inp - vext.8 $Hhl,$H,$H,#8 + @ "[rotated]" means that + @ loaded value would have + @ to be rotated in order to + @ make it appear as in + @ alorithm specification + subs $len,$len,#32 @ see if $len is 32 or larger + mov $inc,#16 @ $inc is used as post- + @ increment for input pointer; + @ as loop is modulo-scheduled + @ $inc is zeroed just in time + @ to preclude oversteping + @ inp[len], which means that + @ last block[s] are actually + @ loaded twice, but last + @ copy is not processed + vld1.64 {$H-$Hhl},[$Htbl],#32 @ load twisted H, ..., H^2 + vmov.i8 $xC2,#0xe1 + vld1.64 {$H2},[$Htbl] + cclr $inc,eq @ is it time to zero $inc? + vext.8 $Xl,$Xl,$Xl,#8 @ rotate Xi + vld1.64 {$t0},[$inp],#16 @ load [rotated] I[0] + vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant #ifndef __ARMEB__ + vrev64.8 $t0,$t0 vrev64.8 $Xl,$Xl +#endif + vext.8 $IN,$t0,$t0,#8 @ rotate I[0] + b.lo .Lodd_tail_v8 @ $len was less than 32 +___ +{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7)); + ####### + # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = + # [(H*Ii+1) + (H*Xi+1)] mod P = + # [(H*Ii+1) + H^2*(Ii+Xi)] mod P + # +$code.=<<___; + vld1.64 {$t1},[$inp],$inc @ load [rotated] I[1] +#ifndef __ARMEB__ vrev64.8 $t1,$t1 #endif - veor $Hhl,$Hhl,$H @ Karatsuba pre-processing - vext.8 $IN,$t1,$t1,#8 - b .Loop_v8 + vext.8 $In,$t1,$t1,#8 + veor $IN,$IN,$Xl @ I[i]^=Xi + vpmull.p64 $Xln,$H,$In @ H·Ii+1 + veor $t1,$t1,$In @ Karatsuba pre-processing + vpmull2.p64 $Xhn,$H,$In + b .Loop_mod2x_v8 .align 4 -.Loop_v8: +.Loop_mod2x_v8: + vext.8 $t2,$IN,$IN,#8 + subs $len,$len,#32 @ is there more data? + vpmull.p64 $Xl,$H2,$IN @ H^2.lo·Xi.lo + cclr $inc,lo @ is it time to zero $inc? + + vpmull.p64 $Xmn,$Hhl,$t1 + veor $t2,$t2,$IN @ Karatsuba pre-processing + vpmull2.p64 $Xh,$H2,$IN @ H^2.hi·Xi.hi + veor $Xl,$Xl,$Xln @ accumulate + vpmull2.p64 $Xm,$Hhl,$t2 @ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi) + vld1.64 {$t0},[$inp],$inc @ load [rotated] I[i+2] + + veor $Xh,$Xh,$Xhn + cclr $inc,eq @ is it time to zero $inc? + veor $Xm,$Xm,$Xmn + + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t1 + vld1.64 {$t1},[$inp],$inc @ load [rotated] I[i+3] +#ifndef __ARMEB__ + vrev64.8 $t0,$t0 +#endif + veor $Xm,$Xm,$t2 + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction + +#ifndef __ARMEB__ + vrev64.8 $t1,$t1 +#endif + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + vext.8 $In,$t1,$t1,#8 + vext.8 $IN,$t0,$t0,#8 + veor $Xl,$Xm,$t2 + vpmull.p64 $Xln,$H,$In @ H·Ii+1 + veor $IN,$IN,$Xh @ accumulate $IN early + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction + vpmull.p64 $Xl,$Xl,$xC2 + veor $IN,$IN,$t2 + veor $t1,$t1,$In @ Karatsuba pre-processing + veor $IN,$IN,$Xl + vpmull2.p64 $Xhn,$H,$In + b.hs .Loop_mod2x_v8 @ there was at least 32 more bytes + + veor $Xh,$Xh,$t2 + vext.8 $IN,$t0,$t0,#8 @ re-construct $IN + adds $len,$len,#32 @ re-construct $len + veor $Xl,$Xl,$Xh @ re-construct $Xl + b.eq .Ldone_v8 @ is $len zero? +___ +} +$code.=<<___; +.Lodd_tail_v8: vext.8 $t2,$Xl,$Xl,#8 veor $IN,$IN,$Xl @ inp^=Xi - veor $t1,$t1,$t2 @ $t1 is rotated inp^Xi + veor $t1,$t0,$t2 @ $t1 is rotated inp^Xi -.Lgmult_v8: vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo veor $t1,$t1,$IN @ Karatsuba pre-processing vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi - subs $len,$len,#16 vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi) - cclr $inc,eq vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 - vld1.64 {$t1},[$inp],$inc @ load [rotated] inp veor $Xm,$Xm,$t2 - vpmull.p64 $t2,$Xl,$t3 @ 1st phase + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl -#ifndef __ARMEB__ - vrev64.8 $t1,$t1 -#endif veor $Xl,$Xm,$t2 - vext.8 $IN,$t1,$t1,#8 - vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase - vpmull.p64 $Xl,$Xl,$t3 + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction + vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $Xl,$Xl,$t2 - b.hs .Loop_v8 +.Ldone_v8: #ifndef __ARMEB__ vrev64.8 $Xl,$Xl #endif vext.8 $Xl,$Xl,$Xl,#8 vst1.64 {$Xl},[$Xi] @ write out Xi +___ +$code.=<<___ if ($flavour !~ /64/); + vldmia sp!,{d8-d15} @ 32-bit ABI says so +___ +$code.=<<___; ret .size gcm_ghash_v8,.-gcm_ghash_v8 ___ @@ -222,7 +390,7 @@ if ($flavour =~ /64/) { ######## 64-bit code foreach(split("\n",$code)) { s/\b[wx]([0-9]+)\b/r$1/go; # new->old registers s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go; # new->old registers - s/\/\/\s?/@ /o; # new->old style commentary + s/\/\/\s?/@ /o; # new->old style commentary # fix up remainig new-style suffixes s/\],#[0-9]+/]!/o; @@ -234,7 +402,7 @@ if ($flavour =~ /64/) { ######## 64-bit code s/^(\s+)b\./$1b/o or s/^(\s+)ret/$1bx\tlr/o; - print $_,"\n"; + print $_,"\n"; } } diff --git a/openssl/crypto/modes/gcm128.c b/openssl/crypto/modes/gcm128.c index 24a84a7ae..e299131c1 100644 --- a/openssl/crypto/modes/gcm128.c +++ b/openssl/crypto/modes/gcm128.c @@ -694,7 +694,7 @@ static void gcm_gmult_1bit(u64 Xi[2], const u64 H[2]) defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) # define GHASH_ASM_X86_OR_64 # define GCM_FUNCREF_4BIT -extern unsigned int OPENSSL_ia32cap_P[2]; +extern unsigned int OPENSSL_ia32cap_P[]; void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); @@ -1704,7 +1704,7 @@ int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, ctx->Xi.u[1] ^= ctx->EK0.u[1]; if (tag && len <= sizeof(ctx->Xi)) - return memcmp(ctx->Xi.c, tag, len); + return CRYPTO_memcmp(ctx->Xi.c, tag, len); else return -1; } diff --git a/openssl/crypto/modes/modes_lcl.h b/openssl/crypto/modes/modes_lcl.h index 900f54ca2..fe14ec700 100644 --- a/openssl/crypto/modes/modes_lcl.h +++ b/openssl/crypto/modes/modes_lcl.h @@ -38,36 +38,36 @@ typedef unsigned char u8; #if !defined(PEDANTIC) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) # if defined(__GNUC__) && __GNUC__>=2 # if defined(__x86_64) || defined(__x86_64__) -# define BSWAP8(x) ({ u64 ret=(x); \ +# define BSWAP8(x) ({ u64 ret_=(x); \ asm ("bswapq %0" \ - : "+r"(ret)); ret; }) -# define BSWAP4(x) ({ u32 ret=(x); \ + : "+r"(ret_)); ret_; }) +# define BSWAP4(x) ({ u32 ret_=(x); \ asm ("bswapl %0" \ - : "+r"(ret)); ret; }) + : "+r"(ret_)); ret_; }) # elif (defined(__i386) || defined(__i386__)) && !defined(I386_ONLY) -# define BSWAP8(x) ({ u32 lo=(u64)(x)>>32,hi=(x); \ +# define BSWAP8(x) ({ u32 lo_=(u64)(x)>>32,hi_=(x); \ asm ("bswapl %0; bswapl %1" \ - : "+r"(hi),"+r"(lo)); \ - (u64)hi<<32|lo; }) -# define BSWAP4(x) ({ u32 ret=(x); \ + : "+r"(hi_),"+r"(lo_)); \ + (u64)hi_<<32|lo_; }) +# define BSWAP4(x) ({ u32 ret_=(x); \ asm ("bswapl %0" \ - : "+r"(ret)); ret; }) + : "+r"(ret_)); ret_; }) # elif defined(__aarch64__) -# define BSWAP8(x) ({ u64 ret; \ +# define BSWAP8(x) ({ u64 ret_; \ asm ("rev %0,%1" \ - : "=r"(ret) : "r"(x)); ret; }) -# define BSWAP4(x) ({ u32 ret; \ + : "=r"(ret_) : "r"(x)); ret_; }) +# define BSWAP4(x) ({ u32 ret_; \ asm ("rev %w0,%w1" \ - : "=r"(ret) : "r"(x)); ret; }) + : "=r"(ret_) : "r"(x)); ret_; }) # elif (defined(__arm__) || defined(__arm)) && !defined(STRICT_ALIGNMENT) -# define BSWAP8(x) ({ u32 lo=(u64)(x)>>32,hi=(x); \ +# define BSWAP8(x) ({ u32 lo_=(u64)(x)>>32,hi_=(x); \ asm ("rev %0,%0; rev %1,%1" \ - : "+r"(hi),"+r"(lo)); \ - (u64)hi<<32|lo; }) -# define BSWAP4(x) ({ u32 ret; \ + : "+r"(hi_),"+r"(lo_)); \ + (u64)hi_<<32|lo_; }) +# define BSWAP4(x) ({ u32 ret_; \ asm ("rev %0,%1" \ - : "=r"(ret) : "r"((u32)(x))); \ - ret; }) + : "=r"(ret_) : "r"((u32)(x))); \ + ret_; }) # endif # elif defined(_MSC_VER) # if _MSC_VER>=1300 |