aboutsummaryrefslogtreecommitdiff
path: root/openssl/crypto/rc4/asm
diff options
context:
space:
mode:
Diffstat (limited to 'openssl/crypto/rc4/asm')
-rw-r--r--openssl/crypto/rc4/asm/rc4-586.pl230
-rw-r--r--openssl/crypto/rc4/asm/rc4-ia64.S159
-rw-r--r--openssl/crypto/rc4/asm/rc4-x86_64.pl366
3 files changed, 755 insertions, 0 deletions
diff --git a/openssl/crypto/rc4/asm/rc4-586.pl b/openssl/crypto/rc4/asm/rc4-586.pl
new file mode 100644
index 000000000..ef7eee766
--- /dev/null
+++ b/openssl/crypto/rc4/asm/rc4-586.pl
@@ -0,0 +1,230 @@
+#!/usr/local/bin/perl
+
+# At some point it became apparent that the original SSLeay RC4
+# assembler implementation performs suboptimaly on latest IA-32
+# microarchitectures. After re-tuning performance has changed as
+# following:
+#
+# Pentium +0%
+# Pentium III +17%
+# AMD +52%(*)
+# P4 +180%(**)
+#
+# (*) This number is actually a trade-off:-) It's possible to
+# achieve +72%, but at the cost of -48% off PIII performance.
+# In other words code performing further 13% faster on AMD
+# would perform almost 2 times slower on Intel PIII...
+# For reference! This code delivers ~80% of rc4-amd64.pl
+# performance on the same Opteron machine.
+# (**) This number requires compressed key schedule set up by
+# RC4_set_key and therefore doesn't apply to 0.9.7 [option for
+# compressed key schedule is implemented in 0.9.8 and later,
+# see commentary section in rc4_skey.c for further details].
+#
+# <appro@fy.chalmers.se>
+
+push(@INC,"perlasm","../../perlasm");
+require "x86asm.pl";
+
+&asm_init($ARGV[0],"rc4-586.pl");
+
+$x="eax";
+$y="ebx";
+$tx="ecx";
+$ty="edx";
+$in="esi";
+$out="edi";
+$d="ebp";
+
+&RC4("RC4");
+
+&asm_finish();
+
+sub RC4_loop
+ {
+ local($n,$p,$char)=@_;
+
+ &comment("Round $n");
+
+ if ($char)
+ {
+ if ($p >= 0)
+ {
+ &mov($ty, &swtmp(2));
+ &cmp($ty, $in);
+ &jbe(&label("finished"));
+ &inc($in);
+ }
+ else
+ {
+ &add($ty, 8);
+ &inc($in);
+ &cmp($ty, $in);
+ &jb(&label("finished"));
+ &mov(&swtmp(2), $ty);
+ }
+ }
+ # Moved out
+ # &mov( $tx, &DWP(0,$d,$x,4)) if $p < 0;
+
+ &add( &LB($y), &LB($tx));
+ &mov( $ty, &DWP(0,$d,$y,4));
+ # XXX
+ &mov( &DWP(0,$d,$x,4),$ty);
+ &add( $ty, $tx);
+ &mov( &DWP(0,$d,$y,4),$tx);
+ &and( $ty, 0xff);
+ &inc( &LB($x)); # NEXT ROUND
+ &mov( $tx, &DWP(0,$d,$x,4)) if $p < 1; # NEXT ROUND
+ &mov( $ty, &DWP(0,$d,$ty,4));
+
+ if (!$char)
+ {
+ #moved up into last round
+ if ($p >= 1)
+ {
+ &add( $out, 8)
+ }
+ &movb( &BP($n,"esp","",0), &LB($ty));
+ }
+ else
+ {
+ # Note in+=8 has occured
+ &movb( &HB($ty), &BP(-1,$in,"",0));
+ # XXX
+ &xorb(&LB($ty), &HB($ty));
+ # XXX
+ &movb(&BP($n,$out,"",0),&LB($ty));
+ }
+ }
+
+
+sub RC4
+ {
+ local($name)=@_;
+
+ &function_begin_B($name,"");
+
+ &mov($ty,&wparam(1)); # len
+ &cmp($ty,0);
+ &jne(&label("proceed"));
+ &ret();
+ &set_label("proceed");
+
+ &comment("");
+
+ &push("ebp");
+ &push("ebx");
+ &push("esi");
+ &xor( $x, $x); # avoid partial register stalls
+ &push("edi");
+ &xor( $y, $y); # avoid partial register stalls
+ &mov( $d, &wparam(0)); # key
+ &mov( $in, &wparam(2));
+
+ &movb( &LB($x), &BP(0,$d,"",1));
+ &movb( &LB($y), &BP(4,$d,"",1));
+
+ &mov( $out, &wparam(3));
+ &inc( &LB($x));
+
+ &stack_push(3); # 3 temp variables
+ &add( $d, 8);
+
+ # detect compressed schedule, see commentary section in rc4_skey.c...
+ # in 0.9.7 context ~50 bytes below RC4_CHAR label remain redundant,
+ # as compressed key schedule is set up in 0.9.8 and later.
+ &cmp(&DWP(256,$d),-1);
+ &je(&label("RC4_CHAR"));
+
+ &lea( $ty, &DWP(-8,$ty,$in));
+
+ # check for 0 length input
+
+ &mov( &swtmp(2), $ty); # this is now address to exit at
+ &mov( $tx, &DWP(0,$d,$x,4));
+
+ &cmp( $ty, $in);
+ &jb( &label("end")); # less than 8 bytes
+
+ &set_label("start");
+
+ # filling DELAY SLOT
+ &add( $in, 8);
+
+ &RC4_loop(0,-1,0);
+ &RC4_loop(1,0,0);
+ &RC4_loop(2,0,0);
+ &RC4_loop(3,0,0);
+ &RC4_loop(4,0,0);
+ &RC4_loop(5,0,0);
+ &RC4_loop(6,0,0);
+ &RC4_loop(7,1,0);
+
+ &comment("apply the cipher text");
+ # xor the cipher data with input
+
+ #&add( $out, 8); #moved up into last round
+
+ &mov( $tx, &swtmp(0));
+ &mov( $ty, &DWP(-8,$in,"",0));
+ &xor( $tx, $ty);
+ &mov( $ty, &DWP(-4,$in,"",0));
+ &mov( &DWP(-8,$out,"",0), $tx);
+ &mov( $tx, &swtmp(1));
+ &xor( $tx, $ty);
+ &mov( $ty, &swtmp(2)); # load end ptr;
+ &mov( &DWP(-4,$out,"",0), $tx);
+ &mov( $tx, &DWP(0,$d,$x,4));
+ &cmp($in, $ty);
+ &jbe(&label("start"));
+
+ &set_label("end");
+
+ # There is quite a bit of extra crap in RC4_loop() for this
+ # first round
+ &RC4_loop(0,-1,1);
+ &RC4_loop(1,0,1);
+ &RC4_loop(2,0,1);
+ &RC4_loop(3,0,1);
+ &RC4_loop(4,0,1);
+ &RC4_loop(5,0,1);
+ &RC4_loop(6,1,1);
+
+ &jmp(&label("finished"));
+
+ &align(16);
+ # this is essentially Intel P4 specific codepath, see rc4_skey.c,
+ # and is engaged in 0.9.8 and later context...
+ &set_label("RC4_CHAR");
+
+ &lea ($ty,&DWP(0,$in,$ty));
+ &mov (&swtmp(2),$ty);
+ &movz ($tx,&BP(0,$d,$x));
+
+ # strangely enough unrolled loop performs over 20% slower...
+ &set_label("RC4_CHAR_loop");
+ &add (&LB($y),&LB($tx));
+ &movz ($ty,&BP(0,$d,$y));
+ &movb (&BP(0,$d,$y),&LB($tx));
+ &movb (&BP(0,$d,$x),&LB($ty));
+ &add (&LB($ty),&LB($tx));
+ &movz ($ty,&BP(0,$d,$ty));
+ &add (&LB($x),1);
+ &xorb (&LB($ty),&BP(0,$in));
+ &lea ($in,&DWP(1,$in));
+ &movz ($tx,&BP(0,$d,$x));
+ &cmp ($in,&swtmp(2));
+ &movb (&BP(0,$out),&LB($ty));
+ &lea ($out,&DWP(1,$out));
+ &jb (&label("RC4_CHAR_loop"));
+
+ &set_label("finished");
+ &dec( $x);
+ &stack_pop(3);
+ &movb( &BP(-4,$d,"",0),&LB($y));
+ &movb( &BP(-8,$d,"",0),&LB($x));
+
+ &function_end($name);
+ }
+
diff --git a/openssl/crypto/rc4/asm/rc4-ia64.S b/openssl/crypto/rc4/asm/rc4-ia64.S
new file mode 100644
index 000000000..8210c47d0
--- /dev/null
+++ b/openssl/crypto/rc4/asm/rc4-ia64.S
@@ -0,0 +1,159 @@
+// ====================================================================
+// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
+// project.
+//
+// Rights for redistribution and usage in source and binary forms are
+// granted according to the OpenSSL license. Warranty of any kind is
+// disclaimed.
+// ====================================================================
+
+.ident "rc4-ia64.S, Version 2.0"
+.ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
+
+// What's wrong with compiler generated code? Because of the nature of
+// C language, compiler doesn't [dare to] reorder load and stores. But
+// being memory-bound, RC4 should benefit from reorder [on in-order-
+// execution core such as IA-64]. But what can we reorder? At the very
+// least we can safely reorder references to key schedule in respect
+// to input and output streams. Secondly, from the first [close] glance
+// it appeared that it's possible to pull up some references to
+// elements of the key schedule itself. Original rationale ["prior
+// loads are not safe only for "degenerated" key schedule, when some
+// elements equal to the same value"] was kind of sloppy. I should have
+// formulated as it really was: if we assume that pulling up reference
+// to key[x+1] is not safe, then it would mean that key schedule would
+// "degenerate," which is never the case. The problem is that this
+// holds true in respect to references to key[x], but not to key[y].
+// Legitimate "collisions" do occur within every 256^2 bytes window.
+// Fortunately there're enough free instruction slots to keep prior
+// reference to key[x+1], detect "collision" and compensate for it.
+// All this without sacrificing a single clock cycle:-) Throughput is
+// ~210MBps on 900MHz CPU, which is is >3x faster than gcc generated
+// code and +30% - if compared to HP-UX C. Unrolling loop below should
+// give >30% on top of that...
+
+.text
+.explicit
+
+#if defined(_HPUX_SOURCE) && !defined(_LP64)
+# define ADDP addp4
+#else
+# define ADDP add
+#endif
+
+#ifndef SZ
+#define SZ 4 // this is set to sizeof(RC4_INT)
+#endif
+// SZ==4 seems to be optimal. At least SZ==8 is not any faster, not for
+// assembler implementation, while SZ==1 code is ~30% slower.
+#if SZ==1 // RC4_INT is unsigned char
+# define LDKEY ld1
+# define STKEY st1
+# define OFF 0
+#elif SZ==4 // RC4_INT is unsigned int
+# define LDKEY ld4
+# define STKEY st4
+# define OFF 2
+#elif SZ==8 // RC4_INT is unsigned long
+# define LDKEY ld8
+# define STKEY st8
+# define OFF 3
+#endif
+
+out=r8; // [expanded] output pointer
+inp=r9; // [expanded] output pointer
+prsave=r10;
+key=r28; // [expanded] pointer to RC4_KEY
+ksch=r29; // (key->data+255)[&~(sizeof(key->data)-1)]
+xx=r30;
+yy=r31;
+
+// void RC4(RC4_KEY *key,size_t len,const void *inp,void *out);
+.global RC4#
+.proc RC4#
+.align 32
+.skip 16
+RC4:
+ .prologue
+ .save ar.pfs,r2
+{ .mii; alloc r2=ar.pfs,4,12,0,16
+ .save pr,prsave
+ mov prsave=pr
+ ADDP key=0,in0 };;
+{ .mib; cmp.eq p6,p0=0,in1 // len==0?
+ .save ar.lc,r3
+ mov r3=ar.lc
+(p6) br.ret.spnt.many b0 };; // emergency exit
+
+ .body
+ .rotr dat[4],key_x[4],tx[2],rnd[2],key_y[2],ty[1];
+
+{ .mib; LDKEY xx=[key],SZ // load key->x
+ add in1=-1,in1 // adjust len for loop counter
+ nop.b 0 }
+{ .mib; ADDP inp=0,in2
+ ADDP out=0,in3
+ brp.loop.imp .Ltop,.Lexit-16 };;
+{ .mmi; LDKEY yy=[key] // load key->y
+ add ksch=SZ,key
+ mov ar.lc=in1 }
+{ .mmi; mov key_y[1]=r0 // guarantee inequality
+ // in first iteration
+ add xx=1,xx
+ mov pr.rot=1<<16 };;
+{ .mii; nop.m 0
+ dep key_x[1]=xx,r0,OFF,8
+ mov ar.ec=3 };; // note that epilogue counter
+ // is off by 1. I compensate
+ // for this at exit...
+.Ltop:
+// The loop is scheduled for 4*(n+2) spin-rate on Itanium 2, which
+// theoretically gives asymptotic performance of clock frequency
+// divided by 4 bytes per seconds, or 400MBps on 1.6GHz CPU. This is
+// for sizeof(RC4_INT)==4. For smaller RC4_INT STKEY inadvertently
+// splits the last bundle and you end up with 5*n spin-rate:-(
+// Originally the loop was scheduled for 3*n and relied on key
+// schedule to be aligned at 256*sizeof(RC4_INT) boundary. But
+// *(out++)=dat, which maps to st1, had same effect [inadvertent
+// bundle split] and holded the loop back. Rescheduling for 4*n
+// made it possible to eliminate dependence on specific alignment
+// and allow OpenSSH keep "abusing" our API. Reaching for 3*n would
+// require unrolling, sticking to variable shift instruction for
+// collecting output [to avoid starvation for integer shifter] and
+// copying of key schedule to controlled place in stack [so that
+// deposit instruction can serve as substitute for whole
+// key->data+((x&255)<<log2(sizeof(key->data[0])))]...
+{ .mmi; (p19) st1 [out]=dat[3],1 // *(out++)=dat
+ (p16) add xx=1,xx // x++
+ (p18) dep rnd[1]=rnd[1],r0,OFF,8 } // ((tx+ty)&255)<<OFF
+{ .mmi; (p16) add key_x[1]=ksch,key_x[1] // &key[xx&255]
+ (p17) add key_y[1]=ksch,key_y[1] };; // &key[yy&255]
+{ .mmi; (p16) LDKEY tx[0]=[key_x[1]] // tx=key[xx]
+ (p17) LDKEY ty[0]=[key_y[1]] // ty=key[yy]
+ (p16) dep key_x[0]=xx,r0,OFF,8 } // (xx&255)<<OFF
+{ .mmi; (p18) add rnd[1]=ksch,rnd[1] // &key[(tx+ty)&255]
+ (p16) cmp.ne.unc p20,p21=key_x[1],key_y[1] };;
+{ .mmi; (p18) LDKEY rnd[1]=[rnd[1]] // rnd=key[(tx+ty)&255]
+ (p16) ld1 dat[0]=[inp],1 } // dat=*(inp++)
+.pred.rel "mutex",p20,p21
+{ .mmi; (p21) add yy=yy,tx[1] // (p16)
+ (p20) add yy=yy,tx[0] // (p16) y+=tx
+ (p21) mov tx[0]=tx[1] };; // (p16)
+{ .mmi; (p17) STKEY [key_y[1]]=tx[1] // key[yy]=tx
+ (p17) STKEY [key_x[2]]=ty[0] // key[xx]=ty
+ (p16) dep key_y[0]=yy,r0,OFF,8 } // &key[yy&255]
+{ .mmb; (p17) add rnd[0]=tx[1],ty[0] // tx+=ty
+ (p18) xor dat[2]=dat[2],rnd[1] // dat^=rnd
+ br.ctop.sptk .Ltop };;
+.Lexit:
+{ .mib; STKEY [key]=yy,-SZ // save key->y
+ mov pr=prsave,0x1ffff
+ nop.b 0 }
+{ .mib; st1 [out]=dat[3],1 // compensate for truncated
+ // epilogue counter
+ add xx=-1,xx
+ nop.b 0 };;
+{ .mib; STKEY [key]=xx // save key->x
+ mov ar.lc=r3
+ br.ret.sptk.many b0 };;
+.endp RC4#
diff --git a/openssl/crypto/rc4/asm/rc4-x86_64.pl b/openssl/crypto/rc4/asm/rc4-x86_64.pl
new file mode 100644
index 000000000..00c6fa28a
--- /dev/null
+++ b/openssl/crypto/rc4/asm/rc4-x86_64.pl
@@ -0,0 +1,366 @@
+#!/usr/bin/env perl
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
+# "hand-coded assembler"] doesn't stand for the whole improvement
+# coefficient. It turned out that eliminating RC4_CHAR from config
+# line results in ~40% improvement (yes, even for C implementation).
+# Presumably it has everything to do with AMD cache architecture and
+# RAW or whatever penalties. Once again! The module *requires* config
+# line *without* RC4_CHAR! As for coding "secret," I bet on partial
+# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
+# I simply 'inc %r8b'. Even though optimization manual discourages
+# to operate on partial registers, it turned out to be the best bet.
+# At least for AMD... How IA32E would perform remains to be seen...
+
+# As was shown by Marc Bevand reordering of couple of load operations
+# results in even higher performance gain of 3.3x:-) At least on
+# Opteron... For reference, 1x in this case is RC4_CHAR C-code
+# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
+# Latter means that if you want to *estimate* what to expect from
+# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
+
+# Intel P4 EM64T core was found to run the AMD64 code really slow...
+# The only way to achieve comparable performance on P4 was to keep
+# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
+# compose blended code, which would perform even within 30% marginal
+# on either AMD and Intel platforms, I implement both cases. See
+# rc4_skey.c for further details...
+
+# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
+# those with add/sub results in 50% performance improvement of folded
+# loop...
+
+# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
+# performance by >30% [unlike P4 32-bit case that is]. But this is
+# provided that loads are reordered even more aggressively! Both code
+# pathes, AMD64 and EM64T, reorder loads in essentially same manner
+# as my IA-64 implementation. On Opteron this resulted in modest 5%
+# improvement [I had to test it], while final Intel P4 performance
+# achieves respectful 432MBps on 2.8GHz processor now. For reference.
+# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
+# RC4_INT code-path. While if executed on Opteron, it's only 25%
+# slower than the RC4_INT one [meaning that if CPU µ-arch detection
+# is not implemented, then this final RC4_CHAR code-path should be
+# preferred, as it provides better *all-round* performance].
+
+# Intel Core2 was observed to perform poorly on both code paths:-( It
+# apparently suffers from some kind of partial register stall, which
+# occurs in 64-bit mode only [as virtually identical 32-bit loop was
+# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
+# cloop1 boosts its performance by 80%! This loop appears to be optimal
+# fit for Core2 and therefore the code was modified to skip cloop8 on
+# this CPU.
+
+$output=shift;
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
+die "can't locate x86_64-xlate.pl";
+
+open STDOUT,"| $^X $xlate $output";
+
+$dat="%rdi"; # arg1
+$len="%rsi"; # arg2
+$inp="%rdx"; # arg3
+$out="%rcx"; # arg4
+
+@XX=("%r8","%r10");
+@TX=("%r9","%r11");
+$YY="%r12";
+$TY="%r13";
+
+$code=<<___;
+.text
+
+.globl RC4
+.type RC4,\@function,4
+.align 16
+RC4: or $len,$len
+ jne .Lentry
+ ret
+.Lentry:
+ push %r12
+ push %r13
+
+ add \$8,$dat
+ movl -8($dat),$XX[0]#d
+ movl -4($dat),$YY#d
+ cmpl \$-1,256($dat)
+ je .LRC4_CHAR
+ inc $XX[0]#b
+ movl ($dat,$XX[0],4),$TX[0]#d
+ test \$-8,$len
+ jz .Lloop1
+ jmp .Lloop8
+.align 16
+.Lloop8:
+___
+for ($i=0;$i<8;$i++) {
+$code.=<<___;
+ add $TX[0]#b,$YY#b
+ mov $XX[0],$XX[1]
+ movl ($dat,$YY,4),$TY#d
+ ror \$8,%rax # ror is redundant when $i=0
+ inc $XX[1]#b
+ movl ($dat,$XX[1],4),$TX[1]#d
+ cmp $XX[1],$YY
+ movl $TX[0]#d,($dat,$YY,4)
+ cmove $TX[0],$TX[1]
+ movl $TY#d,($dat,$XX[0],4)
+ add $TX[0]#b,$TY#b
+ movb ($dat,$TY,4),%al
+___
+push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
+}
+$code.=<<___;
+ ror \$8,%rax
+ sub \$8,$len
+
+ xor ($inp),%rax
+ add \$8,$inp
+ mov %rax,($out)
+ add \$8,$out
+
+ test \$-8,$len
+ jnz .Lloop8
+ cmp \$0,$len
+ jne .Lloop1
+___
+$code.=<<___;
+.Lexit:
+ sub \$1,$XX[0]#b
+ movl $XX[0]#d,-8($dat)
+ movl $YY#d,-4($dat)
+
+ pop %r13
+ pop %r12
+ ret
+.align 16
+.Lloop1:
+ add $TX[0]#b,$YY#b
+ movl ($dat,$YY,4),$TY#d
+ movl $TX[0]#d,($dat,$YY,4)
+ movl $TY#d,($dat,$XX[0],4)
+ add $TY#b,$TX[0]#b
+ inc $XX[0]#b
+ movl ($dat,$TX[0],4),$TY#d
+ movl ($dat,$XX[0],4),$TX[0]#d
+ xorb ($inp),$TY#b
+ inc $inp
+ movb $TY#b,($out)
+ inc $out
+ dec $len
+ jnz .Lloop1
+ jmp .Lexit
+
+.align 16
+.LRC4_CHAR:
+ add \$1,$XX[0]#b
+ movzb ($dat,$XX[0]),$TX[0]#d
+ test \$-8,$len
+ jz .Lcloop1
+ cmp \$0,260($dat)
+ jnz .Lcloop1
+ push %rbx
+ jmp .Lcloop8
+.align 16
+.Lcloop8:
+ mov ($inp),%eax
+ mov 4($inp),%ebx
+___
+# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
+for ($i=0;$i<4;$i++) {
+$code.=<<___;
+ add $TX[0]#b,$YY#b
+ lea 1($XX[0]),$XX[1]
+ movzb ($dat,$YY),$TY#d
+ movzb $XX[1]#b,$XX[1]#d
+ movzb ($dat,$XX[1]),$TX[1]#d
+ movb $TX[0]#b,($dat,$YY)
+ cmp $XX[1],$YY
+ movb $TY#b,($dat,$XX[0])
+ jne .Lcmov$i # Intel cmov is sloooow...
+ mov $TX[0],$TX[1]
+.Lcmov$i:
+ add $TX[0]#b,$TY#b
+ xor ($dat,$TY),%al
+ ror \$8,%eax
+___
+push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
+}
+for ($i=4;$i<8;$i++) {
+$code.=<<___;
+ add $TX[0]#b,$YY#b
+ lea 1($XX[0]),$XX[1]
+ movzb ($dat,$YY),$TY#d
+ movzb $XX[1]#b,$XX[1]#d
+ movzb ($dat,$XX[1]),$TX[1]#d
+ movb $TX[0]#b,($dat,$YY)
+ cmp $XX[1],$YY
+ movb $TY#b,($dat,$XX[0])
+ jne .Lcmov$i # Intel cmov is sloooow...
+ mov $TX[0],$TX[1]
+.Lcmov$i:
+ add $TX[0]#b,$TY#b
+ xor ($dat,$TY),%bl
+ ror \$8,%ebx
+___
+push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
+}
+$code.=<<___;
+ lea -8($len),$len
+ mov %eax,($out)
+ lea 8($inp),$inp
+ mov %ebx,4($out)
+ lea 8($out),$out
+
+ test \$-8,$len
+ jnz .Lcloop8
+ pop %rbx
+ cmp \$0,$len
+ jne .Lcloop1
+ jmp .Lexit
+___
+$code.=<<___;
+.align 16
+.Lcloop1:
+ add $TX[0]#b,$YY#b
+ movzb ($dat,$YY),$TY#d
+ movb $TX[0]#b,($dat,$YY)
+ movb $TY#b,($dat,$XX[0])
+ add $TX[0]#b,$TY#b
+ add \$1,$XX[0]#b
+ movzb $TY#b,$TY#d
+ movzb $XX[0]#b,$XX[0]#d
+ movzb ($dat,$TY),$TY#d
+ movzb ($dat,$XX[0]),$TX[0]#d
+ xorb ($inp),$TY#b
+ lea 1($inp),$inp
+ movb $TY#b,($out)
+ lea 1($out),$out
+ sub \$1,$len
+ jnz .Lcloop1
+ jmp .Lexit
+.size RC4,.-RC4
+___
+
+$idx="%r8";
+$ido="%r9";
+
+$code.=<<___;
+.extern OPENSSL_ia32cap_P
+.globl RC4_set_key
+.type RC4_set_key,\@function,3
+.align 16
+RC4_set_key:
+ lea 8($dat),$dat
+ lea ($inp,$len),$inp
+ neg $len
+ mov $len,%rcx
+ xor %eax,%eax
+ xor $ido,$ido
+ xor %r10,%r10
+ xor %r11,%r11
+
+ mov OPENSSL_ia32cap_P(%rip),$idx#d
+ bt \$20,$idx#d
+ jnc .Lw1stloop
+ bt \$30,$idx#d
+ setc $ido#b
+ mov $ido#d,260($dat)
+ jmp .Lc1stloop
+
+.align 16
+.Lw1stloop:
+ mov %eax,($dat,%rax,4)
+ add \$1,%al
+ jnc .Lw1stloop
+
+ xor $ido,$ido
+ xor $idx,$idx
+.align 16
+.Lw2ndloop:
+ mov ($dat,$ido,4),%r10d
+ add ($inp,$len,1),$idx#b
+ add %r10b,$idx#b
+ add \$1,$len
+ mov ($dat,$idx,4),%r11d
+ cmovz %rcx,$len
+ mov %r10d,($dat,$idx,4)
+ mov %r11d,($dat,$ido,4)
+ add \$1,$ido#b
+ jnc .Lw2ndloop
+ jmp .Lexit_key
+
+.align 16
+.Lc1stloop:
+ mov %al,($dat,%rax)
+ add \$1,%al
+ jnc .Lc1stloop
+
+ xor $ido,$ido
+ xor $idx,$idx
+.align 16
+.Lc2ndloop:
+ mov ($dat,$ido),%r10b
+ add ($inp,$len),$idx#b
+ add %r10b,$idx#b
+ add \$1,$len
+ mov ($dat,$idx),%r11b
+ jnz .Lcnowrap
+ mov %rcx,$len
+.Lcnowrap:
+ mov %r10b,($dat,$idx)
+ mov %r11b,($dat,$ido)
+ add \$1,$ido#b
+ jnc .Lc2ndloop
+ movl \$-1,256($dat)
+
+.align 16
+.Lexit_key:
+ xor %eax,%eax
+ mov %eax,-8($dat)
+ mov %eax,-4($dat)
+ ret
+.size RC4_set_key,.-RC4_set_key
+
+.globl RC4_options
+.type RC4_options,\@function,0
+.align 16
+RC4_options:
+ .picmeup %rax
+ lea .Lopts-.(%rax),%rax
+ mov OPENSSL_ia32cap_P(%rip),%edx
+ bt \$20,%edx
+ jnc .Ldone
+ add \$12,%rax
+ bt \$30,%edx
+ jnc .Ldone
+ add \$13,%rax
+.Ldone:
+ ret
+.align 64
+.Lopts:
+.asciz "rc4(8x,int)"
+.asciz "rc4(8x,char)"
+.asciz "rc4(1x,char)"
+.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
+.align 64
+.size RC4_options,.-RC4_options
+___
+
+$code =~ s/#([bwd])/$1/gm;
+
+$code =~ s/RC4_set_key/private_RC4_set_key/g if ($ENV{FIPSCANLIB} ne "");
+
+print $code;
+
+close STDOUT;