aboutsummaryrefslogtreecommitdiff
path: root/openssl/demos/tunala/README
diff options
context:
space:
mode:
Diffstat (limited to 'openssl/demos/tunala/README')
-rw-r--r--openssl/demos/tunala/README233
1 files changed, 233 insertions, 0 deletions
diff --git a/openssl/demos/tunala/README b/openssl/demos/tunala/README
new file mode 100644
index 000000000..15690088f
--- /dev/null
+++ b/openssl/demos/tunala/README
@@ -0,0 +1,233 @@
+This is intended to be an example of a state-machine driven SSL application. It
+acts as an SSL tunneler (functioning as either the server or client half,
+depending on command-line arguments). *PLEASE* read the comments in tunala.h
+before you treat this stuff as anything more than a curiosity - YOU HAVE BEEN
+WARNED!! There, that's the draconian bit out of the way ...
+
+
+Why "tunala"??
+--------------
+
+I thought I asked you to read tunala.h?? :-)
+
+
+Show me
+-------
+
+If you want to simply see it running, skip to the end and see some example
+command-line arguments to demonstrate with.
+
+
+Where to look and what to do?
+-----------------------------
+
+The code is split up roughly coinciding with the detaching of an "abstract" SSL
+state machine (which is the purpose of all this) and its surrounding application
+specifics. This is primarily to make it possible for me to know when I could cut
+corners and when I needed to be rigorous (or at least maintain the pretense as
+such :-).
+
+Network stuff:
+
+Basically, the network part of all this is what is supposed to be abstracted out
+of the way. The intention is to illustrate one way to stick OpenSSL's mechanisms
+inside a little memory-driven sandbox and operate it like a pure state-machine.
+So, the network code is inside both ip.c (general utility functions and gory
+IPv4 details) and tunala.c itself, which takes care of application specifics
+like the main select() loop. The connectivity between the specifics of this
+application (TCP/IP tunneling and the associated network code) and the
+underlying abstract SSL state machine stuff is through the use of the "buffer_t"
+type, declared in tunala.h and implemented in buffer.c.
+
+State machine:
+
+Which leaves us, generally speaking, with the abstract "state machine" code left
+over and this is sitting inside sm.c, with declarations inside tunala.h. As can
+be seen by the definition of the state_machine_t structure and the associated
+functions to manipulate it, there are the 3 OpenSSL "handles" plus 4 buffer_t
+structures dealing with IO on both the encrypted and unencrypted sides ("dirty"
+and "clean" respectively). The "SSL" handle is what facilitates the reading and
+writing of the unencrypted (tunneled) data. The two "BIO" handles act as the
+read and write channels for encrypted tunnel traffic - in other applications
+these are often socket BIOs so that the OpenSSL framework operates with the
+network layer directly. In this example, those two BIOs are memory BIOs
+(BIO_s_mem()) so that the sending and receiving of the tunnel traffic stays
+within the state-machine, and we can handle where this gets send to (or read
+from) ourselves.
+
+
+Why?
+----
+
+If you take a look at the "state_machine_t" section of tunala.h and the code in
+sm.c, you will notice that nothing related to the concept of 'transport' is
+involved. The binding to TCP/IP networking occurs in tunala.c, specifically
+within the "tunala_item_t" structure that associates a state_machine_t object
+with 4 file-descriptors. The way to best see where the bridge between the
+outside world (TCP/IP reads, writes, select()s, file-descriptors, etc) and the
+state machine is, is to examine the "tunala_item_io()" function in tunala.c.
+This is currently around lines 641-732 but of course could be subject to change.
+
+
+And...?
+-------
+
+Well, although that function is around 90 lines of code, it could easily have
+been a lot less only I was trying to address an easily missed "gotcha" (item (2)
+below). The main() code that drives the select/accept/IO loop initialises new
+tunala_item_t structures when connections arrive, and works out which
+file-descriptors go where depending on whether we're an SSL client or server
+(client --> accepted connection is clean and proxied is dirty, server -->
+accepted connection is dirty and proxied is clean). What that tunala_item_io()
+function is attempting to do is 2 things;
+
+ (1) Perform all reads and writes on the network directly into the
+ state_machine_t's buffers (based on a previous select() result), and only
+ then allow the abstact state_machine_t to "churn()" using those buffers.
+ This will cause the SSL machine to consume as much input data from the two
+ "IN" buffers as possible, and generate as much output data into the two
+ "OUT" buffers as possible. Back up in the main() function, the next main
+ loop loop will examine these output buffers and select() for writability
+ on the corresponding sockets if the buffers are non-empty.
+
+ (2) Handle the complicated tunneling-specific issue of cascading "close"s.
+ This is the reason for most of the complexity in the logic - if one side
+ of the tunnel is closed, you can't simply close the other side and throw
+ away the whole thing - (a) there may still be outgoing data on the other
+ side of the tunnel that hasn't been sent yet, (b) the close (or things
+ happening during the close) may cause more data to be generated that needs
+ sending on the other side. Of course, this logic is complicated yet futher
+ by the fact that it's different depending on which side closes first :-)
+ state_machine_close_clean() will indicate to the state machine that the
+ unencrypted side of the tunnel has closed, so any existing outgoing data
+ needs to be flushed, and the SSL stream needs to be closed down using the
+ appropriate shutdown sequence. state_machine_close_dirty() is simpler
+ because it indicates that the SSL stream has been disconnected, so all
+ that remains before closing the other side is to flush out anything that
+ remains and wait for it to all be sent.
+
+Anyway, with those things in mind, the code should be a little easier to follow
+in terms of "what is *this* bit supposed to achieve??!!".
+
+
+How might this help?
+--------------------
+
+Well, the reason I wrote this is that there seemed to be rather a flood of
+questions of late on the openssl-dev and openssl-users lists about getting this
+whole IO logic thing sorted out, particularly by those who were trying to either
+use non-blocking IO, or wanted SSL in an environment where "something else" was
+handling the network already and they needed to operate in memory only. This
+code is loosely based on some other stuff I've been working on, although that
+stuff is far more complete, far more dependant on a whole slew of other
+network/framework code I don't want to incorporate here, and far harder to look
+at for 5 minutes and follow where everything is going. I will be trying over
+time to suck in a few things from that into this demo in the hopes it might be
+more useful, and maybe to even make this demo usable as a utility of its own.
+Possible things include:
+
+ * controlling multiple processes/threads - this can be used to combat
+ latencies and get passed file-descriptor limits on some systems, and it uses
+ a "controller" process/thread that maintains IPC links with the
+ processes/threads doing the real work.
+
+ * cert verification rules - having some say over which certs get in or out :-)
+
+ * control over SSL protocols and cipher suites
+
+ * A few other things you can already do in s_client and s_server :-)
+
+ * Support (and control over) session resuming, particularly when functioning
+ as an SSL client.
+
+If you have a particular environment where this model might work to let you "do
+SSL" without having OpenSSL be aware of the transport, then you should find you
+could use the state_machine_t structure (or your own variant thereof) and hook
+it up to your transport stuff in much the way tunala.c matches it up with those
+4 file-descriptors. The state_machine_churn(), state_machine_close_clean(), and
+state_machine_close_dirty() functions are the main things to understand - after
+that's done, you just have to ensure you're feeding and bleeding the 4
+state_machine buffers in a logical fashion. This state_machine loop handles not
+only handshakes and normal streaming, but also renegotiates - there's no special
+handling required beyond keeping an eye on those 4 buffers and keeping them in
+sync with your outer "loop" logic. Ie. if one of the OUT buffers is not empty,
+you need to find an opportunity to try and forward its data on. If one of the IN
+buffers is not full, you should keep an eye out for data arriving that should be
+placed there.
+
+This approach could hopefully also allow you to run the SSL protocol in very
+different environments. As an example, you could support encrypted event-driven
+IPC where threads/processes pass messages to each other inside an SSL layer;
+each IPC-message's payload would be in fact the "dirty" content, and the "clean"
+payload coming out of the tunnel at each end would be the real intended message.
+Likewise, this could *easily* be made to work across unix domain sockets, or
+even entirely different network/comms protocols.
+
+This is also a quick and easy way to do VPN if you (and the remote network's
+gateway) support virtual network devices that are encapsulted in a single
+network connection, perhaps PPP going through an SSL tunnel?
+
+
+Suggestions
+-----------
+
+Please let me know if you find this useful, or if there's anything wrong or
+simply too confusing about it. Patches are also welcome, but please attach a
+description of what it changes and why, and "diff -urN" format is preferred.
+Mail to geoff@openssl.org should do the trick.
+
+
+Example
+-------
+
+Here is an example of how to use "tunala" ...
+
+First, it's assumed that OpenSSL has already built, and that you are building
+inside the ./demos/tunala/ directory. If not - please correct the paths and
+flags inside the Makefile. Likewise, if you want to tweak the building, it's
+best to try and do so in the makefile (eg. removing the debug flags and adding
+optimisation flags).
+
+Secondly, this code has mostly only been tested on Linux. However, some
+autoconf/etc support has been added and the code has been compiled on openbsd
+and solaris using that.
+
+Thirdly, if you are Win32, you probably need to do some *major* rewriting of
+ip.c to stand a hope in hell. Good luck, and please mail me the diff if you do
+this, otherwise I will take a look at another time. It can certainly be done,
+but it's very non-POSIXy.
+
+See the INSTALL document for details on building.
+
+Now, if you don't have an executable "tunala" compiled, go back to "First,...".
+Rinse and repeat.
+
+Inside one console, try typing;
+
+(i) ./tunala -listen localhost:8080 -proxy localhost:8081 -cacert CA.pem \
+ -cert A-client.pem -out_totals -v_peer -v_strict
+
+In another console, type;
+
+(ii) ./tunala -listen localhost:8081 -proxy localhost:23 -cacert CA.pem \
+ -cert A-server.pem -server 1 -out_totals -v_peer -v_strict
+
+Now if you open another console and "telnet localhost 8080", you should be
+tunneled through to the telnet service on your local machine (if it's running -
+you could change it to port "22" and tunnel ssh instead if you so desired). When
+you logout of the telnet session, the tunnel should cleanly shutdown and show
+you some traffic stats in both consoles. Feel free to experiment. :-)
+
+Notes:
+
+ - the format for the "-listen" argument can skip the host part (eg. "-listen
+ 8080" is fine). If you do, the listening socket will listen on all interfaces
+ so you can connect from other machines for example. Using the "localhost"
+ form listens only on 127.0.0.1 so you can only connect locally (unless, of
+ course, you've set up weird stuff with your networking in which case probably
+ none of the above applies).
+
+ - ./tunala -? gives you a list of other command-line options, but tunala.c is
+ also a good place to look :-)
+
+