diff options
Diffstat (limited to 'openssl/doc/crypto/pem.pod')
-rw-r--r-- | openssl/doc/crypto/pem.pod | 476 |
1 files changed, 476 insertions, 0 deletions
diff --git a/openssl/doc/crypto/pem.pod b/openssl/doc/crypto/pem.pod new file mode 100644 index 000000000..4f9a27df0 --- /dev/null +++ b/openssl/doc/crypto/pem.pod @@ -0,0 +1,476 @@ +=pod + +=head1 NAME + +PEM - PEM routines + +=head1 SYNOPSIS + + #include <openssl/pem.h> + + EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, + pem_password_cb *cb, void *u); + + EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, + pem_password_cb *cb, void *u); + + int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, + unsigned char *kstr, int klen, + pem_password_cb *cb, void *u); + + int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, + unsigned char *kstr, int klen, + pem_password_cb *cb, void *u); + + int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, + char *kstr, int klen, + pem_password_cb *cb, void *u); + + int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, + char *kstr, int klen, + pem_password_cb *cb, void *u); + + int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, + char *kstr, int klen, + pem_password_cb *cb, void *u); + + int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, + char *kstr, int klen, + pem_password_cb *cb, void *u); + + EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x, + pem_password_cb *cb, void *u); + + EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x, + pem_password_cb *cb, void *u); + + int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x); + int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x); + + RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x, + pem_password_cb *cb, void *u); + + RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x, + pem_password_cb *cb, void *u); + + int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc, + unsigned char *kstr, int klen, + pem_password_cb *cb, void *u); + + int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc, + unsigned char *kstr, int klen, + pem_password_cb *cb, void *u); + + RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x, + pem_password_cb *cb, void *u); + + RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x, + pem_password_cb *cb, void *u); + + int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x); + + int PEM_write_RSAPublicKey(FILE *fp, RSA *x); + + RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x, + pem_password_cb *cb, void *u); + + RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x, + pem_password_cb *cb, void *u); + + int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x); + + int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x); + + DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x, + pem_password_cb *cb, void *u); + + DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x, + pem_password_cb *cb, void *u); + + int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc, + unsigned char *kstr, int klen, + pem_password_cb *cb, void *u); + + int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc, + unsigned char *kstr, int klen, + pem_password_cb *cb, void *u); + + DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x, + pem_password_cb *cb, void *u); + + DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x, + pem_password_cb *cb, void *u); + + int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x); + + int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x); + + DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u); + + DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u); + + int PEM_write_bio_DSAparams(BIO *bp, DSA *x); + + int PEM_write_DSAparams(FILE *fp, DSA *x); + + DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u); + + DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u); + + int PEM_write_bio_DHparams(BIO *bp, DH *x); + + int PEM_write_DHparams(FILE *fp, DH *x); + + X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u); + + X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u); + + int PEM_write_bio_X509(BIO *bp, X509 *x); + + int PEM_write_X509(FILE *fp, X509 *x); + + X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u); + + X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u); + + int PEM_write_bio_X509_AUX(BIO *bp, X509 *x); + + int PEM_write_X509_AUX(FILE *fp, X509 *x); + + X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x, + pem_password_cb *cb, void *u); + + X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x, + pem_password_cb *cb, void *u); + + int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x); + + int PEM_write_X509_REQ(FILE *fp, X509_REQ *x); + + int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x); + + int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x); + + X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x, + pem_password_cb *cb, void *u); + X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x, + pem_password_cb *cb, void *u); + int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x); + int PEM_write_X509_CRL(FILE *fp, X509_CRL *x); + + PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u); + + PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u); + + int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x); + + int PEM_write_PKCS7(FILE *fp, PKCS7 *x); + + NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, + NETSCAPE_CERT_SEQUENCE **x, + pem_password_cb *cb, void *u); + + NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp, + NETSCAPE_CERT_SEQUENCE **x, + pem_password_cb *cb, void *u); + + int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x); + + int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x); + +=head1 DESCRIPTION + +The PEM functions read or write structures in PEM format. In +this sense PEM format is simply base64 encoded data surrounded +by header lines. + +For more details about the meaning of arguments see the +B<PEM FUNCTION ARGUMENTS> section. + +Each operation has four functions associated with it. For +clarity the term "B<foobar> functions" will be used to collectively +refer to the PEM_read_bio_foobar(), PEM_read_foobar(), +PEM_write_bio_foobar() and PEM_write_foobar() functions. + +The B<PrivateKey> functions read or write a private key in +PEM format using an EVP_PKEY structure. The write routines use +"traditional" private key format and can handle both RSA and DSA +private keys. The read functions can additionally transparently +handle PKCS#8 format encrypted and unencrypted keys too. + +PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() +write a private key in an EVP_PKEY structure in PKCS#8 +EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryption +algorithms. The B<cipher> argument specifies the encryption algoritm to +use: unlike all other PEM routines the encryption is applied at the +PKCS#8 level and not in the PEM headers. If B<cipher> is NULL then no +encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead. + +PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid() +also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however +it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm +to use is specified in the B<nid> parameter and should be the NID of the +corresponding OBJECT IDENTIFIER (see NOTES section). + +The B<PUBKEY> functions process a public key using an EVP_PKEY +structure. The public key is encoded as a SubjectPublicKeyInfo +structure. + +The B<RSAPrivateKey> functions process an RSA private key using an +RSA structure. It handles the same formats as the B<PrivateKey> +functions but an error occurs if the private key is not RSA. + +The B<RSAPublicKey> functions process an RSA public key using an +RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey +structure. + +The B<RSA_PUBKEY> functions also process an RSA public key using +an RSA structure. However the public key is encoded using a +SubjectPublicKeyInfo structure and an error occurs if the public +key is not RSA. + +The B<DSAPrivateKey> functions process a DSA private key using a +DSA structure. It handles the same formats as the B<PrivateKey> +functions but an error occurs if the private key is not DSA. + +The B<DSA_PUBKEY> functions process a DSA public key using +a DSA structure. The public key is encoded using a +SubjectPublicKeyInfo structure and an error occurs if the public +key is not DSA. + +The B<DSAparams> functions process DSA parameters using a DSA +structure. The parameters are encoded using a foobar structure. + +The B<DHparams> functions process DH parameters using a DH +structure. The parameters are encoded using a PKCS#3 DHparameter +structure. + +The B<X509> functions process an X509 certificate using an X509 +structure. They will also process a trusted X509 certificate but +any trust settings are discarded. + +The B<X509_AUX> functions process a trusted X509 certificate using +an X509 structure. + +The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10 +certificate request using an X509_REQ structure. The B<X509_REQ> +write functions use B<CERTIFICATE REQUEST> in the header whereas +the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST> +(as required by some CAs). The B<X509_REQ> read functions will +handle either form so there are no B<X509_REQ_NEW> read functions. + +The B<X509_CRL> functions process an X509 CRL using an X509_CRL +structure. + +The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7 +structure. + +The B<NETSCAPE_CERT_SEQUENCE> functions process a Netscape Certificate +Sequence using a NETSCAPE_CERT_SEQUENCE structure. + +=head1 PEM FUNCTION ARGUMENTS + +The PEM functions have many common arguments. + +The B<bp> BIO parameter (if present) specifies the BIO to read from +or write to. + +The B<fp> FILE parameter (if present) specifies the FILE pointer to +read from or write to. + +The PEM read functions all take an argument B<TYPE **x> and return +a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function +uses. If B<x> is NULL then the parameter is ignored. If B<x> is not +NULL but B<*x> is NULL then the structure returned will be written +to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made +to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections). +Irrespective of the value of B<x> a pointer to the structure is always +returned (or NULL if an error occurred). + +The PEM functions which write private keys take an B<enc> parameter +which specifies the encryption algorithm to use, encryption is done +at the PEM level. If this parameter is set to NULL then the private +key is written in unencrypted form. + +The B<cb> argument is the callback to use when querying for the pass +phrase used for encrypted PEM structures (normally only private keys). + +For the PEM write routines if the B<kstr> parameter is not NULL then +B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is +ignored. + +If the B<cb> parameters is set to NULL and the B<u> parameter is not +NULL then the B<u> parameter is interpreted as a null terminated string +to use as the passphrase. If both B<cb> and B<u> are NULL then the +default callback routine is used which will typically prompt for the +passphrase on the current terminal with echoing turned off. + +The default passphrase callback is sometimes inappropriate (for example +in a GUI application) so an alternative can be supplied. The callback +routine has the following form: + + int cb(char *buf, int size, int rwflag, void *u); + +B<buf> is the buffer to write the passphrase to. B<size> is the maximum +length of the passphrase (i.e. the size of buf). B<rwflag> is a flag +which is set to 0 when reading and 1 when writing. A typical routine +will ask the user to verify the passphrase (for example by prompting +for it twice) if B<rwflag> is 1. The B<u> parameter has the same +value as the B<u> parameter passed to the PEM routine. It allows +arbitrary data to be passed to the callback by the application +(for example a window handle in a GUI application). The callback +B<must> return the number of characters in the passphrase or 0 if +an error occurred. + +=head1 EXAMPLES + +Although the PEM routines take several arguments in almost all applications +most of them are set to 0 or NULL. + +Read a certificate in PEM format from a BIO: + + X509 *x; + x = PEM_read_bio_X509(bp, NULL, 0, NULL); + if (x == NULL) + { + /* Error */ + } + +Alternative method: + + X509 *x = NULL; + if (!PEM_read_bio_X509(bp, &x, 0, NULL)) + { + /* Error */ + } + +Write a certificate to a BIO: + + if (!PEM_write_bio_X509(bp, x)) + { + /* Error */ + } + +Write an unencrypted private key to a FILE pointer: + + if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL)) + { + /* Error */ + } + +Write a private key (using traditional format) to a BIO using +triple DES encryption, the pass phrase is prompted for: + + if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL)) + { + /* Error */ + } + +Write a private key (using PKCS#8 format) to a BIO using triple +DES encryption, using the pass phrase "hello": + + if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello")) + { + /* Error */ + } + +Read a private key from a BIO using the pass phrase "hello": + + key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello"); + if (key == NULL) + { + /* Error */ + } + +Read a private key from a BIO using a pass phrase callback: + + key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key"); + if (key == NULL) + { + /* Error */ + } + +Skeleton pass phrase callback: + + int pass_cb(char *buf, int size, int rwflag, void *u); + { + int len; + char *tmp; + /* We'd probably do something else if 'rwflag' is 1 */ + printf("Enter pass phrase for \"%s\"\n", u); + + /* get pass phrase, length 'len' into 'tmp' */ + tmp = "hello"; + len = strlen(tmp); + + if (len <= 0) return 0; + /* if too long, truncate */ + if (len > size) len = size; + memcpy(buf, tmp, len); + return len; + } + +=head1 NOTES + +The old B<PrivateKey> write routines are retained for compatibility. +New applications should write private keys using the +PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines +because they are more secure (they use an iteration count of 2048 whereas +the traditional routines use a count of 1) unless compatibility with older +versions of OpenSSL is important. + +The B<PrivateKey> read routines can be used in all applications because +they handle all formats transparently. + +A frequent cause of problems is attempting to use the PEM routines like +this: + + X509 *x; + PEM_read_bio_X509(bp, &x, 0, NULL); + +this is a bug because an attempt will be made to reuse the data at B<x> +which is an uninitialised pointer. + +=head1 PEM ENCRYPTION FORMAT + +This old B<PrivateKey> routines use a non standard technique for encryption. + +The private key (or other data) takes the following form: + + -----BEGIN RSA PRIVATE KEY----- + Proc-Type: 4,ENCRYPTED + DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89 + + ...base64 encoded data... + -----END RSA PRIVATE KEY----- + +The line beginning DEK-Info contains two comma separated pieces of information: +the encryption algorithm name as used by EVP_get_cipherbyname() and an 8 +byte B<salt> encoded as a set of hexadecimal digits. + +After this is the base64 encoded encrypted data. + +The encryption key is determined using EVP_bytestokey(), using B<salt> and an +iteration count of 1. The IV used is the value of B<salt> and *not* the IV +returned by EVP_bytestokey(). + +=head1 BUGS + +The PEM read routines in some versions of OpenSSL will not correctly reuse +an existing structure. Therefore the following: + + PEM_read_bio_X509(bp, &x, 0, NULL); + +where B<x> already contains a valid certificate, may not work, whereas: + + X509_free(x); + x = PEM_read_bio_X509(bp, NULL, 0, NULL); + +is guaranteed to work. + +=head1 RETURN CODES + +The read routines return either a pointer to the structure read or NULL +if an error occurred. + +The write routines return 1 for success or 0 for failure. |