aboutsummaryrefslogtreecommitdiff
path: root/pixman/pixman/pixman-radial-gradient.c
diff options
context:
space:
mode:
Diffstat (limited to 'pixman/pixman/pixman-radial-gradient.c')
-rw-r--r--pixman/pixman/pixman-radial-gradient.c347
1 files changed, 347 insertions, 0 deletions
diff --git a/pixman/pixman/pixman-radial-gradient.c b/pixman/pixman/pixman-radial-gradient.c
new file mode 100644
index 000000000..a3b591673
--- /dev/null
+++ b/pixman/pixman/pixman-radial-gradient.c
@@ -0,0 +1,347 @@
+/*
+ *
+ * Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc.
+ * Copyright © 2000 SuSE, Inc.
+ * 2005 Lars Knoll & Zack Rusin, Trolltech
+ * Copyright © 2007 Red Hat, Inc.
+ *
+ *
+ * Permission to use, copy, modify, distribute, and sell this software and its
+ * documentation for any purpose is hereby granted without fee, provided that
+ * the above copyright notice appear in all copies and that both that
+ * copyright notice and this permission notice appear in supporting
+ * documentation, and that the name of Keith Packard not be used in
+ * advertising or publicity pertaining to distribution of the software without
+ * specific, written prior permission. Keith Packard makes no
+ * representations about the suitability of this software for any purpose. It
+ * is provided "as is" without express or implied warranty.
+ *
+ * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
+ * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
+ * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
+ * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
+ * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
+ * SOFTWARE.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+#include <stdlib.h>
+#include <math.h>
+#include "pixman-private.h"
+
+static void
+radial_gradient_get_scanline_32 (pixman_image_t *image,
+ int x,
+ int y,
+ int width,
+ uint32_t * buffer,
+ const uint32_t *mask,
+ uint32_t mask_bits)
+{
+ /*
+ * In the radial gradient problem we are given two circles (c₁,r₁) and
+ * (c₂,r₂) that define the gradient itself. Then, for any point p, we
+ * must compute the value(s) of t within [0.0, 1.0] representing the
+ * circle(s) that would color the point.
+ *
+ * There are potentially two values of t since the point p can be
+ * colored by both sides of the circle, (which happens whenever one
+ * circle is not entirely contained within the other).
+ *
+ * If we solve for a value of t that is outside of [0.0, 1.0] then we
+ * use the extend mode (NONE, REPEAT, REFLECT, or PAD) to map to a
+ * value within [0.0, 1.0].
+ *
+ * Here is an illustration of the problem:
+ *
+ * p₂
+ * p •
+ * • ╲
+ * · ╲r₂
+ * p₁ · ╲
+ * • θ╲
+ * ╲ ╌╌•
+ * ╲r₁ · c₂
+ * θ╲ ·
+ * ╌╌•
+ * c₁
+ *
+ * Given (c₁,r₁), (c₂,r₂) and p, we must find an angle θ such that two
+ * points p₁ and p₂ on the two circles are collinear with p. Then, the
+ * desired value of t is the ratio of the length of p₁p to the length
+ * of p₁p₂.
+ *
+ * So, we have six unknown values: (p₁x, p₁y), (p₂x, p₂y), θ and t.
+ * We can also write six equations that constrain the problem:
+ *
+ * Point p₁ is a distance r₁ from c₁ at an angle of θ:
+ *
+ * 1. p₁x = c₁x + r₁·cos θ
+ * 2. p₁y = c₁y + r₁·sin θ
+ *
+ * Point p₂ is a distance r₂ from c₂ at an angle of θ:
+ *
+ * 3. p₂x = c₂x + r2·cos θ
+ * 4. p₂y = c₂y + r2·sin θ
+ *
+ * Point p lies at a fraction t along the line segment p₁p₂:
+ *
+ * 5. px = t·p₂x + (1-t)·p₁x
+ * 6. py = t·p₂y + (1-t)·p₁y
+ *
+ * To solve, first subtitute 1-4 into 5 and 6:
+ *
+ * px = t·(c₂x + r₂·cos θ) + (1-t)·(c₁x + r₁·cos θ)
+ * py = t·(c₂y + r₂·sin θ) + (1-t)·(c₁y + r₁·sin θ)
+ *
+ * Then solve each for cos θ and sin θ expressed as a function of t:
+ *
+ * cos θ = (-(c₂x - c₁x)·t + (px - c₁x)) / ((r₂-r₁)·t + r₁)
+ * sin θ = (-(c₂y - c₁y)·t + (py - c₁y)) / ((r₂-r₁)·t + r₁)
+ *
+ * To simplify this a bit, we define new variables for several of the
+ * common terms as shown below:
+ *
+ * p₂
+ * p •
+ * • ╲
+ * · ┆ ╲r₂
+ * p₁ · ┆ ╲
+ * • pdy┆ ╲
+ * ╲ ┆ •c₂
+ * ╲r₁ ┆ · ┆
+ * ╲ ·┆ ┆cdy
+ * •╌╌╌╌┴╌╌╌╌╌╌╌┘
+ * c₁ pdx cdx
+ *
+ * cdx = (c₂x - c₁x)
+ * cdy = (c₂y - c₁y)
+ * dr = r₂-r₁
+ * pdx = px - c₁x
+ * pdy = py - c₁y
+ *
+ * Note that cdx, cdy, and dr do not depend on point p at all, so can
+ * be pre-computed for the entire gradient. The simplifed equations
+ * are now:
+ *
+ * cos θ = (-cdx·t + pdx) / (dr·t + r₁)
+ * sin θ = (-cdy·t + pdy) / (dr·t + r₁)
+ *
+ * Finally, to get a single function of t and eliminate the last
+ * unknown θ, we use the identity sin²θ + cos²θ = 1. First, square
+ * each equation, (we knew a quadratic was coming since it must be
+ * possible to obtain two solutions in some cases):
+ *
+ * cos²θ = (cdx²t² - 2·cdx·pdx·t + pdx²) / (dr²·t² + 2·r₁·dr·t + r₁²)
+ * sin²θ = (cdy²t² - 2·cdy·pdy·t + pdy²) / (dr²·t² + 2·r₁·dr·t + r₁²)
+ *
+ * Then add both together, set the result equal to 1, and express as a
+ * standard quadratic equation in t of the form At² + Bt + C = 0
+ *
+ * (cdx² + cdy² - dr²)·t² - 2·(cdx·pdx + cdy·pdy + r₁·dr)·t + (pdx² + pdy² - r₁²) = 0
+ *
+ * In other words:
+ *
+ * A = cdx² + cdy² - dr²
+ * B = -2·(pdx·cdx + pdy·cdy + r₁·dr)
+ * C = pdx² + pdy² - r₁²
+ *
+ * And again, notice that A does not depend on p, so can be
+ * precomputed. From here we just use the quadratic formula to solve
+ * for t:
+ *
+ * t = (-2·B ± ⎷(B² - 4·A·C)) / 2·A
+ */
+
+ gradient_t *gradient = (gradient_t *)image;
+ source_image_t *source = (source_image_t *)image;
+ radial_gradient_t *radial = (radial_gradient_t *)image;
+ uint32_t *end = buffer + width;
+ pixman_gradient_walker_t walker;
+ pixman_bool_t affine = TRUE;
+ double cx = 1.;
+ double cy = 0.;
+ double cz = 0.;
+ double rx = x + 0.5;
+ double ry = y + 0.5;
+ double rz = 1.;
+
+ _pixman_gradient_walker_init (&walker, gradient, source->common.repeat);
+
+ if (source->common.transform)
+ {
+ pixman_vector_t v;
+ /* reference point is the center of the pixel */
+ v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2;
+ v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2;
+ v.vector[2] = pixman_fixed_1;
+
+ if (!pixman_transform_point_3d (source->common.transform, &v))
+ return;
+
+ cx = source->common.transform->matrix[0][0] / 65536.;
+ cy = source->common.transform->matrix[1][0] / 65536.;
+ cz = source->common.transform->matrix[2][0] / 65536.;
+
+ rx = v.vector[0] / 65536.;
+ ry = v.vector[1] / 65536.;
+ rz = v.vector[2] / 65536.;
+
+ affine =
+ source->common.transform->matrix[2][0] == 0 &&
+ v.vector[2] == pixman_fixed_1;
+ }
+
+ if (affine)
+ {
+ while (buffer < end)
+ {
+ if (!mask || *mask++ & mask_bits)
+ {
+ double pdx, pdy;
+ double B, C;
+ double det;
+ double c1x = radial->c1.x / 65536.0;
+ double c1y = radial->c1.y / 65536.0;
+ double r1 = radial->c1.radius / 65536.0;
+ pixman_fixed_48_16_t t;
+
+ pdx = rx - c1x;
+ pdy = ry - c1y;
+
+ B = -2 * (pdx * radial->cdx +
+ pdy * radial->cdy +
+ r1 * radial->dr);
+ C = pdx * pdx + pdy * pdy - r1 * r1;
+
+ det = (B * B) - (4 * radial->A * C);
+ if (det < 0.0)
+ det = 0.0;
+
+ if (radial->A < 0)
+ t = (pixman_fixed_48_16_t) ((-B - sqrt (det)) / (2.0 * radial->A) * 65536);
+ else
+ t = (pixman_fixed_48_16_t) ((-B + sqrt (det)) / (2.0 * radial->A) * 65536);
+
+ *buffer = _pixman_gradient_walker_pixel (&walker, t);
+ }
+ ++buffer;
+
+ rx += cx;
+ ry += cy;
+ }
+ }
+ else
+ {
+ /* projective */
+ while (buffer < end)
+ {
+ if (!mask || *mask++ & mask_bits)
+ {
+ double pdx, pdy;
+ double B, C;
+ double det;
+ double c1x = radial->c1.x / 65536.0;
+ double c1y = radial->c1.y / 65536.0;
+ double r1 = radial->c1.radius / 65536.0;
+ pixman_fixed_48_16_t t;
+ double x, y;
+
+ if (rz != 0)
+ {
+ x = rx / rz;
+ y = ry / rz;
+ }
+ else
+ {
+ x = y = 0.;
+ }
+
+ pdx = x - c1x;
+ pdy = y - c1y;
+
+ B = -2 * (pdx * radial->cdx +
+ pdy * radial->cdy +
+ r1 * radial->dr);
+ C = (pdx * pdx + pdy * pdy - r1 * r1);
+
+ det = (B * B) - (4 * radial->A * C);
+ if (det < 0.0)
+ det = 0.0;
+
+ if (radial->A < 0)
+ t = (pixman_fixed_48_16_t) ((-B - sqrt (det)) / (2.0 * radial->A) * 65536);
+ else
+ t = (pixman_fixed_48_16_t) ((-B + sqrt (det)) / (2.0 * radial->A) * 65536);
+
+ *buffer = _pixman_gradient_walker_pixel (&walker, t);
+ }
+
+ ++buffer;
+
+ rx += cx;
+ ry += cy;
+ rz += cz;
+ }
+ }
+}
+
+static void
+radial_gradient_property_changed (pixman_image_t *image)
+{
+ image->common.get_scanline_32 = radial_gradient_get_scanline_32;
+ image->common.get_scanline_64 = _pixman_image_get_scanline_generic_64;
+}
+
+PIXMAN_EXPORT pixman_image_t *
+pixman_image_create_radial_gradient (pixman_point_fixed_t * inner,
+ pixman_point_fixed_t * outer,
+ pixman_fixed_t inner_radius,
+ pixman_fixed_t outer_radius,
+ const pixman_gradient_stop_t *stops,
+ int n_stops)
+{
+ pixman_image_t *image;
+ radial_gradient_t *radial;
+
+ return_val_if_fail (n_stops >= 2, NULL);
+
+ image = _pixman_image_allocate ();
+
+ if (!image)
+ return NULL;
+
+ radial = &image->radial;
+
+ if (!_pixman_init_gradient (&radial->common, stops, n_stops))
+ {
+ free (image);
+ return NULL;
+ }
+
+ image->type = RADIAL;
+
+ radial->c1.x = inner->x;
+ radial->c1.y = inner->y;
+ radial->c1.radius = inner_radius;
+ radial->c2.x = outer->x;
+ radial->c2.y = outer->y;
+ radial->c2.radius = outer_radius;
+ radial->cdx = pixman_fixed_to_double (radial->c2.x - radial->c1.x);
+ radial->cdy = pixman_fixed_to_double (radial->c2.y - radial->c1.y);
+ radial->dr = pixman_fixed_to_double (radial->c2.radius - radial->c1.radius);
+ radial->A = (radial->cdx * radial->cdx +
+ radial->cdy * radial->cdy -
+ radial->dr * radial->dr);
+
+ image->common.property_changed = radial_gradient_property_changed;
+
+ radial_gradient_property_changed (image);
+
+ return image;
+}
+