diff options
Diffstat (limited to 'pthreads/ptw32_mutex_check_need_init.c')
-rw-r--r-- | pthreads/ptw32_mutex_check_need_init.c | 26 |
1 files changed, 3 insertions, 23 deletions
diff --git a/pthreads/ptw32_mutex_check_need_init.c b/pthreads/ptw32_mutex_check_need_init.c index 35ec366bd..897db3c68 100644 --- a/pthreads/ptw32_mutex_check_need_init.c +++ b/pthreads/ptw32_mutex_check_need_init.c @@ -50,29 +50,9 @@ ptw32_mutex_check_need_init (pthread_mutex_t * mutex) { register int result = 0; register pthread_mutex_t mtx; + ptw32_mcs_local_node_t node; - /* - * The following guarded test is specifically for statically - * initialised mutexes (via PTHREAD_MUTEX_INITIALIZER). - * - * Note that by not providing this synchronisation we risk - * introducing race conditions into applications which are - * correctly written. - * - * Approach - * -------- - * We know that static mutexes will not be PROCESS_SHARED - * so we can serialise access to internal state using - * Win32 Critical Sections rather than Win32 Mutexes. - * - * If using a single global lock slows applications down too much, - * multiple global locks could be created and hashed on some random - * value associated with each mutex, the pointer perhaps. At a guess, - * a good value for the optimal number of global locks might be - * the number of processors + 1. - * - */ - EnterCriticalSection (&ptw32_mutex_test_init_lock); + ptw32_mcs_lock_acquire(&ptw32_mutex_test_init_lock, &node); /* * We got here possibly under race @@ -106,7 +86,7 @@ ptw32_mutex_check_need_init (pthread_mutex_t * mutex) result = EINVAL; } - LeaveCriticalSection (&ptw32_mutex_test_init_lock); + ptw32_mcs_lock_release(&node); return (result); } |