aboutsummaryrefslogtreecommitdiff
path: root/xorg-server/mi/mipoly.h
diff options
context:
space:
mode:
Diffstat (limited to 'xorg-server/mi/mipoly.h')
-rw-r--r--xorg-server/mi/mipoly.h207
1 files changed, 207 insertions, 0 deletions
diff --git a/xorg-server/mi/mipoly.h b/xorg-server/mi/mipoly.h
new file mode 100644
index 000000000..c1bab4943
--- /dev/null
+++ b/xorg-server/mi/mipoly.h
@@ -0,0 +1,207 @@
+/*
+
+Copyright 1987, 1998 The Open Group
+
+Permission to use, copy, modify, distribute, and sell this software and its
+documentation for any purpose is hereby granted without fee, provided that
+the above copyright notice appear in all copies and that both that
+copyright notice and this permission notice appear in supporting
+documentation.
+
+The above copyright notice and this permission notice shall be included
+in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR
+OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+OTHER DEALINGS IN THE SOFTWARE.
+
+Except as contained in this notice, the name of The Open Group shall
+not be used in advertising or otherwise to promote the sale, use or
+other dealings in this Software without prior written authorization
+from The Open Group.
+
+*/
+
+
+/*
+ * fill.h
+ *
+ * Created by Brian Kelleher; Oct 1985
+ *
+ * Include file for filled polygon routines.
+ *
+ * These are the data structures needed to scan
+ * convert regions. Two different scan conversion
+ * methods are available -- the even-odd method, and
+ * the winding number method.
+ * The even-odd rule states that a point is inside
+ * the polygon if a ray drawn from that point in any
+ * direction will pass through an odd number of
+ * path segments.
+ * By the winding number rule, a point is decided
+ * to be inside the polygon if a ray drawn from that
+ * point in any direction passes through a different
+ * number of clockwise and counter-clockwise path
+ * segments.
+ *
+ * These data structures are adapted somewhat from
+ * the algorithm in (Foley/Van Dam) for scan converting
+ * polygons.
+ * The basic algorithm is to start at the top (smallest y)
+ * of the polygon, stepping down to the bottom of
+ * the polygon by incrementing the y coordinate. We
+ * keep a list of edges which the current scanline crosses,
+ * sorted by x. This list is called the Active Edge Table (AET)
+ * As we change the y-coordinate, we update each entry in
+ * in the active edge table to reflect the edges new xcoord.
+ * This list must be sorted at each scanline in case
+ * two edges intersect.
+ * We also keep a data structure known as the Edge Table (ET),
+ * which keeps track of all the edges which the current
+ * scanline has not yet reached. The ET is basically a
+ * list of ScanLineList structures containing a list of
+ * edges which are entered at a given scanline. There is one
+ * ScanLineList per scanline at which an edge is entered.
+ * When we enter a new edge, we move it from the ET to the AET.
+ *
+ * From the AET, we can implement the even-odd rule as in
+ * (Foley/Van Dam).
+ * The winding number rule is a little trickier. We also
+ * keep the EdgeTableEntries in the AET linked by the
+ * nextWETE (winding EdgeTableEntry) link. This allows
+ * the edges to be linked just as before for updating
+ * purposes, but only uses the edges linked by the nextWETE
+ * link as edges representing spans of the polygon to
+ * drawn (as with the even-odd rule).
+ */
+
+/*
+ * for the winding number rule
+ */
+#define CLOCKWISE 1
+#define COUNTERCLOCKWISE -1
+
+typedef struct _EdgeTableEntry {
+ int ymax; /* ycoord at which we exit this edge. */
+ BRESINFO bres; /* Bresenham info to run the edge */
+ struct _EdgeTableEntry *next; /* next in the list */
+ struct _EdgeTableEntry *back; /* for insertion sort */
+ struct _EdgeTableEntry *nextWETE; /* for winding num rule */
+ int ClockWise; /* flag for winding number rule */
+} EdgeTableEntry;
+
+
+typedef struct _ScanLineList{
+ int scanline; /* the scanline represented */
+ EdgeTableEntry *edgelist; /* header node */
+ struct _ScanLineList *next; /* next in the list */
+} ScanLineList;
+
+
+typedef struct {
+ int ymax; /* ymax for the polygon */
+ int ymin; /* ymin for the polygon */
+ ScanLineList scanlines; /* header node */
+} EdgeTable;
+
+
+/*
+ * Here is a struct to help with storage allocation
+ * so we can allocate a big chunk at a time, and then take
+ * pieces from this heap when we need to.
+ */
+#define SLLSPERBLOCK 25
+
+typedef struct _ScanLineListBlock {
+ ScanLineList SLLs[SLLSPERBLOCK];
+ struct _ScanLineListBlock *next;
+} ScanLineListBlock;
+
+/*
+ * number of points to buffer before sending them off
+ * to scanlines() : Must be an even number
+ */
+#define NUMPTSTOBUFFER 200
+
+
+/*
+ *
+ * a few macros for the inner loops of the fill code where
+ * performance considerations don't allow a procedure call.
+ *
+ * Evaluate the given edge at the given scanline.
+ * If the edge has expired, then we leave it and fix up
+ * the active edge table; otherwise, we increment the
+ * x value to be ready for the next scanline.
+ * The winding number rule is in effect, so we must notify
+ * the caller when the edge has been removed so he
+ * can reorder the Winding Active Edge Table.
+ */
+#define EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET) { \
+ if (pAET->ymax == y) { /* leaving this edge */ \
+ pPrevAET->next = pAET->next; \
+ pAET = pPrevAET->next; \
+ fixWAET = 1; \
+ if (pAET) \
+ pAET->back = pPrevAET; \
+ } \
+ else { \
+ BRESINCRPGONSTRUCT(pAET->bres); \
+ pPrevAET = pAET; \
+ pAET = pAET->next; \
+ } \
+}
+
+
+/*
+ * Evaluate the given edge at the given scanline.
+ * If the edge has expired, then we leave it and fix up
+ * the active edge table; otherwise, we increment the
+ * x value to be ready for the next scanline.
+ * The even-odd rule is in effect.
+ */
+#define EVALUATEEDGEEVENODD(pAET, pPrevAET, y) { \
+ if (pAET->ymax == y) { /* leaving this edge */ \
+ pPrevAET->next = pAET->next; \
+ pAET = pPrevAET->next; \
+ if (pAET) \
+ pAET->back = pPrevAET; \
+ } \
+ else { \
+ BRESINCRPGONSTRUCT(pAET->bres); \
+ pPrevAET = pAET; \
+ pAET = pAET->next; \
+ } \
+}
+
+/* mipolyutil.c */
+
+extern Bool miCreateETandAET(
+ int /*count*/,
+ DDXPointPtr /*pts*/,
+ EdgeTable * /*ET*/,
+ EdgeTableEntry * /*AET*/,
+ EdgeTableEntry * /*pETEs*/,
+ ScanLineListBlock * /*pSLLBlock*/
+);
+
+extern void miloadAET(
+ EdgeTableEntry * /*AET*/,
+ EdgeTableEntry * /*ETEs*/
+);
+
+extern void micomputeWAET(
+ EdgeTableEntry * /*AET*/
+);
+
+extern int miInsertionSort(
+ EdgeTableEntry * /*AET*/
+);
+
+extern void miFreeStorage(
+ ScanLineListBlock * /*pSLLBlock*/
+);