From 807c6931fe683fd844ceec1b023232181e6aae03 Mon Sep 17 00:00:00 2001 From: marha Date: Tue, 28 Dec 2010 16:10:20 +0000 Subject: xserver and mesa git update 28-12-2010 --- mesalib/src/glsl/ast_function.cpp | 2495 +++++++++++++++++++------------------ 1 file changed, 1254 insertions(+), 1241 deletions(-) (limited to 'mesalib/src/glsl/ast_function.cpp') diff --git a/mesalib/src/glsl/ast_function.cpp b/mesalib/src/glsl/ast_function.cpp index 20448f5a9..2e1a4d9f6 100644 --- a/mesalib/src/glsl/ast_function.cpp +++ b/mesalib/src/glsl/ast_function.cpp @@ -1,1241 +1,1254 @@ -/* - * Copyright © 2010 Intel Corporation - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice (including the next - * paragraph) shall be included in all copies or substantial portions of the - * Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING - * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - * DEALINGS IN THE SOFTWARE. - */ - -#include "glsl_symbol_table.h" -#include "ast.h" -#include "glsl_types.h" -#include "ir.h" -#include "main/core.h" /* for MIN2 */ - -static ir_rvalue * -convert_component(ir_rvalue *src, const glsl_type *desired_type); - -bool -apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, - struct _mesa_glsl_parse_state *state); - -static unsigned -process_parameters(exec_list *instructions, exec_list *actual_parameters, - exec_list *parameters, - struct _mesa_glsl_parse_state *state) -{ - unsigned count = 0; - - foreach_list (n, parameters) { - ast_node *const ast = exec_node_data(ast_node, n, link); - ir_rvalue *result = ast->hir(instructions, state); - - ir_constant *const constant = result->constant_expression_value(); - if (constant != NULL) - result = constant; - - actual_parameters->push_tail(result); - count++; - } - - return count; -} - - -/** - * Generate a source prototype for a function signature - * - * \param return_type Return type of the function. May be \c NULL. - * \param name Name of the function. - * \param parameters Parameter list for the function. This may be either a - * formal or actual parameter list. Only the type is used. - * - * \return - * A talloced string representing the prototype of the function. - */ -char * -prototype_string(const glsl_type *return_type, const char *name, - exec_list *parameters) -{ - char *str = NULL; - - if (return_type != NULL) - str = talloc_asprintf(str, "%s ", return_type->name); - - str = talloc_asprintf_append(str, "%s(", name); - - const char *comma = ""; - foreach_list(node, parameters) { - const ir_instruction *const param = (ir_instruction *) node; - - str = talloc_asprintf_append(str, "%s%s", comma, param->type->name); - comma = ", "; - } - - str = talloc_strdup_append(str, ")"); - return str; -} - - -static ir_rvalue * -process_call(exec_list *instructions, ir_function *f, - YYLTYPE *loc, exec_list *actual_parameters, - struct _mesa_glsl_parse_state *state) -{ - void *ctx = state; - - ir_function_signature *sig = f->matching_signature(actual_parameters); - - /* The instructions param will be used when the FINISHMEs below are done */ - (void) instructions; - - if (sig != NULL) { - /* Verify that 'out' and 'inout' actual parameters are lvalues. This - * isn't done in ir_function::matching_signature because that function - * cannot generate the necessary diagnostics. - */ - exec_list_iterator actual_iter = actual_parameters->iterator(); - exec_list_iterator formal_iter = sig->parameters.iterator(); - - while (actual_iter.has_next()) { - ir_rvalue *actual = (ir_rvalue *) actual_iter.get(); - ir_variable *formal = (ir_variable *) formal_iter.get(); - - assert(actual != NULL); - assert(formal != NULL); - - if ((formal->mode == ir_var_out) - || (formal->mode == ir_var_inout)) { - if (! actual->is_lvalue()) { - /* FINISHME: Log a better diagnostic here. There is no way - * FINISHME: to tell the user which parameter is invalid. - */ - _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue", - (formal->mode == ir_var_out) ? "out" : "inout"); - } - } - - if (formal->type->is_numeric() || formal->type->is_boolean()) { - ir_rvalue *converted = convert_component(actual, formal->type); - actual->replace_with(converted); - } - - actual_iter.next(); - formal_iter.next(); - } - - /* Always insert the call in the instruction stream, and return a deref - * of its return val if it returns a value, since we don't know if - * the rvalue is going to be assigned to anything or not. - */ - ir_call *call = new(ctx) ir_call(sig, actual_parameters); - if (!sig->return_type->is_void()) { - ir_variable *var; - ir_dereference_variable *deref; - - var = new(ctx) ir_variable(sig->return_type, - talloc_asprintf(ctx, "%s_retval", - sig->function_name()), - ir_var_temporary); - instructions->push_tail(var); - - deref = new(ctx) ir_dereference_variable(var); - ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL); - instructions->push_tail(assign); - if (state->language_version >= 120) - var->constant_value = call->constant_expression_value(); - - deref = new(ctx) ir_dereference_variable(var); - return deref; - } else { - instructions->push_tail(call); - return NULL; - } - } else { - char *str = prototype_string(NULL, f->name, actual_parameters); - - _mesa_glsl_error(loc, state, "no matching function for call to `%s'", - str); - talloc_free(str); - - const char *prefix = "candidates are: "; - foreach_list (node, &f->signatures) { - ir_function_signature *sig = (ir_function_signature *) node; - - str = prototype_string(sig->return_type, f->name, &sig->parameters); - _mesa_glsl_error(loc, state, "%s%s\n", prefix, str); - talloc_free(str); - - prefix = " "; - } - - return ir_call::get_error_instruction(ctx); - } -} - - -static ir_rvalue * -match_function_by_name(exec_list *instructions, const char *name, - YYLTYPE *loc, exec_list *actual_parameters, - struct _mesa_glsl_parse_state *state) -{ - void *ctx = state; - ir_function *f = state->symbols->get_function(name); - - if (f == NULL) { - _mesa_glsl_error(loc, state, "function `%s' undeclared", name); - return ir_call::get_error_instruction(ctx); - } - - /* Once we've determined that the function being called might exist, try - * to find an overload of the function that matches the parameters. - */ - return process_call(instructions, f, loc, actual_parameters, state); -} - - -/** - * Perform automatic type conversion of constructor parameters - * - * This implements the rules in the "Conversion and Scalar Constructors" - * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules. - */ -static ir_rvalue * -convert_component(ir_rvalue *src, const glsl_type *desired_type) -{ - void *ctx = talloc_parent(src); - const unsigned a = desired_type->base_type; - const unsigned b = src->type->base_type; - ir_expression *result = NULL; - - if (src->type->is_error()) - return src; - - assert(a <= GLSL_TYPE_BOOL); - assert(b <= GLSL_TYPE_BOOL); - - if ((a == b) || (src->type->is_integer() && desired_type->is_integer())) - return src; - - switch (a) { - case GLSL_TYPE_UINT: - case GLSL_TYPE_INT: - if (b == GLSL_TYPE_FLOAT) - result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL); - else { - assert(b == GLSL_TYPE_BOOL); - result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL); - } - break; - case GLSL_TYPE_FLOAT: - switch (b) { - case GLSL_TYPE_UINT: - result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL); - break; - case GLSL_TYPE_INT: - result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL); - break; - case GLSL_TYPE_BOOL: - result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL); - break; - } - break; - case GLSL_TYPE_BOOL: - switch (b) { - case GLSL_TYPE_UINT: - case GLSL_TYPE_INT: - result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL); - break; - case GLSL_TYPE_FLOAT: - result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL); - break; - } - break; - } - - assert(result != NULL); - - /* Try constant folding; it may fold in the conversion we just added. */ - ir_constant *const constant = result->constant_expression_value(); - return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result; -} - -/** - * Dereference a specific component from a scalar, vector, or matrix - */ -static ir_rvalue * -dereference_component(ir_rvalue *src, unsigned component) -{ - void *ctx = talloc_parent(src); - assert(component < src->type->components()); - - /* If the source is a constant, just create a new constant instead of a - * dereference of the existing constant. - */ - ir_constant *constant = src->as_constant(); - if (constant) - return new(ctx) ir_constant(constant, component); - - if (src->type->is_scalar()) { - return src; - } else if (src->type->is_vector()) { - return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1); - } else { - assert(src->type->is_matrix()); - - /* Dereference a row of the matrix, then call this function again to get - * a specific element from that row. - */ - const int c = component / src->type->column_type()->vector_elements; - const int r = component % src->type->column_type()->vector_elements; - ir_constant *const col_index = new(ctx) ir_constant(c); - ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index); - - col->type = src->type->column_type(); - - return dereference_component(col, r); - } - - assert(!"Should not get here."); - return NULL; -} - - -static ir_rvalue * -process_array_constructor(exec_list *instructions, - const glsl_type *constructor_type, - YYLTYPE *loc, exec_list *parameters, - struct _mesa_glsl_parse_state *state) -{ - void *ctx = state; - /* Array constructors come in two forms: sized and unsized. Sized array - * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4 - * variables. In this case the number of parameters must exactly match the - * specified size of the array. - * - * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b' - * are vec4 variables. In this case the size of the array being constructed - * is determined by the number of parameters. - * - * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec: - * - * "There must be exactly the same number of arguments as the size of - * the array being constructed. If no size is present in the - * constructor, then the array is explicitly sized to the number of - * arguments provided. The arguments are assigned in order, starting at - * element 0, to the elements of the constructed array. Each argument - * must be the same type as the element type of the array, or be a type - * that can be converted to the element type of the array according to - * Section 4.1.10 "Implicit Conversions."" - */ - exec_list actual_parameters; - const unsigned parameter_count = - process_parameters(instructions, &actual_parameters, parameters, state); - - if ((parameter_count == 0) - || ((constructor_type->length != 0) - && (constructor_type->length != parameter_count))) { - const unsigned min_param = (constructor_type->length == 0) - ? 1 : constructor_type->length; - - _mesa_glsl_error(loc, state, "array constructor must have %s %u " - "parameter%s", - (constructor_type->length != 0) ? "at least" : "exactly", - min_param, (min_param <= 1) ? "" : "s"); - return ir_call::get_error_instruction(ctx); - } - - if (constructor_type->length == 0) { - constructor_type = - glsl_type::get_array_instance(constructor_type->element_type(), - parameter_count); - assert(constructor_type != NULL); - assert(constructor_type->length == parameter_count); - } - - bool all_parameters_are_constant = true; - - /* Type cast each parameter and, if possible, fold constants. */ - foreach_list_safe(n, &actual_parameters) { - ir_rvalue *ir = (ir_rvalue *) n; - ir_rvalue *result = ir; - - /* Apply implicit conversions (not the scalar constructor rules!) */ - if (constructor_type->element_type()->is_float()) { - const glsl_type *desired_type = - glsl_type::get_instance(GLSL_TYPE_FLOAT, - ir->type->vector_elements, - ir->type->matrix_columns); - result = convert_component(ir, desired_type); - } - - if (result->type != constructor_type->element_type()) { - _mesa_glsl_error(loc, state, "type error in array constructor: " - "expected: %s, found %s", - constructor_type->element_type()->name, - result->type->name); - } - - /* Attempt to convert the parameter to a constant valued expression. - * After doing so, track whether or not all the parameters to the - * constructor are trivially constant valued expressions. - */ - ir_rvalue *const constant = result->constant_expression_value(); - - if (constant != NULL) - result = constant; - else - all_parameters_are_constant = false; - - ir->replace_with(result); - } - - if (all_parameters_are_constant) - return new(ctx) ir_constant(constructor_type, &actual_parameters); - - ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor", - ir_var_temporary); - instructions->push_tail(var); - - int i = 0; - foreach_list(node, &actual_parameters) { - ir_rvalue *rhs = (ir_rvalue *) node; - ir_rvalue *lhs = new(ctx) ir_dereference_array(var, - new(ctx) ir_constant(i)); - - ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL); - instructions->push_tail(assignment); - - i++; - } - - return new(ctx) ir_dereference_variable(var); -} - - -/** - * Try to convert a record constructor to a constant expression - */ -static ir_constant * -constant_record_constructor(const glsl_type *constructor_type, - exec_list *parameters, void *mem_ctx) -{ - foreach_list(node, parameters) { - ir_constant *constant = ((ir_instruction *) node)->as_constant(); - if (constant == NULL) - return NULL; - node->replace_with(constant); - } - - return new(mem_ctx) ir_constant(constructor_type, parameters); -} - - -/** - * Determine if a list consists of a single scalar r-value - */ -bool -single_scalar_parameter(exec_list *parameters) -{ - const ir_rvalue *const p = (ir_rvalue *) parameters->head; - assert(((ir_rvalue *)p)->as_rvalue() != NULL); - - return (p->type->is_scalar() && p->next->is_tail_sentinel()); -} - - -/** - * Generate inline code for a vector constructor - * - * The generated constructor code will consist of a temporary variable - * declaration of the same type as the constructor. A sequence of assignments - * from constructor parameters to the temporary will follow. - * - * \return - * An \c ir_dereference_variable of the temprorary generated in the constructor - * body. - */ -ir_rvalue * -emit_inline_vector_constructor(const glsl_type *type, - exec_list *instructions, - exec_list *parameters, - void *ctx) -{ - assert(!parameters->is_empty()); - - ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary); - instructions->push_tail(var); - - /* There are two kinds of vector constructors. - * - * - Construct a vector from a single scalar by replicating that scalar to - * all components of the vector. - * - * - Construct a vector from an arbirary combination of vectors and - * scalars. The components of the constructor parameters are assigned - * to the vector in order until the vector is full. - */ - const unsigned lhs_components = type->components(); - if (single_scalar_parameter(parameters)) { - ir_rvalue *first_param = (ir_rvalue *)parameters->head; - ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0, - lhs_components); - ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var); - const unsigned mask = (1U << lhs_components) - 1; - - assert(rhs->type == lhs->type); - - ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask); - instructions->push_tail(inst); - } else { - unsigned base_component = 0; - unsigned base_lhs_component = 0; - ir_constant_data data; - unsigned constant_mask = 0, constant_components = 0; - - memset(&data, 0, sizeof(data)); - - foreach_list(node, parameters) { - ir_rvalue *param = (ir_rvalue *) node; - unsigned rhs_components = param->type->components(); - - /* Do not try to assign more components to the vector than it has! - */ - if ((rhs_components + base_lhs_component) > lhs_components) { - rhs_components = lhs_components - base_lhs_component; - } - - const ir_constant *const c = param->as_constant(); - if (c != NULL) { - for (unsigned i = 0; i < rhs_components; i++) { - switch (c->type->base_type) { - case GLSL_TYPE_UINT: - data.u[i + base_component] = c->get_uint_component(i); - break; - case GLSL_TYPE_INT: - data.i[i + base_component] = c->get_int_component(i); - break; - case GLSL_TYPE_FLOAT: - data.f[i + base_component] = c->get_float_component(i); - break; - case GLSL_TYPE_BOOL: - data.b[i + base_component] = c->get_bool_component(i); - break; - default: - assert(!"Should not get here."); - break; - } - } - - /* Mask of fields to be written in the assignment. - */ - constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component; - constant_components++; - - base_component += rhs_components; - } - /* Advance the component index by the number of components - * that were just assigned. - */ - base_lhs_component += rhs_components; - } - - if (constant_mask != 0) { - ir_dereference *lhs = new(ctx) ir_dereference_variable(var); - const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type, - constant_components, - 1); - ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data); - - ir_instruction *inst = - new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask); - instructions->push_tail(inst); - } - - base_component = 0; - foreach_list(node, parameters) { - ir_rvalue *param = (ir_rvalue *) node; - unsigned rhs_components = param->type->components(); - - /* Do not try to assign more components to the vector than it has! - */ - if ((rhs_components + base_component) > lhs_components) { - rhs_components = lhs_components - base_component; - } - - const ir_constant *const c = param->as_constant(); - if (c == NULL) { - /* Generate a swizzle in case rhs_components != rhs->type->vector_elements. */ - unsigned swiz[4] = { 0, 0, 0, 0 }; - for (unsigned i = 0; i < rhs_components; i++) - swiz[i] = i; - - /* Mask of fields to be written in the assignment. - */ - const unsigned write_mask = ((1U << rhs_components) - 1) - << base_component; - - ir_dereference *lhs = new(ctx) ir_dereference_variable(var); - ir_rvalue *rhs = new(ctx) ir_swizzle(param, swiz, rhs_components); - - ir_instruction *inst = - new(ctx) ir_assignment(lhs, rhs, NULL, write_mask); - instructions->push_tail(inst); - } - - /* Advance the component index by the number of components that were - * just assigned. - */ - base_component += rhs_components; - } - } - return new(ctx) ir_dereference_variable(var); -} - - -/** - * Generate assignment of a portion of a vector to a portion of a matrix column - * - * \param src_base First component of the source to be used in assignment - * \param column Column of destination to be assiged - * \param row_base First component of the destination column to be assigned - * \param count Number of components to be assigned - * - * \note - * \c src_base + \c count must be less than or equal to the number of components - * in the source vector. - */ -ir_instruction * -assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base, - ir_rvalue *src, unsigned src_base, unsigned count, - void *mem_ctx) -{ - ir_constant *col_idx = new(mem_ctx) ir_constant(column); - ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx); - - assert(column_ref->type->components() >= (row_base + count)); - assert(src->type->components() >= (src_base + count)); - - /* Generate a swizzle that puts the first element of the source at the - * location of the first element of the destination. - */ - unsigned swiz[4] = { src_base, src_base, src_base, src_base }; - for (unsigned i = 0; i < count; i++) - swiz[i + row_base] = i; - - ir_rvalue *const rhs = - new(mem_ctx) ir_swizzle(src, swiz, count); - - /* Mask of fields to be written in the assignment. - */ - const unsigned write_mask = ((1U << count) - 1) << row_base; - - return new(mem_ctx) ir_assignment(column_ref, rhs, NULL, write_mask); -} - - -/** - * Generate inline code for a matrix constructor - * - * The generated constructor code will consist of a temporary variable - * declaration of the same type as the constructor. A sequence of assignments - * from constructor parameters to the temporary will follow. - * - * \return - * An \c ir_dereference_variable of the temprorary generated in the constructor - * body. - */ -ir_rvalue * -emit_inline_matrix_constructor(const glsl_type *type, - exec_list *instructions, - exec_list *parameters, - void *ctx) -{ - assert(!parameters->is_empty()); - - ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary); - instructions->push_tail(var); - - /* There are three kinds of matrix constructors. - * - * - Construct a matrix from a single scalar by replicating that scalar to - * along the diagonal of the matrix and setting all other components to - * zero. - * - * - Construct a matrix from an arbirary combination of vectors and - * scalars. The components of the constructor parameters are assigned - * to the matrix in colum-major order until the matrix is full. - * - * - Construct a matrix from a single matrix. The source matrix is copied - * to the upper left portion of the constructed matrix, and the remaining - * elements take values from the identity matrix. - */ - ir_rvalue *const first_param = (ir_rvalue *) parameters->head; - if (single_scalar_parameter(parameters)) { - /* Assign the scalar to the X component of a vec4, and fill the remaining - * components with zero. - */ - ir_variable *rhs_var = - new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec", - ir_var_temporary); - instructions->push_tail(rhs_var); - - ir_constant_data zero; - zero.f[0] = 0.0; - zero.f[1] = 0.0; - zero.f[2] = 0.0; - zero.f[3] = 0.0; - - ir_instruction *inst = - new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var), - new(ctx) ir_constant(rhs_var->type, &zero), - NULL); - instructions->push_tail(inst); - - ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); - - inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01); - instructions->push_tail(inst); - - /* Assign the temporary vector to each column of the destination matrix - * with a swizzle that puts the X component on the diagonal of the - * matrix. In some cases this may mean that the X component does not - * get assigned into the column at all (i.e., when the matrix has more - * columns than rows). - */ - static const unsigned rhs_swiz[4][4] = { - { 0, 1, 1, 1 }, - { 1, 0, 1, 1 }, - { 1, 1, 0, 1 }, - { 1, 1, 1, 0 } - }; - - const unsigned cols_to_init = MIN2(type->matrix_columns, - type->vector_elements); - for (unsigned i = 0; i < cols_to_init; i++) { - ir_constant *const col_idx = new(ctx) ir_constant(i); - ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx); - - ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); - ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i], - type->vector_elements); - - inst = new(ctx) ir_assignment(col_ref, rhs, NULL); - instructions->push_tail(inst); - } - - for (unsigned i = cols_to_init; i < type->matrix_columns; i++) { - ir_constant *const col_idx = new(ctx) ir_constant(i); - ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx); - - ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); - ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1, - type->vector_elements); - - inst = new(ctx) ir_assignment(col_ref, rhs, NULL); - instructions->push_tail(inst); - } - } else if (first_param->type->is_matrix()) { - /* From page 50 (56 of the PDF) of the GLSL 1.50 spec: - * - * "If a matrix is constructed from a matrix, then each component - * (column i, row j) in the result that has a corresponding - * component (column i, row j) in the argument will be initialized - * from there. All other components will be initialized to the - * identity matrix. If a matrix argument is given to a matrix - * constructor, it is an error to have any other arguments." - */ - assert(first_param->next->is_tail_sentinel()); - ir_rvalue *const src_matrix = first_param; - - /* If the source matrix is smaller, pre-initialize the relavent parts of - * the destination matrix to the identity matrix. - */ - if ((src_matrix->type->matrix_columns < var->type->matrix_columns) - || (src_matrix->type->vector_elements < var->type->vector_elements)) { - - /* If the source matrix has fewer rows, every column of the destination - * must be initialized. Otherwise only the columns in the destination - * that do not exist in the source must be initialized. - */ - unsigned col = - (src_matrix->type->vector_elements < var->type->vector_elements) - ? 0 : src_matrix->type->matrix_columns; - - const glsl_type *const col_type = var->type->column_type(); - for (/* empty */; col < var->type->matrix_columns; col++) { - ir_constant_data ident; - - ident.f[0] = 0.0; - ident.f[1] = 0.0; - ident.f[2] = 0.0; - ident.f[3] = 0.0; - - ident.f[col] = 1.0; - - ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident); - - ir_rvalue *const lhs = - new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col)); - - ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL); - instructions->push_tail(inst); - } - } - - /* Assign columns from the source matrix to the destination matrix. - * - * Since the parameter will be used in the RHS of multiple assignments, - * generate a temporary and copy the paramter there. - */ - ir_variable *const rhs_var = - new(ctx) ir_variable(first_param->type, "mat_ctor_mat", - ir_var_temporary); - instructions->push_tail(rhs_var); - - ir_dereference *const rhs_var_ref = - new(ctx) ir_dereference_variable(rhs_var); - ir_instruction *const inst = - new(ctx) ir_assignment(rhs_var_ref, first_param, NULL); - instructions->push_tail(inst); - - const unsigned last_row = MIN2(src_matrix->type->vector_elements, - var->type->vector_elements); - const unsigned last_col = MIN2(src_matrix->type->matrix_columns, - var->type->matrix_columns); - - unsigned swiz[4] = { 0, 0, 0, 0 }; - for (unsigned i = 1; i < last_row; i++) - swiz[i] = i; - - const unsigned write_mask = (1U << last_row) - 1; - - for (unsigned i = 0; i < last_col; i++) { - ir_dereference *const lhs = - new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); - ir_rvalue *const rhs_col = - new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i)); - - /* If one matrix has columns that are smaller than the columns of the - * other matrix, wrap the column access of the larger with a swizzle - * so that the LHS and RHS of the assignment have the same size (and - * therefore have the same type). - * - * It would be perfectly valid to unconditionally generate the - * swizzles, this this will typically result in a more compact IR tree. - */ - ir_rvalue *rhs; - if (lhs->type->vector_elements != rhs_col->type->vector_elements) { - rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row); - } else { - rhs = rhs_col; - } - - ir_instruction *inst = - new(ctx) ir_assignment(lhs, rhs, NULL, write_mask); - instructions->push_tail(inst); - } - } else { - const unsigned cols = type->matrix_columns; - const unsigned rows = type->vector_elements; - unsigned col_idx = 0; - unsigned row_idx = 0; - - foreach_list (node, parameters) { - ir_rvalue *const rhs = (ir_rvalue *) node; - const unsigned components_remaining_this_column = rows - row_idx; - unsigned rhs_components = rhs->type->components(); - unsigned rhs_base = 0; - - /* Since the parameter might be used in the RHS of two assignments, - * generate a temporary and copy the paramter there. - */ - ir_variable *rhs_var = - new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary); - instructions->push_tail(rhs_var); - - ir_dereference *rhs_var_ref = - new(ctx) ir_dereference_variable(rhs_var); - ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL); - instructions->push_tail(inst); - - /* Assign the current parameter to as many components of the matrix - * as it will fill. - * - * NOTE: A single vector parameter can span two matrix columns. A - * single vec4, for example, can completely fill a mat2. - */ - if (rhs_components >= components_remaining_this_column) { - const unsigned count = MIN2(rhs_components, - components_remaining_this_column); - - rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); - - ir_instruction *inst = assign_to_matrix_column(var, col_idx, - row_idx, - rhs_var_ref, 0, - count, ctx); - instructions->push_tail(inst); - - rhs_base = count; - - col_idx++; - row_idx = 0; - } - - /* If there is data left in the parameter and components left to be - * set in the destination, emit another assignment. It is possible - * that the assignment could be of a vec4 to the last element of the - * matrix. In this case col_idx==cols, but there is still data - * left in the source parameter. Obviously, don't emit an assignment - * to data outside the destination matrix. - */ - if ((col_idx < cols) && (rhs_base < rhs_components)) { - const unsigned count = rhs_components - rhs_base; - - rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); - - ir_instruction *inst = assign_to_matrix_column(var, col_idx, - row_idx, - rhs_var_ref, - rhs_base, - count, ctx); - instructions->push_tail(inst); - - row_idx += count; - } - } - } - - return new(ctx) ir_dereference_variable(var); -} - - -ir_rvalue * -emit_inline_record_constructor(const glsl_type *type, - exec_list *instructions, - exec_list *parameters, - void *mem_ctx) -{ - ir_variable *const var = - new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary); - ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var); - - instructions->push_tail(var); - - exec_node *node = parameters->head; - for (unsigned i = 0; i < type->length; i++) { - assert(!node->is_tail_sentinel()); - - ir_dereference *const lhs = - new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL), - type->fields.structure[i].name); - - ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue(); - assert(rhs != NULL); - - ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL); - - instructions->push_tail(assign); - node = node->next; - } - - return d; -} - - -ir_rvalue * -ast_function_expression::hir(exec_list *instructions, - struct _mesa_glsl_parse_state *state) -{ - void *ctx = state; - /* There are three sorts of function calls. - * - * 1. constructors - The first subexpression is an ast_type_specifier. - * 2. methods - Only the .length() method of array types. - * 3. functions - Calls to regular old functions. - * - * Method calls are actually detected when the ast_field_selection - * expression is handled. - */ - if (is_constructor()) { - const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0]; - YYLTYPE loc = type->get_location(); - const char *name; - - const glsl_type *const constructor_type = type->glsl_type(& name, state); - - - /* Constructors for samplers are illegal. - */ - if (constructor_type->is_sampler()) { - _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } - - if (constructor_type->is_array()) { - if (state->language_version <= 110) { - _mesa_glsl_error(& loc, state, - "array constructors forbidden in GLSL 1.10"); - return ir_call::get_error_instruction(ctx); - } - - return process_array_constructor(instructions, constructor_type, - & loc, &this->expressions, state); - } - - - /* There are two kinds of constructor call. Constructors for built-in - * language types, such as mat4 and vec2, are free form. The only - * requirement is that the parameters must provide enough values of the - * correct scalar type. Constructors for arrays and structures must - * have the exact number of parameters with matching types in the - * correct order. These constructors follow essentially the same type - * matching rules as functions. - */ - if (!constructor_type->is_numeric() && !constructor_type->is_boolean()) - return ir_call::get_error_instruction(ctx); - - /* Total number of components of the type being constructed. */ - const unsigned type_components = constructor_type->components(); - - /* Number of components from parameters that have actually been - * consumed. This is used to perform several kinds of error checking. - */ - unsigned components_used = 0; - - unsigned matrix_parameters = 0; - unsigned nonmatrix_parameters = 0; - exec_list actual_parameters; - - foreach_list (n, &this->expressions) { - ast_node *ast = exec_node_data(ast_node, n, link); - ir_rvalue *result = ast->hir(instructions, state)->as_rvalue(); - - /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: - * - * "It is an error to provide extra arguments beyond this - * last used argument." - */ - if (components_used >= type_components) { - _mesa_glsl_error(& loc, state, "too many parameters to `%s' " - "constructor", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } - - if (!result->type->is_numeric() && !result->type->is_boolean()) { - _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " - "non-numeric data type", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } - - /* Count the number of matrix and nonmatrix parameters. This - * is used below to enforce some of the constructor rules. - */ - if (result->type->is_matrix()) - matrix_parameters++; - else - nonmatrix_parameters++; - - actual_parameters.push_tail(result); - components_used += result->type->components(); - } - - /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: - * - * "It is an error to construct matrices from other matrices. This - * is reserved for future use." - */ - if (state->language_version == 110 && matrix_parameters > 0 - && constructor_type->is_matrix()) { - _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " - "matrix in GLSL 1.10", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } - - /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: - * - * "If a matrix argument is given to a matrix constructor, it is - * an error to have any other arguments." - */ - if ((matrix_parameters > 0) - && ((matrix_parameters + nonmatrix_parameters) > 1) - && constructor_type->is_matrix()) { - _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, " - "matrix must be only parameter", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } - - /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: - * - * "In these cases, there must be enough components provided in the - * arguments to provide an initializer for every component in the - * constructed value." - */ - if (components_used < type_components && components_used != 1 - && matrix_parameters == 0) { - _mesa_glsl_error(& loc, state, "too few components to construct " - "`%s'", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } - - /* Later, we cast each parameter to the same base type as the - * constructor. Since there are no non-floating point matrices, we - * need to break them up into a series of column vectors. - */ - if (constructor_type->base_type != GLSL_TYPE_FLOAT) { - foreach_list_safe(n, &actual_parameters) { - ir_rvalue *matrix = (ir_rvalue *) n; - - if (!matrix->type->is_matrix()) - continue; - - /* Create a temporary containing the matrix. */ - ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp", - ir_var_temporary); - instructions->push_tail(var); - instructions->push_tail(new(ctx) ir_assignment(new(ctx) - ir_dereference_variable(var), matrix, NULL)); - var->constant_value = matrix->constant_expression_value(); - - /* Replace the matrix with dereferences of its columns. */ - for (int i = 0; i < matrix->type->matrix_columns; i++) { - matrix->insert_before(new (ctx) ir_dereference_array(var, - new(ctx) ir_constant(i))); - } - matrix->remove(); - } - } - - bool all_parameters_are_constant = true; - - /* Type cast each parameter and, if possible, fold constants.*/ - foreach_list_safe(n, &actual_parameters) { - ir_rvalue *ir = (ir_rvalue *) n; - - const glsl_type *desired_type = - glsl_type::get_instance(constructor_type->base_type, - ir->type->vector_elements, - ir->type->matrix_columns); - ir_rvalue *result = convert_component(ir, desired_type); - - /* Attempt to convert the parameter to a constant valued expression. - * After doing so, track whether or not all the parameters to the - * constructor are trivially constant valued expressions. - */ - ir_rvalue *const constant = result->constant_expression_value(); - - if (constant != NULL) - result = constant; - else - all_parameters_are_constant = false; - - if (result != ir) { - ir->replace_with(result); - } - } - - /* If all of the parameters are trivially constant, create a - * constant representing the complete collection of parameters. - */ - if (all_parameters_are_constant) { - return new(ctx) ir_constant(constructor_type, &actual_parameters); - } else if (constructor_type->is_scalar()) { - return dereference_component((ir_rvalue *) actual_parameters.head, - 0); - } else if (constructor_type->is_vector()) { - return emit_inline_vector_constructor(constructor_type, - instructions, - &actual_parameters, - ctx); - } else { - assert(constructor_type->is_matrix()); - return emit_inline_matrix_constructor(constructor_type, - instructions, - &actual_parameters, - ctx); - } - } else { - const ast_expression *id = subexpressions[0]; - YYLTYPE loc = id->get_location(); - exec_list actual_parameters; - - process_parameters(instructions, &actual_parameters, &this->expressions, - state); - - const glsl_type *const type = - state->symbols->get_type(id->primary_expression.identifier); - - if ((type != NULL) && type->is_record()) { - exec_node *node = actual_parameters.head; - for (unsigned i = 0; i < type->length; i++) { - ir_rvalue *ir = (ir_rvalue *) node; - - if (node->is_tail_sentinel()) { - _mesa_glsl_error(&loc, state, - "insufficient parameters to constructor " - "for `%s'", - type->name); - return ir_call::get_error_instruction(ctx); - } - - if (apply_implicit_conversion(type->fields.structure[i].type, ir, - state)) { - node->replace_with(ir); - } else { - _mesa_glsl_error(&loc, state, - "parameter type mismatch in constructor " - "for `%s.%s' (%s vs %s)", - type->name, - type->fields.structure[i].name, - ir->type->name, - type->fields.structure[i].type->name); - return ir_call::get_error_instruction(ctx);; - } - - node = node->next; - } - - if (!node->is_tail_sentinel()) { - _mesa_glsl_error(&loc, state, "too many parameters in constructor " - "for `%s'", type->name); - return ir_call::get_error_instruction(ctx); - } - - ir_rvalue *const constant = - constant_record_constructor(type, &actual_parameters, state); - - return (constant != NULL) - ? constant - : emit_inline_record_constructor(type, instructions, - &actual_parameters, state); - } - - return match_function_by_name(instructions, - id->primary_expression.identifier, & loc, - &actual_parameters, state); - } - - return ir_call::get_error_instruction(ctx); -} +/* + * Copyright © 2010 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +#include "glsl_symbol_table.h" +#include "ast.h" +#include "glsl_types.h" +#include "ir.h" +#include "main/core.h" /* for MIN2 */ + +static ir_rvalue * +convert_component(ir_rvalue *src, const glsl_type *desired_type); + +bool +apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, + struct _mesa_glsl_parse_state *state); + +static unsigned +process_parameters(exec_list *instructions, exec_list *actual_parameters, + exec_list *parameters, + struct _mesa_glsl_parse_state *state) +{ + unsigned count = 0; + + foreach_list (n, parameters) { + ast_node *const ast = exec_node_data(ast_node, n, link); + ir_rvalue *result = ast->hir(instructions, state); + + ir_constant *const constant = result->constant_expression_value(); + if (constant != NULL) + result = constant; + + actual_parameters->push_tail(result); + count++; + } + + return count; +} + + +/** + * Generate a source prototype for a function signature + * + * \param return_type Return type of the function. May be \c NULL. + * \param name Name of the function. + * \param parameters Parameter list for the function. This may be either a + * formal or actual parameter list. Only the type is used. + * + * \return + * A talloced string representing the prototype of the function. + */ +char * +prototype_string(const glsl_type *return_type, const char *name, + exec_list *parameters) +{ + char *str = NULL; + + if (return_type != NULL) + str = talloc_asprintf(str, "%s ", return_type->name); + + str = talloc_asprintf_append(str, "%s(", name); + + const char *comma = ""; + foreach_list(node, parameters) { + const ir_instruction *const param = (ir_instruction *) node; + + str = talloc_asprintf_append(str, "%s%s", comma, param->type->name); + comma = ", "; + } + + str = talloc_strdup_append(str, ")"); + return str; +} + + +static ir_rvalue * +match_function_by_name(exec_list *instructions, const char *name, + YYLTYPE *loc, exec_list *actual_parameters, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + ir_function *f = state->symbols->get_function(name); + ir_function_signature *sig; + + sig = f ? f->matching_signature(actual_parameters) : NULL; + + /* FINISHME: This doesn't handle the case where shader X contains a + * FINISHME: matching signature but shader X + N contains an _exact_ + * FINISHME: matching signature. + */ + if (sig == NULL && (f == NULL || state->es_shader || !f->has_user_signature()) && state->symbols->get_type(name) == NULL && (state->language_version == 110 || state->symbols->get_variable(name) == NULL)) { + /* The current shader doesn't contain a matching function or signature. + * Before giving up, look for the prototype in the built-in functions. + */ + for (unsigned i = 0; i < state->num_builtins_to_link; i++) { + ir_function *builtin; + builtin = state->builtins_to_link[i]->symbols->get_function(name); + sig = builtin ? builtin->matching_signature(actual_parameters) : NULL; + if (sig != NULL) { + if (f == NULL) { + f = new(ctx) ir_function(name); + state->symbols->add_global_function(f); + emit_function(state, instructions, f); + } + + f->add_signature(sig->clone_prototype(f, NULL)); + break; + } + } + } + + if (sig != NULL) { + /* Verify that 'out' and 'inout' actual parameters are lvalues. This + * isn't done in ir_function::matching_signature because that function + * cannot generate the necessary diagnostics. + */ + exec_list_iterator actual_iter = actual_parameters->iterator(); + exec_list_iterator formal_iter = sig->parameters.iterator(); + + while (actual_iter.has_next()) { + ir_rvalue *actual = (ir_rvalue *) actual_iter.get(); + ir_variable *formal = (ir_variable *) formal_iter.get(); + + assert(actual != NULL); + assert(formal != NULL); + + if ((formal->mode == ir_var_out) + || (formal->mode == ir_var_inout)) { + if (! actual->is_lvalue()) { + /* FINISHME: Log a better diagnostic here. There is no way + * FINISHME: to tell the user which parameter is invalid. + */ + _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue", + (formal->mode == ir_var_out) ? "out" : "inout"); + } + } + + if (formal->type->is_numeric() || formal->type->is_boolean()) { + ir_rvalue *converted = convert_component(actual, formal->type); + actual->replace_with(converted); + } + + actual_iter.next(); + formal_iter.next(); + } + + /* Always insert the call in the instruction stream, and return a deref + * of its return val if it returns a value, since we don't know if + * the rvalue is going to be assigned to anything or not. + */ + ir_call *call = new(ctx) ir_call(sig, actual_parameters); + if (!sig->return_type->is_void()) { + ir_variable *var; + ir_dereference_variable *deref; + + var = new(ctx) ir_variable(sig->return_type, + talloc_asprintf(ctx, "%s_retval", + sig->function_name()), + ir_var_temporary); + instructions->push_tail(var); + + deref = new(ctx) ir_dereference_variable(var); + ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL); + instructions->push_tail(assign); + if (state->language_version >= 120) + var->constant_value = call->constant_expression_value(); + + deref = new(ctx) ir_dereference_variable(var); + return deref; + } else { + instructions->push_tail(call); + return NULL; + } + } else { + char *str = prototype_string(NULL, name, actual_parameters); + + _mesa_glsl_error(loc, state, "no matching function for call to `%s'", + str); + talloc_free(str); + + const char *prefix = "candidates are: "; + + for (int i = -1; i < state->num_builtins_to_link; i++) { + glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols + : state->symbols; + f = syms->get_function(name); + if (f == NULL) + continue; + + foreach_list (node, &f->signatures) { + ir_function_signature *sig = (ir_function_signature *) node; + + str = prototype_string(sig->return_type, f->name, &sig->parameters); + _mesa_glsl_error(loc, state, "%s%s\n", prefix, str); + talloc_free(str); + + prefix = " "; + } + + } + + return ir_call::get_error_instruction(ctx); + } +} + + +/** + * Perform automatic type conversion of constructor parameters + * + * This implements the rules in the "Conversion and Scalar Constructors" + * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules. + */ +static ir_rvalue * +convert_component(ir_rvalue *src, const glsl_type *desired_type) +{ + void *ctx = talloc_parent(src); + const unsigned a = desired_type->base_type; + const unsigned b = src->type->base_type; + ir_expression *result = NULL; + + if (src->type->is_error()) + return src; + + assert(a <= GLSL_TYPE_BOOL); + assert(b <= GLSL_TYPE_BOOL); + + if ((a == b) || (src->type->is_integer() && desired_type->is_integer())) + return src; + + switch (a) { + case GLSL_TYPE_UINT: + case GLSL_TYPE_INT: + if (b == GLSL_TYPE_FLOAT) + result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL); + else { + assert(b == GLSL_TYPE_BOOL); + result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL); + } + break; + case GLSL_TYPE_FLOAT: + switch (b) { + case GLSL_TYPE_UINT: + result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL); + break; + case GLSL_TYPE_INT: + result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL); + break; + case GLSL_TYPE_BOOL: + result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL); + break; + } + break; + case GLSL_TYPE_BOOL: + switch (b) { + case GLSL_TYPE_UINT: + case GLSL_TYPE_INT: + result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL); + break; + case GLSL_TYPE_FLOAT: + result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL); + break; + } + break; + } + + assert(result != NULL); + + /* Try constant folding; it may fold in the conversion we just added. */ + ir_constant *const constant = result->constant_expression_value(); + return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result; +} + +/** + * Dereference a specific component from a scalar, vector, or matrix + */ +static ir_rvalue * +dereference_component(ir_rvalue *src, unsigned component) +{ + void *ctx = talloc_parent(src); + assert(component < src->type->components()); + + /* If the source is a constant, just create a new constant instead of a + * dereference of the existing constant. + */ + ir_constant *constant = src->as_constant(); + if (constant) + return new(ctx) ir_constant(constant, component); + + if (src->type->is_scalar()) { + return src; + } else if (src->type->is_vector()) { + return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1); + } else { + assert(src->type->is_matrix()); + + /* Dereference a row of the matrix, then call this function again to get + * a specific element from that row. + */ + const int c = component / src->type->column_type()->vector_elements; + const int r = component % src->type->column_type()->vector_elements; + ir_constant *const col_index = new(ctx) ir_constant(c); + ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index); + + col->type = src->type->column_type(); + + return dereference_component(col, r); + } + + assert(!"Should not get here."); + return NULL; +} + + +static ir_rvalue * +process_array_constructor(exec_list *instructions, + const glsl_type *constructor_type, + YYLTYPE *loc, exec_list *parameters, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + /* Array constructors come in two forms: sized and unsized. Sized array + * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4 + * variables. In this case the number of parameters must exactly match the + * specified size of the array. + * + * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b' + * are vec4 variables. In this case the size of the array being constructed + * is determined by the number of parameters. + * + * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec: + * + * "There must be exactly the same number of arguments as the size of + * the array being constructed. If no size is present in the + * constructor, then the array is explicitly sized to the number of + * arguments provided. The arguments are assigned in order, starting at + * element 0, to the elements of the constructed array. Each argument + * must be the same type as the element type of the array, or be a type + * that can be converted to the element type of the array according to + * Section 4.1.10 "Implicit Conversions."" + */ + exec_list actual_parameters; + const unsigned parameter_count = + process_parameters(instructions, &actual_parameters, parameters, state); + + if ((parameter_count == 0) + || ((constructor_type->length != 0) + && (constructor_type->length != parameter_count))) { + const unsigned min_param = (constructor_type->length == 0) + ? 1 : constructor_type->length; + + _mesa_glsl_error(loc, state, "array constructor must have %s %u " + "parameter%s", + (constructor_type->length != 0) ? "at least" : "exactly", + min_param, (min_param <= 1) ? "" : "s"); + return ir_call::get_error_instruction(ctx); + } + + if (constructor_type->length == 0) { + constructor_type = + glsl_type::get_array_instance(constructor_type->element_type(), + parameter_count); + assert(constructor_type != NULL); + assert(constructor_type->length == parameter_count); + } + + bool all_parameters_are_constant = true; + + /* Type cast each parameter and, if possible, fold constants. */ + foreach_list_safe(n, &actual_parameters) { + ir_rvalue *ir = (ir_rvalue *) n; + ir_rvalue *result = ir; + + /* Apply implicit conversions (not the scalar constructor rules!) */ + if (constructor_type->element_type()->is_float()) { + const glsl_type *desired_type = + glsl_type::get_instance(GLSL_TYPE_FLOAT, + ir->type->vector_elements, + ir->type->matrix_columns); + result = convert_component(ir, desired_type); + } + + if (result->type != constructor_type->element_type()) { + _mesa_glsl_error(loc, state, "type error in array constructor: " + "expected: %s, found %s", + constructor_type->element_type()->name, + result->type->name); + } + + /* Attempt to convert the parameter to a constant valued expression. + * After doing so, track whether or not all the parameters to the + * constructor are trivially constant valued expressions. + */ + ir_rvalue *const constant = result->constant_expression_value(); + + if (constant != NULL) + result = constant; + else + all_parameters_are_constant = false; + + ir->replace_with(result); + } + + if (all_parameters_are_constant) + return new(ctx) ir_constant(constructor_type, &actual_parameters); + + ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor", + ir_var_temporary); + instructions->push_tail(var); + + int i = 0; + foreach_list(node, &actual_parameters) { + ir_rvalue *rhs = (ir_rvalue *) node; + ir_rvalue *lhs = new(ctx) ir_dereference_array(var, + new(ctx) ir_constant(i)); + + ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL); + instructions->push_tail(assignment); + + i++; + } + + return new(ctx) ir_dereference_variable(var); +} + + +/** + * Try to convert a record constructor to a constant expression + */ +static ir_constant * +constant_record_constructor(const glsl_type *constructor_type, + exec_list *parameters, void *mem_ctx) +{ + foreach_list(node, parameters) { + ir_constant *constant = ((ir_instruction *) node)->as_constant(); + if (constant == NULL) + return NULL; + node->replace_with(constant); + } + + return new(mem_ctx) ir_constant(constructor_type, parameters); +} + + +/** + * Determine if a list consists of a single scalar r-value + */ +bool +single_scalar_parameter(exec_list *parameters) +{ + const ir_rvalue *const p = (ir_rvalue *) parameters->head; + assert(((ir_rvalue *)p)->as_rvalue() != NULL); + + return (p->type->is_scalar() && p->next->is_tail_sentinel()); +} + + +/** + * Generate inline code for a vector constructor + * + * The generated constructor code will consist of a temporary variable + * declaration of the same type as the constructor. A sequence of assignments + * from constructor parameters to the temporary will follow. + * + * \return + * An \c ir_dereference_variable of the temprorary generated in the constructor + * body. + */ +ir_rvalue * +emit_inline_vector_constructor(const glsl_type *type, + exec_list *instructions, + exec_list *parameters, + void *ctx) +{ + assert(!parameters->is_empty()); + + ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary); + instructions->push_tail(var); + + /* There are two kinds of vector constructors. + * + * - Construct a vector from a single scalar by replicating that scalar to + * all components of the vector. + * + * - Construct a vector from an arbirary combination of vectors and + * scalars. The components of the constructor parameters are assigned + * to the vector in order until the vector is full. + */ + const unsigned lhs_components = type->components(); + if (single_scalar_parameter(parameters)) { + ir_rvalue *first_param = (ir_rvalue *)parameters->head; + ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0, + lhs_components); + ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var); + const unsigned mask = (1U << lhs_components) - 1; + + assert(rhs->type == lhs->type); + + ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask); + instructions->push_tail(inst); + } else { + unsigned base_component = 0; + unsigned base_lhs_component = 0; + ir_constant_data data; + unsigned constant_mask = 0, constant_components = 0; + + memset(&data, 0, sizeof(data)); + + foreach_list(node, parameters) { + ir_rvalue *param = (ir_rvalue *) node; + unsigned rhs_components = param->type->components(); + + /* Do not try to assign more components to the vector than it has! + */ + if ((rhs_components + base_lhs_component) > lhs_components) { + rhs_components = lhs_components - base_lhs_component; + } + + const ir_constant *const c = param->as_constant(); + if (c != NULL) { + for (unsigned i = 0; i < rhs_components; i++) { + switch (c->type->base_type) { + case GLSL_TYPE_UINT: + data.u[i + base_component] = c->get_uint_component(i); + break; + case GLSL_TYPE_INT: + data.i[i + base_component] = c->get_int_component(i); + break; + case GLSL_TYPE_FLOAT: + data.f[i + base_component] = c->get_float_component(i); + break; + case GLSL_TYPE_BOOL: + data.b[i + base_component] = c->get_bool_component(i); + break; + default: + assert(!"Should not get here."); + break; + } + } + + /* Mask of fields to be written in the assignment. + */ + constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component; + constant_components += rhs_components; + + base_component += rhs_components; + } + /* Advance the component index by the number of components + * that were just assigned. + */ + base_lhs_component += rhs_components; + } + + if (constant_mask != 0) { + ir_dereference *lhs = new(ctx) ir_dereference_variable(var); + const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type, + constant_components, + 1); + ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data); + + ir_instruction *inst = + new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask); + instructions->push_tail(inst); + } + + base_component = 0; + foreach_list(node, parameters) { + ir_rvalue *param = (ir_rvalue *) node; + unsigned rhs_components = param->type->components(); + + /* Do not try to assign more components to the vector than it has! + */ + if ((rhs_components + base_component) > lhs_components) { + rhs_components = lhs_components - base_component; + } + + const ir_constant *const c = param->as_constant(); + if (c == NULL) { + /* Mask of fields to be written in the assignment. + */ + const unsigned write_mask = ((1U << rhs_components) - 1) + << base_component; + + ir_dereference *lhs = new(ctx) ir_dereference_variable(var); + + /* Generate a swizzle so that LHS and RHS sizes match. + */ + ir_rvalue *rhs = + new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components); + + ir_instruction *inst = + new(ctx) ir_assignment(lhs, rhs, NULL, write_mask); + instructions->push_tail(inst); + } + + /* Advance the component index by the number of components that were + * just assigned. + */ + base_component += rhs_components; + } + } + return new(ctx) ir_dereference_variable(var); +} + + +/** + * Generate assignment of a portion of a vector to a portion of a matrix column + * + * \param src_base First component of the source to be used in assignment + * \param column Column of destination to be assiged + * \param row_base First component of the destination column to be assigned + * \param count Number of components to be assigned + * + * \note + * \c src_base + \c count must be less than or equal to the number of components + * in the source vector. + */ +ir_instruction * +assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base, + ir_rvalue *src, unsigned src_base, unsigned count, + void *mem_ctx) +{ + ir_constant *col_idx = new(mem_ctx) ir_constant(column); + ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx); + + assert(column_ref->type->components() >= (row_base + count)); + assert(src->type->components() >= (src_base + count)); + + /* Generate a swizzle that extracts the number of components from the source + * that are to be assigned to the column of the matrix. + */ + if (count < src->type->vector_elements) { + src = new(mem_ctx) ir_swizzle(src, + src_base + 0, src_base + 1, + src_base + 2, src_base + 3, + count); + } + + /* Mask of fields to be written in the assignment. + */ + const unsigned write_mask = ((1U << count) - 1) << row_base; + + return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask); +} + + +/** + * Generate inline code for a matrix constructor + * + * The generated constructor code will consist of a temporary variable + * declaration of the same type as the constructor. A sequence of assignments + * from constructor parameters to the temporary will follow. + * + * \return + * An \c ir_dereference_variable of the temprorary generated in the constructor + * body. + */ +ir_rvalue * +emit_inline_matrix_constructor(const glsl_type *type, + exec_list *instructions, + exec_list *parameters, + void *ctx) +{ + assert(!parameters->is_empty()); + + ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary); + instructions->push_tail(var); + + /* There are three kinds of matrix constructors. + * + * - Construct a matrix from a single scalar by replicating that scalar to + * along the diagonal of the matrix and setting all other components to + * zero. + * + * - Construct a matrix from an arbirary combination of vectors and + * scalars. The components of the constructor parameters are assigned + * to the matrix in colum-major order until the matrix is full. + * + * - Construct a matrix from a single matrix. The source matrix is copied + * to the upper left portion of the constructed matrix, and the remaining + * elements take values from the identity matrix. + */ + ir_rvalue *const first_param = (ir_rvalue *) parameters->head; + if (single_scalar_parameter(parameters)) { + /* Assign the scalar to the X component of a vec4, and fill the remaining + * components with zero. + */ + ir_variable *rhs_var = + new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec", + ir_var_temporary); + instructions->push_tail(rhs_var); + + ir_constant_data zero; + zero.f[0] = 0.0; + zero.f[1] = 0.0; + zero.f[2] = 0.0; + zero.f[3] = 0.0; + + ir_instruction *inst = + new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var), + new(ctx) ir_constant(rhs_var->type, &zero), + NULL); + instructions->push_tail(inst); + + ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); + + inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01); + instructions->push_tail(inst); + + /* Assign the temporary vector to each column of the destination matrix + * with a swizzle that puts the X component on the diagonal of the + * matrix. In some cases this may mean that the X component does not + * get assigned into the column at all (i.e., when the matrix has more + * columns than rows). + */ + static const unsigned rhs_swiz[4][4] = { + { 0, 1, 1, 1 }, + { 1, 0, 1, 1 }, + { 1, 1, 0, 1 }, + { 1, 1, 1, 0 } + }; + + const unsigned cols_to_init = MIN2(type->matrix_columns, + type->vector_elements); + for (unsigned i = 0; i < cols_to_init; i++) { + ir_constant *const col_idx = new(ctx) ir_constant(i); + ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx); + + ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); + ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i], + type->vector_elements); + + inst = new(ctx) ir_assignment(col_ref, rhs, NULL); + instructions->push_tail(inst); + } + + for (unsigned i = cols_to_init; i < type->matrix_columns; i++) { + ir_constant *const col_idx = new(ctx) ir_constant(i); + ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx); + + ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); + ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1, + type->vector_elements); + + inst = new(ctx) ir_assignment(col_ref, rhs, NULL); + instructions->push_tail(inst); + } + } else if (first_param->type->is_matrix()) { + /* From page 50 (56 of the PDF) of the GLSL 1.50 spec: + * + * "If a matrix is constructed from a matrix, then each component + * (column i, row j) in the result that has a corresponding + * component (column i, row j) in the argument will be initialized + * from there. All other components will be initialized to the + * identity matrix. If a matrix argument is given to a matrix + * constructor, it is an error to have any other arguments." + */ + assert(first_param->next->is_tail_sentinel()); + ir_rvalue *const src_matrix = first_param; + + /* If the source matrix is smaller, pre-initialize the relavent parts of + * the destination matrix to the identity matrix. + */ + if ((src_matrix->type->matrix_columns < var->type->matrix_columns) + || (src_matrix->type->vector_elements < var->type->vector_elements)) { + + /* If the source matrix has fewer rows, every column of the destination + * must be initialized. Otherwise only the columns in the destination + * that do not exist in the source must be initialized. + */ + unsigned col = + (src_matrix->type->vector_elements < var->type->vector_elements) + ? 0 : src_matrix->type->matrix_columns; + + const glsl_type *const col_type = var->type->column_type(); + for (/* empty */; col < var->type->matrix_columns; col++) { + ir_constant_data ident; + + ident.f[0] = 0.0; + ident.f[1] = 0.0; + ident.f[2] = 0.0; + ident.f[3] = 0.0; + + ident.f[col] = 1.0; + + ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident); + + ir_rvalue *const lhs = + new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col)); + + ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL); + instructions->push_tail(inst); + } + } + + /* Assign columns from the source matrix to the destination matrix. + * + * Since the parameter will be used in the RHS of multiple assignments, + * generate a temporary and copy the paramter there. + */ + ir_variable *const rhs_var = + new(ctx) ir_variable(first_param->type, "mat_ctor_mat", + ir_var_temporary); + instructions->push_tail(rhs_var); + + ir_dereference *const rhs_var_ref = + new(ctx) ir_dereference_variable(rhs_var); + ir_instruction *const inst = + new(ctx) ir_assignment(rhs_var_ref, first_param, NULL); + instructions->push_tail(inst); + + const unsigned last_row = MIN2(src_matrix->type->vector_elements, + var->type->vector_elements); + const unsigned last_col = MIN2(src_matrix->type->matrix_columns, + var->type->matrix_columns); + + unsigned swiz[4] = { 0, 0, 0, 0 }; + for (unsigned i = 1; i < last_row; i++) + swiz[i] = i; + + const unsigned write_mask = (1U << last_row) - 1; + + for (unsigned i = 0; i < last_col; i++) { + ir_dereference *const lhs = + new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); + ir_rvalue *const rhs_col = + new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i)); + + /* If one matrix has columns that are smaller than the columns of the + * other matrix, wrap the column access of the larger with a swizzle + * so that the LHS and RHS of the assignment have the same size (and + * therefore have the same type). + * + * It would be perfectly valid to unconditionally generate the + * swizzles, this this will typically result in a more compact IR tree. + */ + ir_rvalue *rhs; + if (lhs->type->vector_elements != rhs_col->type->vector_elements) { + rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row); + } else { + rhs = rhs_col; + } + + ir_instruction *inst = + new(ctx) ir_assignment(lhs, rhs, NULL, write_mask); + instructions->push_tail(inst); + } + } else { + const unsigned cols = type->matrix_columns; + const unsigned rows = type->vector_elements; + unsigned col_idx = 0; + unsigned row_idx = 0; + + foreach_list (node, parameters) { + ir_rvalue *const rhs = (ir_rvalue *) node; + const unsigned components_remaining_this_column = rows - row_idx; + unsigned rhs_components = rhs->type->components(); + unsigned rhs_base = 0; + + /* Since the parameter might be used in the RHS of two assignments, + * generate a temporary and copy the paramter there. + */ + ir_variable *rhs_var = + new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary); + instructions->push_tail(rhs_var); + + ir_dereference *rhs_var_ref = + new(ctx) ir_dereference_variable(rhs_var); + ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL); + instructions->push_tail(inst); + + /* Assign the current parameter to as many components of the matrix + * as it will fill. + * + * NOTE: A single vector parameter can span two matrix columns. A + * single vec4, for example, can completely fill a mat2. + */ + if (rhs_components >= components_remaining_this_column) { + const unsigned count = MIN2(rhs_components, + components_remaining_this_column); + + rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); + + ir_instruction *inst = assign_to_matrix_column(var, col_idx, + row_idx, + rhs_var_ref, 0, + count, ctx); + instructions->push_tail(inst); + + rhs_base = count; + + col_idx++; + row_idx = 0; + } + + /* If there is data left in the parameter and components left to be + * set in the destination, emit another assignment. It is possible + * that the assignment could be of a vec4 to the last element of the + * matrix. In this case col_idx==cols, but there is still data + * left in the source parameter. Obviously, don't emit an assignment + * to data outside the destination matrix. + */ + if ((col_idx < cols) && (rhs_base < rhs_components)) { + const unsigned count = rhs_components - rhs_base; + + rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); + + ir_instruction *inst = assign_to_matrix_column(var, col_idx, + row_idx, + rhs_var_ref, + rhs_base, + count, ctx); + instructions->push_tail(inst); + + row_idx += count; + } + } + } + + return new(ctx) ir_dereference_variable(var); +} + + +ir_rvalue * +emit_inline_record_constructor(const glsl_type *type, + exec_list *instructions, + exec_list *parameters, + void *mem_ctx) +{ + ir_variable *const var = + new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary); + ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var); + + instructions->push_tail(var); + + exec_node *node = parameters->head; + for (unsigned i = 0; i < type->length; i++) { + assert(!node->is_tail_sentinel()); + + ir_dereference *const lhs = + new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL), + type->fields.structure[i].name); + + ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue(); + assert(rhs != NULL); + + ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL); + + instructions->push_tail(assign); + node = node->next; + } + + return d; +} + + +ir_rvalue * +ast_function_expression::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + /* There are three sorts of function calls. + * + * 1. constructors - The first subexpression is an ast_type_specifier. + * 2. methods - Only the .length() method of array types. + * 3. functions - Calls to regular old functions. + * + * Method calls are actually detected when the ast_field_selection + * expression is handled. + */ + if (is_constructor()) { + const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0]; + YYLTYPE loc = type->get_location(); + const char *name; + + const glsl_type *const constructor_type = type->glsl_type(& name, state); + + + /* Constructors for samplers are illegal. + */ + if (constructor_type->is_sampler()) { + _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'", + constructor_type->name); + return ir_call::get_error_instruction(ctx); + } + + if (constructor_type->is_array()) { + if (state->language_version <= 110) { + _mesa_glsl_error(& loc, state, + "array constructors forbidden in GLSL 1.10"); + return ir_call::get_error_instruction(ctx); + } + + return process_array_constructor(instructions, constructor_type, + & loc, &this->expressions, state); + } + + + /* There are two kinds of constructor call. Constructors for built-in + * language types, such as mat4 and vec2, are free form. The only + * requirement is that the parameters must provide enough values of the + * correct scalar type. Constructors for arrays and structures must + * have the exact number of parameters with matching types in the + * correct order. These constructors follow essentially the same type + * matching rules as functions. + */ + if (!constructor_type->is_numeric() && !constructor_type->is_boolean()) + return ir_call::get_error_instruction(ctx); + + /* Total number of components of the type being constructed. */ + const unsigned type_components = constructor_type->components(); + + /* Number of components from parameters that have actually been + * consumed. This is used to perform several kinds of error checking. + */ + unsigned components_used = 0; + + unsigned matrix_parameters = 0; + unsigned nonmatrix_parameters = 0; + exec_list actual_parameters; + + foreach_list (n, &this->expressions) { + ast_node *ast = exec_node_data(ast_node, n, link); + ir_rvalue *result = ast->hir(instructions, state)->as_rvalue(); + + /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: + * + * "It is an error to provide extra arguments beyond this + * last used argument." + */ + if (components_used >= type_components) { + _mesa_glsl_error(& loc, state, "too many parameters to `%s' " + "constructor", + constructor_type->name); + return ir_call::get_error_instruction(ctx); + } + + if (!result->type->is_numeric() && !result->type->is_boolean()) { + _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " + "non-numeric data type", + constructor_type->name); + return ir_call::get_error_instruction(ctx); + } + + /* Count the number of matrix and nonmatrix parameters. This + * is used below to enforce some of the constructor rules. + */ + if (result->type->is_matrix()) + matrix_parameters++; + else + nonmatrix_parameters++; + + actual_parameters.push_tail(result); + components_used += result->type->components(); + } + + /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: + * + * "It is an error to construct matrices from other matrices. This + * is reserved for future use." + */ + if (state->language_version == 110 && matrix_parameters > 0 + && constructor_type->is_matrix()) { + _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " + "matrix in GLSL 1.10", + constructor_type->name); + return ir_call::get_error_instruction(ctx); + } + + /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: + * + * "If a matrix argument is given to a matrix constructor, it is + * an error to have any other arguments." + */ + if ((matrix_parameters > 0) + && ((matrix_parameters + nonmatrix_parameters) > 1) + && constructor_type->is_matrix()) { + _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, " + "matrix must be only parameter", + constructor_type->name); + return ir_call::get_error_instruction(ctx); + } + + /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: + * + * "In these cases, there must be enough components provided in the + * arguments to provide an initializer for every component in the + * constructed value." + */ + if (components_used < type_components && components_used != 1 + && matrix_parameters == 0) { + _mesa_glsl_error(& loc, state, "too few components to construct " + "`%s'", + constructor_type->name); + return ir_call::get_error_instruction(ctx); + } + + /* Later, we cast each parameter to the same base type as the + * constructor. Since there are no non-floating point matrices, we + * need to break them up into a series of column vectors. + */ + if (constructor_type->base_type != GLSL_TYPE_FLOAT) { + foreach_list_safe(n, &actual_parameters) { + ir_rvalue *matrix = (ir_rvalue *) n; + + if (!matrix->type->is_matrix()) + continue; + + /* Create a temporary containing the matrix. */ + ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp", + ir_var_temporary); + instructions->push_tail(var); + instructions->push_tail(new(ctx) ir_assignment(new(ctx) + ir_dereference_variable(var), matrix, NULL)); + var->constant_value = matrix->constant_expression_value(); + + /* Replace the matrix with dereferences of its columns. */ + for (int i = 0; i < matrix->type->matrix_columns; i++) { + matrix->insert_before(new (ctx) ir_dereference_array(var, + new(ctx) ir_constant(i))); + } + matrix->remove(); + } + } + + bool all_parameters_are_constant = true; + + /* Type cast each parameter and, if possible, fold constants.*/ + foreach_list_safe(n, &actual_parameters) { + ir_rvalue *ir = (ir_rvalue *) n; + + const glsl_type *desired_type = + glsl_type::get_instance(constructor_type->base_type, + ir->type->vector_elements, + ir->type->matrix_columns); + ir_rvalue *result = convert_component(ir, desired_type); + + /* Attempt to convert the parameter to a constant valued expression. + * After doing so, track whether or not all the parameters to the + * constructor are trivially constant valued expressions. + */ + ir_rvalue *const constant = result->constant_expression_value(); + + if (constant != NULL) + result = constant; + else + all_parameters_are_constant = false; + + if (result != ir) { + ir->replace_with(result); + } + } + + /* If all of the parameters are trivially constant, create a + * constant representing the complete collection of parameters. + */ + if (all_parameters_are_constant) { + return new(ctx) ir_constant(constructor_type, &actual_parameters); + } else if (constructor_type->is_scalar()) { + return dereference_component((ir_rvalue *) actual_parameters.head, + 0); + } else if (constructor_type->is_vector()) { + return emit_inline_vector_constructor(constructor_type, + instructions, + &actual_parameters, + ctx); + } else { + assert(constructor_type->is_matrix()); + return emit_inline_matrix_constructor(constructor_type, + instructions, + &actual_parameters, + ctx); + } + } else { + const ast_expression *id = subexpressions[0]; + YYLTYPE loc = id->get_location(); + exec_list actual_parameters; + + process_parameters(instructions, &actual_parameters, &this->expressions, + state); + + const glsl_type *const type = + state->symbols->get_type(id->primary_expression.identifier); + + if ((type != NULL) && type->is_record()) { + exec_node *node = actual_parameters.head; + for (unsigned i = 0; i < type->length; i++) { + ir_rvalue *ir = (ir_rvalue *) node; + + if (node->is_tail_sentinel()) { + _mesa_glsl_error(&loc, state, + "insufficient parameters to constructor " + "for `%s'", + type->name); + return ir_call::get_error_instruction(ctx); + } + + if (apply_implicit_conversion(type->fields.structure[i].type, ir, + state)) { + node->replace_with(ir); + } else { + _mesa_glsl_error(&loc, state, + "parameter type mismatch in constructor " + "for `%s.%s' (%s vs %s)", + type->name, + type->fields.structure[i].name, + ir->type->name, + type->fields.structure[i].type->name); + return ir_call::get_error_instruction(ctx);; + } + + node = node->next; + } + + if (!node->is_tail_sentinel()) { + _mesa_glsl_error(&loc, state, "too many parameters in constructor " + "for `%s'", type->name); + return ir_call::get_error_instruction(ctx); + } + + ir_rvalue *const constant = + constant_record_constructor(type, &actual_parameters, state); + + return (constant != NULL) + ? constant + : emit_inline_record_constructor(type, instructions, + &actual_parameters, state); + } + + return match_function_by_name(instructions, + id->primary_expression.identifier, & loc, + &actual_parameters, state); + } + + return ir_call::get_error_instruction(ctx); +} -- cgit v1.2.3