From 0bf07d32cbd460220c67d726900772cf3692746d Mon Sep 17 00:00:00 2001 From: marha Date: Tue, 1 Feb 2011 10:02:38 +0000 Subject: libX11 libXinerama mesa git update 1 Feb 2011 --- mesalib/src/glsl/opt_algebraic.cpp | 822 ++++++++++++++++++------------------- 1 file changed, 411 insertions(+), 411 deletions(-) (limited to 'mesalib/src/glsl/opt_algebraic.cpp') diff --git a/mesalib/src/glsl/opt_algebraic.cpp b/mesalib/src/glsl/opt_algebraic.cpp index 82f90197d..cade9611d 100644 --- a/mesalib/src/glsl/opt_algebraic.cpp +++ b/mesalib/src/glsl/opt_algebraic.cpp @@ -1,411 +1,411 @@ -/* - * Copyright © 2010 Intel Corporation - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice (including the next - * paragraph) shall be included in all copies or substantial portions of the - * Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING - * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - * DEALINGS IN THE SOFTWARE. - */ - -/** - * \file opt_algebraic.cpp - * - * Takes advantage of association, commutivity, and other algebraic - * properties to simplify expressions. - */ - -#include "ir.h" -#include "ir_visitor.h" -#include "ir_rvalue_visitor.h" -#include "ir_optimization.h" -#include "glsl_types.h" - -/** - * Visitor class for replacing expressions with ir_constant values. - */ - -class ir_algebraic_visitor : public ir_rvalue_visitor { -public: - ir_algebraic_visitor() - { - this->progress = false; - this->mem_ctx = NULL; - } - - virtual ~ir_algebraic_visitor() - { - } - - ir_rvalue *handle_expression(ir_expression *ir); - void handle_rvalue(ir_rvalue **rvalue); - bool reassociate_constant(ir_expression *ir1, - int const_index, - ir_constant *constant, - ir_expression *ir2); - void reassociate_operands(ir_expression *ir1, - int op1, - ir_expression *ir2, - int op2); - ir_rvalue *swizzle_if_required(ir_expression *expr, - ir_rvalue *operand); - - void *mem_ctx; - - bool progress; -}; - -static inline bool -is_vec_zero(ir_constant *ir) -{ - return (ir == NULL) ? false : ir->is_zero(); -} - -static inline bool -is_vec_one(ir_constant *ir) -{ - return (ir == NULL) ? false : ir->is_one(); -} - -static void -update_type(ir_expression *ir) -{ - if (ir->operands[0]->type->is_vector()) - ir->type = ir->operands[0]->type; - else - ir->type = ir->operands[1]->type; -} - -void -ir_algebraic_visitor::reassociate_operands(ir_expression *ir1, - int op1, - ir_expression *ir2, - int op2) -{ - ir_rvalue *temp = ir2->operands[op2]; - ir2->operands[op2] = ir1->operands[op1]; - ir1->operands[op1] = temp; - - /* Update the type of ir2. The type of ir1 won't have changed -- - * base types matched, and at least one of the operands of the 2 - * binops is still a vector if any of them were. - */ - update_type(ir2); - - this->progress = true; -} - -/** - * Reassociates a constant down a tree of adds or multiplies. - * - * Consider (2 * (a * (b * 0.5))). We want to send up with a * b. - */ -bool -ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index, - ir_constant *constant, - ir_expression *ir2) -{ - if (!ir2 || ir1->operation != ir2->operation) - return false; - - /* Don't want to even think about matrices. */ - if (ir1->operands[0]->type->is_matrix() || - ir1->operands[1]->type->is_matrix() || - ir2->operands[0]->type->is_matrix() || - ir2->operands[1]->type->is_matrix()) - return false; - - ir_constant *ir2_const[2]; - ir2_const[0] = ir2->operands[0]->constant_expression_value(); - ir2_const[1] = ir2->operands[1]->constant_expression_value(); - - if (ir2_const[0] && ir2_const[1]) - return false; - - if (ir2_const[0]) { - reassociate_operands(ir1, const_index, ir2, 1); - return true; - } else if (ir2_const[1]) { - reassociate_operands(ir1, const_index, ir2, 0); - return true; - } - - if (reassociate_constant(ir1, const_index, constant, - ir2->operands[0]->as_expression())) { - update_type(ir2); - return true; - } - - if (reassociate_constant(ir1, const_index, constant, - ir2->operands[1]->as_expression())) { - update_type(ir2); - return true; - } - - return false; -} - -/* When eliminating an expression and just returning one of its operands, - * we may need to swizzle that operand out to a vector if the expression was - * vector type. - */ -ir_rvalue * -ir_algebraic_visitor::swizzle_if_required(ir_expression *expr, - ir_rvalue *operand) -{ - if (expr->type->is_vector() && operand->type->is_scalar()) { - return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0, - expr->type->vector_elements); - } else - return operand; -} - -ir_rvalue * -ir_algebraic_visitor::handle_expression(ir_expression *ir) -{ - ir_constant *op_const[2] = {NULL, NULL}; - ir_expression *op_expr[2] = {NULL, NULL}; - ir_expression *temp; - unsigned int i; - - assert(ir->get_num_operands() <= 2); - for (i = 0; i < ir->get_num_operands(); i++) { - if (ir->operands[i]->type->is_matrix()) - return ir; - - op_const[i] = ir->operands[i]->constant_expression_value(); - op_expr[i] = ir->operands[i]->as_expression(); - } - - if (this->mem_ctx == NULL) - this->mem_ctx = talloc_parent(ir); - - switch (ir->operation) { - case ir_unop_logic_not: { - enum ir_expression_operation new_op = ir_unop_logic_not; - - if (op_expr[0] == NULL) - break; - - switch (op_expr[0]->operation) { - case ir_binop_less: new_op = ir_binop_gequal; break; - case ir_binop_greater: new_op = ir_binop_lequal; break; - case ir_binop_lequal: new_op = ir_binop_greater; break; - case ir_binop_gequal: new_op = ir_binop_less; break; - case ir_binop_equal: new_op = ir_binop_nequal; break; - case ir_binop_nequal: new_op = ir_binop_equal; break; - case ir_binop_all_equal: new_op = ir_binop_any_nequal; break; - case ir_binop_any_nequal: new_op = ir_binop_all_equal; break; - - default: - /* The default case handler is here to silence a warning from GCC. - */ - break; - } - - if (new_op != ir_unop_logic_not) { - this->progress = true; - return new(mem_ctx) ir_expression(new_op, - ir->type, - op_expr[0]->operands[0], - op_expr[0]->operands[1]); - } - - break; - } - - case ir_binop_add: - if (is_vec_zero(op_const[0])) { - this->progress = true; - return swizzle_if_required(ir, ir->operands[1]); - } - if (is_vec_zero(op_const[1])) { - this->progress = true; - return swizzle_if_required(ir, ir->operands[0]); - } - - /* Reassociate addition of constants so that we can do constant - * folding. - */ - if (op_const[0] && !op_const[1]) - reassociate_constant(ir, 0, op_const[0], - ir->operands[1]->as_expression()); - if (op_const[1] && !op_const[0]) - reassociate_constant(ir, 1, op_const[1], - ir->operands[0]->as_expression()); - break; - - case ir_binop_sub: - if (is_vec_zero(op_const[0])) { - this->progress = true; - temp = new(mem_ctx) ir_expression(ir_unop_neg, - ir->operands[1]->type, - ir->operands[1], - NULL); - return swizzle_if_required(ir, temp); - } - if (is_vec_zero(op_const[1])) { - this->progress = true; - return swizzle_if_required(ir, ir->operands[0]); - } - break; - - case ir_binop_mul: - if (is_vec_one(op_const[0])) { - this->progress = true; - return swizzle_if_required(ir, ir->operands[1]); - } - if (is_vec_one(op_const[1])) { - this->progress = true; - return swizzle_if_required(ir, ir->operands[0]); - } - - if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) { - this->progress = true; - return ir_constant::zero(ir, ir->type); - } - - /* Reassociate multiplication of constants so that we can do - * constant folding. - */ - if (op_const[0] && !op_const[1]) - reassociate_constant(ir, 0, op_const[0], - ir->operands[1]->as_expression()); - if (op_const[1] && !op_const[0]) - reassociate_constant(ir, 1, op_const[1], - ir->operands[0]->as_expression()); - - break; - - case ir_binop_div: - if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) { - this->progress = true; - temp = new(mem_ctx) ir_expression(ir_unop_rcp, - ir->operands[1]->type, - ir->operands[1], - NULL); - return swizzle_if_required(ir, temp); - } - if (is_vec_one(op_const[1])) { - this->progress = true; - return swizzle_if_required(ir, ir->operands[0]); - } - break; - - case ir_binop_logic_and: - /* FINISHME: Also simplify (a && a) to (a). */ - if (is_vec_one(op_const[0])) { - this->progress = true; - return ir->operands[1]; - } else if (is_vec_one(op_const[1])) { - this->progress = true; - return ir->operands[0]; - } else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) { - this->progress = true; - return ir_constant::zero(mem_ctx, ir->type); - } - break; - - case ir_binop_logic_xor: - /* FINISHME: Also simplify (a ^^ a) to (false). */ - if (is_vec_zero(op_const[0])) { - this->progress = true; - return ir->operands[1]; - } else if (is_vec_zero(op_const[1])) { - this->progress = true; - return ir->operands[0]; - } else if (is_vec_one(op_const[0])) { - this->progress = true; - return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type, - ir->operands[1], NULL); - } else if (is_vec_one(op_const[1])) { - this->progress = true; - return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type, - ir->operands[0], NULL); - } - break; - - case ir_binop_logic_or: - /* FINISHME: Also simplify (a || a) to (a). */ - if (is_vec_zero(op_const[0])) { - this->progress = true; - return ir->operands[1]; - } else if (is_vec_zero(op_const[1])) { - this->progress = true; - return ir->operands[0]; - } else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) { - ir_constant_data data; - - for (unsigned i = 0; i < 16; i++) - data.b[i] = true; - - this->progress = true; - return new(mem_ctx) ir_constant(ir->type, &data); - } - break; - - case ir_unop_rcp: - if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) { - this->progress = true; - return op_expr[0]->operands[0]; - } - - /* FINISHME: We should do rcp(rsq(x)) -> sqrt(x) for some - * backends, except that some backends will have done sqrt -> - * rcp(rsq(x)) and we don't want to undo it for them. - */ - - /* As far as we know, all backends are OK with rsq. */ - if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) { - this->progress = true; - temp = new(mem_ctx) ir_expression(ir_unop_rsq, - op_expr[0]->operands[0]->type, - op_expr[0]->operands[0], - NULL); - return swizzle_if_required(ir, temp); - } - - break; - - default: - break; - } - - return ir; -} - -void -ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue) -{ - if (!*rvalue) - return; - - ir_expression *expr = (*rvalue)->as_expression(); - if (!expr || expr->operation == ir_quadop_vector) - return; - - *rvalue = handle_expression(expr); -} - -bool -do_algebraic(exec_list *instructions) -{ - ir_algebraic_visitor v; - - visit_list_elements(&v, instructions); - - return v.progress; -} +/* + * Copyright © 2010 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +/** + * \file opt_algebraic.cpp + * + * Takes advantage of association, commutivity, and other algebraic + * properties to simplify expressions. + */ + +#include "ir.h" +#include "ir_visitor.h" +#include "ir_rvalue_visitor.h" +#include "ir_optimization.h" +#include "glsl_types.h" + +/** + * Visitor class for replacing expressions with ir_constant values. + */ + +class ir_algebraic_visitor : public ir_rvalue_visitor { +public: + ir_algebraic_visitor() + { + this->progress = false; + this->mem_ctx = NULL; + } + + virtual ~ir_algebraic_visitor() + { + } + + ir_rvalue *handle_expression(ir_expression *ir); + void handle_rvalue(ir_rvalue **rvalue); + bool reassociate_constant(ir_expression *ir1, + int const_index, + ir_constant *constant, + ir_expression *ir2); + void reassociate_operands(ir_expression *ir1, + int op1, + ir_expression *ir2, + int op2); + ir_rvalue *swizzle_if_required(ir_expression *expr, + ir_rvalue *operand); + + void *mem_ctx; + + bool progress; +}; + +static inline bool +is_vec_zero(ir_constant *ir) +{ + return (ir == NULL) ? false : ir->is_zero(); +} + +static inline bool +is_vec_one(ir_constant *ir) +{ + return (ir == NULL) ? false : ir->is_one(); +} + +static void +update_type(ir_expression *ir) +{ + if (ir->operands[0]->type->is_vector()) + ir->type = ir->operands[0]->type; + else + ir->type = ir->operands[1]->type; +} + +void +ir_algebraic_visitor::reassociate_operands(ir_expression *ir1, + int op1, + ir_expression *ir2, + int op2) +{ + ir_rvalue *temp = ir2->operands[op2]; + ir2->operands[op2] = ir1->operands[op1]; + ir1->operands[op1] = temp; + + /* Update the type of ir2. The type of ir1 won't have changed -- + * base types matched, and at least one of the operands of the 2 + * binops is still a vector if any of them were. + */ + update_type(ir2); + + this->progress = true; +} + +/** + * Reassociates a constant down a tree of adds or multiplies. + * + * Consider (2 * (a * (b * 0.5))). We want to send up with a * b. + */ +bool +ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index, + ir_constant *constant, + ir_expression *ir2) +{ + if (!ir2 || ir1->operation != ir2->operation) + return false; + + /* Don't want to even think about matrices. */ + if (ir1->operands[0]->type->is_matrix() || + ir1->operands[1]->type->is_matrix() || + ir2->operands[0]->type->is_matrix() || + ir2->operands[1]->type->is_matrix()) + return false; + + ir_constant *ir2_const[2]; + ir2_const[0] = ir2->operands[0]->constant_expression_value(); + ir2_const[1] = ir2->operands[1]->constant_expression_value(); + + if (ir2_const[0] && ir2_const[1]) + return false; + + if (ir2_const[0]) { + reassociate_operands(ir1, const_index, ir2, 1); + return true; + } else if (ir2_const[1]) { + reassociate_operands(ir1, const_index, ir2, 0); + return true; + } + + if (reassociate_constant(ir1, const_index, constant, + ir2->operands[0]->as_expression())) { + update_type(ir2); + return true; + } + + if (reassociate_constant(ir1, const_index, constant, + ir2->operands[1]->as_expression())) { + update_type(ir2); + return true; + } + + return false; +} + +/* When eliminating an expression and just returning one of its operands, + * we may need to swizzle that operand out to a vector if the expression was + * vector type. + */ +ir_rvalue * +ir_algebraic_visitor::swizzle_if_required(ir_expression *expr, + ir_rvalue *operand) +{ + if (expr->type->is_vector() && operand->type->is_scalar()) { + return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0, + expr->type->vector_elements); + } else + return operand; +} + +ir_rvalue * +ir_algebraic_visitor::handle_expression(ir_expression *ir) +{ + ir_constant *op_const[2] = {NULL, NULL}; + ir_expression *op_expr[2] = {NULL, NULL}; + ir_expression *temp; + unsigned int i; + + assert(ir->get_num_operands() <= 2); + for (i = 0; i < ir->get_num_operands(); i++) { + if (ir->operands[i]->type->is_matrix()) + return ir; + + op_const[i] = ir->operands[i]->constant_expression_value(); + op_expr[i] = ir->operands[i]->as_expression(); + } + + if (this->mem_ctx == NULL) + this->mem_ctx = ralloc_parent(ir); + + switch (ir->operation) { + case ir_unop_logic_not: { + enum ir_expression_operation new_op = ir_unop_logic_not; + + if (op_expr[0] == NULL) + break; + + switch (op_expr[0]->operation) { + case ir_binop_less: new_op = ir_binop_gequal; break; + case ir_binop_greater: new_op = ir_binop_lequal; break; + case ir_binop_lequal: new_op = ir_binop_greater; break; + case ir_binop_gequal: new_op = ir_binop_less; break; + case ir_binop_equal: new_op = ir_binop_nequal; break; + case ir_binop_nequal: new_op = ir_binop_equal; break; + case ir_binop_all_equal: new_op = ir_binop_any_nequal; break; + case ir_binop_any_nequal: new_op = ir_binop_all_equal; break; + + default: + /* The default case handler is here to silence a warning from GCC. + */ + break; + } + + if (new_op != ir_unop_logic_not) { + this->progress = true; + return new(mem_ctx) ir_expression(new_op, + ir->type, + op_expr[0]->operands[0], + op_expr[0]->operands[1]); + } + + break; + } + + case ir_binop_add: + if (is_vec_zero(op_const[0])) { + this->progress = true; + return swizzle_if_required(ir, ir->operands[1]); + } + if (is_vec_zero(op_const[1])) { + this->progress = true; + return swizzle_if_required(ir, ir->operands[0]); + } + + /* Reassociate addition of constants so that we can do constant + * folding. + */ + if (op_const[0] && !op_const[1]) + reassociate_constant(ir, 0, op_const[0], + ir->operands[1]->as_expression()); + if (op_const[1] && !op_const[0]) + reassociate_constant(ir, 1, op_const[1], + ir->operands[0]->as_expression()); + break; + + case ir_binop_sub: + if (is_vec_zero(op_const[0])) { + this->progress = true; + temp = new(mem_ctx) ir_expression(ir_unop_neg, + ir->operands[1]->type, + ir->operands[1], + NULL); + return swizzle_if_required(ir, temp); + } + if (is_vec_zero(op_const[1])) { + this->progress = true; + return swizzle_if_required(ir, ir->operands[0]); + } + break; + + case ir_binop_mul: + if (is_vec_one(op_const[0])) { + this->progress = true; + return swizzle_if_required(ir, ir->operands[1]); + } + if (is_vec_one(op_const[1])) { + this->progress = true; + return swizzle_if_required(ir, ir->operands[0]); + } + + if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) { + this->progress = true; + return ir_constant::zero(ir, ir->type); + } + + /* Reassociate multiplication of constants so that we can do + * constant folding. + */ + if (op_const[0] && !op_const[1]) + reassociate_constant(ir, 0, op_const[0], + ir->operands[1]->as_expression()); + if (op_const[1] && !op_const[0]) + reassociate_constant(ir, 1, op_const[1], + ir->operands[0]->as_expression()); + + break; + + case ir_binop_div: + if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) { + this->progress = true; + temp = new(mem_ctx) ir_expression(ir_unop_rcp, + ir->operands[1]->type, + ir->operands[1], + NULL); + return swizzle_if_required(ir, temp); + } + if (is_vec_one(op_const[1])) { + this->progress = true; + return swizzle_if_required(ir, ir->operands[0]); + } + break; + + case ir_binop_logic_and: + /* FINISHME: Also simplify (a && a) to (a). */ + if (is_vec_one(op_const[0])) { + this->progress = true; + return ir->operands[1]; + } else if (is_vec_one(op_const[1])) { + this->progress = true; + return ir->operands[0]; + } else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) { + this->progress = true; + return ir_constant::zero(mem_ctx, ir->type); + } + break; + + case ir_binop_logic_xor: + /* FINISHME: Also simplify (a ^^ a) to (false). */ + if (is_vec_zero(op_const[0])) { + this->progress = true; + return ir->operands[1]; + } else if (is_vec_zero(op_const[1])) { + this->progress = true; + return ir->operands[0]; + } else if (is_vec_one(op_const[0])) { + this->progress = true; + return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type, + ir->operands[1], NULL); + } else if (is_vec_one(op_const[1])) { + this->progress = true; + return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type, + ir->operands[0], NULL); + } + break; + + case ir_binop_logic_or: + /* FINISHME: Also simplify (a || a) to (a). */ + if (is_vec_zero(op_const[0])) { + this->progress = true; + return ir->operands[1]; + } else if (is_vec_zero(op_const[1])) { + this->progress = true; + return ir->operands[0]; + } else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) { + ir_constant_data data; + + for (unsigned i = 0; i < 16; i++) + data.b[i] = true; + + this->progress = true; + return new(mem_ctx) ir_constant(ir->type, &data); + } + break; + + case ir_unop_rcp: + if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) { + this->progress = true; + return op_expr[0]->operands[0]; + } + + /* FINISHME: We should do rcp(rsq(x)) -> sqrt(x) for some + * backends, except that some backends will have done sqrt -> + * rcp(rsq(x)) and we don't want to undo it for them. + */ + + /* As far as we know, all backends are OK with rsq. */ + if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) { + this->progress = true; + temp = new(mem_ctx) ir_expression(ir_unop_rsq, + op_expr[0]->operands[0]->type, + op_expr[0]->operands[0], + NULL); + return swizzle_if_required(ir, temp); + } + + break; + + default: + break; + } + + return ir; +} + +void +ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue) +{ + if (!*rvalue) + return; + + ir_expression *expr = (*rvalue)->as_expression(); + if (!expr || expr->operation == ir_quadop_vector) + return; + + *rvalue = handle_expression(expr); +} + +bool +do_algebraic(exec_list *instructions) +{ + ir_algebraic_visitor v; + + visit_list_elements(&v, instructions); + + return v.progress; +} -- cgit v1.2.3