From 52011cfedaa930d61d8f60b283a2051093727582 Mon Sep 17 00:00:00 2001 From: marha Date: Sun, 22 May 2011 13:28:34 +0000 Subject: xserver xkeyboard-config libX11 randrproto pixman glproto mesa git update 22 May 2011 --- mesalib/src/mesa/swrast/s_texfilter.c | 7025 +++++++++++++++++---------------- 1 file changed, 3710 insertions(+), 3315 deletions(-) (limited to 'mesalib/src/mesa/swrast/s_texfilter.c') diff --git a/mesalib/src/mesa/swrast/s_texfilter.c b/mesalib/src/mesa/swrast/s_texfilter.c index 106f8b75f..237e5d28a 100644 --- a/mesalib/src/mesa/swrast/s_texfilter.c +++ b/mesalib/src/mesa/swrast/s_texfilter.c @@ -1,3315 +1,3710 @@ -/* - * Mesa 3-D graphics library - * Version: 7.3 - * - * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included - * in all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS - * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN - * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - */ - - -#include "main/glheader.h" -#include "main/context.h" -#include "main/colormac.h" -#include "main/imports.h" - -#include "s_context.h" -#include "s_texfilter.h" - - -/* - * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes - * see 1-pixel bands of improperly weighted linear-filtered textures. - * The tests/texwrap.c demo is a good test. - * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0. - * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x). - */ -#define FRAC(f) ((f) - IFLOOR(f)) - - - -/** - * Linear interpolation macro - */ -#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) ) - - -/** - * Do 2D/biliner interpolation of float values. - * v00, v10, v01 and v11 are typically four texture samples in a square/box. - * a and b are the horizontal and vertical interpolants. - * It's important that this function is inlined when compiled with - * optimization! If we find that's not true on some systems, convert - * to a macro. - */ -static INLINE GLfloat -lerp_2d(GLfloat a, GLfloat b, - GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11) -{ - const GLfloat temp0 = LERP(a, v00, v10); - const GLfloat temp1 = LERP(a, v01, v11); - return LERP(b, temp0, temp1); -} - - -/** - * Do 3D/trilinear interpolation of float values. - * \sa lerp_2d - */ -static INLINE GLfloat -lerp_3d(GLfloat a, GLfloat b, GLfloat c, - GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110, - GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111) -{ - const GLfloat temp00 = LERP(a, v000, v100); - const GLfloat temp10 = LERP(a, v010, v110); - const GLfloat temp01 = LERP(a, v001, v101); - const GLfloat temp11 = LERP(a, v011, v111); - const GLfloat temp0 = LERP(b, temp00, temp10); - const GLfloat temp1 = LERP(b, temp01, temp11); - return LERP(c, temp0, temp1); -} - - -/** - * Do linear interpolation of colors. - */ -static INLINE void -lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4]) -{ - result[0] = LERP(t, a[0], b[0]); - result[1] = LERP(t, a[1], b[1]); - result[2] = LERP(t, a[2], b[2]); - result[3] = LERP(t, a[3], b[3]); -} - - -/** - * Do bilinear interpolation of colors. - */ -static INLINE void -lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b, - const GLfloat t00[4], const GLfloat t10[4], - const GLfloat t01[4], const GLfloat t11[4]) -{ - result[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]); - result[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]); - result[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]); - result[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]); -} - - -/** - * Do trilinear interpolation of colors. - */ -static INLINE void -lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c, - const GLfloat t000[4], const GLfloat t100[4], - const GLfloat t010[4], const GLfloat t110[4], - const GLfloat t001[4], const GLfloat t101[4], - const GLfloat t011[4], const GLfloat t111[4]) -{ - GLuint k; - /* compiler should unroll these short loops */ - for (k = 0; k < 4; k++) { - result[k] = lerp_3d(a, b, c, t000[k], t100[k], t010[k], t110[k], - t001[k], t101[k], t011[k], t111[k]); - } -} - - -/** - * Used for GL_REPEAT wrap mode. Using A % B doesn't produce the - * right results for A<0. Casting to A to be unsigned only works if B - * is a power of two. Adding a bias to A (which is a multiple of B) - * avoids the problems with A < 0 (for reasonable A) without using a - * conditional. - */ -#define REMAINDER(A, B) (((A) + (B) * 1024) % (B)) - - -/** - * Used to compute texel locations for linear sampling. - * Input: - * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER - * s = texcoord in [0,1] - * size = width (or height or depth) of texture - * Output: - * i0, i1 = returns two nearest texel indexes - * weight = returns blend factor between texels - */ -static INLINE void -linear_texel_locations(GLenum wrapMode, - const struct gl_texture_image *img, - GLint size, GLfloat s, - GLint *i0, GLint *i1, GLfloat *weight) -{ - GLfloat u; - switch (wrapMode) { - case GL_REPEAT: - u = s * size - 0.5F; - if (img->_IsPowerOfTwo) { - *i0 = IFLOOR(u) & (size - 1); - *i1 = (*i0 + 1) & (size - 1); - } - else { - *i0 = REMAINDER(IFLOOR(u), size); - *i1 = REMAINDER(*i0 + 1, size); - } - break; - case GL_CLAMP_TO_EDGE: - if (s <= 0.0F) - u = 0.0F; - else if (s >= 1.0F) - u = (GLfloat) size; - else - u = s * size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - if (*i0 < 0) - *i0 = 0; - if (*i1 >= (GLint) size) - *i1 = size - 1; - break; - case GL_CLAMP_TO_BORDER: - { - const GLfloat min = -1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - if (s <= min) - u = min * size; - else if (s >= max) - u = max * size; - else - u = s * size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - } - break; - case GL_MIRRORED_REPEAT: - { - const GLint flr = IFLOOR(s); - if (flr & 1) - u = 1.0F - (s - (GLfloat) flr); - else - u = s - (GLfloat) flr; - u = (u * size) - 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - if (*i0 < 0) - *i0 = 0; - if (*i1 >= (GLint) size) - *i1 = size - 1; - } - break; - case GL_MIRROR_CLAMP_EXT: - u = FABSF(s); - if (u >= 1.0F) - u = (GLfloat) size; - else - u *= size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - break; - case GL_MIRROR_CLAMP_TO_EDGE_EXT: - u = FABSF(s); - if (u >= 1.0F) - u = (GLfloat) size; - else - u *= size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - if (*i0 < 0) - *i0 = 0; - if (*i1 >= (GLint) size) - *i1 = size - 1; - break; - case GL_MIRROR_CLAMP_TO_BORDER_EXT: - { - const GLfloat min = -1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - u = FABSF(s); - if (u <= min) - u = min * size; - else if (u >= max) - u = max * size; - else - u *= size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - } - break; - case GL_CLAMP: - if (s <= 0.0F) - u = 0.0F; - else if (s >= 1.0F) - u = (GLfloat) size; - else - u = s * size; - u -= 0.5F; - *i0 = IFLOOR(u); - *i1 = *i0 + 1; - break; - default: - _mesa_problem(NULL, "Bad wrap mode"); - u = 0.0F; - } - *weight = FRAC(u); -} - - -/** - * Used to compute texel location for nearest sampling. - */ -static INLINE GLint -nearest_texel_location(GLenum wrapMode, - const struct gl_texture_image *img, - GLint size, GLfloat s) -{ - GLint i; - - switch (wrapMode) { - case GL_REPEAT: - /* s limited to [0,1) */ - /* i limited to [0,size-1] */ - i = IFLOOR(s * size); - if (img->_IsPowerOfTwo) - i &= (size - 1); - else - i = REMAINDER(i, size); - return i; - case GL_CLAMP_TO_EDGE: - { - /* s limited to [min,max] */ - /* i limited to [0, size-1] */ - const GLfloat min = 1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - if (s < min) - i = 0; - else if (s > max) - i = size - 1; - else - i = IFLOOR(s * size); - } - return i; - case GL_CLAMP_TO_BORDER: - { - /* s limited to [min,max] */ - /* i limited to [-1, size] */ - const GLfloat min = -1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - if (s <= min) - i = -1; - else if (s >= max) - i = size; - else - i = IFLOOR(s * size); - } - return i; - case GL_MIRRORED_REPEAT: - { - const GLfloat min = 1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - const GLint flr = IFLOOR(s); - GLfloat u; - if (flr & 1) - u = 1.0F - (s - (GLfloat) flr); - else - u = s - (GLfloat) flr; - if (u < min) - i = 0; - else if (u > max) - i = size - 1; - else - i = IFLOOR(u * size); - } - return i; - case GL_MIRROR_CLAMP_EXT: - { - /* s limited to [0,1] */ - /* i limited to [0,size-1] */ - const GLfloat u = FABSF(s); - if (u <= 0.0F) - i = 0; - else if (u >= 1.0F) - i = size - 1; - else - i = IFLOOR(u * size); - } - return i; - case GL_MIRROR_CLAMP_TO_EDGE_EXT: - { - /* s limited to [min,max] */ - /* i limited to [0, size-1] */ - const GLfloat min = 1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - const GLfloat u = FABSF(s); - if (u < min) - i = 0; - else if (u > max) - i = size - 1; - else - i = IFLOOR(u * size); - } - return i; - case GL_MIRROR_CLAMP_TO_BORDER_EXT: - { - /* s limited to [min,max] */ - /* i limited to [0, size-1] */ - const GLfloat min = -1.0F / (2.0F * size); - const GLfloat max = 1.0F - min; - const GLfloat u = FABSF(s); - if (u < min) - i = -1; - else if (u > max) - i = size; - else - i = IFLOOR(u * size); - } - return i; - case GL_CLAMP: - /* s limited to [0,1] */ - /* i limited to [0,size-1] */ - if (s <= 0.0F) - i = 0; - else if (s >= 1.0F) - i = size - 1; - else - i = IFLOOR(s * size); - return i; - default: - _mesa_problem(NULL, "Bad wrap mode"); - return 0; - } -} - - -/* Power of two image sizes only */ -static INLINE void -linear_repeat_texel_location(GLuint size, GLfloat s, - GLint *i0, GLint *i1, GLfloat *weight) -{ - GLfloat u = s * size - 0.5F; - *i0 = IFLOOR(u) & (size - 1); - *i1 = (*i0 + 1) & (size - 1); - *weight = FRAC(u); -} - - -/** - * Do clamp/wrap for a texture rectangle coord, GL_NEAREST filter mode. - */ -static INLINE GLint -clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max) -{ - switch (wrapMode) { - case GL_CLAMP: - return IFLOOR( CLAMP(coord, 0.0F, max - 1) ); - case GL_CLAMP_TO_EDGE: - return IFLOOR( CLAMP(coord, 0.5F, max - 0.5F) ); - case GL_CLAMP_TO_BORDER: - return IFLOOR( CLAMP(coord, -0.5F, max + 0.5F) ); - default: - _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_nearest"); - return 0; - } -} - - -/** - * As above, but GL_LINEAR filtering. - */ -static INLINE void -clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max, - GLint *i0out, GLint *i1out, GLfloat *weight) -{ - GLfloat fcol; - GLint i0, i1; - switch (wrapMode) { - case GL_CLAMP: - /* Not exactly what the spec says, but it matches NVIDIA output */ - fcol = CLAMP(coord - 0.5F, 0.0F, max - 1); - i0 = IFLOOR(fcol); - i1 = i0 + 1; - break; - case GL_CLAMP_TO_EDGE: - fcol = CLAMP(coord, 0.5F, max - 0.5F); - fcol -= 0.5F; - i0 = IFLOOR(fcol); - i1 = i0 + 1; - if (i1 > max - 1) - i1 = max - 1; - break; - case GL_CLAMP_TO_BORDER: - fcol = CLAMP(coord, -0.5F, max + 0.5F); - fcol -= 0.5F; - i0 = IFLOOR(fcol); - i1 = i0 + 1; - break; - default: - _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_linear"); - i0 = i1 = 0; - fcol = 0.0F; - } - *i0out = i0; - *i1out = i1; - *weight = FRAC(fcol); -} - - -/** - * Compute slice/image to use for 1D or 2D array texture. - */ -static INLINE GLint -tex_array_slice(GLfloat coord, GLsizei size) -{ - GLint slice = IFLOOR(coord + 0.5f); - slice = CLAMP(slice, 0, size - 1); - return slice; -} - - -/** - * Compute nearest integer texcoords for given texobj and coordinate. - * NOTE: only used for depth texture sampling. - */ -static INLINE void -nearest_texcoord(const struct gl_texture_object *texObj, - GLuint level, - const GLfloat texcoord[4], - GLint *i, GLint *j, GLint *k) -{ - const struct gl_texture_image *img = texObj->Image[0][level]; - const GLint width = img->Width; - const GLint height = img->Height; - const GLint depth = img->Depth; - - switch (texObj->Target) { - case GL_TEXTURE_RECTANGLE_ARB: - *i = clamp_rect_coord_nearest(texObj->Sampler.WrapS, texcoord[0], width); - *j = clamp_rect_coord_nearest(texObj->Sampler.WrapT, texcoord[1], height); - *k = 0; - break; - case GL_TEXTURE_1D: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); - *j = 0; - *k = 0; - break; - case GL_TEXTURE_2D: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); - *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]); - *k = 0; - break; - case GL_TEXTURE_1D_ARRAY_EXT: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); - *j = tex_array_slice(texcoord[1], height); - *k = 0; - break; - case GL_TEXTURE_2D_ARRAY_EXT: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); - *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]); - *k = tex_array_slice(texcoord[2], depth); - break; - default: - *i = *j = *k = 0; - } -} - - -/** - * Compute linear integer texcoords for given texobj and coordinate. - * NOTE: only used for depth texture sampling. - */ -static INLINE void -linear_texcoord(const struct gl_texture_object *texObj, - GLuint level, - const GLfloat texcoord[4], - GLint *i0, GLint *i1, GLint *j0, GLint *j1, GLint *slice, - GLfloat *wi, GLfloat *wj) -{ - const struct gl_texture_image *img = texObj->Image[0][level]; - const GLint width = img->Width; - const GLint height = img->Height; - const GLint depth = img->Depth; - - switch (texObj->Target) { - case GL_TEXTURE_RECTANGLE_ARB: - clamp_rect_coord_linear(texObj->Sampler.WrapS, texcoord[0], - width, i0, i1, wi); - clamp_rect_coord_linear(texObj->Sampler.WrapT, texcoord[1], - height, j0, j1, wj); - *slice = 0; - break; - - case GL_TEXTURE_1D: - case GL_TEXTURE_2D: - linear_texel_locations(texObj->Sampler.WrapS, img, width, - texcoord[0], i0, i1, wi); - linear_texel_locations(texObj->Sampler.WrapT, img, height, - texcoord[1], j0, j1, wj); - *slice = 0; - break; - - case GL_TEXTURE_1D_ARRAY_EXT: - linear_texel_locations(texObj->Sampler.WrapS, img, width, - texcoord[0], i0, i1, wi); - *j0 = tex_array_slice(texcoord[1], height); - *j1 = *j0; - *slice = 0; - break; - - case GL_TEXTURE_2D_ARRAY_EXT: - linear_texel_locations(texObj->Sampler.WrapS, img, width, - texcoord[0], i0, i1, wi); - linear_texel_locations(texObj->Sampler.WrapT, img, height, - texcoord[1], j0, j1, wj); - *slice = tex_array_slice(texcoord[2], depth); - break; - - default: - *slice = 0; - } -} - - - -/** - * For linear interpolation between mipmap levels N and N+1, this function - * computes N. - */ -static INLINE GLint -linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) -{ - if (lambda < 0.0F) - return tObj->BaseLevel; - else if (lambda > tObj->_MaxLambda) - return (GLint) (tObj->BaseLevel + tObj->_MaxLambda); - else - return (GLint) (tObj->BaseLevel + lambda); -} - - -/** - * Compute the nearest mipmap level to take texels from. - */ -static INLINE GLint -nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) -{ - GLfloat l; - GLint level; - if (lambda <= 0.5F) - l = 0.0F; - else if (lambda > tObj->_MaxLambda + 0.4999F) - l = tObj->_MaxLambda + 0.4999F; - else - l = lambda; - level = (GLint) (tObj->BaseLevel + l + 0.5F); - if (level > tObj->_MaxLevel) - level = tObj->_MaxLevel; - return level; -} - - - -/* - * Bitflags for texture border color sampling. - */ -#define I0BIT 1 -#define I1BIT 2 -#define J0BIT 4 -#define J1BIT 8 -#define K0BIT 16 -#define K1BIT 32 - - - -/** - * The lambda[] array values are always monotonic. Either the whole span - * will be minified, magnified, or split between the two. This function - * determines the subranges in [0, n-1] that are to be minified or magnified. - */ -static INLINE void -compute_min_mag_ranges(const struct gl_texture_object *tObj, - GLuint n, const GLfloat lambda[], - GLuint *minStart, GLuint *minEnd, - GLuint *magStart, GLuint *magEnd) -{ - GLfloat minMagThresh; - - /* we shouldn't be here if minfilter == magfilter */ - ASSERT(tObj->Sampler.MinFilter != tObj->Sampler.MagFilter); - - /* This bit comes from the OpenGL spec: */ - if (tObj->Sampler.MagFilter == GL_LINEAR - && (tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_NEAREST || - tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_LINEAR)) { - minMagThresh = 0.5F; - } - else { - minMagThresh = 0.0F; - } - -#if 0 - /* DEBUG CODE: Verify that lambda[] is monotonic. - * We can't really use this because the inaccuracy in the LOG2 function - * causes this test to fail, yet the resulting texturing is correct. - */ - if (n > 1) { - GLuint i; - printf("lambda delta = %g\n", lambda[0] - lambda[n-1]); - if (lambda[0] >= lambda[n-1]) { /* decreasing */ - for (i = 0; i < n - 1; i++) { - ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10)); - } - } - else { /* increasing */ - for (i = 0; i < n - 1; i++) { - ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10)); - } - } - } -#endif /* DEBUG */ - - if (lambda[0] <= minMagThresh && (n <= 1 || lambda[n-1] <= minMagThresh)) { - /* magnification for whole span */ - *magStart = 0; - *magEnd = n; - *minStart = *minEnd = 0; - } - else if (lambda[0] > minMagThresh && (n <=1 || lambda[n-1] > minMagThresh)) { - /* minification for whole span */ - *minStart = 0; - *minEnd = n; - *magStart = *magEnd = 0; - } - else { - /* a mix of minification and magnification */ - GLuint i; - if (lambda[0] > minMagThresh) { - /* start with minification */ - for (i = 1; i < n; i++) { - if (lambda[i] <= minMagThresh) - break; - } - *minStart = 0; - *minEnd = i; - *magStart = i; - *magEnd = n; - } - else { - /* start with magnification */ - for (i = 1; i < n; i++) { - if (lambda[i] > minMagThresh) - break; - } - *magStart = 0; - *magEnd = i; - *minStart = i; - *minEnd = n; - } - } - -#if 0 - /* Verify the min/mag Start/End values - * We don't use this either (see above) - */ - { - GLint i; - for (i = 0; i < n; i++) { - if (lambda[i] > minMagThresh) { - /* minification */ - ASSERT(i >= *minStart); - ASSERT(i < *minEnd); - } - else { - /* magnification */ - ASSERT(i >= *magStart); - ASSERT(i < *magEnd); - } - } - } -#endif -} - - -/** - * When we sample the border color, it must be interpreted according to - * the base texture format. Ex: if the texture base format it GL_ALPHA, - * we return (0,0,0,BorderAlpha). - */ -static INLINE void -get_border_color(const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - GLfloat rgba[4]) -{ - switch (img->_BaseFormat) { - case GL_RGB: - rgba[0] = tObj->Sampler.BorderColor.f[0]; - rgba[1] = tObj->Sampler.BorderColor.f[1]; - rgba[2] = tObj->Sampler.BorderColor.f[2]; - rgba[3] = 1.0F; - break; - case GL_ALPHA: - rgba[0] = rgba[1] = rgba[2] = 0.0; - rgba[3] = tObj->Sampler.BorderColor.f[3]; - break; - case GL_LUMINANCE: - rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0]; - rgba[3] = 1.0; - break; - case GL_LUMINANCE_ALPHA: - rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0]; - rgba[3] = tObj->Sampler.BorderColor.f[3]; - break; - case GL_INTENSITY: - rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->Sampler.BorderColor.f[0]; - break; - default: - COPY_4V(rgba, tObj->Sampler.BorderColor.f); - } -} - - -/**********************************************************************/ -/* 1-D Texture Sampling Functions */ -/**********************************************************************/ - -/** - * Return the texture sample for coordinate (s) using GL_NEAREST filter. - */ -static INLINE void -sample_1d_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], GLfloat rgba[4]) -{ - const GLint width = img->Width2; /* without border, power of two */ - GLint i; - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - /* skip over the border, if any */ - i += img->Border; - if (i < 0 || i >= (GLint) img->Width) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); - } - else { - img->FetchTexelf(img, i, 0, 0, rgba); - } -} - - -/** - * Return the texture sample for coordinate (s) using GL_LINEAR filter. - */ -static INLINE void -sample_1d_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], GLfloat rgba[4]) -{ - const GLint width = img->Width2; - GLint i0, i1; - GLbitfield useBorderColor = 0x0; - GLfloat a; - GLfloat t0[4], t1[4]; /* texels */ - - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - } - else { - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - } - - /* fetch texel colors */ - if (useBorderColor & I0BIT) { - get_border_color(tObj, img, t0); - } - else { - img->FetchTexelf(img, i0, 0, 0, t0); - } - if (useBorderColor & I1BIT) { - get_border_color(tObj, img, t1); - } - else { - img->FetchTexelf(img, i1, 0, 0, t1); - } - - lerp_rgba(rgba, a, t0, t1); -} - - -static void -sample_1d_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_1d_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_1d_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; - const GLfloat f = FRAC(lambda[i]); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_1d_linear_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; - const GLfloat f = FRAC(lambda[i]); - sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample 1D texture, nearest filtering for both min/magnification */ -static void -sample_nearest_1d( struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4] ) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 1D texture, linear filtering for both min/magnification */ -static void -sample_linear_1d( struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4] ) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 1D texture, using lambda to choose between min/magnification */ -static void -sample_lambda_1d( struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4] ) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - GLuint i; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - const GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - for (i = minStart; i < minEnd; i++) - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = minStart; i < minEnd; i++) - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_1d_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - for (i = magStart; i < magEnd; i++) - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = magStart; i < magEnd; i++) - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_1d_texture"); - return; - } - } -} - - -/**********************************************************************/ -/* 2-D Texture Sampling Functions */ -/**********************************************************************/ - - -/** - * Return the texture sample for coordinate (s,t) using GL_NEAREST filter. - */ -static INLINE void -sample_2d_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[]) -{ - const GLint width = img->Width2; /* without border, power of two */ - const GLint height = img->Height2; /* without border, power of two */ - GLint i, j; - (void) ctx; - - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); - - /* skip over the border, if any */ - i += img->Border; - j += img->Border; - - if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); - } - else { - img->FetchTexelf(img, i, j, 0, rgba); - } -} - - -/** - * Return the texture sample for coordinate (s,t) using GL_LINEAR filter. - * New sampling code contributed by Lynn Quam . - */ -static INLINE void -sample_2d_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[]) -{ - const GLint width = img->Width2; - const GLint height = img->Height2; - GLint i0, j0, i1, j1; - GLbitfield useBorderColor = 0x0; - GLfloat a, b; - GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ - - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); - - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - j0 += img->Border; - j1 += img->Border; - } - else { - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; - if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; - } - - /* fetch four texel colors */ - if (useBorderColor & (I0BIT | J0BIT)) { - get_border_color(tObj, img, t00); - } - else { - img->FetchTexelf(img, i0, j0, 0, t00); - } - if (useBorderColor & (I1BIT | J0BIT)) { - get_border_color(tObj, img, t10); - } - else { - img->FetchTexelf(img, i1, j0, 0, t10); - } - if (useBorderColor & (I0BIT | J1BIT)) { - get_border_color(tObj, img, t01); - } - else { - img->FetchTexelf(img, i0, j1, 0, t01); - } - if (useBorderColor & (I1BIT | J1BIT)) { - get_border_color(tObj, img, t11); - } - else { - img->FetchTexelf(img, i1, j1, 0, t11); - } - - lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); -} - - -/** - * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT. - * We don't have to worry about the texture border. - */ -static INLINE void -sample_2d_linear_repeat(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[]) -{ - const GLint width = img->Width2; - const GLint height = img->Height2; - GLint i0, j0, i1, j1; - GLfloat wi, wj; - GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ - - (void) ctx; - - ASSERT(tObj->Sampler.WrapS == GL_REPEAT); - ASSERT(tObj->Sampler.WrapT == GL_REPEAT); - ASSERT(img->Border == 0); - ASSERT(img->_BaseFormat != GL_COLOR_INDEX); - ASSERT(img->_IsPowerOfTwo); - - linear_repeat_texel_location(width, texcoord[0], &i0, &i1, &wi); - linear_repeat_texel_location(height, texcoord[1], &j0, &j1, &wj); - - img->FetchTexelf(img, i0, j0, 0, t00); - img->FetchTexelf(img, i1, j0, 0, t10); - img->FetchTexelf(img, i0, j1, 0, t01); - img->FetchTexelf(img, i1, j1, 0, t11); - - lerp_rgba_2d(rgba, wi, wj, t00, t10, t01, t11); -} - - -static void -sample_2d_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_2d_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_2d_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_2d_linear_mipmap_linear( struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4] ) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_2d_linear_mipmap_linear_repeat(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - ASSERT(tObj->Sampler.WrapS == GL_REPEAT); - ASSERT(tObj->Sampler.WrapT == GL_REPEAT); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ], - texcoord[i], t0); - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1], - texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample 2D texture, nearest filtering for both min/magnification */ -static void -sample_nearest_2d(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 2D texture, linear filtering for both min/magnification */ -static void -sample_linear_2d(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - if (tObj->Sampler.WrapS == GL_REPEAT && - tObj->Sampler.WrapT == GL_REPEAT && - image->_IsPowerOfTwo && - image->Border == 0) { - for (i = 0; i < n; i++) { - sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]); - } - } - else { - for (i = 0; i < n; i++) { - sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]); - } - } -} - - -/** - * Optimized 2-D texture sampling: - * S and T wrap mode == GL_REPEAT - * GL_NEAREST min/mag filter - * No border, - * RowStride == Width, - * Format = GL_RGB - */ -static void -opt_sample_rgb_2d(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; - const GLfloat width = (GLfloat) img->Width; - const GLfloat height = (GLfloat) img->Height; - const GLint colMask = img->Width - 1; - const GLint rowMask = img->Height - 1; - const GLint shift = img->WidthLog2; - GLuint k; - (void) ctx; - (void) lambda; - ASSERT(tObj->Sampler.WrapS==GL_REPEAT); - ASSERT(tObj->Sampler.WrapT==GL_REPEAT); - ASSERT(img->Border==0); - ASSERT(img->TexFormat == MESA_FORMAT_RGB888); - ASSERT(img->_IsPowerOfTwo); - - for (k=0; kData) + 3*pos; - rgba[k][RCOMP] = UBYTE_TO_FLOAT(texel[2]); - rgba[k][GCOMP] = UBYTE_TO_FLOAT(texel[1]); - rgba[k][BCOMP] = UBYTE_TO_FLOAT(texel[0]); - rgba[k][ACOMP] = 1.0F; - } -} - - -/** - * Optimized 2-D texture sampling: - * S and T wrap mode == GL_REPEAT - * GL_NEAREST min/mag filter - * No border - * RowStride == Width, - * Format = GL_RGBA - */ -static void -opt_sample_rgba_2d(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; - const GLfloat width = (GLfloat) img->Width; - const GLfloat height = (GLfloat) img->Height; - const GLint colMask = img->Width - 1; - const GLint rowMask = img->Height - 1; - const GLint shift = img->WidthLog2; - GLuint i; - (void) ctx; - (void) lambda; - ASSERT(tObj->Sampler.WrapS==GL_REPEAT); - ASSERT(tObj->Sampler.WrapT==GL_REPEAT); - ASSERT(img->Border==0); - ASSERT(img->TexFormat == MESA_FORMAT_RGBA8888); - ASSERT(img->_IsPowerOfTwo); - - for (i = 0; i < n; i++) { - const GLint col = IFLOOR(texcoords[i][0] * width) & colMask; - const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask; - const GLint pos = (row << shift) | col; - const GLuint texel = *((GLuint *) img->Data + pos); - rgba[i][RCOMP] = UBYTE_TO_FLOAT( (texel >> 24) ); - rgba[i][GCOMP] = UBYTE_TO_FLOAT( (texel >> 16) & 0xff ); - rgba[i][BCOMP] = UBYTE_TO_FLOAT( (texel >> 8) & 0xff ); - rgba[i][ACOMP] = UBYTE_TO_FLOAT( (texel ) & 0xff ); - } -} - - -/** Sample 2D texture, using lambda to choose between min/magnification */ -static void -sample_lambda_2d(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel]; - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - - const GLboolean repeatNoBorderPOT = (tObj->Sampler.WrapS == GL_REPEAT) - && (tObj->Sampler.WrapT == GL_REPEAT) - && (tImg->Border == 0 && (tImg->Width == tImg->RowStride)) - && (tImg->_BaseFormat != GL_COLOR_INDEX) - && tImg->_IsPowerOfTwo; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - const GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - if (repeatNoBorderPOT) { - switch (tImg->TexFormat) { - case MESA_FORMAT_RGB888: - opt_sample_rgb_2d(ctx, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - break; - case MESA_FORMAT_RGBA8888: - opt_sample_rgba_2d(ctx, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - break; - default: - sample_nearest_2d(ctx, tObj, m, texcoords + minStart, - NULL, rgba + minStart ); - } - } - else { - sample_nearest_2d(ctx, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - } - break; - case GL_LINEAR: - sample_linear_2d(ctx, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_2d_nearest_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - if (repeatNoBorderPOT) - sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m, - texcoords + minStart, lambda + minStart, rgba + minStart); - else - sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_2d_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - const GLuint m = magEnd - magStart; - - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - if (repeatNoBorderPOT) { - switch (tImg->TexFormat) { - case MESA_FORMAT_RGB888: - opt_sample_rgb_2d(ctx, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - break; - case MESA_FORMAT_RGBA8888: - opt_sample_rgba_2d(ctx, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - break; - default: - sample_nearest_2d(ctx, tObj, m, texcoords + magStart, - NULL, rgba + magStart ); - } - } - else { - sample_nearest_2d(ctx, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - } - break; - case GL_LINEAR: - sample_linear_2d(ctx, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d"); - } - } -} - - - -/**********************************************************************/ -/* 3-D Texture Sampling Functions */ -/**********************************************************************/ - -/** - * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. - */ -static INLINE void -sample_3d_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; /* without border, power of two */ - const GLint height = img->Height2; /* without border, power of two */ - const GLint depth = img->Depth2; /* without border, power of two */ - GLint i, j, k; - (void) ctx; - - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); - k = nearest_texel_location(tObj->Sampler.WrapR, img, depth, texcoord[2]); - - if (i < 0 || i >= (GLint) img->Width || - j < 0 || j >= (GLint) img->Height || - k < 0 || k >= (GLint) img->Depth) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); - } - else { - img->FetchTexelf(img, i, j, k, rgba); - } -} - - -/** - * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. - */ -static void -sample_3d_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; - const GLint height = img->Height2; - const GLint depth = img->Depth2; - GLint i0, j0, k0, i1, j1, k1; - GLbitfield useBorderColor = 0x0; - GLfloat a, b, c; - GLfloat t000[4], t010[4], t001[4], t011[4]; - GLfloat t100[4], t110[4], t101[4], t111[4]; - - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); - linear_texel_locations(tObj->Sampler.WrapR, img, depth, texcoord[2], &k0, &k1, &c); - - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - j0 += img->Border; - j1 += img->Border; - k0 += img->Border; - k1 += img->Border; - } - else { - /* check if sampling texture border color */ - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; - if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; - if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT; - if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT; - } - - /* Fetch texels */ - if (useBorderColor & (I0BIT | J0BIT | K0BIT)) { - get_border_color(tObj, img, t000); - } - else { - img->FetchTexelf(img, i0, j0, k0, t000); - } - if (useBorderColor & (I1BIT | J0BIT | K0BIT)) { - get_border_color(tObj, img, t100); - } - else { - img->FetchTexelf(img, i1, j0, k0, t100); - } - if (useBorderColor & (I0BIT | J1BIT | K0BIT)) { - get_border_color(tObj, img, t010); - } - else { - img->FetchTexelf(img, i0, j1, k0, t010); - } - if (useBorderColor & (I1BIT | J1BIT | K0BIT)) { - get_border_color(tObj, img, t110); - } - else { - img->FetchTexelf(img, i1, j1, k0, t110); - } - - if (useBorderColor & (I0BIT | J0BIT | K1BIT)) { - get_border_color(tObj, img, t001); - } - else { - img->FetchTexelf(img, i0, j0, k1, t001); - } - if (useBorderColor & (I1BIT | J0BIT | K1BIT)) { - get_border_color(tObj, img, t101); - } - else { - img->FetchTexelf(img, i1, j0, k1, t101); - } - if (useBorderColor & (I0BIT | J1BIT | K1BIT)) { - get_border_color(tObj, img, t011); - } - else { - img->FetchTexelf(img, i0, j1, k1, t011); - } - if (useBorderColor & (I1BIT | J1BIT | K1BIT)) { - get_border_color(tObj, img, t111); - } - else { - img->FetchTexelf(img, i1, j1, k1, t111); - } - - /* trilinear interpolation of samples */ - lerp_rgba_3d(rgba, a, b, c, t000, t100, t010, t110, t001, t101, t011, t111); -} - - -static void -sample_3d_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4] ) -{ - GLuint i; - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_3d_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_3d_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_3d_linear_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample 3D texture, nearest filtering for both min/magnification */ -static void -sample_nearest_3d(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 3D texture, linear filtering for both min/magnification */ -static void -sample_linear_3d(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 3D texture, using lambda to choose between min/magnification */ -static void -sample_lambda_3d(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - GLuint i; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - for (i = minStart; i < minEnd; i++) - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = minStart; i < minEnd; i++) - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_3d_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - for (i = magStart; i < magEnd; i++) - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = magStart; i < magEnd; i++) - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_3d_texture"); - return; - } - } -} - - -/**********************************************************************/ -/* Texture Cube Map Sampling Functions */ -/**********************************************************************/ - -/** - * Choose one of six sides of a texture cube map given the texture - * coord (rx,ry,rz). Return pointer to corresponding array of texture - * images. - */ -static const struct gl_texture_image ** -choose_cube_face(const struct gl_texture_object *texObj, - const GLfloat texcoord[4], GLfloat newCoord[4]) -{ - /* - major axis - direction target sc tc ma - ---------- ------------------------------- --- --- --- - +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx - -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx - +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry - -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry - +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz - -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz - */ - const GLfloat rx = texcoord[0]; - const GLfloat ry = texcoord[1]; - const GLfloat rz = texcoord[2]; - const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz); - GLuint face; - GLfloat sc, tc, ma; - - if (arx >= ary && arx >= arz) { - if (rx >= 0.0F) { - face = FACE_POS_X; - sc = -rz; - tc = -ry; - ma = arx; - } - else { - face = FACE_NEG_X; - sc = rz; - tc = -ry; - ma = arx; - } - } - else if (ary >= arx && ary >= arz) { - if (ry >= 0.0F) { - face = FACE_POS_Y; - sc = rx; - tc = rz; - ma = ary; - } - else { - face = FACE_NEG_Y; - sc = rx; - tc = -rz; - ma = ary; - } - } - else { - if (rz > 0.0F) { - face = FACE_POS_Z; - sc = rx; - tc = -ry; - ma = arz; - } - else { - face = FACE_NEG_Z; - sc = -rx; - tc = -ry; - ma = arz; - } - } - - { - const float ima = 1.0F / ma; - newCoord[0] = ( sc * ima + 1.0F ) * 0.5F; - newCoord[1] = ( tc * ima + 1.0F ) * 0.5F; - } - - return (const struct gl_texture_image **) texObj->Image[face]; -} - - -static void -sample_nearest_cube(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint i; - (void) lambda; - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - images = choose_cube_face(tObj, texcoords[i], newCoord); - sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel], - newCoord, rgba[i]); - } -} - - -static void -sample_linear_cube(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - (void) lambda; - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - images = choose_cube_face(tObj, texcoords[i], newCoord); - sample_2d_linear(ctx, tObj, images[tObj->BaseLevel], - newCoord, rgba[i]); - } -} - - -static void -sample_cube_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level; - images = choose_cube_face(tObj, texcoord[i], newCoord); - - /* XXX we actually need to recompute lambda here based on the newCoords. - * But we would need the texcoords of adjacent fragments to compute that - * properly, and we don't have those here. - * For now, do an approximation: subtracting 1 from the chosen mipmap - * level seems to work in some test cases. - * The same adjustment is done in the next few functions. - */ - level = nearest_mipmap_level(tObj, lambda[i]); - level = MAX2(level - 1, 0); - - sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]); - } -} - - -static void -sample_cube_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level = nearest_mipmap_level(tObj, lambda[i]); - level = MAX2(level - 1, 0); /* see comment above */ - images = choose_cube_face(tObj, texcoord[i], newCoord); - sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]); - } -} - - -static void -sample_cube_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level = linear_mipmap_level(tObj, lambda[i]); - level = MAX2(level - 1, 0); /* see comment above */ - images = choose_cube_face(tObj, texcoord[i], newCoord); - if (level >= tObj->_MaxLevel) { - sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel], - newCoord, rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0); - sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_cube_linear_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level = linear_mipmap_level(tObj, lambda[i]); - level = MAX2(level - 1, 0); /* see comment above */ - images = choose_cube_face(tObj, texcoord[i], newCoord); - if (level >= tObj->_MaxLevel) { - sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel], - newCoord, rgba[i]); - } - else { - GLfloat t0[4], t1[4]; - const GLfloat f = FRAC(lambda[i]); - sample_2d_linear(ctx, tObj, images[level ], newCoord, t0); - sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample cube texture, using lambda to choose between min/magnification */ -static void -sample_lambda_cube(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - const GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - sample_nearest_cube(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR: - sample_linear_cube(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_cube_nearest_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_cube_linear_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_cube_nearest_mipmap_linear(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_cube_linear_mipmap_linear(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_lambda_cube"); - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - const GLuint m = magEnd - magStart; - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - sample_nearest_cube(ctx, tObj, m, texcoords + magStart, - lambda + magStart, rgba + magStart); - break; - case GL_LINEAR: - sample_linear_cube(ctx, tObj, m, texcoords + magStart, - lambda + magStart, rgba + magStart); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube"); - } - } -} - - -/**********************************************************************/ -/* Texture Rectangle Sampling Functions */ -/**********************************************************************/ - - -static void -sample_nearest_rect(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - const struct gl_texture_image *img = tObj->Image[0][0]; - const GLint width = img->Width; - const GLint height = img->Height; - GLuint i; - - (void) ctx; - (void) lambda; - - ASSERT(tObj->Sampler.WrapS == GL_CLAMP || - tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER); - ASSERT(tObj->Sampler.WrapT == GL_CLAMP || - tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER); - ASSERT(img->_BaseFormat != GL_COLOR_INDEX); - - for (i = 0; i < n; i++) { - GLint row, col; - col = clamp_rect_coord_nearest(tObj->Sampler.WrapS, texcoords[i][0], width); - row = clamp_rect_coord_nearest(tObj->Sampler.WrapT, texcoords[i][1], height); - if (col < 0 || col >= width || row < 0 || row >= height) - get_border_color(tObj, img, rgba[i]); - else - img->FetchTexelf(img, col, row, 0, rgba[i]); - } -} - - -static void -sample_linear_rect(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - const struct gl_texture_image *img = tObj->Image[0][0]; - const GLint width = img->Width; - const GLint height = img->Height; - GLuint i; - - (void) ctx; - (void) lambda; - - ASSERT(tObj->Sampler.WrapS == GL_CLAMP || - tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER); - ASSERT(tObj->Sampler.WrapT == GL_CLAMP || - tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER); - ASSERT(img->_BaseFormat != GL_COLOR_INDEX); - - for (i = 0; i < n; i++) { - GLint i0, j0, i1, j1; - GLfloat t00[4], t01[4], t10[4], t11[4]; - GLfloat a, b; - GLbitfield useBorderColor = 0x0; - - clamp_rect_coord_linear(tObj->Sampler.WrapS, texcoords[i][0], width, - &i0, &i1, &a); - clamp_rect_coord_linear(tObj->Sampler.WrapT, texcoords[i][1], height, - &j0, &j1, &b); - - /* compute integer rows/columns */ - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; - if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; - - /* get four texel samples */ - if (useBorderColor & (I0BIT | J0BIT)) - get_border_color(tObj, img, t00); - else - img->FetchTexelf(img, i0, j0, 0, t00); - - if (useBorderColor & (I1BIT | J0BIT)) - get_border_color(tObj, img, t10); - else - img->FetchTexelf(img, i1, j0, 0, t10); - - if (useBorderColor & (I0BIT | J1BIT)) - get_border_color(tObj, img, t01); - else - img->FetchTexelf(img, i0, j1, 0, t01); - - if (useBorderColor & (I1BIT | J1BIT)) - get_border_color(tObj, img, t11); - else - img->FetchTexelf(img, i1, j1, 0, t11); - - lerp_rgba_2d(rgba[i], a, b, t00, t10, t01, t11); - } -} - - -/** Sample Rect texture, using lambda to choose between min/magnification */ -static void -sample_lambda_rect(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint minStart, minEnd, magStart, magEnd; - - /* We only need lambda to decide between minification and magnification. - * There is no mipmapping with rectangular textures. - */ - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - if (tObj->Sampler.MinFilter == GL_NEAREST) { - sample_nearest_rect(ctx, tObj, minEnd - minStart, - texcoords + minStart, NULL, rgba + minStart); - } - else { - sample_linear_rect(ctx, tObj, minEnd - minStart, - texcoords + minStart, NULL, rgba + minStart); - } - } - if (magStart < magEnd) { - if (tObj->Sampler.MagFilter == GL_NEAREST) { - sample_nearest_rect(ctx, tObj, magEnd - magStart, - texcoords + magStart, NULL, rgba + magStart); - } - else { - sample_linear_rect(ctx, tObj, magEnd - magStart, - texcoords + magStart, NULL, rgba + magStart); - } - } -} - - -/**********************************************************************/ -/* 2D Texture Array Sampling Functions */ -/**********************************************************************/ - -/** - * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. - */ -static void -sample_2d_array_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; /* without border, power of two */ - const GLint height = img->Height2; /* without border, power of two */ - const GLint depth = img->Depth; - GLint i, j; - GLint array; - (void) ctx; - - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); - array = tex_array_slice(texcoord[2], depth); - - if (i < 0 || i >= (GLint) img->Width || - j < 0 || j >= (GLint) img->Height || - array < 0 || array >= (GLint) img->Depth) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); - } - else { - img->FetchTexelf(img, i, j, array, rgba); - } -} - - -/** - * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. - */ -static void -sample_2d_array_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; - const GLint height = img->Height2; - const GLint depth = img->Depth; - GLint i0, j0, i1, j1; - GLint array; - GLbitfield useBorderColor = 0x0; - GLfloat a, b; - GLfloat t00[4], t01[4], t10[4], t11[4]; - - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); - array = tex_array_slice(texcoord[2], depth); - - if (array < 0 || array >= depth) { - COPY_4V(rgba, tObj->Sampler.BorderColor.f); - } - else { - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - j0 += img->Border; - j1 += img->Border; - } - else { - /* check if sampling texture border color */ - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; - if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; - } - - /* Fetch texels */ - if (useBorderColor & (I0BIT | J0BIT)) { - get_border_color(tObj, img, t00); - } - else { - img->FetchTexelf(img, i0, j0, array, t00); - } - if (useBorderColor & (I1BIT | J0BIT)) { - get_border_color(tObj, img, t10); - } - else { - img->FetchTexelf(img, i1, j0, array, t10); - } - if (useBorderColor & (I0BIT | J1BIT)) { - get_border_color(tObj, img, t01); - } - else { - img->FetchTexelf(img, i0, j1, array, t01); - } - if (useBorderColor & (I1BIT | J1BIT)) { - get_border_color(tObj, img, t11); - } - else { - img->FetchTexelf(img, i1, j1, array, t11); - } - - /* trilinear interpolation of samples */ - lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); - } -} - - -static void -sample_2d_array_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], - rgba[i]); - } -} - - -static void -sample_2d_array_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_array_linear(ctx, tObj, tObj->Image[0][level], - texcoord[i], rgba[i]); - } -} - - -static void -sample_2d_array_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level ], - texcoord[i], t0); - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level+1], - texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_2d_array_linear_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_array_linear(ctx, tObj, tObj->Image[0][level ], - texcoord[i], t0); - sample_2d_array_linear(ctx, tObj, tObj->Image[0][level+1], - texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample 2D Array texture, nearest filtering for both min/magnification */ -static void -sample_nearest_2d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_2d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - - -/** Sample 2D Array texture, linear filtering for both min/magnification */ -static void -sample_linear_2d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_2d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 2D Array texture, using lambda to choose between min/magnification */ -static void -sample_lambda_2d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - GLuint i; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - for (i = minStart; i < minEnd; i++) - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = minStart; i < minEnd; i++) - sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_2d_array_nearest_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_2d_array_linear_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_2d_array_nearest_mipmap_linear(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_2d_array_linear_mipmap_linear(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_2d_array_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - for (i = magStart; i < magEnd; i++) - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = magStart; i < magEnd; i++) - sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_2d_array_texture"); - return; - } - } -} - - - - -/**********************************************************************/ -/* 1D Texture Array Sampling Functions */ -/**********************************************************************/ - -/** - * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. - */ -static void -sample_1d_array_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; /* without border, power of two */ - const GLint height = img->Height; - GLint i; - GLint array; - (void) ctx; - - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - array = tex_array_slice(texcoord[1], height); - - if (i < 0 || i >= (GLint) img->Width || - array < 0 || array >= (GLint) img->Height) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); - } - else { - img->FetchTexelf(img, i, array, 0, rgba); - } -} - - -/** - * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. - */ -static void -sample_1d_array_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLfloat rgba[4]) -{ - const GLint width = img->Width2; - const GLint height = img->Height; - GLint i0, i1; - GLint array; - GLbitfield useBorderColor = 0x0; - GLfloat a; - GLfloat t0[4], t1[4]; - - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - array = tex_array_slice(texcoord[1], height); - - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - } - else { - /* check if sampling texture border color */ - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - } - - if (array < 0 || array >= height) useBorderColor |= K0BIT; - - /* Fetch texels */ - if (useBorderColor & (I0BIT | K0BIT)) { - get_border_color(tObj, img, t0); - } - else { - img->FetchTexelf(img, i0, array, 0, t0); - } - if (useBorderColor & (I1BIT | K0BIT)) { - get_border_color(tObj, img, t1); - } - else { - img->FetchTexelf(img, i1, array, 0, t1); - } - - /* bilinear interpolation of samples */ - lerp_rgba(rgba, a, t0, t1); -} - - -static void -sample_1d_array_nearest_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], - rgba[i]); - } -} - - -static void -sample_1d_array_linear_mipmap_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_array_linear(ctx, tObj, tObj->Image[0][level], - texcoord[i], rgba[i]); - } -} - - -static void -sample_1d_array_nearest_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -static void -sample_1d_array_linear_mipmap_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level = linear_mipmap_level(tObj, lambda[i]); - if (level >= tObj->_MaxLevel) { - sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLfloat t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_1d_array_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_array_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - lerp_rgba(rgba[i], f, t0, t1); - } - } -} - - -/** Sample 1D Array texture, nearest filtering for both min/magnification */ -static void -sample_nearest_1d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_1d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 1D Array texture, linear filtering for both min/magnification */ -static void -sample_linear_1d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLfloat rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) lambda; - for (i = 0; i < n; i++) { - sample_1d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); - } -} - - -/** Sample 1D Array texture, using lambda to choose between min/magnification */ -static void -sample_lambda_1d_array(struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - GLuint i; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, - &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { - case GL_NEAREST: - for (i = minStart; i < minEnd; i++) - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = minStart; i < minEnd; i++) - sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_1d_array_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_1d_array_linear_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_1d_array_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_1d_array_linear_mipmap_linear(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, - rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_1d_array_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { - case GL_NEAREST: - for (i = magStart; i < magEnd; i++) - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = magStart; i < magEnd; i++) - sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_1d_array_texture"); - return; - } - } -} - - -/** - * Compare texcoord against depth sample. Return 1.0 or the ambient value. - */ -static INLINE GLfloat -shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample, - GLfloat ambient) -{ - switch (function) { - case GL_LEQUAL: - return (coord <= depthSample) ? 1.0F : ambient; - case GL_GEQUAL: - return (coord >= depthSample) ? 1.0F : ambient; - case GL_LESS: - return (coord < depthSample) ? 1.0F : ambient; - case GL_GREATER: - return (coord > depthSample) ? 1.0F : ambient; - case GL_EQUAL: - return (coord == depthSample) ? 1.0F : ambient; - case GL_NOTEQUAL: - return (coord != depthSample) ? 1.0F : ambient; - case GL_ALWAYS: - return 1.0F; - case GL_NEVER: - return ambient; - case GL_NONE: - return depthSample; - default: - _mesa_problem(NULL, "Bad compare func in shadow_compare"); - return ambient; - } -} - - -/** - * Compare texcoord against four depth samples. - */ -static INLINE GLfloat -shadow_compare4(GLenum function, GLfloat coord, - GLfloat depth00, GLfloat depth01, - GLfloat depth10, GLfloat depth11, - GLfloat ambient, GLfloat wi, GLfloat wj) -{ - const GLfloat d = (1.0F - (GLfloat) ambient) * 0.25F; - GLfloat luminance = 1.0F; - - switch (function) { - case GL_LEQUAL: - if (coord > depth00) luminance -= d; - if (coord > depth01) luminance -= d; - if (coord > depth10) luminance -= d; - if (coord > depth11) luminance -= d; - return luminance; - case GL_GEQUAL: - if (coord < depth00) luminance -= d; - if (coord < depth01) luminance -= d; - if (coord < depth10) luminance -= d; - if (coord < depth11) luminance -= d; - return luminance; - case GL_LESS: - if (coord >= depth00) luminance -= d; - if (coord >= depth01) luminance -= d; - if (coord >= depth10) luminance -= d; - if (coord >= depth11) luminance -= d; - return luminance; - case GL_GREATER: - if (coord <= depth00) luminance -= d; - if (coord <= depth01) luminance -= d; - if (coord <= depth10) luminance -= d; - if (coord <= depth11) luminance -= d; - return luminance; - case GL_EQUAL: - if (coord != depth00) luminance -= d; - if (coord != depth01) luminance -= d; - if (coord != depth10) luminance -= d; - if (coord != depth11) luminance -= d; - return luminance; - case GL_NOTEQUAL: - if (coord == depth00) luminance -= d; - if (coord == depth01) luminance -= d; - if (coord == depth10) luminance -= d; - if (coord == depth11) luminance -= d; - return luminance; - case GL_ALWAYS: - return 1.0F; - case GL_NEVER: - return ambient; - case GL_NONE: - /* ordinary bilinear filtering */ - return lerp_2d(wi, wj, depth00, depth10, depth01, depth11); - default: - _mesa_problem(NULL, "Bad compare func in sample_compare4"); - return ambient; - } -} - - -/** - * Choose the mipmap level to use when sampling from a depth texture. - */ -static int -choose_depth_texture_level(const struct gl_texture_object *tObj, GLfloat lambda) -{ - GLint level; - - if (tObj->Sampler.MinFilter == GL_NEAREST || tObj->Sampler.MinFilter == GL_LINEAR) { - /* no mipmapping - use base level */ - level = tObj->BaseLevel; - } - else { - /* choose mipmap level */ - lambda = CLAMP(lambda, tObj->Sampler.MinLod, tObj->Sampler.MaxLod); - level = (GLint) lambda; - level = CLAMP(level, tObj->BaseLevel, tObj->_MaxLevel); - } - - return level; -} - - -/** - * Sample a shadow/depth texture. This function is incomplete. It doesn't - * check for minification vs. magnification, etc. - */ -static void -sample_depth_texture( struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat texel[][4] ) -{ - const GLint level = choose_depth_texture_level(tObj, lambda[0]); - const struct gl_texture_image *img = tObj->Image[0][level]; - const GLint width = img->Width; - const GLint height = img->Height; - const GLint depth = img->Depth; - const GLuint compare_coord = (tObj->Target == GL_TEXTURE_2D_ARRAY_EXT) - ? 3 : 2; - GLfloat ambient; - GLenum function; - GLfloat result; - - ASSERT(img->_BaseFormat == GL_DEPTH_COMPONENT || - img->_BaseFormat == GL_DEPTH_STENCIL_EXT); - - ASSERT(tObj->Target == GL_TEXTURE_1D || - tObj->Target == GL_TEXTURE_2D || - tObj->Target == GL_TEXTURE_RECTANGLE_NV || - tObj->Target == GL_TEXTURE_1D_ARRAY_EXT || - tObj->Target == GL_TEXTURE_2D_ARRAY_EXT); - - ambient = tObj->Sampler.CompareFailValue; - - /* XXXX if tObj->Sampler.MinFilter != tObj->Sampler.MagFilter, we're ignoring lambda */ - - function = (tObj->Sampler.CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ? - tObj->Sampler.CompareFunc : GL_NONE; - - if (tObj->Sampler.MagFilter == GL_NEAREST) { - GLuint i; - for (i = 0; i < n; i++) { - GLfloat depthSample, depthRef; - GLint col, row, slice; - - nearest_texcoord(tObj, level, texcoords[i], &col, &row, &slice); - - if (col >= 0 && row >= 0 && col < width && row < height && - slice >= 0 && slice < depth) { - img->FetchTexelf(img, col, row, slice, &depthSample); - } - else { - depthSample = tObj->Sampler.BorderColor.f[0]; - } - - depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F); - - result = shadow_compare(function, depthRef, depthSample, ambient); - - switch (tObj->Sampler.DepthMode) { - case GL_LUMINANCE: - ASSIGN_4V(texel[i], result, result, result, 1.0F); - break; - case GL_INTENSITY: - ASSIGN_4V(texel[i], result, result, result, result); - break; - case GL_ALPHA: - ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); - break; - case GL_RED: - ASSIGN_4V(texel[i], result, 0.0F, 0.0F, 1.0F); - break; - default: - _mesa_problem(ctx, "Bad depth texture mode"); - } - } - } - else { - GLuint i; - ASSERT(tObj->Sampler.MagFilter == GL_LINEAR); - for (i = 0; i < n; i++) { - GLfloat depth00, depth01, depth10, depth11, depthRef; - GLint i0, i1, j0, j1; - GLint slice; - GLfloat wi, wj; - GLuint useBorderTexel; - - linear_texcoord(tObj, level, texcoords[i], &i0, &i1, &j0, &j1, &slice, - &wi, &wj); - - useBorderTexel = 0; - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) { - j0 += img->Border; - j1 += img->Border; - } - } - else { - if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT; - if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT; - if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT; - if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT; - } - - if (slice < 0 || slice >= (GLint) depth) { - depth00 = tObj->Sampler.BorderColor.f[0]; - depth01 = tObj->Sampler.BorderColor.f[0]; - depth10 = tObj->Sampler.BorderColor.f[0]; - depth11 = tObj->Sampler.BorderColor.f[0]; - } - else { - /* get four depth samples from the texture */ - if (useBorderTexel & (I0BIT | J0BIT)) { - depth00 = tObj->Sampler.BorderColor.f[0]; - } - else { - img->FetchTexelf(img, i0, j0, slice, &depth00); - } - if (useBorderTexel & (I1BIT | J0BIT)) { - depth10 = tObj->Sampler.BorderColor.f[0]; - } - else { - img->FetchTexelf(img, i1, j0, slice, &depth10); - } - - if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) { - if (useBorderTexel & (I0BIT | J1BIT)) { - depth01 = tObj->Sampler.BorderColor.f[0]; - } - else { - img->FetchTexelf(img, i0, j1, slice, &depth01); - } - if (useBorderTexel & (I1BIT | J1BIT)) { - depth11 = tObj->Sampler.BorderColor.f[0]; - } - else { - img->FetchTexelf(img, i1, j1, slice, &depth11); - } - } - else { - depth01 = depth00; - depth11 = depth10; - } - } - - depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F); - - result = shadow_compare4(function, depthRef, - depth00, depth01, depth10, depth11, - ambient, wi, wj); - - switch (tObj->Sampler.DepthMode) { - case GL_LUMINANCE: - ASSIGN_4V(texel[i], result, result, result, 1.0F); - break; - case GL_INTENSITY: - ASSIGN_4V(texel[i], result, result, result, result); - break; - case GL_ALPHA: - ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); - break; - default: - _mesa_problem(ctx, "Bad depth texture mode"); - } - - } /* for */ - } /* if filter */ -} - - -/** - * We use this function when a texture object is in an "incomplete" state. - * When a fragment program attempts to sample an incomplete texture we - * return black (see issue 23 in GL_ARB_fragment_program spec). - * Note: fragment programs don't observe the texture enable/disable flags. - */ -static void -null_sample_func( struct gl_context *ctx, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLfloat rgba[][4]) -{ - GLuint i; - (void) ctx; - (void) tObj; - (void) texcoords; - (void) lambda; - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = 0; - rgba[i][GCOMP] = 0; - rgba[i][BCOMP] = 0; - rgba[i][ACOMP] = 1.0; - } -} - - -/** - * Choose the texture sampling function for the given texture object. - */ -texture_sample_func -_swrast_choose_texture_sample_func( struct gl_context *ctx, - const struct gl_texture_object *t ) -{ - if (!t || !t->_Complete) { - return &null_sample_func; - } - else { - const GLboolean needLambda = - (GLboolean) (t->Sampler.MinFilter != t->Sampler.MagFilter); - const GLenum format = t->Image[0][t->BaseLevel]->_BaseFormat; - - switch (t->Target) { - case GL_TEXTURE_1D: - if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { - return &sample_depth_texture; - } - else if (needLambda) { - return &sample_lambda_1d; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_1d; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_1d; - } - case GL_TEXTURE_2D: - if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { - return &sample_depth_texture; - } - else if (needLambda) { - return &sample_lambda_2d; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_2d; - } - else { - /* check for a few optimized cases */ - const struct gl_texture_image *img = t->Image[0][t->BaseLevel]; - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - if (t->Sampler.WrapS == GL_REPEAT && - t->Sampler.WrapT == GL_REPEAT && - img->_IsPowerOfTwo && - img->Border == 0 && - img->TexFormat == MESA_FORMAT_RGB888) { - return &opt_sample_rgb_2d; - } - else if (t->Sampler.WrapS == GL_REPEAT && - t->Sampler.WrapT == GL_REPEAT && - img->_IsPowerOfTwo && - img->Border == 0 && - img->TexFormat == MESA_FORMAT_RGBA8888) { - return &opt_sample_rgba_2d; - } - else { - return &sample_nearest_2d; - } - } - case GL_TEXTURE_3D: - if (needLambda) { - return &sample_lambda_3d; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_3d; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_3d; - } - case GL_TEXTURE_CUBE_MAP: - if (needLambda) { - return &sample_lambda_cube; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_cube; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_cube; - } - case GL_TEXTURE_RECTANGLE_NV: - if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { - return &sample_depth_texture; - } - else if (needLambda) { - return &sample_lambda_rect; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_rect; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_rect; - } - case GL_TEXTURE_1D_ARRAY_EXT: - if (needLambda) { - return &sample_lambda_1d_array; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_1d_array; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_1d_array; - } - case GL_TEXTURE_2D_ARRAY_EXT: - if (needLambda) { - return &sample_lambda_2d_array; - } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_2d_array; - } - else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_2d_array; - } - default: - _mesa_problem(ctx, - "invalid target in _swrast_choose_texture_sample_func"); - return &null_sample_func; - } - } -} +/* + * Mesa 3-D graphics library + * Version: 7.3 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/imports.h" + +#include "s_context.h" +#include "s_texfilter.h" + + +/* + * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes + * see 1-pixel bands of improperly weighted linear-filtered textures. + * The tests/texwrap.c demo is a good test. + * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0. + * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x). + */ +#define FRAC(f) ((f) - IFLOOR(f)) + + + +/** + * Linear interpolation macro + */ +#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) ) + + +/** + * Do 2D/biliner interpolation of float values. + * v00, v10, v01 and v11 are typically four texture samples in a square/box. + * a and b are the horizontal and vertical interpolants. + * It's important that this function is inlined when compiled with + * optimization! If we find that's not true on some systems, convert + * to a macro. + */ +static INLINE GLfloat +lerp_2d(GLfloat a, GLfloat b, + GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11) +{ + const GLfloat temp0 = LERP(a, v00, v10); + const GLfloat temp1 = LERP(a, v01, v11); + return LERP(b, temp0, temp1); +} + + +/** + * Do 3D/trilinear interpolation of float values. + * \sa lerp_2d + */ +static INLINE GLfloat +lerp_3d(GLfloat a, GLfloat b, GLfloat c, + GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110, + GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111) +{ + const GLfloat temp00 = LERP(a, v000, v100); + const GLfloat temp10 = LERP(a, v010, v110); + const GLfloat temp01 = LERP(a, v001, v101); + const GLfloat temp11 = LERP(a, v011, v111); + const GLfloat temp0 = LERP(b, temp00, temp10); + const GLfloat temp1 = LERP(b, temp01, temp11); + return LERP(c, temp0, temp1); +} + + +/** + * Do linear interpolation of colors. + */ +static INLINE void +lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4]) +{ + result[0] = LERP(t, a[0], b[0]); + result[1] = LERP(t, a[1], b[1]); + result[2] = LERP(t, a[2], b[2]); + result[3] = LERP(t, a[3], b[3]); +} + + +/** + * Do bilinear interpolation of colors. + */ +static INLINE void +lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b, + const GLfloat t00[4], const GLfloat t10[4], + const GLfloat t01[4], const GLfloat t11[4]) +{ + result[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]); + result[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]); + result[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]); + result[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]); +} + + +/** + * Do trilinear interpolation of colors. + */ +static INLINE void +lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c, + const GLfloat t000[4], const GLfloat t100[4], + const GLfloat t010[4], const GLfloat t110[4], + const GLfloat t001[4], const GLfloat t101[4], + const GLfloat t011[4], const GLfloat t111[4]) +{ + GLuint k; + /* compiler should unroll these short loops */ + for (k = 0; k < 4; k++) { + result[k] = lerp_3d(a, b, c, t000[k], t100[k], t010[k], t110[k], + t001[k], t101[k], t011[k], t111[k]); + } +} + + +/** + * Used for GL_REPEAT wrap mode. Using A % B doesn't produce the + * right results for A<0. Casting to A to be unsigned only works if B + * is a power of two. Adding a bias to A (which is a multiple of B) + * avoids the problems with A < 0 (for reasonable A) without using a + * conditional. + */ +#define REMAINDER(A, B) (((A) + (B) * 1024) % (B)) + + +/** + * Used to compute texel locations for linear sampling. + * Input: + * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER + * s = texcoord in [0,1] + * size = width (or height or depth) of texture + * Output: + * i0, i1 = returns two nearest texel indexes + * weight = returns blend factor between texels + */ +static INLINE void +linear_texel_locations(GLenum wrapMode, + const struct gl_texture_image *img, + GLint size, GLfloat s, + GLint *i0, GLint *i1, GLfloat *weight) +{ + GLfloat u; + switch (wrapMode) { + case GL_REPEAT: + u = s * size - 0.5F; + if (img->_IsPowerOfTwo) { + *i0 = IFLOOR(u) & (size - 1); + *i1 = (*i0 + 1) & (size - 1); + } + else { + *i0 = REMAINDER(IFLOOR(u), size); + *i1 = REMAINDER(*i0 + 1, size); + } + break; + case GL_CLAMP_TO_EDGE: + if (s <= 0.0F) + u = 0.0F; + else if (s >= 1.0F) + u = (GLfloat) size; + else + u = s * size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + if (*i0 < 0) + *i0 = 0; + if (*i1 >= (GLint) size) + *i1 = size - 1; + break; + case GL_CLAMP_TO_BORDER: + { + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + if (s <= min) + u = min * size; + else if (s >= max) + u = max * size; + else + u = s * size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + } + break; + case GL_MIRRORED_REPEAT: + { + const GLint flr = IFLOOR(s); + if (flr & 1) + u = 1.0F - (s - (GLfloat) flr); + else + u = s - (GLfloat) flr; + u = (u * size) - 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + if (*i0 < 0) + *i0 = 0; + if (*i1 >= (GLint) size) + *i1 = size - 1; + } + break; + case GL_MIRROR_CLAMP_EXT: + u = FABSF(s); + if (u >= 1.0F) + u = (GLfloat) size; + else + u *= size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + break; + case GL_MIRROR_CLAMP_TO_EDGE_EXT: + u = FABSF(s); + if (u >= 1.0F) + u = (GLfloat) size; + else + u *= size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + if (*i0 < 0) + *i0 = 0; + if (*i1 >= (GLint) size) + *i1 = size - 1; + break; + case GL_MIRROR_CLAMP_TO_BORDER_EXT: + { + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + u = FABSF(s); + if (u <= min) + u = min * size; + else if (u >= max) + u = max * size; + else + u *= size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + } + break; + case GL_CLAMP: + if (s <= 0.0F) + u = 0.0F; + else if (s >= 1.0F) + u = (GLfloat) size; + else + u = s * size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + break; + default: + _mesa_problem(NULL, "Bad wrap mode"); + u = 0.0F; + } + *weight = FRAC(u); +} + + +/** + * Used to compute texel location for nearest sampling. + */ +static INLINE GLint +nearest_texel_location(GLenum wrapMode, + const struct gl_texture_image *img, + GLint size, GLfloat s) +{ + GLint i; + + switch (wrapMode) { + case GL_REPEAT: + /* s limited to [0,1) */ + /* i limited to [0,size-1] */ + i = IFLOOR(s * size); + if (img->_IsPowerOfTwo) + i &= (size - 1); + else + i = REMAINDER(i, size); + return i; + case GL_CLAMP_TO_EDGE: + { + /* s limited to [min,max] */ + /* i limited to [0, size-1] */ + const GLfloat min = 1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + if (s < min) + i = 0; + else if (s > max) + i = size - 1; + else + i = IFLOOR(s * size); + } + return i; + case GL_CLAMP_TO_BORDER: + { + /* s limited to [min,max] */ + /* i limited to [-1, size] */ + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + if (s <= min) + i = -1; + else if (s >= max) + i = size; + else + i = IFLOOR(s * size); + } + return i; + case GL_MIRRORED_REPEAT: + { + const GLfloat min = 1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + const GLint flr = IFLOOR(s); + GLfloat u; + if (flr & 1) + u = 1.0F - (s - (GLfloat) flr); + else + u = s - (GLfloat) flr; + if (u < min) + i = 0; + else if (u > max) + i = size - 1; + else + i = IFLOOR(u * size); + } + return i; + case GL_MIRROR_CLAMP_EXT: + { + /* s limited to [0,1] */ + /* i limited to [0,size-1] */ + const GLfloat u = FABSF(s); + if (u <= 0.0F) + i = 0; + else if (u >= 1.0F) + i = size - 1; + else + i = IFLOOR(u * size); + } + return i; + case GL_MIRROR_CLAMP_TO_EDGE_EXT: + { + /* s limited to [min,max] */ + /* i limited to [0, size-1] */ + const GLfloat min = 1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + const GLfloat u = FABSF(s); + if (u < min) + i = 0; + else if (u > max) + i = size - 1; + else + i = IFLOOR(u * size); + } + return i; + case GL_MIRROR_CLAMP_TO_BORDER_EXT: + { + /* s limited to [min,max] */ + /* i limited to [0, size-1] */ + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + const GLfloat u = FABSF(s); + if (u < min) + i = -1; + else if (u > max) + i = size; + else + i = IFLOOR(u * size); + } + return i; + case GL_CLAMP: + /* s limited to [0,1] */ + /* i limited to [0,size-1] */ + if (s <= 0.0F) + i = 0; + else if (s >= 1.0F) + i = size - 1; + else + i = IFLOOR(s * size); + return i; + default: + _mesa_problem(NULL, "Bad wrap mode"); + return 0; + } +} + + +/* Power of two image sizes only */ +static INLINE void +linear_repeat_texel_location(GLuint size, GLfloat s, + GLint *i0, GLint *i1, GLfloat *weight) +{ + GLfloat u = s * size - 0.5F; + *i0 = IFLOOR(u) & (size - 1); + *i1 = (*i0 + 1) & (size - 1); + *weight = FRAC(u); +} + + +/** + * Do clamp/wrap for a texture rectangle coord, GL_NEAREST filter mode. + */ +static INLINE GLint +clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max) +{ + switch (wrapMode) { + case GL_CLAMP: + return IFLOOR( CLAMP(coord, 0.0F, max - 1) ); + case GL_CLAMP_TO_EDGE: + return IFLOOR( CLAMP(coord, 0.5F, max - 0.5F) ); + case GL_CLAMP_TO_BORDER: + return IFLOOR( CLAMP(coord, -0.5F, max + 0.5F) ); + default: + _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_nearest"); + return 0; + } +} + + +/** + * As above, but GL_LINEAR filtering. + */ +static INLINE void +clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max, + GLint *i0out, GLint *i1out, GLfloat *weight) +{ + GLfloat fcol; + GLint i0, i1; + switch (wrapMode) { + case GL_CLAMP: + /* Not exactly what the spec says, but it matches NVIDIA output */ + fcol = CLAMP(coord - 0.5F, 0.0F, max - 1); + i0 = IFLOOR(fcol); + i1 = i0 + 1; + break; + case GL_CLAMP_TO_EDGE: + fcol = CLAMP(coord, 0.5F, max - 0.5F); + fcol -= 0.5F; + i0 = IFLOOR(fcol); + i1 = i0 + 1; + if (i1 > max - 1) + i1 = max - 1; + break; + case GL_CLAMP_TO_BORDER: + fcol = CLAMP(coord, -0.5F, max + 0.5F); + fcol -= 0.5F; + i0 = IFLOOR(fcol); + i1 = i0 + 1; + break; + default: + _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_linear"); + i0 = i1 = 0; + fcol = 0.0F; + } + *i0out = i0; + *i1out = i1; + *weight = FRAC(fcol); +} + + +/** + * Compute slice/image to use for 1D or 2D array texture. + */ +static INLINE GLint +tex_array_slice(GLfloat coord, GLsizei size) +{ + GLint slice = IFLOOR(coord + 0.5f); + slice = CLAMP(slice, 0, size - 1); + return slice; +} + + +/** + * Compute nearest integer texcoords for given texobj and coordinate. + * NOTE: only used for depth texture sampling. + */ +static INLINE void +nearest_texcoord(const struct gl_texture_object *texObj, + GLuint level, + const GLfloat texcoord[4], + GLint *i, GLint *j, GLint *k) +{ + const struct gl_texture_image *img = texObj->Image[0][level]; + const GLint width = img->Width; + const GLint height = img->Height; + const GLint depth = img->Depth; + + switch (texObj->Target) { + case GL_TEXTURE_RECTANGLE_ARB: + *i = clamp_rect_coord_nearest(texObj->Sampler.WrapS, texcoord[0], width); + *j = clamp_rect_coord_nearest(texObj->Sampler.WrapT, texcoord[1], height); + *k = 0; + break; + case GL_TEXTURE_1D: + *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); + *j = 0; + *k = 0; + break; + case GL_TEXTURE_2D: + *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); + *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]); + *k = 0; + break; + case GL_TEXTURE_1D_ARRAY_EXT: + *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); + *j = tex_array_slice(texcoord[1], height); + *k = 0; + break; + case GL_TEXTURE_2D_ARRAY_EXT: + *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); + *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]); + *k = tex_array_slice(texcoord[2], depth); + break; + default: + *i = *j = *k = 0; + } +} + + +/** + * Compute linear integer texcoords for given texobj and coordinate. + * NOTE: only used for depth texture sampling. + */ +static INLINE void +linear_texcoord(const struct gl_texture_object *texObj, + GLuint level, + const GLfloat texcoord[4], + GLint *i0, GLint *i1, GLint *j0, GLint *j1, GLint *slice, + GLfloat *wi, GLfloat *wj) +{ + const struct gl_texture_image *img = texObj->Image[0][level]; + const GLint width = img->Width; + const GLint height = img->Height; + const GLint depth = img->Depth; + + switch (texObj->Target) { + case GL_TEXTURE_RECTANGLE_ARB: + clamp_rect_coord_linear(texObj->Sampler.WrapS, texcoord[0], + width, i0, i1, wi); + clamp_rect_coord_linear(texObj->Sampler.WrapT, texcoord[1], + height, j0, j1, wj); + *slice = 0; + break; + + case GL_TEXTURE_1D: + case GL_TEXTURE_2D: + linear_texel_locations(texObj->Sampler.WrapS, img, width, + texcoord[0], i0, i1, wi); + linear_texel_locations(texObj->Sampler.WrapT, img, height, + texcoord[1], j0, j1, wj); + *slice = 0; + break; + + case GL_TEXTURE_1D_ARRAY_EXT: + linear_texel_locations(texObj->Sampler.WrapS, img, width, + texcoord[0], i0, i1, wi); + *j0 = tex_array_slice(texcoord[1], height); + *j1 = *j0; + *slice = 0; + break; + + case GL_TEXTURE_2D_ARRAY_EXT: + linear_texel_locations(texObj->Sampler.WrapS, img, width, + texcoord[0], i0, i1, wi); + linear_texel_locations(texObj->Sampler.WrapT, img, height, + texcoord[1], j0, j1, wj); + *slice = tex_array_slice(texcoord[2], depth); + break; + + default: + *slice = 0; + } +} + + + +/** + * For linear interpolation between mipmap levels N and N+1, this function + * computes N. + */ +static INLINE GLint +linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) +{ + if (lambda < 0.0F) + return tObj->BaseLevel; + else if (lambda > tObj->_MaxLambda) + return (GLint) (tObj->BaseLevel + tObj->_MaxLambda); + else + return (GLint) (tObj->BaseLevel + lambda); +} + + +/** + * Compute the nearest mipmap level to take texels from. + */ +static INLINE GLint +nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) +{ + GLfloat l; + GLint level; + if (lambda <= 0.5F) + l = 0.0F; + else if (lambda > tObj->_MaxLambda + 0.4999F) + l = tObj->_MaxLambda + 0.4999F; + else + l = lambda; + level = (GLint) (tObj->BaseLevel + l + 0.5F); + if (level > tObj->_MaxLevel) + level = tObj->_MaxLevel; + return level; +} + + + +/* + * Bitflags for texture border color sampling. + */ +#define I0BIT 1 +#define I1BIT 2 +#define J0BIT 4 +#define J1BIT 8 +#define K0BIT 16 +#define K1BIT 32 + + + +/** + * The lambda[] array values are always monotonic. Either the whole span + * will be minified, magnified, or split between the two. This function + * determines the subranges in [0, n-1] that are to be minified or magnified. + */ +static INLINE void +compute_min_mag_ranges(const struct gl_texture_object *tObj, + GLuint n, const GLfloat lambda[], + GLuint *minStart, GLuint *minEnd, + GLuint *magStart, GLuint *magEnd) +{ + GLfloat minMagThresh; + + /* we shouldn't be here if minfilter == magfilter */ + ASSERT(tObj->Sampler.MinFilter != tObj->Sampler.MagFilter); + + /* This bit comes from the OpenGL spec: */ + if (tObj->Sampler.MagFilter == GL_LINEAR + && (tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_NEAREST || + tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_LINEAR)) { + minMagThresh = 0.5F; + } + else { + minMagThresh = 0.0F; + } + +#if 0 + /* DEBUG CODE: Verify that lambda[] is monotonic. + * We can't really use this because the inaccuracy in the LOG2 function + * causes this test to fail, yet the resulting texturing is correct. + */ + if (n > 1) { + GLuint i; + printf("lambda delta = %g\n", lambda[0] - lambda[n-1]); + if (lambda[0] >= lambda[n-1]) { /* decreasing */ + for (i = 0; i < n - 1; i++) { + ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10)); + } + } + else { /* increasing */ + for (i = 0; i < n - 1; i++) { + ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10)); + } + } + } +#endif /* DEBUG */ + + if (lambda[0] <= minMagThresh && (n <= 1 || lambda[n-1] <= minMagThresh)) { + /* magnification for whole span */ + *magStart = 0; + *magEnd = n; + *minStart = *minEnd = 0; + } + else if (lambda[0] > minMagThresh && (n <=1 || lambda[n-1] > minMagThresh)) { + /* minification for whole span */ + *minStart = 0; + *minEnd = n; + *magStart = *magEnd = 0; + } + else { + /* a mix of minification and magnification */ + GLuint i; + if (lambda[0] > minMagThresh) { + /* start with minification */ + for (i = 1; i < n; i++) { + if (lambda[i] <= minMagThresh) + break; + } + *minStart = 0; + *minEnd = i; + *magStart = i; + *magEnd = n; + } + else { + /* start with magnification */ + for (i = 1; i < n; i++) { + if (lambda[i] > minMagThresh) + break; + } + *magStart = 0; + *magEnd = i; + *minStart = i; + *minEnd = n; + } + } + +#if 0 + /* Verify the min/mag Start/End values + * We don't use this either (see above) + */ + { + GLint i; + for (i = 0; i < n; i++) { + if (lambda[i] > minMagThresh) { + /* minification */ + ASSERT(i >= *minStart); + ASSERT(i < *minEnd); + } + else { + /* magnification */ + ASSERT(i >= *magStart); + ASSERT(i < *magEnd); + } + } + } +#endif +} + + +/** + * When we sample the border color, it must be interpreted according to + * the base texture format. Ex: if the texture base format it GL_ALPHA, + * we return (0,0,0,BorderAlpha). + */ +static INLINE void +get_border_color(const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + GLfloat rgba[4]) +{ + switch (img->_BaseFormat) { + case GL_RGB: + rgba[0] = tObj->Sampler.BorderColor.f[0]; + rgba[1] = tObj->Sampler.BorderColor.f[1]; + rgba[2] = tObj->Sampler.BorderColor.f[2]; + rgba[3] = 1.0F; + break; + case GL_ALPHA: + rgba[0] = rgba[1] = rgba[2] = 0.0; + rgba[3] = tObj->Sampler.BorderColor.f[3]; + break; + case GL_LUMINANCE: + rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0]; + rgba[3] = 1.0; + break; + case GL_LUMINANCE_ALPHA: + rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0]; + rgba[3] = tObj->Sampler.BorderColor.f[3]; + break; + case GL_INTENSITY: + rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->Sampler.BorderColor.f[0]; + break; + default: + COPY_4V(rgba, tObj->Sampler.BorderColor.f); + } +} + + +/**********************************************************************/ +/* 1-D Texture Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s) using GL_NEAREST filter. + */ +static INLINE void +sample_1d_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + GLint i; + i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); + /* skip over the border, if any */ + i += img->Border; + if (i < 0 || i >= (GLint) img->Width) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, 0, 0, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s) using GL_LINEAR filter. + */ +static INLINE void +sample_1d_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], GLfloat rgba[4]) +{ + const GLint width = img->Width2; + GLint i0, i1; + GLbitfield useBorderColor = 0x0; + GLfloat a; + GLfloat t0[4], t1[4]; /* texels */ + + linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + } + else { + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + } + + /* fetch texel colors */ + if (useBorderColor & I0BIT) { + get_border_color(tObj, img, t0); + } + else { + img->FetchTexelf(img, i0, 0, 0, t0); + } + if (useBorderColor & I1BIT) { + get_border_color(tObj, img, t1); + } + else { + img->FetchTexelf(img, i1, 0, 0, t1); + } + + lerp_rgba(rgba, a, t0, t1); +} + + +static void +sample_1d_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_1d_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_1d_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_1d_linear_mipmap_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 1D texture, nearest filtering for both min/magnification */ +static void +sample_nearest_1d( struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4] ) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D texture, linear filtering for both min/magnification */ +static void +sample_linear_1d( struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4] ) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D texture, using lambda to choose between min/magnification */ +static void +sample_lambda_1d( struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4] ) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->Sampler.MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_1d_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->Sampler.MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_1d_texture"); + return; + } + } +} + + +/**********************************************************************/ +/* 2-D Texture Sampling Functions */ +/**********************************************************************/ + + +/** + * Return the texture sample for coordinate (s,t) using GL_NEAREST filter. + */ +static INLINE void +sample_2d_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height2; /* without border, power of two */ + GLint i, j; + (void) ctx; + + i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); + j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); + + /* skip over the border, if any */ + i += img->Border; + j += img->Border; + + if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, j, 0, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t) using GL_LINEAR filter. + * New sampling code contributed by Lynn Quam . + */ +static INLINE void +sample_2d_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + GLint i0, j0, i1, j1; + GLbitfield useBorderColor = 0x0; + GLfloat a, b; + GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ + + linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + j0 += img->Border; + j1 += img->Border; + } + else { + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + } + + /* fetch four texel colors */ + if (useBorderColor & (I0BIT | J0BIT)) { + get_border_color(tObj, img, t00); + } + else { + img->FetchTexelf(img, i0, j0, 0, t00); + } + if (useBorderColor & (I1BIT | J0BIT)) { + get_border_color(tObj, img, t10); + } + else { + img->FetchTexelf(img, i1, j0, 0, t10); + } + if (useBorderColor & (I0BIT | J1BIT)) { + get_border_color(tObj, img, t01); + } + else { + img->FetchTexelf(img, i0, j1, 0, t01); + } + if (useBorderColor & (I1BIT | J1BIT)) { + get_border_color(tObj, img, t11); + } + else { + img->FetchTexelf(img, i1, j1, 0, t11); + } + + lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); +} + + +/** + * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT. + * We don't have to worry about the texture border. + */ +static INLINE void +sample_2d_linear_repeat(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + GLint i0, j0, i1, j1; + GLfloat wi, wj; + GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ + + (void) ctx; + + ASSERT(tObj->Sampler.WrapS == GL_REPEAT); + ASSERT(tObj->Sampler.WrapT == GL_REPEAT); + ASSERT(img->Border == 0); + ASSERT(img->_BaseFormat != GL_COLOR_INDEX); + ASSERT(img->_IsPowerOfTwo); + + linear_repeat_texel_location(width, texcoord[0], &i0, &i1, &wi); + linear_repeat_texel_location(height, texcoord[1], &j0, &j1, &wj); + + img->FetchTexelf(img, i0, j0, 0, t00); + img->FetchTexelf(img, i1, j0, 0, t10); + img->FetchTexelf(img, i0, j1, 0, t01); + img->FetchTexelf(img, i1, j1, 0, t11); + + lerp_rgba_2d(rgba, wi, wj, t00, t10, t01, t11); +} + + +static void +sample_2d_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_2d_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_2d_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_2d_linear_mipmap_linear( struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4] ) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_2d_linear_mipmap_linear_repeat(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + ASSERT(tObj->Sampler.WrapS == GL_REPEAT); + ASSERT(tObj->Sampler.WrapT == GL_REPEAT); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ], + texcoord[i], t0); + sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1], + texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 2D texture, nearest filtering for both min/magnification */ +static void +sample_nearest_2d(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 2D texture, linear filtering for both min/magnification */ +static void +sample_linear_2d(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + if (tObj->Sampler.WrapS == GL_REPEAT && + tObj->Sampler.WrapT == GL_REPEAT && + image->_IsPowerOfTwo && + image->Border == 0) { + for (i = 0; i < n; i++) { + sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]); + } + } + else { + for (i = 0; i < n; i++) { + sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } + } +} + + +/** + * Optimized 2-D texture sampling: + * S and T wrap mode == GL_REPEAT + * GL_NEAREST min/mag filter + * No border, + * RowStride == Width, + * Format = GL_RGB + */ +static void +opt_sample_rgb_2d(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; + const GLfloat width = (GLfloat) img->Width; + const GLfloat height = (GLfloat) img->Height; + const GLint colMask = img->Width - 1; + const GLint rowMask = img->Height - 1; + const GLint shift = img->WidthLog2; + GLuint k; + (void) ctx; + (void) lambda; + ASSERT(tObj->Sampler.WrapS==GL_REPEAT); + ASSERT(tObj->Sampler.WrapT==GL_REPEAT); + ASSERT(img->Border==0); + ASSERT(img->TexFormat == MESA_FORMAT_RGB888); + ASSERT(img->_IsPowerOfTwo); + + for (k=0; kData) + 3*pos; + rgba[k][RCOMP] = UBYTE_TO_FLOAT(texel[2]); + rgba[k][GCOMP] = UBYTE_TO_FLOAT(texel[1]); + rgba[k][BCOMP] = UBYTE_TO_FLOAT(texel[0]); + rgba[k][ACOMP] = 1.0F; + } +} + + +/** + * Optimized 2-D texture sampling: + * S and T wrap mode == GL_REPEAT + * GL_NEAREST min/mag filter + * No border + * RowStride == Width, + * Format = GL_RGBA + */ +static void +opt_sample_rgba_2d(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; + const GLfloat width = (GLfloat) img->Width; + const GLfloat height = (GLfloat) img->Height; + const GLint colMask = img->Width - 1; + const GLint rowMask = img->Height - 1; + const GLint shift = img->WidthLog2; + GLuint i; + (void) ctx; + (void) lambda; + ASSERT(tObj->Sampler.WrapS==GL_REPEAT); + ASSERT(tObj->Sampler.WrapT==GL_REPEAT); + ASSERT(img->Border==0); + ASSERT(img->TexFormat == MESA_FORMAT_RGBA8888); + ASSERT(img->_IsPowerOfTwo); + + for (i = 0; i < n; i++) { + const GLint col = IFLOOR(texcoords[i][0] * width) & colMask; + const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask; + const GLint pos = (row << shift) | col; + const GLuint texel = *((GLuint *) img->Data + pos); + rgba[i][RCOMP] = UBYTE_TO_FLOAT( (texel >> 24) ); + rgba[i][GCOMP] = UBYTE_TO_FLOAT( (texel >> 16) & 0xff ); + rgba[i][BCOMP] = UBYTE_TO_FLOAT( (texel >> 8) & 0xff ); + rgba[i][ACOMP] = UBYTE_TO_FLOAT( (texel ) & 0xff ); + } +} + + +/** Sample 2D texture, using lambda to choose between min/magnification */ +static void +sample_lambda_2d(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel]; + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + + const GLboolean repeatNoBorderPOT = (tObj->Sampler.WrapS == GL_REPEAT) + && (tObj->Sampler.WrapT == GL_REPEAT) + && (tImg->Border == 0 && (tImg->Width == tImg->RowStride)) + && (tImg->_BaseFormat != GL_COLOR_INDEX) + && tImg->_IsPowerOfTwo; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->Sampler.MinFilter) { + case GL_NEAREST: + if (repeatNoBorderPOT) { + switch (tImg->TexFormat) { + case MESA_FORMAT_RGB888: + opt_sample_rgb_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + case MESA_FORMAT_RGBA8888: + opt_sample_rgba_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + default: + sample_nearest_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart ); + } + } + else { + sample_nearest_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + } + break; + case GL_LINEAR: + sample_linear_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_2d_nearest_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + if (repeatNoBorderPOT) + sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m, + texcoords + minStart, lambda + minStart, rgba + minStart); + else + sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_2d_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + const GLuint m = magEnd - magStart; + + switch (tObj->Sampler.MagFilter) { + case GL_NEAREST: + if (repeatNoBorderPOT) { + switch (tImg->TexFormat) { + case MESA_FORMAT_RGB888: + opt_sample_rgb_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + case MESA_FORMAT_RGBA8888: + opt_sample_rgba_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + default: + sample_nearest_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart ); + } + } + else { + sample_nearest_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + } + break; + case GL_LINEAR: + sample_linear_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d"); + } + } +} + + +/* For anisotropic filtering */ +#define WEIGHT_LUT_SIZE 1024 + +static GLfloat *weightLut = NULL; + +/** + * Creates the look-up table used to speed-up EWA sampling + */ +static void +create_filter_table(void) +{ + GLuint i; + if (!weightLut) { + weightLut = (GLfloat *) malloc(WEIGHT_LUT_SIZE * sizeof(GLfloat)); + + for (i = 0; i < WEIGHT_LUT_SIZE; ++i) { + GLfloat alpha = 2; + GLfloat r2 = (GLfloat) i / (GLfloat) (WEIGHT_LUT_SIZE - 1); + GLfloat weight = (GLfloat) exp(-alpha * r2); + weightLut[i] = weight; + } + } +} + + +/** + * Elliptical weighted average (EWA) filter for producing high quality + * anisotropic filtered results. + * Based on the Higher Quality Elliptical Weighted Avarage Filter + * published by Paul S. Heckbert in his Master's Thesis + * "Fundamentals of Texture Mapping and Image Warping" (1989) + */ +static void +sample_2d_ewa(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const GLfloat texcoord[4], + const GLfloat dudx, const GLfloat dvdx, + const GLfloat dudy, const GLfloat dvdy, const GLint lod, + GLfloat rgba[]) +{ + GLint level = lod > 0 ? lod : 0; + GLfloat scaling = 1.0 / (1 << level); + const struct gl_texture_image *img = tObj->Image[0][level]; + const struct gl_texture_image *mostDetailedImage = + tObj->Image[0][tObj->BaseLevel]; + GLfloat tex_u=-0.5 + texcoord[0] * mostDetailedImage->WidthScale * scaling; + GLfloat tex_v=-0.5 + texcoord[1] * mostDetailedImage->HeightScale * scaling; + + GLfloat ux = dudx * scaling; + GLfloat vx = dvdx * scaling; + GLfloat uy = dudy * scaling; + GLfloat vy = dvdy * scaling; + + /* compute ellipse coefficients to bound the region: + * A*x*x + B*x*y + C*y*y = F. + */ + GLfloat A = vx*vx+vy*vy+1; + GLfloat B = -2*(ux*vx+uy*vy); + GLfloat C = ux*ux+uy*uy+1; + GLfloat F = A*C-B*B/4.0; + + /* check if it is an ellipse */ + /* ASSERT(F > 0.0); */ + + /* Compute the ellipse's (u,v) bounding box in texture space */ + GLfloat d = -B*B+4.0*C*A; + GLfloat box_u = 2.0 / d * sqrt(d*C*F); /* box_u -> half of bbox with */ + GLfloat box_v = 2.0 / d * sqrt(A*d*F); /* box_v -> half of bbox height */ + + GLint u0 = floor(tex_u - box_u); + GLint u1 = ceil (tex_u + box_u); + GLint v0 = floor(tex_v - box_v); + GLint v1 = ceil (tex_v + box_v); + + GLfloat num[4] = {0.0F, 0.0F, 0.0F, 0.0F}; + GLfloat newCoord[2]; + GLfloat den = 0.0F; + GLfloat ddq; + GLfloat U = u0 - tex_u; + GLint v; + + /* Scale ellipse formula to directly index the Filter Lookup Table. + * i.e. scale so that F = WEIGHT_LUT_SIZE-1 + */ + double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F; + A *= formScale; + B *= formScale; + C *= formScale; + /* F *= formScale; */ /* no need to scale F as we don't use it below here */ + + /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse + * and incrementally update the value of Ax^2+Bxy*Cy^2; when this + * value, q, is less than F, we're inside the ellipse + */ + ddq = 2 * A; + for (v = v0; v <= v1; ++v) { + GLfloat V = v - tex_v; + GLfloat dq = A * (2 * U + 1) + B * V; + GLfloat q = (C * V + B * U) * V + A * U * U; + + GLint u; + for (u = u0; u <= u1; ++u) { + /* Note that the ellipse has been pre-scaled so F = WEIGHT_LUT_SIZE - 1 */ + if (q < WEIGHT_LUT_SIZE) { + /* as a LUT is used, q must never be negative; + * should not happen, though + */ + const GLint qClamped = q >= 0.0F ? q : 0; + GLfloat weight = weightLut[qClamped]; + + newCoord[0] = u / ((GLfloat) img->Width2); + newCoord[1] = v / ((GLfloat) img->Height2); + + sample_2d_nearest(ctx, tObj, img, newCoord, rgba); + num[0] += weight * rgba[0]; + num[1] += weight * rgba[1]; + num[2] += weight * rgba[2]; + num[3] += weight * rgba[3]; + + den += weight; + } + q += dq; + dq += ddq; + } + } + + if (den <= 0.0F) { + /* Reaching this place would mean + * that no pixels intersected the ellipse. + * This should never happen because + * the filter we use always + * intersects at least one pixel. + */ + + /*rgba[0]=0; + rgba[1]=0; + rgba[2]=0; + rgba[3]=0;*/ + /* not enough pixels in resampling, resort to direct interpolation */ + sample_2d_linear(ctx, tObj, img, texcoord, rgba); + return; + } + + rgba[0] = num[0] / den; + rgba[1] = num[1] / den; + rgba[2] = num[2] / den; + rgba[3] = num[3] / den; +} + + +/** + * Anisotropic filtering using footprint assembly as outlined in the + * EXT_texture_filter_anisotropic spec: + * http://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt + * Faster than EWA but has less quality (more aliasing effects) + */ +static void +sample_2d_footprint(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const GLfloat texcoord[4], + const GLfloat dudx, const GLfloat dvdx, + const GLfloat dudy, const GLfloat dvdy, const GLint lod, + GLfloat rgba[]) +{ + GLint level = lod > 0 ? lod : 0; + GLfloat scaling = 1.0F / (1 << level); + const struct gl_texture_image *img = tObj->Image[0][level]; + + GLfloat ux = dudx * scaling; + GLfloat vx = dvdx * scaling; + GLfloat uy = dudy * scaling; + GLfloat vy = dvdy * scaling; + + GLfloat Px2 = ux * ux + vx * vx; /* squared length of dx */ + GLfloat Py2 = uy * uy + vy * vy; /* squared length of dy */ + + GLint numSamples; + GLfloat ds; + GLfloat dt; + + GLfloat num[4] = {0.0F, 0.0F, 0.0F, 0.0F}; + GLfloat newCoord[2]; + GLint s; + + /* Calculate the per anisotropic sample offsets in s,t space. */ + if (Px2 > Py2) { + numSamples = ceil(SQRTF(Px2)); + ds = ux / ((GLfloat) img->Width2); + dt = vx / ((GLfloat) img->Height2); + } + else { + numSamples = ceil(SQRTF(Py2)); + ds = uy / ((GLfloat) img->Width2); + dt = vy / ((GLfloat) img->Height2); + } + + for (s = 0; sTexture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1; + GLuint u; + + /* XXX CoordUnits vs. ImageUnits */ + for (u = 0; u < maxUnit; u++) { + if (ctx->Texture.Unit[u]._Current == tObj) + break; /* found */ + } + if (u >= maxUnit) + u = 0; /* not found, use 1st one; should never happen */ + + return u; +} + + +/** + * Sample 2D texture using an anisotropic filter. + * NOTE: the const GLfloat lambda_iso[] parameter does *NOT* contain + * the lambda float array but a "hidden" SWspan struct which is required + * by this function but is not available in the texture_sample_func signature. + * See _swrast_texture_span( struct gl_context *ctx, SWspan *span ) on how + * this function is called. + */ +static void +sample_lambda_2d_aniso(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoords[][4], + const GLfloat lambda_iso[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel]; + const GLfloat maxEccentricity = + tObj->Sampler.MaxAnisotropy * tObj->Sampler.MaxAnisotropy; + + /* re-calculate the lambda values so that they are usable with anisotropic + * filtering + */ + SWspan *span = (SWspan *)lambda_iso; /* access the "hidden" SWspan struct */ + + /* based on interpolate_texcoords(struct gl_context *ctx, SWspan *span) + * in swrast/s_span.c + */ + + /* find the texture unit index by looking up the current texture object + * from the context list of available texture objects. + */ + const GLuint u = texture_unit_index(ctx, tObj); + const GLuint attr = FRAG_ATTRIB_TEX0 + u; + GLfloat texW, texH; + + const GLfloat dsdx = span->attrStepX[attr][0]; + const GLfloat dsdy = span->attrStepY[attr][0]; + const GLfloat dtdx = span->attrStepX[attr][1]; + const GLfloat dtdy = span->attrStepY[attr][1]; + const GLfloat dqdx = span->attrStepX[attr][3]; + const GLfloat dqdy = span->attrStepY[attr][3]; + GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx; + GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx; + GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx; + + /* from swrast/s_texcombine.c _swrast_texture_span */ + const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[u]; + const GLboolean adjustLOD = + (texUnit->LodBias + tObj->Sampler.LodBias != 0.0F) + || (tObj->Sampler.MinLod != -1000.0 || tObj->Sampler.MaxLod != 1000.0); + + GLuint i; + + /* on first access create the lookup table containing the filter weights. */ + if (!weightLut) { + create_filter_table(); + } + + texW = tImg->WidthScale; + texH = tImg->HeightScale; + + for (i = 0; i < n; i++) { + const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); + + GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ); + GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ); + GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ); + GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ); + + /* note: instead of working with Px and Py, we will use the + * squared length instead, to avoid sqrt. + */ + GLfloat Px2 = dudx * dudx + dvdx * dvdx; + GLfloat Py2 = dudy * dudy + dvdy * dvdy; + + GLfloat Pmax2; + GLfloat Pmin2; + GLfloat e; + GLfloat lod; + + s += dsdx; + t += dtdx; + q += dqdx; + + if (Px2 < Py2) { + Pmax2 = Py2; + Pmin2 = Px2; + } + else { + Pmax2 = Px2; + Pmin2 = Py2; + } + + /* if the eccentricity of the ellipse is too big, scale up the shorter + * of the two vectors to limit the maximum amount of work per pixel + */ + e = Pmax2 / Pmin2; + if (e > maxEccentricity) { + /* GLfloat s=e / maxEccentricity; + minor[0] *= s; + minor[1] *= s; + Pmin2 *= s; */ + Pmin2 = Pmax2 / maxEccentricity; + } + + /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid + * this since 0.5*log(x) = log(sqrt(x)) + */ + lod = 0.5 * LOG2(Pmin2); + + if (adjustLOD) { + /* from swrast/s_texcombine.c _swrast_texture_span */ + if (texUnit->LodBias + tObj->Sampler.LodBias != 0.0F) { + /* apply LOD bias, but don't clamp yet */ + const GLfloat bias = + CLAMP(texUnit->LodBias + tObj->Sampler.LodBias, + -ctx->Const.MaxTextureLodBias, + ctx->Const.MaxTextureLodBias); + lod += bias; + + if (tObj->Sampler.MinLod != -1000.0 || + tObj->Sampler.MaxLod != 1000.0) { + /* apply LOD clamping to lambda */ + lod = CLAMP(lod, tObj->Sampler.MinLod, tObj->Sampler.MaxLod); + } + } + } + + /* If the ellipse covers the whole image, we can + * simply return the average of the whole image. + */ + if (lod >= tObj->_MaxLevel) { + sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoords[i], rgba[i]); + } + else { + /* don't bother interpolating between multiple LODs; it doesn't + * seem to be worth the extra running time. + */ + sample_2d_ewa(ctx, tObj, texcoords[i], + dudx, dvdx, dudy, dvdy, floor(lod), rgba[i]); + + /* unused: */ + (void) sample_2d_footprint; + /* + sample_2d_footprint(ctx, tObj, texcoords[i], + dudx, dvdx, dudy, dvdy, floor(lod), rgba[i]); + */ + } + } +} + + + +/**********************************************************************/ +/* 3-D Texture Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. + */ +static INLINE void +sample_3d_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height2; /* without border, power of two */ + const GLint depth = img->Depth2; /* without border, power of two */ + GLint i, j, k; + (void) ctx; + + i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); + j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); + k = nearest_texel_location(tObj->Sampler.WrapR, img, depth, texcoord[2]); + + if (i < 0 || i >= (GLint) img->Width || + j < 0 || j >= (GLint) img->Height || + k < 0 || k >= (GLint) img->Depth) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, j, k, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. + */ +static void +sample_3d_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + const GLint depth = img->Depth2; + GLint i0, j0, k0, i1, j1, k1; + GLbitfield useBorderColor = 0x0; + GLfloat a, b, c; + GLfloat t000[4], t010[4], t001[4], t011[4]; + GLfloat t100[4], t110[4], t101[4], t111[4]; + + linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); + linear_texel_locations(tObj->Sampler.WrapR, img, depth, texcoord[2], &k0, &k1, &c); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + j0 += img->Border; + j1 += img->Border; + k0 += img->Border; + k1 += img->Border; + } + else { + /* check if sampling texture border color */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT; + if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT; + } + + /* Fetch texels */ + if (useBorderColor & (I0BIT | J0BIT | K0BIT)) { + get_border_color(tObj, img, t000); + } + else { + img->FetchTexelf(img, i0, j0, k0, t000); + } + if (useBorderColor & (I1BIT | J0BIT | K0BIT)) { + get_border_color(tObj, img, t100); + } + else { + img->FetchTexelf(img, i1, j0, k0, t100); + } + if (useBorderColor & (I0BIT | J1BIT | K0BIT)) { + get_border_color(tObj, img, t010); + } + else { + img->FetchTexelf(img, i0, j1, k0, t010); + } + if (useBorderColor & (I1BIT | J1BIT | K0BIT)) { + get_border_color(tObj, img, t110); + } + else { + img->FetchTexelf(img, i1, j1, k0, t110); + } + + if (useBorderColor & (I0BIT | J0BIT | K1BIT)) { + get_border_color(tObj, img, t001); + } + else { + img->FetchTexelf(img, i0, j0, k1, t001); + } + if (useBorderColor & (I1BIT | J0BIT | K1BIT)) { + get_border_color(tObj, img, t101); + } + else { + img->FetchTexelf(img, i1, j0, k1, t101); + } + if (useBorderColor & (I0BIT | J1BIT | K1BIT)) { + get_border_color(tObj, img, t011); + } + else { + img->FetchTexelf(img, i0, j1, k1, t011); + } + if (useBorderColor & (I1BIT | J1BIT | K1BIT)) { + get_border_color(tObj, img, t111); + } + else { + img->FetchTexelf(img, i1, j1, k1, t111); + } + + /* trilinear interpolation of samples */ + lerp_rgba_3d(rgba, a, b, c, t000, t100, t010, t110, t001, t101, t011, t111); +} + + +static void +sample_3d_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4] ) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_3d_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_3d_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_3d_linear_mipmap_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 3D texture, nearest filtering for both min/magnification */ +static void +sample_nearest_3d(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 3D texture, linear filtering for both min/magnification */ +static void +sample_linear_3d(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 3D texture, using lambda to choose between min/magnification */ +static void +sample_lambda_3d(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + GLuint m = minEnd - minStart; + switch (tObj->Sampler.MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_3d_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->Sampler.MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_3d_texture"); + return; + } + } +} + + +/**********************************************************************/ +/* Texture Cube Map Sampling Functions */ +/**********************************************************************/ + +/** + * Choose one of six sides of a texture cube map given the texture + * coord (rx,ry,rz). Return pointer to corresponding array of texture + * images. + */ +static const struct gl_texture_image ** +choose_cube_face(const struct gl_texture_object *texObj, + const GLfloat texcoord[4], GLfloat newCoord[4]) +{ + /* + major axis + direction target sc tc ma + ---------- ------------------------------- --- --- --- + +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx + -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx + +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry + -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry + +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz + -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz + */ + const GLfloat rx = texcoord[0]; + const GLfloat ry = texcoord[1]; + const GLfloat rz = texcoord[2]; + const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz); + GLuint face; + GLfloat sc, tc, ma; + + if (arx >= ary && arx >= arz) { + if (rx >= 0.0F) { + face = FACE_POS_X; + sc = -rz; + tc = -ry; + ma = arx; + } + else { + face = FACE_NEG_X; + sc = rz; + tc = -ry; + ma = arx; + } + } + else if (ary >= arx && ary >= arz) { + if (ry >= 0.0F) { + face = FACE_POS_Y; + sc = rx; + tc = rz; + ma = ary; + } + else { + face = FACE_NEG_Y; + sc = rx; + tc = -rz; + ma = ary; + } + } + else { + if (rz > 0.0F) { + face = FACE_POS_Z; + sc = rx; + tc = -ry; + ma = arz; + } + else { + face = FACE_NEG_Z; + sc = -rx; + tc = -ry; + ma = arz; + } + } + + { + const float ima = 1.0F / ma; + newCoord[0] = ( sc * ima + 1.0F ) * 0.5F; + newCoord[1] = ( tc * ima + 1.0F ) * 0.5F; + } + + return (const struct gl_texture_image **) texObj->Image[face]; +} + + +static void +sample_nearest_cube(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + (void) lambda; + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + images = choose_cube_face(tObj, texcoords[i], newCoord); + sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel], + newCoord, rgba[i]); + } +} + + +static void +sample_linear_cube(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + (void) lambda; + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + images = choose_cube_face(tObj, texcoords[i], newCoord); + sample_2d_linear(ctx, tObj, images[tObj->BaseLevel], + newCoord, rgba[i]); + } +} + + +static void +sample_cube_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level; + images = choose_cube_face(tObj, texcoord[i], newCoord); + + /* XXX we actually need to recompute lambda here based on the newCoords. + * But we would need the texcoords of adjacent fragments to compute that + * properly, and we don't have those here. + * For now, do an approximation: subtracting 1 from the chosen mipmap + * level seems to work in some test cases. + * The same adjustment is done in the next few functions. + */ + level = nearest_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); + + sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]); + } +} + + +static void +sample_cube_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level = nearest_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); /* see comment above */ + images = choose_cube_face(tObj, texcoord[i], newCoord); + sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]); + } +} + + +static void +sample_cube_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level = linear_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); /* see comment above */ + images = choose_cube_face(tObj, texcoord[i], newCoord); + if (level >= tObj->_MaxLevel) { + sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel], + newCoord, rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0); + sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_cube_linear_mipmap_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level = linear_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); /* see comment above */ + images = choose_cube_face(tObj, texcoord[i], newCoord); + if (level >= tObj->_MaxLevel) { + sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel], + newCoord, rgba[i]); + } + else { + GLfloat t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear(ctx, tObj, images[level ], newCoord, t0); + sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample cube texture, using lambda to choose between min/magnification */ +static void +sample_lambda_cube(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->Sampler.MinFilter) { + case GL_NEAREST: + sample_nearest_cube(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR: + sample_linear_cube(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_cube_nearest_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_cube_linear_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_cube_nearest_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_cube_linear_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_lambda_cube"); + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + const GLuint m = magEnd - magStart; + switch (tObj->Sampler.MagFilter) { + case GL_NEAREST: + sample_nearest_cube(ctx, tObj, m, texcoords + magStart, + lambda + magStart, rgba + magStart); + break; + case GL_LINEAR: + sample_linear_cube(ctx, tObj, m, texcoords + magStart, + lambda + magStart, rgba + magStart); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube"); + } + } +} + + +/**********************************************************************/ +/* Texture Rectangle Sampling Functions */ +/**********************************************************************/ + + +static void +sample_nearest_rect(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][0]; + const GLint width = img->Width; + const GLint height = img->Height; + GLuint i; + + (void) ctx; + (void) lambda; + + ASSERT(tObj->Sampler.WrapS == GL_CLAMP || + tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE || + tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER); + ASSERT(tObj->Sampler.WrapT == GL_CLAMP || + tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE || + tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER); + ASSERT(img->_BaseFormat != GL_COLOR_INDEX); + + for (i = 0; i < n; i++) { + GLint row, col; + col = clamp_rect_coord_nearest(tObj->Sampler.WrapS, texcoords[i][0], width); + row = clamp_rect_coord_nearest(tObj->Sampler.WrapT, texcoords[i][1], height); + if (col < 0 || col >= width || row < 0 || row >= height) + get_border_color(tObj, img, rgba[i]); + else + img->FetchTexelf(img, col, row, 0, rgba[i]); + } +} + + +static void +sample_linear_rect(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][0]; + const GLint width = img->Width; + const GLint height = img->Height; + GLuint i; + + (void) ctx; + (void) lambda; + + ASSERT(tObj->Sampler.WrapS == GL_CLAMP || + tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE || + tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER); + ASSERT(tObj->Sampler.WrapT == GL_CLAMP || + tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE || + tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER); + ASSERT(img->_BaseFormat != GL_COLOR_INDEX); + + for (i = 0; i < n; i++) { + GLint i0, j0, i1, j1; + GLfloat t00[4], t01[4], t10[4], t11[4]; + GLfloat a, b; + GLbitfield useBorderColor = 0x0; + + clamp_rect_coord_linear(tObj->Sampler.WrapS, texcoords[i][0], width, + &i0, &i1, &a); + clamp_rect_coord_linear(tObj->Sampler.WrapT, texcoords[i][1], height, + &j0, &j1, &b); + + /* compute integer rows/columns */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + + /* get four texel samples */ + if (useBorderColor & (I0BIT | J0BIT)) + get_border_color(tObj, img, t00); + else + img->FetchTexelf(img, i0, j0, 0, t00); + + if (useBorderColor & (I1BIT | J0BIT)) + get_border_color(tObj, img, t10); + else + img->FetchTexelf(img, i1, j0, 0, t10); + + if (useBorderColor & (I0BIT | J1BIT)) + get_border_color(tObj, img, t01); + else + img->FetchTexelf(img, i0, j1, 0, t01); + + if (useBorderColor & (I1BIT | J1BIT)) + get_border_color(tObj, img, t11); + else + img->FetchTexelf(img, i1, j1, 0, t11); + + lerp_rgba_2d(rgba[i], a, b, t00, t10, t01, t11); + } +} + + +/** Sample Rect texture, using lambda to choose between min/magnification */ +static void +sample_lambda_rect(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd, magStart, magEnd; + + /* We only need lambda to decide between minification and magnification. + * There is no mipmapping with rectangular textures. + */ + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + if (tObj->Sampler.MinFilter == GL_NEAREST) { + sample_nearest_rect(ctx, tObj, minEnd - minStart, + texcoords + minStart, NULL, rgba + minStart); + } + else { + sample_linear_rect(ctx, tObj, minEnd - minStart, + texcoords + minStart, NULL, rgba + minStart); + } + } + if (magStart < magEnd) { + if (tObj->Sampler.MagFilter == GL_NEAREST) { + sample_nearest_rect(ctx, tObj, magEnd - magStart, + texcoords + magStart, NULL, rgba + magStart); + } + else { + sample_linear_rect(ctx, tObj, magEnd - magStart, + texcoords + magStart, NULL, rgba + magStart); + } + } +} + + +/**********************************************************************/ +/* 2D Texture Array Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. + */ +static void +sample_2d_array_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height2; /* without border, power of two */ + const GLint depth = img->Depth; + GLint i, j; + GLint array; + (void) ctx; + + i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); + j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); + array = tex_array_slice(texcoord[2], depth); + + if (i < 0 || i >= (GLint) img->Width || + j < 0 || j >= (GLint) img->Height || + array < 0 || array >= (GLint) img->Depth) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, j, array, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. + */ +static void +sample_2d_array_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + const GLint depth = img->Depth; + GLint i0, j0, i1, j1; + GLint array; + GLbitfield useBorderColor = 0x0; + GLfloat a, b; + GLfloat t00[4], t01[4], t10[4], t11[4]; + + linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); + array = tex_array_slice(texcoord[2], depth); + + if (array < 0 || array >= depth) { + COPY_4V(rgba, tObj->Sampler.BorderColor.f); + } + else { + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + j0 += img->Border; + j1 += img->Border; + } + else { + /* check if sampling texture border color */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + } + + /* Fetch texels */ + if (useBorderColor & (I0BIT | J0BIT)) { + get_border_color(tObj, img, t00); + } + else { + img->FetchTexelf(img, i0, j0, array, t00); + } + if (useBorderColor & (I1BIT | J0BIT)) { + get_border_color(tObj, img, t10); + } + else { + img->FetchTexelf(img, i1, j0, array, t10); + } + if (useBorderColor & (I0BIT | J1BIT)) { + get_border_color(tObj, img, t01); + } + else { + img->FetchTexelf(img, i0, j1, array, t01); + } + if (useBorderColor & (I1BIT | J1BIT)) { + get_border_color(tObj, img, t11); + } + else { + img->FetchTexelf(img, i1, j1, array, t11); + } + + /* trilinear interpolation of samples */ + lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); + } +} + + +static void +sample_2d_array_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], + rgba[i]); + } +} + + +static void +sample_2d_array_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_array_linear(ctx, tObj, tObj->Image[0][level], + texcoord[i], rgba[i]); + } +} + + +static void +sample_2d_array_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level ], + texcoord[i], t0); + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level+1], + texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_2d_array_linear_mipmap_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_array_linear(ctx, tObj, tObj->Image[0][level ], + texcoord[i], t0); + sample_2d_array_linear(ctx, tObj, tObj->Image[0][level+1], + texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 2D Array texture, nearest filtering for both min/magnification */ +static void +sample_nearest_2d_array(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_2d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + + +/** Sample 2D Array texture, linear filtering for both min/magnification */ +static void +sample_linear_2d_array(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_2d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 2D Array texture, using lambda to choose between min/magnification */ +static void +sample_lambda_2d_array(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + GLuint m = minEnd - minStart; + switch (tObj->Sampler.MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_2d_array_nearest_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_2d_array_linear_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_2d_array_nearest_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_2d_array_linear_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_2d_array_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->Sampler.MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_2d_array_texture"); + return; + } + } +} + + + + +/**********************************************************************/ +/* 1D Texture Array Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. + */ +static void +sample_1d_array_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height; + GLint i; + GLint array; + (void) ctx; + + i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); + array = tex_array_slice(texcoord[1], height); + + if (i < 0 || i >= (GLint) img->Width || + array < 0 || array >= (GLint) img->Height) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, array, 0, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. + */ +static void +sample_1d_array_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; + const GLint height = img->Height; + GLint i0, i1; + GLint array; + GLbitfield useBorderColor = 0x0; + GLfloat a; + GLfloat t0[4], t1[4]; + + linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); + array = tex_array_slice(texcoord[1], height); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + } + else { + /* check if sampling texture border color */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + } + + if (array < 0 || array >= height) useBorderColor |= K0BIT; + + /* Fetch texels */ + if (useBorderColor & (I0BIT | K0BIT)) { + get_border_color(tObj, img, t0); + } + else { + img->FetchTexelf(img, i0, array, 0, t0); + } + if (useBorderColor & (I1BIT | K0BIT)) { + get_border_color(tObj, img, t1); + } + else { + img->FetchTexelf(img, i1, array, 0, t1); + } + + /* bilinear interpolation of samples */ + lerp_rgba(rgba, a, t0, t1); +} + + +static void +sample_1d_array_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], + rgba[i]); + } +} + + +static void +sample_1d_array_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_array_linear(ctx, tObj, tObj->Image[0][level], + texcoord[i], rgba[i]); + } +} + + +static void +sample_1d_array_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_1d_array_linear_mipmap_linear(struct gl_context *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_1d_array_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_array_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 1D Array texture, nearest filtering for both min/magnification */ +static void +sample_nearest_1d_array(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D Array texture, linear filtering for both min/magnification */ +static void +sample_linear_1d_array(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D Array texture, using lambda to choose between min/magnification */ +static void +sample_lambda_1d_array(struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + GLuint m = minEnd - minStart; + switch (tObj->Sampler.MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_1d_array_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_1d_array_linear_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_1d_array_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_1d_array_linear_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_1d_array_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->Sampler.MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_1d_array_texture"); + return; + } + } +} + + +/** + * Compare texcoord against depth sample. Return 1.0 or the ambient value. + */ +static INLINE GLfloat +shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample, + GLfloat ambient) +{ + switch (function) { + case GL_LEQUAL: + return (coord <= depthSample) ? 1.0F : ambient; + case GL_GEQUAL: + return (coord >= depthSample) ? 1.0F : ambient; + case GL_LESS: + return (coord < depthSample) ? 1.0F : ambient; + case GL_GREATER: + return (coord > depthSample) ? 1.0F : ambient; + case GL_EQUAL: + return (coord == depthSample) ? 1.0F : ambient; + case GL_NOTEQUAL: + return (coord != depthSample) ? 1.0F : ambient; + case GL_ALWAYS: + return 1.0F; + case GL_NEVER: + return ambient; + case GL_NONE: + return depthSample; + default: + _mesa_problem(NULL, "Bad compare func in shadow_compare"); + return ambient; + } +} + + +/** + * Compare texcoord against four depth samples. + */ +static INLINE GLfloat +shadow_compare4(GLenum function, GLfloat coord, + GLfloat depth00, GLfloat depth01, + GLfloat depth10, GLfloat depth11, + GLfloat ambient, GLfloat wi, GLfloat wj) +{ + const GLfloat d = (1.0F - (GLfloat) ambient) * 0.25F; + GLfloat luminance = 1.0F; + + switch (function) { + case GL_LEQUAL: + if (coord > depth00) luminance -= d; + if (coord > depth01) luminance -= d; + if (coord > depth10) luminance -= d; + if (coord > depth11) luminance -= d; + return luminance; + case GL_GEQUAL: + if (coord < depth00) luminance -= d; + if (coord < depth01) luminance -= d; + if (coord < depth10) luminance -= d; + if (coord < depth11) luminance -= d; + return luminance; + case GL_LESS: + if (coord >= depth00) luminance -= d; + if (coord >= depth01) luminance -= d; + if (coord >= depth10) luminance -= d; + if (coord >= depth11) luminance -= d; + return luminance; + case GL_GREATER: + if (coord <= depth00) luminance -= d; + if (coord <= depth01) luminance -= d; + if (coord <= depth10) luminance -= d; + if (coord <= depth11) luminance -= d; + return luminance; + case GL_EQUAL: + if (coord != depth00) luminance -= d; + if (coord != depth01) luminance -= d; + if (coord != depth10) luminance -= d; + if (coord != depth11) luminance -= d; + return luminance; + case GL_NOTEQUAL: + if (coord == depth00) luminance -= d; + if (coord == depth01) luminance -= d; + if (coord == depth10) luminance -= d; + if (coord == depth11) luminance -= d; + return luminance; + case GL_ALWAYS: + return 1.0F; + case GL_NEVER: + return ambient; + case GL_NONE: + /* ordinary bilinear filtering */ + return lerp_2d(wi, wj, depth00, depth10, depth01, depth11); + default: + _mesa_problem(NULL, "Bad compare func in sample_compare4"); + return ambient; + } +} + + +/** + * Choose the mipmap level to use when sampling from a depth texture. + */ +static int +choose_depth_texture_level(const struct gl_texture_object *tObj, GLfloat lambda) +{ + GLint level; + + if (tObj->Sampler.MinFilter == GL_NEAREST || tObj->Sampler.MinFilter == GL_LINEAR) { + /* no mipmapping - use base level */ + level = tObj->BaseLevel; + } + else { + /* choose mipmap level */ + lambda = CLAMP(lambda, tObj->Sampler.MinLod, tObj->Sampler.MaxLod); + level = (GLint) lambda; + level = CLAMP(level, tObj->BaseLevel, tObj->_MaxLevel); + } + + return level; +} + + +/** + * Sample a shadow/depth texture. This function is incomplete. It doesn't + * check for minification vs. magnification, etc. + */ +static void +sample_depth_texture( struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat texel[][4] ) +{ + const GLint level = choose_depth_texture_level(tObj, lambda[0]); + const struct gl_texture_image *img = tObj->Image[0][level]; + const GLint width = img->Width; + const GLint height = img->Height; + const GLint depth = img->Depth; + const GLuint compare_coord = (tObj->Target == GL_TEXTURE_2D_ARRAY_EXT) + ? 3 : 2; + GLfloat ambient; + GLenum function; + GLfloat result; + + ASSERT(img->_BaseFormat == GL_DEPTH_COMPONENT || + img->_BaseFormat == GL_DEPTH_STENCIL_EXT); + + ASSERT(tObj->Target == GL_TEXTURE_1D || + tObj->Target == GL_TEXTURE_2D || + tObj->Target == GL_TEXTURE_RECTANGLE_NV || + tObj->Target == GL_TEXTURE_1D_ARRAY_EXT || + tObj->Target == GL_TEXTURE_2D_ARRAY_EXT); + + ambient = tObj->Sampler.CompareFailValue; + + /* XXXX if tObj->Sampler.MinFilter != tObj->Sampler.MagFilter, we're ignoring lambda */ + + function = (tObj->Sampler.CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ? + tObj->Sampler.CompareFunc : GL_NONE; + + if (tObj->Sampler.MagFilter == GL_NEAREST) { + GLuint i; + for (i = 0; i < n; i++) { + GLfloat depthSample, depthRef; + GLint col, row, slice; + + nearest_texcoord(tObj, level, texcoords[i], &col, &row, &slice); + + if (col >= 0 && row >= 0 && col < width && row < height && + slice >= 0 && slice < depth) { + img->FetchTexelf(img, col, row, slice, &depthSample); + } + else { + depthSample = tObj->Sampler.BorderColor.f[0]; + } + + depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F); + + result = shadow_compare(function, depthRef, depthSample, ambient); + + switch (tObj->Sampler.DepthMode) { + case GL_LUMINANCE: + ASSIGN_4V(texel[i], result, result, result, 1.0F); + break; + case GL_INTENSITY: + ASSIGN_4V(texel[i], result, result, result, result); + break; + case GL_ALPHA: + ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); + break; + case GL_RED: + ASSIGN_4V(texel[i], result, 0.0F, 0.0F, 1.0F); + break; + default: + _mesa_problem(ctx, "Bad depth texture mode"); + } + } + } + else { + GLuint i; + ASSERT(tObj->Sampler.MagFilter == GL_LINEAR); + for (i = 0; i < n; i++) { + GLfloat depth00, depth01, depth10, depth11, depthRef; + GLint i0, i1, j0, j1; + GLint slice; + GLfloat wi, wj; + GLuint useBorderTexel; + + linear_texcoord(tObj, level, texcoords[i], &i0, &i1, &j0, &j1, &slice, + &wi, &wj); + + useBorderTexel = 0; + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) { + j0 += img->Border; + j1 += img->Border; + } + } + else { + if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT; + if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT; + if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT; + if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT; + } + + if (slice < 0 || slice >= (GLint) depth) { + depth00 = tObj->Sampler.BorderColor.f[0]; + depth01 = tObj->Sampler.BorderColor.f[0]; + depth10 = tObj->Sampler.BorderColor.f[0]; + depth11 = tObj->Sampler.BorderColor.f[0]; + } + else { + /* get four depth samples from the texture */ + if (useBorderTexel & (I0BIT | J0BIT)) { + depth00 = tObj->Sampler.BorderColor.f[0]; + } + else { + img->FetchTexelf(img, i0, j0, slice, &depth00); + } + if (useBorderTexel & (I1BIT | J0BIT)) { + depth10 = tObj->Sampler.BorderColor.f[0]; + } + else { + img->FetchTexelf(img, i1, j0, slice, &depth10); + } + + if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) { + if (useBorderTexel & (I0BIT | J1BIT)) { + depth01 = tObj->Sampler.BorderColor.f[0]; + } + else { + img->FetchTexelf(img, i0, j1, slice, &depth01); + } + if (useBorderTexel & (I1BIT | J1BIT)) { + depth11 = tObj->Sampler.BorderColor.f[0]; + } + else { + img->FetchTexelf(img, i1, j1, slice, &depth11); + } + } + else { + depth01 = depth00; + depth11 = depth10; + } + } + + depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F); + + result = shadow_compare4(function, depthRef, + depth00, depth01, depth10, depth11, + ambient, wi, wj); + + switch (tObj->Sampler.DepthMode) { + case GL_LUMINANCE: + ASSIGN_4V(texel[i], result, result, result, 1.0F); + break; + case GL_INTENSITY: + ASSIGN_4V(texel[i], result, result, result, result); + break; + case GL_ALPHA: + ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); + break; + default: + _mesa_problem(ctx, "Bad depth texture mode"); + } + + } /* for */ + } /* if filter */ +} + + +/** + * We use this function when a texture object is in an "incomplete" state. + * When a fragment program attempts to sample an incomplete texture we + * return black (see issue 23 in GL_ARB_fragment_program spec). + * Note: fragment programs don't observe the texture enable/disable flags. + */ +static void +null_sample_func( struct gl_context *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + (void) ctx; + (void) tObj; + (void) texcoords; + (void) lambda; + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = 0; + rgba[i][GCOMP] = 0; + rgba[i][BCOMP] = 0; + rgba[i][ACOMP] = 1.0; + } +} + + +/** + * Choose the texture sampling function for the given texture object. + */ +texture_sample_func +_swrast_choose_texture_sample_func( struct gl_context *ctx, + const struct gl_texture_object *t ) +{ + if (!t || !t->_Complete) { + return &null_sample_func; + } + else { + const GLboolean needLambda = + (GLboolean) (t->Sampler.MinFilter != t->Sampler.MagFilter); + const GLenum format = t->Image[0][t->BaseLevel]->_BaseFormat; + + switch (t->Target) { + case GL_TEXTURE_1D: + if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { + return &sample_depth_texture; + } + else if (needLambda) { + return &sample_lambda_1d; + } + else if (t->Sampler.MinFilter == GL_LINEAR) { + return &sample_linear_1d; + } + else { + ASSERT(t->Sampler.MinFilter == GL_NEAREST); + return &sample_nearest_1d; + } + case GL_TEXTURE_2D: + if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { + return &sample_depth_texture; + } + else if (needLambda) { + /* Anisotropic filtering extension. Activated only if mipmaps are used */ + if (t->Sampler.MaxAnisotropy > 1.0 && + t->Sampler.MinFilter == GL_LINEAR_MIPMAP_LINEAR) { + return &sample_lambda_2d_aniso; + } + return &sample_lambda_2d; + } + else if (t->Sampler.MinFilter == GL_LINEAR) { + return &sample_linear_2d; + } + else { + /* check for a few optimized cases */ + const struct gl_texture_image *img = t->Image[0][t->BaseLevel]; + ASSERT(t->Sampler.MinFilter == GL_NEAREST); + if (t->Sampler.WrapS == GL_REPEAT && + t->Sampler.WrapT == GL_REPEAT && + img->_IsPowerOfTwo && + img->Border == 0 && + img->TexFormat == MESA_FORMAT_RGB888) { + return &opt_sample_rgb_2d; + } + else if (t->Sampler.WrapS == GL_REPEAT && + t->Sampler.WrapT == GL_REPEAT && + img->_IsPowerOfTwo && + img->Border == 0 && + img->TexFormat == MESA_FORMAT_RGBA8888) { + return &opt_sample_rgba_2d; + } + else { + return &sample_nearest_2d; + } + } + case GL_TEXTURE_3D: + if (needLambda) { + return &sample_lambda_3d; + } + else if (t->Sampler.MinFilter == GL_LINEAR) { + return &sample_linear_3d; + } + else { + ASSERT(t->Sampler.MinFilter == GL_NEAREST); + return &sample_nearest_3d; + } + case GL_TEXTURE_CUBE_MAP: + if (needLambda) { + return &sample_lambda_cube; + } + else if (t->Sampler.MinFilter == GL_LINEAR) { + return &sample_linear_cube; + } + else { + ASSERT(t->Sampler.MinFilter == GL_NEAREST); + return &sample_nearest_cube; + } + case GL_TEXTURE_RECTANGLE_NV: + if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { + return &sample_depth_texture; + } + else if (needLambda) { + return &sample_lambda_rect; + } + else if (t->Sampler.MinFilter == GL_LINEAR) { + return &sample_linear_rect; + } + else { + ASSERT(t->Sampler.MinFilter == GL_NEAREST); + return &sample_nearest_rect; + } + case GL_TEXTURE_1D_ARRAY_EXT: + if (needLambda) { + return &sample_lambda_1d_array; + } + else if (t->Sampler.MinFilter == GL_LINEAR) { + return &sample_linear_1d_array; + } + else { + ASSERT(t->Sampler.MinFilter == GL_NEAREST); + return &sample_nearest_1d_array; + } + case GL_TEXTURE_2D_ARRAY_EXT: + if (needLambda) { + return &sample_lambda_2d_array; + } + else if (t->Sampler.MinFilter == GL_LINEAR) { + return &sample_linear_2d_array; + } + else { + ASSERT(t->Sampler.MinFilter == GL_NEAREST); + return &sample_nearest_2d_array; + } + default: + _mesa_problem(ctx, + "invalid target in _swrast_choose_texture_sample_func"); + return &null_sample_func; + } + } +} -- cgit v1.2.3