From a0c4815433ccd57322f4f7703ca35e9ccfa59250 Mon Sep 17 00:00:00 2001 From: marha Date: Thu, 8 Oct 2009 13:15:52 +0000 Subject: Added MesaLib-7.6 --- mesalib/src/mesa/swrast/s_texfilter.c | 3266 +++++++++++++++++++++++++++++++++ 1 file changed, 3266 insertions(+) create mode 100644 mesalib/src/mesa/swrast/s_texfilter.c (limited to 'mesalib/src/mesa/swrast/s_texfilter.c') diff --git a/mesalib/src/mesa/swrast/s_texfilter.c b/mesalib/src/mesa/swrast/s_texfilter.c new file mode 100644 index 000000000..efe6f2347 --- /dev/null +++ b/mesalib/src/mesa/swrast/s_texfilter.c @@ -0,0 +1,3266 @@ +/* + * Mesa 3-D graphics library + * Version: 7.3 + * + * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + + +#include "main/glheader.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/imports.h" +#include "main/texformat.h" + +#include "s_context.h" +#include "s_texfilter.h" + + +/* + * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes + * see 1-pixel bands of improperly weighted linear-filtered textures. + * The tests/texwrap.c demo is a good test. + * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0. + * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x). + */ +#define FRAC(f) ((f) - IFLOOR(f)) + + + +/** + * Linear interpolation macro + */ +#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) ) + + +/** + * Do 2D/biliner interpolation of float values. + * v00, v10, v01 and v11 are typically four texture samples in a square/box. + * a and b are the horizontal and vertical interpolants. + * It's important that this function is inlined when compiled with + * optimization! If we find that's not true on some systems, convert + * to a macro. + */ +static INLINE GLfloat +lerp_2d(GLfloat a, GLfloat b, + GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11) +{ + const GLfloat temp0 = LERP(a, v00, v10); + const GLfloat temp1 = LERP(a, v01, v11); + return LERP(b, temp0, temp1); +} + + +/** + * Do 3D/trilinear interpolation of float values. + * \sa lerp_2d + */ +static INLINE GLfloat +lerp_3d(GLfloat a, GLfloat b, GLfloat c, + GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110, + GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111) +{ + const GLfloat temp00 = LERP(a, v000, v100); + const GLfloat temp10 = LERP(a, v010, v110); + const GLfloat temp01 = LERP(a, v001, v101); + const GLfloat temp11 = LERP(a, v011, v111); + const GLfloat temp0 = LERP(b, temp00, temp10); + const GLfloat temp1 = LERP(b, temp01, temp11); + return LERP(c, temp0, temp1); +} + + +/** + * Do linear interpolation of colors. + */ +static INLINE void +lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4]) +{ + result[0] = LERP(t, a[0], b[0]); + result[1] = LERP(t, a[1], b[1]); + result[2] = LERP(t, a[2], b[2]); + result[3] = LERP(t, a[3], b[3]); +} + + +/** + * Do bilinear interpolation of colors. + */ +static INLINE void +lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b, + const GLfloat t00[4], const GLfloat t10[4], + const GLfloat t01[4], const GLfloat t11[4]) +{ + result[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]); + result[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]); + result[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]); + result[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]); +} + + +/** + * Do trilinear interpolation of colors. + */ +static INLINE void +lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c, + const GLfloat t000[4], const GLfloat t100[4], + const GLfloat t010[4], const GLfloat t110[4], + const GLfloat t001[4], const GLfloat t101[4], + const GLfloat t011[4], const GLfloat t111[4]) +{ + GLuint k; + /* compiler should unroll these short loops */ + for (k = 0; k < 4; k++) { + result[k] = lerp_3d(a, b, c, t000[k], t100[k], t010[k], t110[k], + t001[k], t101[k], t011[k], t111[k]); + } +} + + +/** + * If A is a signed integer, A % B doesn't give the right value for A < 0 + * (in terms of texture repeat). Just casting to unsigned fixes that. + */ +#define REMAINDER(A, B) (((A) + (B) * 1024) % (B)) + + +/** + * Used to compute texel locations for linear sampling. + * Input: + * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER + * s = texcoord in [0,1] + * size = width (or height or depth) of texture + * Output: + * i0, i1 = returns two nearest texel indexes + * weight = returns blend factor between texels + */ +static INLINE void +linear_texel_locations(GLenum wrapMode, + const struct gl_texture_image *img, + GLint size, GLfloat s, + GLint *i0, GLint *i1, GLfloat *weight) +{ + GLfloat u; + switch (wrapMode) { + case GL_REPEAT: + u = s * size - 0.5F; + if (img->_IsPowerOfTwo) { + *i0 = IFLOOR(u) & (size - 1); + *i1 = (*i0 + 1) & (size - 1); + } + else { + *i0 = REMAINDER(IFLOOR(u), size); + *i1 = REMAINDER(*i0 + 1, size); + } + break; + case GL_CLAMP_TO_EDGE: + if (s <= 0.0F) + u = 0.0F; + else if (s >= 1.0F) + u = (GLfloat) size; + else + u = s * size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + if (*i0 < 0) + *i0 = 0; + if (*i1 >= (GLint) size) + *i1 = size - 1; + break; + case GL_CLAMP_TO_BORDER: + { + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + if (s <= min) + u = min * size; + else if (s >= max) + u = max * size; + else + u = s * size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + } + break; + case GL_MIRRORED_REPEAT: + { + const GLint flr = IFLOOR(s); + if (flr & 1) + u = 1.0F - (s - (GLfloat) flr); + else + u = s - (GLfloat) flr; + u = (u * size) - 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + if (*i0 < 0) + *i0 = 0; + if (*i1 >= (GLint) size) + *i1 = size - 1; + } + break; + case GL_MIRROR_CLAMP_EXT: + u = FABSF(s); + if (u >= 1.0F) + u = (GLfloat) size; + else + u *= size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + break; + case GL_MIRROR_CLAMP_TO_EDGE_EXT: + u = FABSF(s); + if (u >= 1.0F) + u = (GLfloat) size; + else + u *= size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + if (*i0 < 0) + *i0 = 0; + if (*i1 >= (GLint) size) + *i1 = size - 1; + break; + case GL_MIRROR_CLAMP_TO_BORDER_EXT: + { + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + u = FABSF(s); + if (u <= min) + u = min * size; + else if (u >= max) + u = max * size; + else + u *= size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + } + break; + case GL_CLAMP: + if (s <= 0.0F) + u = 0.0F; + else if (s >= 1.0F) + u = (GLfloat) size; + else + u = s * size; + u -= 0.5F; + *i0 = IFLOOR(u); + *i1 = *i0 + 1; + break; + default: + _mesa_problem(NULL, "Bad wrap mode"); + u = 0.0F; + } + *weight = FRAC(u); +} + + +/** + * Used to compute texel location for nearest sampling. + */ +static INLINE GLint +nearest_texel_location(GLenum wrapMode, + const struct gl_texture_image *img, + GLint size, GLfloat s) +{ + GLint i; + + switch (wrapMode) { + case GL_REPEAT: + /* s limited to [0,1) */ + /* i limited to [0,size-1] */ + i = IFLOOR(s * size); + if (img->_IsPowerOfTwo) + i &= (size - 1); + else + i = REMAINDER(i, size); + return i; + case GL_CLAMP_TO_EDGE: + { + /* s limited to [min,max] */ + /* i limited to [0, size-1] */ + const GLfloat min = 1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + if (s < min) + i = 0; + else if (s > max) + i = size - 1; + else + i = IFLOOR(s * size); + } + return i; + case GL_CLAMP_TO_BORDER: + { + /* s limited to [min,max] */ + /* i limited to [-1, size] */ + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + if (s <= min) + i = -1; + else if (s >= max) + i = size; + else + i = IFLOOR(s * size); + } + return i; + case GL_MIRRORED_REPEAT: + { + const GLfloat min = 1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + const GLint flr = IFLOOR(s); + GLfloat u; + if (flr & 1) + u = 1.0F - (s - (GLfloat) flr); + else + u = s - (GLfloat) flr; + if (u < min) + i = 0; + else if (u > max) + i = size - 1; + else + i = IFLOOR(u * size); + } + return i; + case GL_MIRROR_CLAMP_EXT: + { + /* s limited to [0,1] */ + /* i limited to [0,size-1] */ + const GLfloat u = FABSF(s); + if (u <= 0.0F) + i = 0; + else if (u >= 1.0F) + i = size - 1; + else + i = IFLOOR(u * size); + } + return i; + case GL_MIRROR_CLAMP_TO_EDGE_EXT: + { + /* s limited to [min,max] */ + /* i limited to [0, size-1] */ + const GLfloat min = 1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + const GLfloat u = FABSF(s); + if (u < min) + i = 0; + else if (u > max) + i = size - 1; + else + i = IFLOOR(u * size); + } + return i; + case GL_MIRROR_CLAMP_TO_BORDER_EXT: + { + /* s limited to [min,max] */ + /* i limited to [0, size-1] */ + const GLfloat min = -1.0F / (2.0F * size); + const GLfloat max = 1.0F - min; + const GLfloat u = FABSF(s); + if (u < min) + i = -1; + else if (u > max) + i = size; + else + i = IFLOOR(u * size); + } + return i; + case GL_CLAMP: + /* s limited to [0,1] */ + /* i limited to [0,size-1] */ + if (s <= 0.0F) + i = 0; + else if (s >= 1.0F) + i = size - 1; + else + i = IFLOOR(s * size); + return i; + default: + _mesa_problem(NULL, "Bad wrap mode"); + return 0; + } +} + + +/* Power of two image sizes only */ +static INLINE void +linear_repeat_texel_location(GLuint size, GLfloat s, + GLint *i0, GLint *i1, GLfloat *weight) +{ + GLfloat u = s * size - 0.5F; + *i0 = IFLOOR(u) & (size - 1); + *i1 = (*i0 + 1) & (size - 1); + *weight = FRAC(u); +} + + +/** + * Do clamp/wrap for a texture rectangle coord, GL_NEAREST filter mode. + */ +static INLINE GLint +clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max) +{ + switch (wrapMode) { + case GL_CLAMP: + return IFLOOR( CLAMP(coord, 0.0F, max - 1) ); + case GL_CLAMP_TO_EDGE: + return IFLOOR( CLAMP(coord, 0.5F, max - 0.5F) ); + case GL_CLAMP_TO_BORDER: + return IFLOOR( CLAMP(coord, -0.5F, max + 0.5F) ); + default: + _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_nearest"); + return 0; + } +} + + +/** + * As above, but GL_LINEAR filtering. + */ +static INLINE void +clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max, + GLint *i0out, GLint *i1out, GLfloat *weight) +{ + GLfloat fcol; + GLint i0, i1; + switch (wrapMode) { + case GL_CLAMP: + /* Not exactly what the spec says, but it matches NVIDIA output */ + fcol = CLAMP(coord - 0.5F, 0.0, max-1); + i0 = IFLOOR(fcol); + i1 = i0 + 1; + break; + case GL_CLAMP_TO_EDGE: + fcol = CLAMP(coord, 0.5F, max - 0.5F); + fcol -= 0.5F; + i0 = IFLOOR(fcol); + i1 = i0 + 1; + if (i1 > max - 1) + i1 = max - 1; + break; + case GL_CLAMP_TO_BORDER: + fcol = CLAMP(coord, -0.5F, max + 0.5F); + fcol -= 0.5F; + i0 = IFLOOR(fcol); + i1 = i0 + 1; + break; + default: + _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_linear"); + i0 = i1 = 0; + fcol = 0.0F; + } + *i0out = i0; + *i1out = i1; + *weight = FRAC(fcol); +} + + +/** + * Compute nearest integer texcoords for given texobj and coordinate. + */ +static INLINE void +nearest_texcoord(const struct gl_texture_object *texObj, + const GLfloat texcoord[4], + GLint *i, GLint *j, GLint *k) +{ + const GLint baseLevel = texObj->BaseLevel; + const struct gl_texture_image *img = texObj->Image[0][baseLevel]; + const GLint width = img->Width; + const GLint height = img->Height; + const GLint depth = img->Depth; + + switch (texObj->Target) { + case GL_TEXTURE_RECTANGLE_ARB: + *i = clamp_rect_coord_nearest(texObj->WrapS, texcoord[0], width); + *j = clamp_rect_coord_nearest(texObj->WrapT, texcoord[1], height); + *k = 0; + break; + case GL_TEXTURE_1D: + *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]); + *j = 0; + *k = 0; + break; + case GL_TEXTURE_2D: + *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]); + *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]); + *k = 0; + break; + case GL_TEXTURE_1D_ARRAY_EXT: + *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]); + *j = clamp_rect_coord_nearest(texObj->WrapT, texcoord[1], height); + *k = 0; + break; + case GL_TEXTURE_2D_ARRAY_EXT: + *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]); + *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]); + *k = clamp_rect_coord_nearest(texObj->WrapR, texcoord[2], depth); + break; + default: + *i = *j = *k = 0; + } +} + + +/** + * Compute linear integer texcoords for given texobj and coordinate. + */ +static INLINE void +linear_texcoord(const struct gl_texture_object *texObj, + const GLfloat texcoord[4], + GLint *i0, GLint *i1, GLint *j0, GLint *j1, GLint *slice, + GLfloat *wi, GLfloat *wj) +{ + const GLint baseLevel = texObj->BaseLevel; + const struct gl_texture_image *img = texObj->Image[0][baseLevel]; + const GLint width = img->Width; + const GLint height = img->Height; + const GLint depth = img->Depth; + + switch (texObj->Target) { + case GL_TEXTURE_RECTANGLE_ARB: + clamp_rect_coord_linear(texObj->WrapS, texcoord[0], + width, i0, i1, wi); + clamp_rect_coord_linear(texObj->WrapT, texcoord[1], + height, j0, j1, wj); + *slice = 0; + break; + + case GL_TEXTURE_1D: + case GL_TEXTURE_2D: + linear_texel_locations(texObj->WrapS, img, width, + texcoord[0], i0, i1, wi); + linear_texel_locations(texObj->WrapT, img, height, + texcoord[1], j0, j1, wj); + *slice = 0; + break; + + case GL_TEXTURE_1D_ARRAY_EXT: + linear_texel_locations(texObj->WrapS, img, width, + texcoord[0], i0, i1, wi); + *j0 = clamp_rect_coord_nearest(texObj->WrapT, texcoord[1], height); + *j1 = *j0; + *slice = 0; + break; + + case GL_TEXTURE_2D_ARRAY_EXT: + linear_texel_locations(texObj->WrapS, img, width, + texcoord[0], i0, i1, wi); + linear_texel_locations(texObj->WrapT, img, height, + texcoord[1], j0, j1, wj); + *slice = clamp_rect_coord_nearest(texObj->WrapR, texcoord[2], depth); + break; + + default: + *slice = 0; + } +} + + + +/** + * For linear interpolation between mipmap levels N and N+1, this function + * computes N. + */ +static INLINE GLint +linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) +{ + if (lambda < 0.0F) + return tObj->BaseLevel; + else if (lambda > tObj->_MaxLambda) + return (GLint) (tObj->BaseLevel + tObj->_MaxLambda); + else + return (GLint) (tObj->BaseLevel + lambda); +} + + +/** + * Compute the nearest mipmap level to take texels from. + */ +static INLINE GLint +nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) +{ + GLfloat l; + GLint level; + if (lambda <= 0.5F) + l = 0.0F; + else if (lambda > tObj->_MaxLambda + 0.4999F) + l = tObj->_MaxLambda + 0.4999F; + else + l = lambda; + level = (GLint) (tObj->BaseLevel + l + 0.5F); + if (level > tObj->_MaxLevel) + level = tObj->_MaxLevel; + return level; +} + + + +/* + * Bitflags for texture border color sampling. + */ +#define I0BIT 1 +#define I1BIT 2 +#define J0BIT 4 +#define J1BIT 8 +#define K0BIT 16 +#define K1BIT 32 + + + +/** + * The lambda[] array values are always monotonic. Either the whole span + * will be minified, magnified, or split between the two. This function + * determines the subranges in [0, n-1] that are to be minified or magnified. + */ +static INLINE void +compute_min_mag_ranges(const struct gl_texture_object *tObj, + GLuint n, const GLfloat lambda[], + GLuint *minStart, GLuint *minEnd, + GLuint *magStart, GLuint *magEnd) +{ + GLfloat minMagThresh; + + /* we shouldn't be here if minfilter == magfilter */ + ASSERT(tObj->MinFilter != tObj->MagFilter); + + /* This bit comes from the OpenGL spec: */ + if (tObj->MagFilter == GL_LINEAR + && (tObj->MinFilter == GL_NEAREST_MIPMAP_NEAREST || + tObj->MinFilter == GL_NEAREST_MIPMAP_LINEAR)) { + minMagThresh = 0.5F; + } + else { + minMagThresh = 0.0F; + } + +#if 0 + /* DEBUG CODE: Verify that lambda[] is monotonic. + * We can't really use this because the inaccuracy in the LOG2 function + * causes this test to fail, yet the resulting texturing is correct. + */ + if (n > 1) { + GLuint i; + printf("lambda delta = %g\n", lambda[0] - lambda[n-1]); + if (lambda[0] >= lambda[n-1]) { /* decreasing */ + for (i = 0; i < n - 1; i++) { + ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10)); + } + } + else { /* increasing */ + for (i = 0; i < n - 1; i++) { + ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10)); + } + } + } +#endif /* DEBUG */ + + if (lambda[0] <= minMagThresh && (n <= 1 || lambda[n-1] <= minMagThresh)) { + /* magnification for whole span */ + *magStart = 0; + *magEnd = n; + *minStart = *minEnd = 0; + } + else if (lambda[0] > minMagThresh && (n <=1 || lambda[n-1] > minMagThresh)) { + /* minification for whole span */ + *minStart = 0; + *minEnd = n; + *magStart = *magEnd = 0; + } + else { + /* a mix of minification and magnification */ + GLuint i; + if (lambda[0] > minMagThresh) { + /* start with minification */ + for (i = 1; i < n; i++) { + if (lambda[i] <= minMagThresh) + break; + } + *minStart = 0; + *minEnd = i; + *magStart = i; + *magEnd = n; + } + else { + /* start with magnification */ + for (i = 1; i < n; i++) { + if (lambda[i] > minMagThresh) + break; + } + *magStart = 0; + *magEnd = i; + *minStart = i; + *minEnd = n; + } + } + +#if 0 + /* Verify the min/mag Start/End values + * We don't use this either (see above) + */ + { + GLint i; + for (i = 0; i < n; i++) { + if (lambda[i] > minMagThresh) { + /* minification */ + ASSERT(i >= *minStart); + ASSERT(i < *minEnd); + } + else { + /* magnification */ + ASSERT(i >= *magStart); + ASSERT(i < *magEnd); + } + } + } +#endif +} + + +/** + * When we sample the border color, it must be interpreted according to + * the base texture format. Ex: if the texture base format it GL_ALPHA, + * we return (0,0,0,BorderAlpha). + */ +static INLINE void +get_border_color(const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + GLfloat rgba[4]) +{ + switch (img->TexFormat->BaseFormat) { + case GL_RGB: + rgba[0] = tObj->BorderColor[0]; + rgba[1] = tObj->BorderColor[1]; + rgba[2] = tObj->BorderColor[2]; + rgba[3] = 1.0F; + break; + case GL_ALPHA: + rgba[0] = rgba[1] = rgba[2] = 0.0; + rgba[3] = tObj->BorderColor[3]; + break; + case GL_LUMINANCE: + rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor[0]; + rgba[3] = 1.0; + break; + case GL_LUMINANCE_ALPHA: + rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor[0]; + rgba[3] = tObj->BorderColor[3]; + break; + case GL_INTENSITY: + rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->BorderColor[0]; + break; + default: + COPY_4V(rgba, tObj->BorderColor); + } +} + + +/**********************************************************************/ +/* 1-D Texture Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s) using GL_NEAREST filter. + */ +static INLINE void +sample_1d_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + GLint i; + i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]); + /* skip over the border, if any */ + i += img->Border; + if (i < 0 || i >= (GLint) img->Width) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, 0, 0, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s) using GL_LINEAR filter. + */ +static INLINE void +sample_1d_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], GLfloat rgba[4]) +{ + const GLint width = img->Width2; + GLint i0, i1; + GLbitfield useBorderColor = 0x0; + GLfloat a; + GLfloat t0[4], t1[4]; /* texels */ + + linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + } + else { + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + } + + /* fetch texel colors */ + if (useBorderColor & I0BIT) { + get_border_color(tObj, img, t0); + } + else { + img->FetchTexelf(img, i0, 0, 0, t0); + } + if (useBorderColor & I1BIT) { + get_border_color(tObj, img, t1); + } + else { + img->FetchTexelf(img, i1, 0, 0, t1); + } + + lerp_rgba(rgba, a, t0, t1); +} + + +static void +sample_1d_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_1d_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_1d_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_1d_linear_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 1D texture, nearest filtering for both min/magnification */ +static void +sample_nearest_1d( GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4] ) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D texture, linear filtering for both min/magnification */ +static void +sample_linear_1d( GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4] ) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D texture, using lambda to choose between min/magnification */ +static void +sample_lambda_1d( GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4] ) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_1d_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_1d_texture"); + return; + } + } +} + + +/**********************************************************************/ +/* 2-D Texture Sampling Functions */ +/**********************************************************************/ + + +/** + * Return the texture sample for coordinate (s,t) using GL_NEAREST filter. + */ +static INLINE void +sample_2d_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height2; /* without border, power of two */ + GLint i, j; + (void) ctx; + + i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]); + j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]); + + /* skip over the border, if any */ + i += img->Border; + j += img->Border; + + if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, j, 0, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t) using GL_LINEAR filter. + * New sampling code contributed by Lynn Quam . + */ +static INLINE void +sample_2d_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + GLint i0, j0, i1, j1; + GLbitfield useBorderColor = 0x0; + GLfloat a, b; + GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ + + linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + j0 += img->Border; + j1 += img->Border; + } + else { + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + } + + /* fetch four texel colors */ + if (useBorderColor & (I0BIT | J0BIT)) { + get_border_color(tObj, img, t00); + } + else { + img->FetchTexelf(img, i0, j0, 0, t00); + } + if (useBorderColor & (I1BIT | J0BIT)) { + get_border_color(tObj, img, t10); + } + else { + img->FetchTexelf(img, i1, j0, 0, t10); + } + if (useBorderColor & (I0BIT | J1BIT)) { + get_border_color(tObj, img, t01); + } + else { + img->FetchTexelf(img, i0, j1, 0, t01); + } + if (useBorderColor & (I1BIT | J1BIT)) { + get_border_color(tObj, img, t11); + } + else { + img->FetchTexelf(img, i1, j1, 0, t11); + } + + lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); +} + + +/** + * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT. + * We don't have to worry about the texture border. + */ +static INLINE void +sample_2d_linear_repeat(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + GLint i0, j0, i1, j1; + GLfloat wi, wj; + GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ + + (void) ctx; + + ASSERT(tObj->WrapS == GL_REPEAT); + ASSERT(tObj->WrapT == GL_REPEAT); + ASSERT(img->Border == 0); + ASSERT(img->TexFormat->BaseFormat != GL_COLOR_INDEX); + ASSERT(img->_IsPowerOfTwo); + + linear_repeat_texel_location(width, texcoord[0], &i0, &i1, &wi); + linear_repeat_texel_location(height, texcoord[1], &j0, &j1, &wj); + + img->FetchTexelf(img, i0, j0, 0, t00); + img->FetchTexelf(img, i1, j0, 0, t10); + img->FetchTexelf(img, i0, j1, 0, t01); + img->FetchTexelf(img, i1, j1, 0, t11); + + lerp_rgba_2d(rgba, wi, wj, t00, t10, t01, t11); +} + + +static void +sample_2d_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_2d_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_2d_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_2d_linear_mipmap_linear( GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4] ) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_2d_linear_mipmap_linear_repeat(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + ASSERT(tObj->WrapS == GL_REPEAT); + ASSERT(tObj->WrapT == GL_REPEAT); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ], + texcoord[i], t0); + sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1], + texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 2D texture, nearest filtering for both min/magnification */ +static void +sample_nearest_2d(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 2D texture, linear filtering for both min/magnification */ +static void +sample_linear_2d(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + if (tObj->WrapS == GL_REPEAT && + tObj->WrapT == GL_REPEAT && + image->_IsPowerOfTwo && + image->Border == 0) { + for (i = 0; i < n; i++) { + sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]); + } + } + else { + for (i = 0; i < n; i++) { + sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } + } +} + + +/** + * Optimized 2-D texture sampling: + * S and T wrap mode == GL_REPEAT + * GL_NEAREST min/mag filter + * No border, + * RowStride == Width, + * Format = GL_RGB + */ +static void +opt_sample_rgb_2d(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; + const GLfloat width = (GLfloat) img->Width; + const GLfloat height = (GLfloat) img->Height; + const GLint colMask = img->Width - 1; + const GLint rowMask = img->Height - 1; + const GLint shift = img->WidthLog2; + GLuint k; + (void) ctx; + (void) lambda; + ASSERT(tObj->WrapS==GL_REPEAT); + ASSERT(tObj->WrapT==GL_REPEAT); + ASSERT(img->Border==0); + ASSERT(img->TexFormat->MesaFormat==MESA_FORMAT_RGB); + ASSERT(img->_IsPowerOfTwo); + + for (k=0; kData) + 3*pos; + rgba[k][RCOMP] = CHAN_TO_FLOAT(texel[0]); + rgba[k][GCOMP] = CHAN_TO_FLOAT(texel[1]); + rgba[k][BCOMP] = CHAN_TO_FLOAT(texel[2]); + } +} + + +/** + * Optimized 2-D texture sampling: + * S and T wrap mode == GL_REPEAT + * GL_NEAREST min/mag filter + * No border + * RowStride == Width, + * Format = GL_RGBA + */ +static void +opt_sample_rgba_2d(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; + const GLfloat width = (GLfloat) img->Width; + const GLfloat height = (GLfloat) img->Height; + const GLint colMask = img->Width - 1; + const GLint rowMask = img->Height - 1; + const GLint shift = img->WidthLog2; + GLuint i; + (void) ctx; + (void) lambda; + ASSERT(tObj->WrapS==GL_REPEAT); + ASSERT(tObj->WrapT==GL_REPEAT); + ASSERT(img->Border==0); + ASSERT(img->TexFormat->MesaFormat==MESA_FORMAT_RGBA); + ASSERT(img->_IsPowerOfTwo); + + for (i = 0; i < n; i++) { + const GLint col = IFLOOR(texcoords[i][0] * width) & colMask; + const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask; + const GLint pos = (row << shift) | col; + const GLchan *texel = ((GLchan *) img->Data) + (pos << 2); /* pos*4 */ + rgba[i][RCOMP] = CHAN_TO_FLOAT(texel[0]); + rgba[i][GCOMP] = CHAN_TO_FLOAT(texel[1]); + rgba[i][BCOMP] = CHAN_TO_FLOAT(texel[2]); + rgba[i][ACOMP] = CHAN_TO_FLOAT(texel[3]); + } +} + + +/** Sample 2D texture, using lambda to choose between min/magnification */ +static void +sample_lambda_2d(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel]; + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + + const GLboolean repeatNoBorderPOT = (tObj->WrapS == GL_REPEAT) + && (tObj->WrapT == GL_REPEAT) + && (tImg->Border == 0 && (tImg->Width == tImg->RowStride)) + && (tImg->TexFormat->BaseFormat != GL_COLOR_INDEX) + && tImg->_IsPowerOfTwo; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + if (repeatNoBorderPOT) { + switch (tImg->TexFormat->MesaFormat) { + case MESA_FORMAT_RGB: + opt_sample_rgb_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + case MESA_FORMAT_RGBA: + opt_sample_rgba_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + default: + sample_nearest_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart ); + } + } + else { + sample_nearest_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + } + break; + case GL_LINEAR: + sample_linear_2d(ctx, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_2d_nearest_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + if (repeatNoBorderPOT) + sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m, + texcoords + minStart, lambda + minStart, rgba + minStart); + else + sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_2d_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + const GLuint m = magEnd - magStart; + + switch (tObj->MagFilter) { + case GL_NEAREST: + if (repeatNoBorderPOT) { + switch (tImg->TexFormat->MesaFormat) { + case MESA_FORMAT_RGB: + opt_sample_rgb_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + case MESA_FORMAT_RGBA: + opt_sample_rgba_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + default: + sample_nearest_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart ); + } + } + else { + sample_nearest_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + } + break; + case GL_LINEAR: + sample_linear_2d(ctx, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d"); + } + } +} + + + +/**********************************************************************/ +/* 3-D Texture Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. + */ +static INLINE void +sample_3d_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height2; /* without border, power of two */ + const GLint depth = img->Depth2; /* without border, power of two */ + GLint i, j, k; + (void) ctx; + + i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]); + j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]); + k = nearest_texel_location(tObj->WrapR, img, depth, texcoord[2]); + + if (i < 0 || i >= (GLint) img->Width || + j < 0 || j >= (GLint) img->Height || + k < 0 || k >= (GLint) img->Depth) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, j, k, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. + */ +static void +sample_3d_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + const GLint depth = img->Depth2; + GLint i0, j0, k0, i1, j1, k1; + GLbitfield useBorderColor = 0x0; + GLfloat a, b, c; + GLfloat t000[4], t010[4], t001[4], t011[4]; + GLfloat t100[4], t110[4], t101[4], t111[4]; + + linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b); + linear_texel_locations(tObj->WrapR, img, depth, texcoord[2], &k0, &k1, &c); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + j0 += img->Border; + j1 += img->Border; + k0 += img->Border; + k1 += img->Border; + } + else { + /* check if sampling texture border color */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT; + if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT; + } + + /* Fetch texels */ + if (useBorderColor & (I0BIT | J0BIT | K0BIT)) { + get_border_color(tObj, img, t000); + } + else { + img->FetchTexelf(img, i0, j0, k0, t000); + } + if (useBorderColor & (I1BIT | J0BIT | K0BIT)) { + get_border_color(tObj, img, t100); + } + else { + img->FetchTexelf(img, i1, j0, k0, t100); + } + if (useBorderColor & (I0BIT | J1BIT | K0BIT)) { + get_border_color(tObj, img, t010); + } + else { + img->FetchTexelf(img, i0, j1, k0, t010); + } + if (useBorderColor & (I1BIT | J1BIT | K0BIT)) { + get_border_color(tObj, img, t110); + } + else { + img->FetchTexelf(img, i1, j1, k0, t110); + } + + if (useBorderColor & (I0BIT | J0BIT | K1BIT)) { + get_border_color(tObj, img, t001); + } + else { + img->FetchTexelf(img, i0, j0, k1, t001); + } + if (useBorderColor & (I1BIT | J0BIT | K1BIT)) { + get_border_color(tObj, img, t101); + } + else { + img->FetchTexelf(img, i1, j0, k1, t101); + } + if (useBorderColor & (I0BIT | J1BIT | K1BIT)) { + get_border_color(tObj, img, t011); + } + else { + img->FetchTexelf(img, i0, j1, k1, t011); + } + if (useBorderColor & (I1BIT | J1BIT | K1BIT)) { + get_border_color(tObj, img, t111); + } + else { + img->FetchTexelf(img, i1, j1, k1, t111); + } + + /* trilinear interpolation of samples */ + lerp_rgba_3d(rgba, a, b, c, t000, t100, t010, t110, t001, t101, t011, t111); +} + + +static void +sample_3d_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4] ) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_3d_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + } +} + + +static void +sample_3d_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_3d_linear_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 3D texture, nearest filtering for both min/magnification */ +static void +sample_nearest_3d(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 3D texture, linear filtering for both min/magnification */ +static void +sample_linear_3d(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 3D texture, using lambda to choose between min/magnification */ +static void +sample_lambda_3d(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_3d_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_3d_texture"); + return; + } + } +} + + +/**********************************************************************/ +/* Texture Cube Map Sampling Functions */ +/**********************************************************************/ + +/** + * Choose one of six sides of a texture cube map given the texture + * coord (rx,ry,rz). Return pointer to corresponding array of texture + * images. + */ +static const struct gl_texture_image ** +choose_cube_face(const struct gl_texture_object *texObj, + const GLfloat texcoord[4], GLfloat newCoord[4]) +{ + /* + major axis + direction target sc tc ma + ---------- ------------------------------- --- --- --- + +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx + -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx + +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry + -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry + +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz + -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz + */ + const GLfloat rx = texcoord[0]; + const GLfloat ry = texcoord[1]; + const GLfloat rz = texcoord[2]; + const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz); + GLuint face; + GLfloat sc, tc, ma; + + if (arx >= ary && arx >= arz) { + if (rx >= 0.0F) { + face = FACE_POS_X; + sc = -rz; + tc = -ry; + ma = arx; + } + else { + face = FACE_NEG_X; + sc = rz; + tc = -ry; + ma = arx; + } + } + else if (ary >= arx && ary >= arz) { + if (ry >= 0.0F) { + face = FACE_POS_Y; + sc = rx; + tc = rz; + ma = ary; + } + else { + face = FACE_NEG_Y; + sc = rx; + tc = -rz; + ma = ary; + } + } + else { + if (rz > 0.0F) { + face = FACE_POS_Z; + sc = rx; + tc = -ry; + ma = arz; + } + else { + face = FACE_NEG_Z; + sc = -rx; + tc = -ry; + ma = arz; + } + } + + newCoord[0] = ( sc / ma + 1.0F ) * 0.5F; + newCoord[1] = ( tc / ma + 1.0F ) * 0.5F; + return (const struct gl_texture_image **) texObj->Image[face]; +} + + +static void +sample_nearest_cube(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + (void) lambda; + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + images = choose_cube_face(tObj, texcoords[i], newCoord); + sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel], + newCoord, rgba[i]); + } +} + + +static void +sample_linear_cube(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + (void) lambda; + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + images = choose_cube_face(tObj, texcoords[i], newCoord); + sample_2d_linear(ctx, tObj, images[tObj->BaseLevel], + newCoord, rgba[i]); + } +} + + +static void +sample_cube_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level; + images = choose_cube_face(tObj, texcoord[i], newCoord); + + /* XXX we actually need to recompute lambda here based on the newCoords. + * But we would need the texcoords of adjacent fragments to compute that + * properly, and we don't have those here. + * For now, do an approximation: subtracting 1 from the chosen mipmap + * level seems to work in some test cases. + * The same adjustment is done in the next few functions. + */ + level = nearest_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); + + sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]); + } +} + + +static void +sample_cube_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level = nearest_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); /* see comment above */ + images = choose_cube_face(tObj, texcoord[i], newCoord); + sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]); + } +} + + +static void +sample_cube_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level = linear_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); /* see comment above */ + images = choose_cube_face(tObj, texcoord[i], newCoord); + if (level >= tObj->_MaxLevel) { + sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel], + newCoord, rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0); + sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_cube_linear_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level = linear_mipmap_level(tObj, lambda[i]); + level = MAX2(level - 1, 0); /* see comment above */ + images = choose_cube_face(tObj, texcoord[i], newCoord); + if (level >= tObj->_MaxLevel) { + sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel], + newCoord, rgba[i]); + } + else { + GLfloat t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear(ctx, tObj, images[level ], newCoord, t0); + sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample cube texture, using lambda to choose between min/magnification */ +static void +sample_lambda_cube(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + sample_nearest_cube(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR: + sample_linear_cube(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_cube_nearest_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_cube_linear_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_cube_nearest_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_cube_linear_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_lambda_cube"); + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + const GLuint m = magEnd - magStart; + switch (tObj->MagFilter) { + case GL_NEAREST: + sample_nearest_cube(ctx, tObj, m, texcoords + magStart, + lambda + magStart, rgba + magStart); + break; + case GL_LINEAR: + sample_linear_cube(ctx, tObj, m, texcoords + magStart, + lambda + magStart, rgba + magStart); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube"); + } + } +} + + +/**********************************************************************/ +/* Texture Rectangle Sampling Functions */ +/**********************************************************************/ + + +static void +sample_nearest_rect(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][0]; + const GLint width = img->Width; + const GLint height = img->Height; + GLuint i; + + (void) ctx; + (void) lambda; + + ASSERT(tObj->WrapS == GL_CLAMP || + tObj->WrapS == GL_CLAMP_TO_EDGE || + tObj->WrapS == GL_CLAMP_TO_BORDER); + ASSERT(tObj->WrapT == GL_CLAMP || + tObj->WrapT == GL_CLAMP_TO_EDGE || + tObj->WrapT == GL_CLAMP_TO_BORDER); + ASSERT(img->TexFormat->BaseFormat != GL_COLOR_INDEX); + + for (i = 0; i < n; i++) { + GLint row, col; + col = clamp_rect_coord_nearest(tObj->WrapS, texcoords[i][0], width); + row = clamp_rect_coord_nearest(tObj->WrapT, texcoords[i][1], height); + if (col < 0 || col >= width || row < 0 || row >= height) + get_border_color(tObj, img, rgba[i]); + else + img->FetchTexelf(img, col, row, 0, rgba[i]); + } +} + + +static void +sample_linear_rect(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + const struct gl_texture_image *img = tObj->Image[0][0]; + const GLint width = img->Width; + const GLint height = img->Height; + GLuint i; + + (void) ctx; + (void) lambda; + + ASSERT(tObj->WrapS == GL_CLAMP || + tObj->WrapS == GL_CLAMP_TO_EDGE || + tObj->WrapS == GL_CLAMP_TO_BORDER); + ASSERT(tObj->WrapT == GL_CLAMP || + tObj->WrapT == GL_CLAMP_TO_EDGE || + tObj->WrapT == GL_CLAMP_TO_BORDER); + ASSERT(img->TexFormat->BaseFormat != GL_COLOR_INDEX); + + for (i = 0; i < n; i++) { + GLint i0, j0, i1, j1; + GLfloat t00[4], t01[4], t10[4], t11[4]; + GLfloat a, b; + GLbitfield useBorderColor = 0x0; + + clamp_rect_coord_linear(tObj->WrapS, texcoords[i][0], width, + &i0, &i1, &a); + clamp_rect_coord_linear(tObj->WrapT, texcoords[i][1], height, + &j0, &j1, &b); + + /* compute integer rows/columns */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + + /* get four texel samples */ + if (useBorderColor & (I0BIT | J0BIT)) + get_border_color(tObj, img, t00); + else + img->FetchTexelf(img, i0, j0, 0, t00); + + if (useBorderColor & (I1BIT | J0BIT)) + get_border_color(tObj, img, t10); + else + img->FetchTexelf(img, i1, j0, 0, t10); + + if (useBorderColor & (I0BIT | J1BIT)) + get_border_color(tObj, img, t01); + else + img->FetchTexelf(img, i0, j1, 0, t01); + + if (useBorderColor & (I1BIT | J1BIT)) + get_border_color(tObj, img, t11); + else + img->FetchTexelf(img, i1, j1, 0, t11); + + lerp_rgba_2d(rgba[i], a, b, t00, t10, t01, t11); + } +} + + +/** Sample Rect texture, using lambda to choose between min/magnification */ +static void +sample_lambda_rect(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd, magStart, magEnd; + + /* We only need lambda to decide between minification and magnification. + * There is no mipmapping with rectangular textures. + */ + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + if (tObj->MinFilter == GL_NEAREST) { + sample_nearest_rect(ctx, tObj, minEnd - minStart, + texcoords + minStart, NULL, rgba + minStart); + } + else { + sample_linear_rect(ctx, tObj, minEnd - minStart, + texcoords + minStart, NULL, rgba + minStart); + } + } + if (magStart < magEnd) { + if (tObj->MagFilter == GL_NEAREST) { + sample_nearest_rect(ctx, tObj, magEnd - magStart, + texcoords + magStart, NULL, rgba + magStart); + } + else { + sample_linear_rect(ctx, tObj, magEnd - magStart, + texcoords + magStart, NULL, rgba + magStart); + } + } +} + + + +/**********************************************************************/ +/* 2D Texture Array Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. + */ +static void +sample_2d_array_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height2; /* without border, power of two */ + const GLint depth = img->Depth; + GLint i, j; + GLint array; + (void) ctx; + + i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]); + j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]); + array = clamp_rect_coord_nearest(tObj->WrapR, texcoord[2], depth); + + if (i < 0 || i >= (GLint) img->Width || + j < 0 || j >= (GLint) img->Height || + array < 0 || array >= (GLint) img->Depth) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, j, array, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. + */ +static void +sample_2d_array_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + const GLint depth = img->Depth; + GLint i0, j0, i1, j1; + GLint array; + GLbitfield useBorderColor = 0x0; + GLfloat a, b; + GLfloat t00[4], t01[4], t10[4], t11[4]; + + linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b); + array = clamp_rect_coord_nearest(tObj->WrapR, texcoord[2], depth); + + if (array < 0 || array >= depth) { + COPY_4V(rgba, tObj->BorderColor); + } + else { + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + j0 += img->Border; + j1 += img->Border; + } + else { + /* check if sampling texture border color */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; + if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; + } + + /* Fetch texels */ + if (useBorderColor & (I0BIT | J0BIT)) { + get_border_color(tObj, img, t00); + } + else { + img->FetchTexelf(img, i0, j0, array, t00); + } + if (useBorderColor & (I1BIT | J0BIT)) { + get_border_color(tObj, img, t10); + } + else { + img->FetchTexelf(img, i1, j0, array, t10); + } + if (useBorderColor & (I0BIT | J1BIT)) { + get_border_color(tObj, img, t01); + } + else { + img->FetchTexelf(img, i0, j1, array, t01); + } + if (useBorderColor & (I1BIT | J1BIT)) { + get_border_color(tObj, img, t11); + } + else { + img->FetchTexelf(img, i1, j1, array, t11); + } + + /* trilinear interpolation of samples */ + lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); + } +} + + +static void +sample_2d_array_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], + rgba[i]); + } +} + + +static void +sample_2d_array_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_2d_array_linear(ctx, tObj, tObj->Image[0][level], + texcoord[i], rgba[i]); + } +} + + +static void +sample_2d_array_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level ], + texcoord[i], t0); + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level+1], + texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_2d_array_linear_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_array_linear(ctx, tObj, tObj->Image[0][level ], + texcoord[i], t0); + sample_2d_array_linear(ctx, tObj, tObj->Image[0][level+1], + texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 2D Array texture, nearest filtering for both min/magnification */ +static void +sample_nearest_2d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_2d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + + +/** Sample 2D Array texture, linear filtering for both min/magnification */ +static void +sample_linear_2d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_2d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 2D Array texture, using lambda to choose between min/magnification */ +static void +sample_lambda_2d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_2d_array_nearest_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_2d_array_linear_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_2d_array_nearest_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_2d_array_linear_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_2d_array_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_2d_array_texture"); + return; + } + } +} + + + + +/**********************************************************************/ +/* 1D Texture Array Sampling Functions */ +/**********************************************************************/ + +/** + * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. + */ +static void +sample_1d_array_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; /* without border, power of two */ + const GLint height = img->Height; + GLint i; + GLint array; + (void) ctx; + + i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]); + array = clamp_rect_coord_nearest(tObj->WrapT, texcoord[1], height); + + if (i < 0 || i >= (GLint) img->Width || + array < 0 || array >= (GLint) img->Height) { + /* Need this test for GL_CLAMP_TO_BORDER mode */ + get_border_color(tObj, img, rgba); + } + else { + img->FetchTexelf(img, i, array, 0, rgba); + } +} + + +/** + * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. + */ +static void +sample_1d_array_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLfloat rgba[4]) +{ + const GLint width = img->Width2; + const GLint height = img->Height; + GLint i0, i1; + GLint array; + GLbitfield useBorderColor = 0x0; + GLfloat a; + GLfloat t0[4], t1[4]; + + linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a); + array = clamp_rect_coord_nearest(tObj->WrapT, texcoord[1], height); + + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + } + else { + /* check if sampling texture border color */ + if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; + if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; + } + + if (array < 0 || array >= height) useBorderColor |= K0BIT; + + /* Fetch texels */ + if (useBorderColor & (I0BIT | K0BIT)) { + get_border_color(tObj, img, t0); + } + else { + img->FetchTexelf(img, i0, array, 0, t0); + } + if (useBorderColor & (I1BIT | K0BIT)) { + get_border_color(tObj, img, t1); + } + else { + img->FetchTexelf(img, i1, array, 0, t1); + } + + /* bilinear interpolation of samples */ + lerp_rgba(rgba, a, t0, t1); +} + + +static void +sample_1d_array_nearest_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], + rgba[i]); + } +} + + +static void +sample_1d_array_linear_mipmap_nearest(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = nearest_mipmap_level(tObj, lambda[i]); + sample_1d_array_linear(ctx, tObj, tObj->Image[0][level], + texcoord[i], rgba[i]); + } +} + + +static void +sample_1d_array_nearest_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +static void +sample_1d_array_linear_mipmap_linear(GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, const GLfloat texcoord[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level = linear_mipmap_level(tObj, lambda[i]); + if (level >= tObj->_MaxLevel) { + sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLfloat t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_1d_array_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_array_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + lerp_rgba(rgba[i], f, t0, t1); + } + } +} + + +/** Sample 1D Array texture, nearest filtering for both min/magnification */ +static void +sample_nearest_1d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D Array texture, linear filtering for both min/magnification */ +static void +sample_linear_1d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], + const GLfloat lambda[], GLfloat rgba[][4]) +{ + GLuint i; + struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + (void) lambda; + for (i = 0; i < n; i++) { + sample_1d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); + } +} + + +/** Sample 1D Array texture, using lambda to choose between min/magnification */ +static void +sample_lambda_1d_array(GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + GLuint i; + + ASSERT(lambda != NULL); + compute_min_mag_ranges(tObj, n, lambda, + &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_1d_array_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_1d_array_linear_mipmap_nearest(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_1d_array_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_1d_array_linear_mipmap_linear(ctx, tObj, m, + texcoords + minStart, + lambda + minStart, + rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_1d_array_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_1d_array_texture"); + return; + } + } +} + + +/** + * Compare texcoord against depth sample. Return 1.0 or the ambient value. + */ +static INLINE GLfloat +shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample, + GLfloat ambient) +{ + switch (function) { + case GL_LEQUAL: + return (coord <= depthSample) ? 1.0F : ambient; + case GL_GEQUAL: + return (coord >= depthSample) ? 1.0F : ambient; + case GL_LESS: + return (coord < depthSample) ? 1.0F : ambient; + case GL_GREATER: + return (coord > depthSample) ? 1.0F : ambient; + case GL_EQUAL: + return (coord == depthSample) ? 1.0F : ambient; + case GL_NOTEQUAL: + return (coord != depthSample) ? 1.0F : ambient; + case GL_ALWAYS: + return 1.0F; + case GL_NEVER: + return ambient; + case GL_NONE: + return depthSample; + default: + _mesa_problem(NULL, "Bad compare func in shadow_compare"); + return ambient; + } +} + + +/** + * Compare texcoord against four depth samples. + */ +static INLINE GLfloat +shadow_compare4(GLenum function, GLfloat coord, + GLfloat depth00, GLfloat depth01, + GLfloat depth10, GLfloat depth11, + GLfloat ambient, GLfloat wi, GLfloat wj) +{ + const GLfloat d = (1.0F - (GLfloat) ambient) * 0.25F; + GLfloat luminance = 1.0F; + + switch (function) { + case GL_LEQUAL: + if (depth00 <= coord) luminance -= d; + if (depth01 <= coord) luminance -= d; + if (depth10 <= coord) luminance -= d; + if (depth11 <= coord) luminance -= d; + return luminance; + case GL_GEQUAL: + if (depth00 >= coord) luminance -= d; + if (depth01 >= coord) luminance -= d; + if (depth10 >= coord) luminance -= d; + if (depth11 >= coord) luminance -= d; + return luminance; + case GL_LESS: + if (depth00 < coord) luminance -= d; + if (depth01 < coord) luminance -= d; + if (depth10 < coord) luminance -= d; + if (depth11 < coord) luminance -= d; + return luminance; + case GL_GREATER: + if (depth00 > coord) luminance -= d; + if (depth01 > coord) luminance -= d; + if (depth10 > coord) luminance -= d; + if (depth11 > coord) luminance -= d; + return luminance; + case GL_EQUAL: + if (depth00 == coord) luminance -= d; + if (depth01 == coord) luminance -= d; + if (depth10 == coord) luminance -= d; + if (depth11 == coord) luminance -= d; + return luminance; + case GL_NOTEQUAL: + if (depth00 != coord) luminance -= d; + if (depth01 != coord) luminance -= d; + if (depth10 != coord) luminance -= d; + if (depth11 != coord) luminance -= d; + return luminance; + case GL_ALWAYS: + return 0.0; + case GL_NEVER: + return ambient; + case GL_NONE: + /* ordinary bilinear filtering */ + return lerp_2d(wi, wj, depth00, depth10, depth01, depth11); + default: + _mesa_problem(NULL, "Bad compare func in sample_depth_texture"); + return 0.0F; + } +} + + +/** + * Sample a shadow/depth texture. + */ +static void +sample_depth_texture( GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat texel[][4] ) +{ + const GLint baseLevel = tObj->BaseLevel; + const struct gl_texture_image *img = tObj->Image[0][baseLevel]; + const GLint width = img->Width; + const GLint height = img->Height; + const GLint depth = img->Depth; + const GLuint compare_coord = (tObj->Target == GL_TEXTURE_2D_ARRAY_EXT) + ? 3 : 2; + GLfloat ambient; + GLenum function; + GLfloat result; + + (void) lambda; + + ASSERT(img->TexFormat->BaseFormat == GL_DEPTH_COMPONENT || + img->TexFormat->BaseFormat == GL_DEPTH_STENCIL_EXT); + + ASSERT(tObj->Target == GL_TEXTURE_1D || + tObj->Target == GL_TEXTURE_2D || + tObj->Target == GL_TEXTURE_RECTANGLE_NV || + tObj->Target == GL_TEXTURE_1D_ARRAY_EXT || + tObj->Target == GL_TEXTURE_2D_ARRAY_EXT); + + ambient = tObj->CompareFailValue; + + /* XXXX if tObj->MinFilter != tObj->MagFilter, we're ignoring lambda */ + + function = (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ? + tObj->CompareFunc : GL_NONE; + + if (tObj->MagFilter == GL_NEAREST) { + GLuint i; + for (i = 0; i < n; i++) { + GLfloat depthSample; + GLint col, row, slice; + + nearest_texcoord(tObj, texcoords[i], &col, &row, &slice); + + if (col >= 0 && row >= 0 && col < width && row < height && + slice >= 0 && slice < depth) { + img->FetchTexelf(img, col, row, slice, &depthSample); + } + else { + depthSample = tObj->BorderColor[0]; + } + + result = shadow_compare(function, texcoords[i][compare_coord], + depthSample, ambient); + + switch (tObj->DepthMode) { + case GL_LUMINANCE: + ASSIGN_4V(texel[i], result, result, result, 1.0F); + break; + case GL_INTENSITY: + ASSIGN_4V(texel[i], result, result, result, result); + break; + case GL_ALPHA: + ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); + break; + default: + _mesa_problem(ctx, "Bad depth texture mode"); + } + } + } + else { + GLuint i; + ASSERT(tObj->MagFilter == GL_LINEAR); + for (i = 0; i < n; i++) { + GLfloat depth00, depth01, depth10, depth11; + GLint i0, i1, j0, j1; + GLint slice; + GLfloat wi, wj; + GLuint useBorderTexel; + + linear_texcoord(tObj, texcoords[i], &i0, &i1, &j0, &j1, &slice, + &wi, &wj); + + useBorderTexel = 0; + if (img->Border) { + i0 += img->Border; + i1 += img->Border; + if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) { + j0 += img->Border; + j1 += img->Border; + } + } + else { + if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT; + if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT; + if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT; + if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT; + } + + if (slice < 0 || slice >= (GLint) depth) { + depth00 = tObj->BorderColor[0]; + depth01 = tObj->BorderColor[0]; + depth10 = tObj->BorderColor[0]; + depth11 = tObj->BorderColor[0]; + } + else { + /* get four depth samples from the texture */ + if (useBorderTexel & (I0BIT | J0BIT)) { + depth00 = tObj->BorderColor[0]; + } + else { + img->FetchTexelf(img, i0, j0, slice, &depth00); + } + if (useBorderTexel & (I1BIT | J0BIT)) { + depth10 = tObj->BorderColor[0]; + } + else { + img->FetchTexelf(img, i1, j0, slice, &depth10); + } + + if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) { + if (useBorderTexel & (I0BIT | J1BIT)) { + depth01 = tObj->BorderColor[0]; + } + else { + img->FetchTexelf(img, i0, j1, slice, &depth01); + } + if (useBorderTexel & (I1BIT | J1BIT)) { + depth11 = tObj->BorderColor[0]; + } + else { + img->FetchTexelf(img, i1, j1, slice, &depth11); + } + } + else { + depth01 = depth00; + depth11 = depth10; + } + } + + result = shadow_compare4(function, texcoords[i][compare_coord], + depth00, depth01, depth10, depth11, + ambient, wi, wj); + + switch (tObj->DepthMode) { + case GL_LUMINANCE: + ASSIGN_4V(texel[i], result, result, result, 1.0F); + break; + case GL_INTENSITY: + ASSIGN_4V(texel[i], result, result, result, result); + break; + case GL_ALPHA: + ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); + break; + default: + _mesa_problem(ctx, "Bad depth texture mode"); + } + + } /* for */ + } /* if filter */ +} + + +/** + * We use this function when a texture object is in an "incomplete" state. + * When a fragment program attempts to sample an incomplete texture we + * return black (see issue 23 in GL_ARB_fragment_program spec). + * Note: fragment programs don't observe the texture enable/disable flags. + */ +static void +null_sample_func( GLcontext *ctx, + const struct gl_texture_object *tObj, GLuint n, + const GLfloat texcoords[][4], const GLfloat lambda[], + GLfloat rgba[][4]) +{ + GLuint i; + (void) ctx; + (void) tObj; + (void) texcoords; + (void) lambda; + for (i = 0; i < n; i++) { + rgba[i][RCOMP] = 0; + rgba[i][GCOMP] = 0; + rgba[i][BCOMP] = 0; + rgba[i][ACOMP] = CHAN_MAX; + } +} + + +/** + * Choose the texture sampling function for the given texture object. + */ +texture_sample_func +_swrast_choose_texture_sample_func( GLcontext *ctx, + const struct gl_texture_object *t ) +{ + if (!t || !t->_Complete) { + return &null_sample_func; + } + else { + const GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter); + const GLenum format = t->Image[0][t->BaseLevel]->TexFormat->BaseFormat; + + switch (t->Target) { + case GL_TEXTURE_1D: + if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { + return &sample_depth_texture; + } + else if (needLambda) { + return &sample_lambda_1d; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_1d; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_1d; + } + case GL_TEXTURE_2D: + if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { + return &sample_depth_texture; + } + else if (needLambda) { + return &sample_lambda_2d; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_2d; + } + else { + /* check for a few optimized cases */ + const struct gl_texture_image *img = t->Image[0][t->BaseLevel]; + ASSERT(t->MinFilter == GL_NEAREST); + if (t->WrapS == GL_REPEAT && + t->WrapT == GL_REPEAT && + img->_IsPowerOfTwo && + img->Border == 0 && + img->TexFormat->MesaFormat == MESA_FORMAT_RGB) { + return &opt_sample_rgb_2d; + } + else if (t->WrapS == GL_REPEAT && + t->WrapT == GL_REPEAT && + img->_IsPowerOfTwo && + img->Border == 0 && + img->TexFormat->MesaFormat == MESA_FORMAT_RGBA) { + return &opt_sample_rgba_2d; + } + else { + return &sample_nearest_2d; + } + } + case GL_TEXTURE_3D: + if (needLambda) { + return &sample_lambda_3d; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_3d; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_3d; + } + case GL_TEXTURE_CUBE_MAP: + if (needLambda) { + return &sample_lambda_cube; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_cube; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_cube; + } + case GL_TEXTURE_RECTANGLE_NV: + if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { + return &sample_depth_texture; + } + else if (needLambda) { + return &sample_lambda_rect; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_rect; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_rect; + } + case GL_TEXTURE_1D_ARRAY_EXT: + if (needLambda) { + return &sample_lambda_1d_array; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_1d_array; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_1d_array; + } + case GL_TEXTURE_2D_ARRAY_EXT: + if (needLambda) { + return &sample_lambda_2d_array; + } + else if (t->MinFilter == GL_LINEAR) { + return &sample_linear_2d_array; + } + else { + ASSERT(t->MinFilter == GL_NEAREST); + return &sample_nearest_2d_array; + } + default: + _mesa_problem(ctx, + "invalid target in _swrast_choose_texture_sample_func"); + return &null_sample_func; + } + } +} -- cgit v1.2.3