From 8a191c08ddda2e66fa26f148d6c21959bb08f923 Mon Sep 17 00:00:00 2001 From: marha Date: Sun, 20 Feb 2011 12:29:25 +0000 Subject: xserver xkeyboard-config libX11 pixman mesa git update 2011 --- xorg-server/xkeyboard-config/docs/README.enhancing | 1045 ++++++++++---------- 1 file changed, 520 insertions(+), 525 deletions(-) (limited to 'xorg-server/xkeyboard-config/docs') diff --git a/xorg-server/xkeyboard-config/docs/README.enhancing b/xorg-server/xkeyboard-config/docs/README.enhancing index 024ea146e..88d6a4edf 100644 --- a/xorg-server/xkeyboard-config/docs/README.enhancing +++ b/xorg-server/xkeyboard-config/docs/README.enhancing @@ -1,525 +1,520 @@ - How to further enhance XKB configuration - - Kamil Toman, Ivan U. Pascal - - 25 November 2002 - - Abstract - - This guide is aimed to relieve one's labour to create a new (inter- - nationalized) keyboard layout. Unlike other documents this guide - accents the keymap developer's point of view. - -1. Overview - -The developer of a new layout should read the xkb protocol specification (The -X Keyboard Extension: Protocol Specification -) at least to clarify for -himself some xkb-specific terms used in this document and elsewhere in xkb -configuration. Also it shows wise to understand how the X server and a client -digest their keyboard inputs (with and without xkb). - -A useful source is also Ivan Pascal's text about xkb configuration - often referenced throughout this docu- -ment. - -Note that this document covers only enhancements which are to be made to -XFree86 version 4.3.x and above. - -2. The Basics - -At the startup (or at later at user's command) X server starts its xkb key- -board module extension and reads data from a compiled configuration file. - -This compiled configuration file is prepared by the program xkbcomp which -behaves altogether as an ordinary compiler (see man xkbcomp). Its input are -human readable xkb configuration files which are verified and then composed -into a useful xkb configuration. Users don't need to mess with xkbcomp them- -selves, for them it is invisible. Usually, it is started upon X server -startup. - -As you probably already know, the xkb configuration consists of five main -modules: - - Keycodes - Tables that defines translation from keyboard scan codes into - reasonable symbolic names, maximum, minimum legal keycodes, sym- - bolic aliases and description of physically present LED-indica- - tors. The primary sence of this component is to allow definitions - of maps of symbols (see below) to be independent of physical key- - board scancodes. There are two main naming conventions for sym- - bolic names (always four bytes long): - - o names which express some traditional meaning like - (stands for space bar) or - - o names which express some relative positioning on a key- - board, for example (an exclamation mark on US key- - boards), on the right there are keys , etc. - - Types - Types describe how the produced key is changed by active modi- - fiers (like Shift, Control, Alt, ...). There are several prede- - fined types which cover most of used combinations. - - Compat - Compatibility component defines internal behaviour of modifiers. - Using compat component you can assign various actions (elabo- - rately described in xkb specification) to key events. This is - also the place where LED-indicators behaviour is defined. - - Symbols - For i18n purposes, this is the most important table. It defines - what values (=symbols) are assigned to what keycodes (represented - by their symbolic name, see above). There may be defined more - than one value for each key and then it depends on a key type and - on modifiers state (respective compat component) which value will - be the resulting one. - - Geometry - Geometry files aren't used by xkb itself but they may be used by - some external programs to depict a keyboard image. - -All these components have the files located in xkb configuration tree in sub- -directories with the same names (usually in /usr/lib/X11/xkb). - -3. Enhancing XKB Configuration - -Most of xkb enhancements concerns a need to define new output symbols for the -some input key events. In other words, a need to define a new symbol map (for -a new language, standard or just to feel more comfortable when typing text). - -What do you need to do? Generally, you have to define following things: - - o the map of symbols itself - - o the rules to allow users to select the new mapping - - o the description of the new layout - -First of all, it is good to go through existing layouts and to examine them -if there is something you could easily adjust to fit your needs. Even if -there is nothing similar you may get some ideas about basic concepts and used -tricks. - -3.1 Levels And Groups - -Since XFree86 4.3.0 you can use multi-layout concept of xkb configuration. -Though it is still in boundaries of xkb protocol and general ideas, the -keymap designer must obey new rules when creating new maps. In exchange we -get a more powerful and cleaner configuration system. - -Remember that it is the application which must decide which symbol matches -which keycode according to effective modifier state. The X server itself -sends only an input event message to. Of course, usually the general inter- -pretation is processed by Xlib, Xaw, Motif, Qt, Gtk and similar libraries. -The X server only supplies its mapping table (usually upon an application -startup). - -You can think of the X server's symbol table as of a irregular table where -each keycode has its row and where each combination of modifiers determines -exactly one column. The resulting cell then gives the proper symbolic value. -Not all keycodes need to bind different values for different combination of -modifiers. key, for instance, usually doesn't depend on any modi- -fiers so it its row has only one column defined. - -Note that in XKB there is no prior assumption that certain modifiers are -bound to certain columns. By editing proper files (see keytypes (section 4.2, -page 1)) this mapping can be changed as well. - -Unlike the original X protocol the XKB approach is far more flexible. It is -comfortable to add one additional XKB term - group. You can think of a group -as of a vector of columns per each keycode (naturally the dimension of this -vector may differ for different keycodes). What is it good for? The group is -not very useful unless you intend to use more than one logically different -set of symbols (like more than one alphabet) defined in a single mapping ta- -ble. But then, the group has a natural meaning - each symbol set has its own -group and changing it means selecting a different one. XKB approach allows -up to four different groups. The columns inside each group are called (shift) -levels. The X server knows the current group and reports it together with -modifier set and with a keycode in key events. - -To sum it up: - - o for each keycode XKB keyboard map contains up to four one-dimensional - tables - groups (logically different symbol sets) - - o for each group of a keycode XKB keyboard map contains some columns - - shift levels (values reached by combinations of Shift, Ctrl, Alt, ... - modifiers) - - o different keycodes can have different number of groups - - o different groups of one keycode can have different number of shift lev- - els - - o the current group number is tracked by X server - -It is clear that if you sanely define levels, groups and sanely bind modi- -fiers and associated actions you can have simultaneously loaded up to four -different symbol sets where each of them would reside in its own group. - -The multi-layout concept provides a facility to manipulate xkb groups and -symbol definitions in a way that allows almost arbitrary composition of pre- -defined symbol tables. To keep it fully functional you have to: - - o define all symbols only in the first group - - o (re)define any modifiers with extra care to avoid strange (anisometric) - behaviour - -4. Defining New Layouts - -See Some Words About XKB internals for explanation of used xkb terms and problems -addressed by XKB extension. - -See Common notes about XKB configuration files language - for more precise -explanation of syntax of xkb configuration files. - -4.1 Predefined XKB Symbol Sets - -If you are about to define some European symbol map extension, you might want -to use on of four predefined latin alphabet layouts. - -Okay, let's assume you want extend an existing keymap and you want to over- -ride a few keys. Let's take a simple U.K. keyboard as an example (defined in -pc/gb): - - partial default alphanumeric_keys - xkb_symbols "basic" { - include "pc/latin" - - name[Group1]="Great Britain"; - - key { [ 2, quotedbl, twosuperior, oneeighth ] }; - key { [ 3, sterling, threesuperior, sterling ] }; - key { [apostrophe, at, dead_circumflex, dead_caron] }; - key { [ grave, notsign, bar, bar ] }; - key { [numbersign, asciitilde, dead_grave, dead_breve ] }; - key { type[Group1]="TWO_LEVEL", - [ ISO_Level3_Shift, Multi_key ] }; - - modifier_map Mod5 { }; - }; - -It defines a new layout in basic variant as an extension of common latin -alphabet layout. The layout (symbol set) name is set to "Great Britain". -Then there are redefinitions of a few keycodes and a modifiers binding. As -you can see the number of shift levels is the same for , , -, and keys but it differs from number of shift levels of -. - -Note that the key itself is a binding key for Mod5 and that it serves -like a shift modifier for LevelThree, together with Shift as a multi-key. It -is a good habit to respect this rule in a new similar layout. - -Okay, you could now define more variants of your new layout besides basic -simply by including (augmenting/overriding/...) the basic definition and -altering what may be needed. - -4.2 Key Types - -The differences in the number of columns (shift levels) are caused by a dif- -ferent types of keys (see the types definition in section basics). Most key- -codes have implicitly set the keytype in the included "pc/latin" file to -"FOUR_LEVEL_ALPHABETIC". The only exception is keycode which is -explicitly set "TWO_LEVEL" keytype. - -All those names refer to pre-defined shift level schemes. Usually you can -choose a suitable shift level scheme from default types scheme list in proper -xkb component's subdirectory. - -The most used schemes are: - - ONE_LEVEL - The key does not depend on any modifiers. The symbol from first - level is always chosen. - - TWO_LEVEL - The key uses a modifier Shift and may have two possible values. - The second level may be chosen by Shift modifier. If Lock modi- - fier (usually Caps-lock) applies the symbol is further processed - using system-specific capitalization rules. If both Shift+Lock - modifier apply the symbol from the second level is taken and cap- - italization rules are applied (and usually have no effect). - - ALPHABETIC - The key uses modifiers Shift and Lock. It may have two possible - values. The second level may be chosen by Shift modifier. When - Lock modifier applies, the symbol from the first level is taken - and further processed using system-specific capitalization rules. - If both Shift+Lock modifier apply the symbol from the first level - is taken and no capitalization rules applied. This is often - called shift-cancels-caps behaviour. - - THREE_LEVEL - Is the same as TWO_LEVEL but it considers an extra modifier - - LevelThree which can be used to gain the symbol value from the - third level. If both Shift+LevelThree modifiers apply the value - from the third level is also taken. As in TWO_LEVEL, the Lock - modifier doesn't influence the resulting level. Only Shift and - LevelThree are taken into that consideration. If the Lock modi- - fier is active capitalization rules are applied on the resulting - symbol. - - FOUR_LEVEL - Is the same as THREE_LEVEL but unlike LEVEL_THREE if both - Shift+LevelThree modifiers apply the symbol is taken from the - fourth level. - - FOUR_LEVEL_ALPHABETIC - Is similar to FOUR_LEVEL but also defines shift-cancels-caps - behaviour as in ALPHABETIC. If Lock+LevelThree apply the symbol - from the third level is taken and the capitalization rules are - applied. If Lock+Shift+LevelThree apply the symbol from the - third level is taken and no capitalization rules are applied. - - KEYPAD - As the name suggest this scheme is primarily used for numeric - keypads. The scheme considers two modifiers - Shift and NumLock. - If none of modifiers applies the symbol from the first level is - taken. If either Shift or NumLock modifiers apply the symbol from - the second level is taken. If both Shift+NumLock modifiers apply - the symbol from the first level is taken. Again, shift-cancels- - caps variant. - - FOUR_LEVEL_KEYPAD - Is similar to KEYPAD scheme but considers also LevelThree modi- - fier. If LevelThree modifier applies the symbol from the third - level is taken. If Shift+LevelThree or NumLock+LevelThree apply - the symbol from the fourth level is taken. If all Shift+Num- - Lock+LevelThree modifiers apply the symbol from the third level - is taken. This also, shift-cancels-caps variant. - - FOUR_LEVEL_MIXED_KEYPAD - A four-level keypad scheme where the first two levels are similar - to the KEYPAD scheme (NumLock+Shift) - LevelThree acts as an override providing access to two Shift-ed - levels. When LevelThree is active we totally ignore NumLock state - Intended for the digit area of the keypad - - FOUR_LEVEL_X - A four-level scheme where the base level accepts no modifier, - LevelThree provides two more Shift-ed levels like in the previous - scheme, and Ctrl+Alt controls the fourth level - Intended for the operator part of a keypad, though since NumLock - plays no part, it is not keypad-specific - -Besides that, there are several schemes for special purposes: - - PC_CONTROL_LEVEL2 - It is similar to TWO_LEVEL scheme but it considers the Control - modifier rather than Shift. That means, the symbol from the sec- - ond level is chosen by Control rather than by Shift. - - PC_ALT_LEVEL2 - It is similar to TWO_LEVEL scheme but it considers the Alt modi- - fier rather than Shift. That means, the symbol from the second - level is chosen by Alt rather than by Shift. - - CTRL+ALT - The key uses modifiers Alt and Control. It may have two possible - values. If only one modifier (Alt or Control) applies the symbol - from the first level is chosen. Only if both Alt+Control modi- - fiers apply the symbol from the second level is chosen. - - SHIFT+ALT - The key uses modifiers Shift and Alt. It may have two possible - values. If only one modifier (Alt or Shift) applies the symbol - from the first level is chosen. Only if both Alt+Shift modifiers - apply the symbol from the second level is chosen. - -If needed, special caps schemes may be used. They redefine the standard -behaviour of all *ALPHABETIC types. The layouts (maps of symbols) with keys -defined in respective types then automatically change their behaviour accord- -ingly. Possible redefinitions are: - - o internal - - o internal_nocancel - - o shift - - o shift_nocancel - -None of these schemes should be used directly. They are defined merely for -'caps:' xkb options (used to globally change the layouts behaviour). - -Don't alter any of existing key types. If you need a different behaviour cre- -ate a new one. - -4.2.1 More On Definitions Of Types - -When the XKB software deals with a separate type description it gets a com- -plete list of modifiers that should be taken into account from the 'modi- -fiers=' list and expects that a set of 'map[]=' instructions that contain the mapping for -each combination of modifiers mentioned in that list. Modifiers that are not -explicitly listed are NOT taken into account when the resulting shift level -is computed. If some combination is omitted the program (subroutine) should -choose the first level for this combination (a quite reasonable behavior). - -Lets consider an example with two modifiers ModOne and ModTwo: - - type "..." { - modifiers = ModOne+ModTwo; - map[None] = Level1; - map[ModOne] = Level2; - }; - -In this case the map statements for ModTwo only and ModOne+ModTwo are omit- -ted. It means that if the ModTwo is active the subroutine can't found -explicit mapping for such combination an will use the default level i.e. -Level1. - -But in the case the type described as: - - type "..." { - modifiers = ModOne; - map[None] = Level1; - map[ModOne] = Level2; - }; - -the ModTwo will not be taken into account and the resulting level depends on -the ModOne state only. That means, ModTwo alone produces the Level1 but the -combination ModOne+ModTwo produces the Level2 as well as ModOne alone. - -What does it mean if the second modifier is the Lock? It means that in the -first case (the Lock itself is included in the list of modifiers but combina- -tions with this modifier aren't mentioned in the map statements) the internal -capitalization rules will be applied to the symbol from the first level. But -in the second case the capitalization will be applied to the symbol chosen -accordingly to he first modifier - and this can be the symbol from the first -as well as from the second level. - -Usually, all modifiers introduced in 'modifiers=' list are -used for shift level calculation and then discarded. Sometimes this is not -desirable. If you want to use a modifier for shift level calculation but you -don't want to discard it, you may list in 'preserve[]='. That means, for a given combination all listed -modifiers will be preserved. If the Lock modifier is preserved then the -resulting symbol is passed to internal capitalization routine regardless -whether it has been used for a shift level calculation or not. - -Any key type description can use both real and virtual modifiers. Since real -modifiers always have standard names it is not necessary to explicitly -declare them. Virtual modifiers can have arbitrary names and can be declared -(prior using them) directly in key type definition: - - virtual_modifiers ; - -as seen in for example basic, pc or mousekeys key type definitions. - -4.3 Rules - -Once you are finished with your symbol map you need to add it to rules file. -The rules file describes how all the five basic keycodes, types, compat, sym- -bols and geometry components should be composed to give a sensible resulting -xkb configuration. - -The main advantage of rules over formerly used keymaps is a possibility to -simply parameterize (once) fixed patterns of configurations and thus to ele- -gantly allow substitutions of various local configurations into predefined -templates. - -A pattern in a rules file (often located in /usr/lib/X11/xkb/rules) can be -parameterized with four other arguments: Model, Layout, Variant and Options. -For most cases parameters model and layout should be sufficient for choosing -a functional keyboard mapping. - -The rules file itself is composed of pattern lines and lines with rules. The -pattern line starts with an exclamation mark ('!') and describes how will the -xkb interpret the following lines (rules). A sample rules file looks like -this: - - ! model = keycodes - macintosh_old = macintosh - ... - * = xfree86 - - ! model = symbols - hp = +inet(%m) - microsoftpro = +inet(%m) - geniuscomfy = +inet(%m) - - ! model layout[1] = symbols - macintosh us = macintosh/us%(v[1]) - * * = pc/pc(%m)+pc/%l[1]%(v[1]) - - ! model layout[2] = symbols - macintosh us = +macintosh/us[2]%(v[2]):2 - * * = +pc/%l[2]%(v[2]):2 - - ! option = types - caps:internal = +caps(internal) - caps:internal_nocancel = +caps(internal_nocancel) - -Each rule defines what certain combination of values on the left side of -equal sign ('=') results in. For example a (keyboard) model macintosh_old -instructs xkb to take definitions of keycodes from file keycodes/macintosh -while the rest of models (represented by a wild card '*') instructs it to -take them from file keycodes/xfree86. The wild card represents all possible -values on the left side which were not found in any of the previous rules. -The more specialized (more complete) rules have higher precedence than gen- -eral ones, i.e. the more general rules supply reasonable default values. - -As you can see some lines contain substitution parameters - the parameters -preceded by the percent sign ('%'). The first alphabetical character after -the percent sign expands to the value which has been found on the left side. -For example +%l%(v) expands into +cz(bksl) if the respective values on the -left side were cz layout in its bksl variant. More, if the layout resp. vari- -ant parameter is followed by a pair of brackets ('[', ']') it means that xkb -should place the layout resp. variant into specified xkb group. If the brack- -ets are omitted the first group is the default value. - -So the second block of rules enhances symbol definitions for some particular -keyboard models with extra keys (for internet, multimedia, ...) . Other mod- -els are left intact. Similarly, the last block overrides some key type defi- -nitions, so the common global behaviour ''shift cancels caps'' or ''shift -doesn't cancel caps'' can be selected. The rest of rules produces special -symbols for each variant us layout of macintosh keyboard and standard pc sym- -bols in appropriate variants as a default. - -4.4 Descriptive Files of Rules - -Now you just need to add a detailed description to .xml description -file so the other users (and external programs which often parse this file) -know what is your work about. - -4.4.1 Old Descriptive Files - -The formerly used descriptive files were named .lst Its structure is -very simple and quite self descriptive but such simplicity had also some cav- -ities, for example there was no way how to describe local variants of layouts -and there were problems with the localization of descriptions. To preserve -compatibility with some older programs, new XML descriptive files can be con- -verted to old format '.lst'. - -For each parameter of rules file should be described its meaning. For the -rules file described above the .lst file could look like: - - ! model - pc104 Generic 104-key PC - microsoft Microsoft Natural - pc98 PC-98xx Series - macintosh Original Macintosh - ... - - ! layout - us U.S. English - cz Czech - de German - ... - - ! option - caps:internal uses internal capitalization. Shift cancels Caps - caps:internal_nocancel uses internal capitalization. Shift doesn't cancel Caps - -And that should be it. Enjoy creating your own xkb mapping. - - Generated from XFree86: xc/programs/Xserver/hw/xfree86/doc/sgml/XKB-Enhancing.sgml,v 1.2 dawes Exp $ - - -$XFree86: xc/programs/xkbcomp/README.enhancing,v 1.5 2003/10/19 19:57:44 dawes Exp $ + How to further enhance XKB configuration + + Kamil Toman, Ivan U. Pascal + + 25 November 2002 + + Abstract + + This guide is aimed to relieve one's labour to create a new (inter- + nationalized) keyboard layout. Unlike other documents this guide + accents the keymap developer's point of view. + +1. Overview + +The developer of a new layout should read the xkb protocol specification (The +X Keyboard Extension: Protocol Specification +) at least to clarify for +himself some xkb-specific terms used in this document and elsewhere in xkb +configuration. Also it shows wise to understand how the X server and a client +digest their keyboard inputs (with and without xkb). + +A useful source is also Ivan Pascal's text about xkb configuration + often referenced throughout this docu- +ment. + +Note that this document covers only enhancements which are to be made to +XFree86 version 4.3.x and above. + +2. The Basics + +At the startup (or at later at user's command) X server starts its xkb key- +board module extension and reads data from a compiled configuration file. + +This compiled configuration file is prepared by the program xkbcomp which +behaves altogether as an ordinary compiler (see man xkbcomp). Its input are +human readable xkb configuration files which are verified and then composed +into a useful xkb configuration. Users don't need to mess with xkbcomp them- +selves, for them it is invisible. Usually, it is started upon X server +startup. + +As you probably already know, the xkb configuration consists of five main +modules: + + Keycodes + Tables that defines translation from keyboard scan codes into + reasonable symbolic names, maximum, minimum legal keycodes, sym- + bolic aliases and description of physically present LED-indica- + tors. The primary sence of this component is to allow definitions + of maps of symbols (see below) to be independent of physical key- + board scancodes. There are two main naming conventions for sym- + bolic names (always four bytes long): + + o names which express some traditional meaning like + (stands for space bar) or + + o names which express some relative positioning on a key- + board, for example (an exclamation mark on US key- + boards), on the right there are keys , etc. + + Types + Types describe how the produced key is changed by active modi- + fiers (like Shift, Control, Alt, ...). There are several prede- + fined types which cover most of used combinations. + + Compat + Compatibility component defines internal behaviour of modifiers. + Using compat component you can assign various actions (elabo- + rately described in xkb specification) to key events. This is + also the place where LED-indicators behaviour is defined. + + Symbols + For i18n purposes, this is the most important table. It defines + what values (=symbols) are assigned to what keycodes (represented + by their symbolic name, see above). There may be defined more + than one value for each key and then it depends on a key type and + on modifiers state (respective compat component) which value will + be the resulting one. + + Geometry + Geometry files aren't used by xkb itself but they may be used by + some external programs to depict a keyboard image. + +All these components have the files located in xkb configuration tree in sub- +directories with the same names (usually in /usr/lib/X11/xkb). + +3. Enhancing XKB Configuration + +Most of xkb enhancements concerns a need to define new output symbols for the +some input key events. In other words, a need to define a new symbol map (for +a new language, standard or just to feel more comfortable when typing text). + +What do you need to do? Generally, you have to define following things: + + o the map of symbols itself + + o the rules to allow users to select the new mapping + + o the description of the new layout + +First of all, it is good to go through existing layouts and to examine them +if there is something you could easily adjust to fit your needs. Even if +there is nothing similar you may get some ideas about basic concepts and used +tricks. + +3.1 Levels And Groups + +Since XFree86 4.3.0 you can use multi-layout concept of xkb configuration. +Though it is still in boundaries of xkb protocol and general ideas, the +keymap designer must obey new rules when creating new maps. In exchange we +get a more powerful and cleaner configuration system. + +Remember that it is the application which must decide which symbol matches +which keycode according to effective modifier state. The X server itself +sends only an input event message to. Of course, usually the general inter- +pretation is processed by Xlib, Xaw, Motif, Qt, Gtk and similar libraries. +The X server only supplies its mapping table (usually upon an application +startup). + +You can think of the X server's symbol table as of a irregular table where +each keycode has its row and where each combination of modifiers determines +exactly one column. The resulting cell then gives the proper symbolic value. +Not all keycodes need to bind different values for different combination of +modifiers. key, for instance, usually doesn't depend on any modi- +fiers so it its row has only one column defined. + +Note that in XKB there is no prior assumption that certain modifiers are +bound to certain columns. By editing proper files (see keytypes (section 4.2, +page 1)) this mapping can be changed as well. + +Unlike the original X protocol the XKB approach is far more flexible. It is +comfortable to add one additional XKB term - group. You can think of a group +as of a vector of columns per each keycode (naturally the dimension of this +vector may differ for different keycodes). What is it good for? The group is +not very useful unless you intend to use more than one logically different +set of symbols (like more than one alphabet) defined in a single mapping ta- +ble. But then, the group has a natural meaning - each symbol set has its own +group and changing it means selecting a different one. XKB approach allows +up to four different groups. The columns inside each group are called (shift) +levels. The X server knows the current group and reports it together with +modifier set and with a keycode in key events. + +To sum it up: + + o for each keycode XKB keyboard map contains up to four one-dimensional + tables - groups (logically different symbol sets) + + o for each group of a keycode XKB keyboard map contains some columns - + shift levels (values reached by combinations of Shift, Ctrl, Alt, ... + modifiers) + + o different keycodes can have different number of groups + + o different groups of one keycode can have different number of shift lev- + els + + o the current group number is tracked by X server + +It is clear that if you sanely define levels, groups and sanely bind modi- +fiers and associated actions you can have simultaneously loaded up to four +different symbol sets where each of them would reside in its own group. + +The multi-layout concept provides a facility to manipulate xkb groups and +symbol definitions in a way that allows almost arbitrary composition of pre- +defined symbol tables. To keep it fully functional you have to: + + o define all symbols only in the first group + + o (re)define any modifiers with extra care to avoid strange (anisometric) + behaviour + +4. Defining New Layouts + +See Some Words About XKB internals for explanation of used xkb terms and problems +addressed by XKB extension. + +See Common notes about XKB configuration files language + for more precise +explanation of syntax of xkb configuration files. + +4.1 Predefined XKB Symbol Sets + +If you are about to define some European symbol map extension, you might want +to use on of four predefined latin alphabet layouts. + +Okay, let's assume you want extend an existing keymap and you want to over- +ride a few keys. Let's take a simple U.K. keyboard as an example (defined in +pc/gb): + + partial default alphanumeric_keys + xkb_symbols "basic" { + include "pc/latin" + + name[Group1]="Great Britain"; + + key { [ 2, quotedbl, twosuperior, oneeighth ] }; + key { [ 3, sterling, threesuperior, sterling ] }; + key { [apostrophe, at, dead_circumflex, dead_caron] }; + key { [ grave, notsign, bar, bar ] }; + key { [numbersign, asciitilde, dead_grave, dead_breve ] }; + key { type[Group1]="TWO_LEVEL", + [ ISO_Level3_Shift, Multi_key ] }; + + modifier_map Mod5 { }; + }; + +It defines a new layout in basic variant as an extension of common latin +alphabet layout. The layout (symbol set) name is set to "Great Britain". +Then there are redefinitions of a few keycodes and a modifiers binding. As +you can see the number of shift levels is the same for , , +, and keys but it differs from number of shift levels of +. + +Note that the key itself is a binding key for Mod5 and that it serves +like a shift modifier for LevelThree, together with Shift as a multi-key. It +is a good habit to respect this rule in a new similar layout. + +Okay, you could now define more variants of your new layout besides basic +simply by including (augmenting/overriding/...) the basic definition and +altering what may be needed. + +4.2 Key Types + +The differences in the number of columns (shift levels) are caused by a dif- +ferent types of keys (see the types definition in section basics). Most key- +codes have implicitly set the keytype in the included "pc/latin" file to +"FOUR_LEVEL_ALPHABETIC". The only exception is keycode which is +explicitly set "TWO_LEVEL" keytype. + +All those names refer to pre-defined shift level schemes. Usually you can +choose a suitable shift level scheme from default types scheme list in proper +xkb component's subdirectory. + +The most used schemes are: + + ONE_LEVEL + The key does not depend on any modifiers. The symbol from first + level is always chosen. + + TWO_LEVEL + The key uses a modifier Shift and may have two possible values. + The second level may be chosen by Shift modifier. If Lock modi- + fier (usually Caps-lock) applies the symbol is further processed + using system-specific capitalization rules. If both Shift+Lock + modifier apply the symbol from the second level is taken and cap- + italization rules are applied (and usually have no effect). + + ALPHABETIC + The key uses modifiers Shift and Lock. It may have two possible + values. The second level may be chosen by Shift modifier. When + Lock modifier applies, the symbol from the first level is taken + and further processed using system-specific capitalization rules. + If both Shift+Lock modifier apply the symbol from the first level + is taken and no capitalization rules applied. This is often + called shift-cancels-caps behaviour. + + THREE_LEVEL + Is the same as TWO_LEVEL but it considers an extra modifier - + LevelThree which can be used to gain the symbol value from the + third level. If both Shift+LevelThree modifiers apply the value + from the third level is also taken. As in TWO_LEVEL, the Lock + modifier doesn't influence the resulting level. Only Shift and + LevelThree are taken into that consideration. If the Lock modi- + fier is active capitalization rules are applied on the resulting + symbol. + + FOUR_LEVEL + Is the same as THREE_LEVEL but unlike LEVEL_THREE if both + Shift+LevelThree modifiers apply the symbol is taken from the + fourth level. + + FOUR_LEVEL_ALPHABETIC + Is similar to FOUR_LEVEL but also defines shift-cancels-caps + behaviour as in ALPHABETIC. If Lock+LevelThree apply the symbol + from the third level is taken and the capitalization rules are + applied. If Lock+Shift+LevelThree apply the symbol from the + third level is taken and no capitalization rules are applied. + + KEYPAD + As the name suggest this scheme is primarily used for numeric + keypads. The scheme considers two modifiers - Shift and NumLock. + If none of modifiers applies the symbol from the first level is + taken. If either Shift or NumLock modifiers apply the symbol from + the second level is taken. If both Shift+NumLock modifiers apply + the symbol from the first level is taken. Again, shift-cancels- + caps variant. + + FOUR_LEVEL_KEYPAD + Is similar to KEYPAD scheme but considers also LevelThree modi- + fier. If LevelThree modifier applies the symbol from the third + level is taken. If Shift+LevelThree or NumLock+LevelThree apply + the symbol from the fourth level is taken. If all Shift+Num- + Lock+LevelThree modifiers apply the symbol from the third level + is taken. This also, shift-cancels-caps variant. + + FOUR_LEVEL_MIXED_KEYPAD + A four-level keypad scheme where the first two levels are similar + to the KEYPAD scheme (NumLock+Shift) + LevelThree acts as an override providing access to two Shift-ed + levels. When LevelThree is active we totally ignore NumLock state + Intended for the digit area of the keypad + + FOUR_LEVEL_X + A four-level scheme where the base level accepts no modifier, + LevelThree provides two more Shift-ed levels like in the previous + scheme, and Ctrl+Alt controls the fourth level + Intended for the operator part of a keypad, though since NumLock + plays no part, it is not keypad-specific + +Besides that, there are several schemes for special purposes: + + PC_CONTROL_LEVEL2 + It is similar to TWO_LEVEL scheme but it considers the Control + modifier rather than Shift. That means, the symbol from the sec- + ond level is chosen by Control rather than by Shift. + + PC_ALT_LEVEL2 + It is similar to TWO_LEVEL scheme but it considers the Alt modi- + fier rather than Shift. That means, the symbol from the second + level is chosen by Alt rather than by Shift. + + CTRL+ALT + The key uses modifiers Alt and Control. It may have two possible + values. If only one modifier (Alt or Control) applies the symbol + from the first level is chosen. Only if both Alt+Control modi- + fiers apply the symbol from the second level is chosen. + + SHIFT+ALT + The key uses modifiers Shift and Alt. It may have two possible + values. If only one modifier (Alt or Shift) applies the symbol + from the first level is chosen. Only if both Alt+Shift modifiers + apply the symbol from the second level is chosen. + +If needed, special caps schemes may be used. They redefine the standard +behaviour of all *ALPHABETIC types. The layouts (maps of symbols) with keys +defined in respective types then automatically change their behaviour accord- +ingly. Possible redefinitions are: + + o internal + + o internal_nocancel + + o shift + + o shift_nocancel + +None of these schemes should be used directly. They are defined merely for +'caps:' xkb options (used to globally change the layouts behaviour). + +Don't alter any of existing key types. If you need a different behaviour cre- +ate a new one. + +4.2.1 More On Definitions Of Types + +When the XKB software deals with a separate type description it gets a com- +plete list of modifiers that should be taken into account from the 'modi- +fiers=' list and expects that a set of 'map[]=' instructions that contain the mapping for +each combination of modifiers mentioned in that list. Modifiers that are not +explicitly listed are NOT taken into account when the resulting shift level +is computed. If some combination is omitted the program (subroutine) should +choose the first level for this combination (a quite reasonable behavior). + +Lets consider an example with two modifiers ModOne and ModTwo: + + type "..." { + modifiers = ModOne+ModTwo; + map[None] = Level1; + map[ModOne] = Level2; + }; + +In this case the map statements for ModTwo only and ModOne+ModTwo are omit- +ted. It means that if the ModTwo is active the subroutine can't found +explicit mapping for such combination an will use the default level i.e. +Level1. + +But in the case the type described as: + + type "..." { + modifiers = ModOne; + map[None] = Level1; + map[ModOne] = Level2; + }; + +the ModTwo will not be taken into account and the resulting level depends on +the ModOne state only. That means, ModTwo alone produces the Level1 but the +combination ModOne+ModTwo produces the Level2 as well as ModOne alone. + +What does it mean if the second modifier is the Lock? It means that in the +first case (the Lock itself is included in the list of modifiers but combina- +tions with this modifier aren't mentioned in the map statements) the internal +capitalization rules will be applied to the symbol from the first level. But +in the second case the capitalization will be applied to the symbol chosen +accordingly to he first modifier - and this can be the symbol from the first +as well as from the second level. + +Usually, all modifiers introduced in 'modifiers=' list are +used for shift level calculation and then discarded. Sometimes this is not +desirable. If you want to use a modifier for shift level calculation but you +don't want to discard it, you may list in 'preserve[]='. That means, for a given combination all listed +modifiers will be preserved. If the Lock modifier is preserved then the +resulting symbol is passed to internal capitalization routine regardless +whether it has been used for a shift level calculation or not. + +Any key type description can use both real and virtual modifiers. Since real +modifiers always have standard names it is not necessary to explicitly +declare them. Virtual modifiers can have arbitrary names and can be declared +(prior using them) directly in key type definition: + + virtual_modifiers ; + +as seen in for example basic, pc or mousekeys key type definitions. + +4.3 Rules + +Once you are finished with your symbol map you need to add it to rules file. +The rules file describes how all the five basic keycodes, types, compat, sym- +bols and geometry components should be composed to give a sensible resulting +xkb configuration. + +The main advantage of rules over formerly used keymaps is a possibility to +simply parameterize (once) fixed patterns of configurations and thus to ele- +gantly allow substitutions of various local configurations into predefined +templates. + +A pattern in a rules file (often located in /usr/lib/X11/xkb/rules) can be +parameterized with four other arguments: Model, Layout, Variant and Options. +For most cases parameters model and layout should be sufficient for choosing +a functional keyboard mapping. + +The rules file itself is composed of pattern lines and lines with rules. The +pattern line starts with an exclamation mark ('!') and describes how will the +xkb interpret the following lines (rules). A sample rules file looks like +this: + + ! model = keycodes + macintosh_old = macintosh + ... + * = xfree86 + + ! model = symbols + hp = +inet(%m) + microsoftpro = +inet(%m) + geniuscomfy = +inet(%m) + + ! model layout[1] = symbols + macintosh us = macintosh/us%(v[1]) + * * = pc/pc(%m)+pc/%l[1]%(v[1]) + + ! model layout[2] = symbols + macintosh us = +macintosh/us[2]%(v[2]):2 + * * = +pc/%l[2]%(v[2]):2 + + ! option = types + caps:internal = +caps(internal) + caps:internal_nocancel = +caps(internal_nocancel) + +Each rule defines what certain combination of values on the left side of +equal sign ('=') results in. For example a (keyboard) model macintosh_old +instructs xkb to take definitions of keycodes from file keycodes/macintosh +while the rest of models (represented by a wild card '*') instructs it to +take them from file keycodes/xfree86. The wild card represents all possible +values on the left side which were not found in any of the previous rules. +The more specialized (more complete) rules have higher precedence than gen- +eral ones, i.e. the more general rules supply reasonable default values. + +As you can see some lines contain substitution parameters - the parameters +preceded by the percent sign ('%'). The first alphabetical character after +the percent sign expands to the value which has been found on the left side. +For example +%l%(v) expands into +cz(bksl) if the respective values on the +left side were cz layout in its bksl variant. More, if the layout resp. vari- +ant parameter is followed by a pair of brackets ('[', ']') it means that xkb +should place the layout resp. variant into specified xkb group. If the brack- +ets are omitted the first group is the default value. + +So the second block of rules enhances symbol definitions for some particular +keyboard models with extra keys (for internet, multimedia, ...) . Other mod- +els are left intact. Similarly, the last block overrides some key type defi- +nitions, so the common global behaviour ''shift cancels caps'' or ''shift +doesn't cancel caps'' can be selected. The rest of rules produces special +symbols for each variant us layout of macintosh keyboard and standard pc sym- +bols in appropriate variants as a default. + +4.4 Descriptive Files of Rules + +Now you just need to add a detailed description to .xml description +file so the other users (and external programs which often parse this file) +know what is your work about. + +4.4.1 Old Descriptive Files + +The formerly used descriptive files were named .lst Its structure is +very simple and quite self descriptive but such simplicity had also some cav- +ities, for example there was no way how to describe local variants of layouts +and there were problems with the localization of descriptions. To preserve +compatibility with some older programs, new XML descriptive files can be con- +verted to old format '.lst'. + +For each parameter of rules file should be described its meaning. For the +rules file described above the .lst file could look like: + + ! model + pc104 Generic 104-key PC + microsoft Microsoft Natural + pc98 PC-98xx Series + macintosh Original Macintosh + ... + + ! layout + us U.S. English + cz Czech + de German + ... + + ! option + caps:internal uses internal capitalization. Shift cancels Caps + caps:internal_nocancel uses internal capitalization. Shift doesn't cancel Caps + +And that should be it. Enjoy creating your own xkb mapping. -- cgit v1.2.3